GB2547325A - Filter - Google Patents

Filter Download PDF

Info

Publication number
GB2547325A
GB2547325A GB1700232.0A GB201700232A GB2547325A GB 2547325 A GB2547325 A GB 2547325A GB 201700232 A GB201700232 A GB 201700232A GB 2547325 A GB2547325 A GB 2547325A
Authority
GB
United Kingdom
Prior art keywords
filter
end portion
catalytic substance
side end
partition walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1700232.0A
Other versions
GB201700232D0 (en
GB2547325B (en
Inventor
Sumiya Satoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey Japan GK
Original Assignee
Johnson Matthey Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Japan GK filed Critical Johnson Matthey Japan GK
Publication of GB201700232D0 publication Critical patent/GB201700232D0/en
Publication of GB2547325A publication Critical patent/GB2547325A/en
Application granted granted Critical
Publication of GB2547325B publication Critical patent/GB2547325B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J35/30
    • B01J35/40
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2096Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/402Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings

Abstract

A filter 1 used in an exhaust system for an engine comprises a base material having a plurality of cells 4 forming gas flow paths and having a gas inflow-side end portion 2 and outflow-side end portion 3, and a plurality of porous partition walls 5 defining the cells, the end portions of at least some of the cells being closed off (i.e. wall-flow filter). The void occupancy of a catalytic substance within pores of the partition walls (the percentage of the pore area or volume of the base material that is filled by catalytic material) is 10% or less, preferably less than 5%. The catalytic substance may comprise platinum and palladium in a ratio between 1:1 and 10:1. The filter may include an oxygen storage material, alkali metal or perovskite material. The catalytic substance may be included in a range between 10% and 50% of the total length of the partition walls in a lengthwise direction from the gas inflow-side end portion.

Description

SPECIFICATION
Title of the Invention: Filter Technical Field [0001]
The present invention relates to a filter.
Prior Art [0002] A filter of the type in which end portions of cells forming gas flow paths are alternately closed off and gas passes through partition walls in the cells has been proposed in the prior art as a filter forming part of an exhaust gas purification system (wall-flow filter). A filter of this type has a structure in which gas flowing into the filter from the engine side is made to forcibly pass through voids in the partition walls.
[0003]
Meanwhile, there are also filters of the type in which the end portions of the cells are not completely closed off alternately and by necessity the total amount of gas does not pass through the partition walls. A filter of this type has a relatively low trapping efficiency in respect of PM (particulate matter including graphite etc.) in comparison with the abovementioned wall-flow filter, but because it has a structure that is unlikely to become completely clogged, there is an advantage in that forced regeneration control is unnecessary as a matter of course.
Summary of the Invention [0004]
The inventors of the present invention found that there is a reduction in the amount of PM which can be trapped inside the cell in the case of an on-wall catalyst coating method in which the surfaces of partition walls of filter cells are charged with a catalytic substance in a wall-flow type filter in which the end portions of the cell are alternately closed off, so there is a problem in terms of a reduced PM trapping efficiency.
Meanwhile, it was found that the porosity of the partition walls decreases if there is an excessive amount of coating in the case of an in-wall type filter when the catalytic substance is simply coated on the inside of the porous partition walls, so there is a reduction in PM trapping efficiency and furthermore, there is also a reduction in PM oxidation efficiency afforded by the catalyst.
[0005]
The present invention has been devised against this background, and the aim thereof lies in providing a filter which does not suffer any loss in terms of performance relating to PM trapping efficiency, and which can also maintain high treatment efficiency afforded by the catalyst.
[0006]
The present invention provides a filter comprising a base material and a catalytic substance provided within the base material, wherein the base material comprises a plurality of cells forming gas flow paths and having a gas inflow-side end portion and outflow-side end portion, and a plurality of porous partition walls defining said cells, the end portions of at least some of the cells being closed off, and the void occupancy of the catalytic substance within the pores of the partition walls is 10% or less.
[0007]
According to a mode of the present invention, the abovementioned filter is such that the catalytic substance has a mean particle size D50 of 1/10 or less of the mean pore size D50 of the pores in the partition walls .
[0008]
According to a mode of the present invention, the abovementioned filter is such that the concentration ratio of noble metals contained in the catalytic substance at the gas inflow-side end portion and outflow-side end portion is between 10/90 and 90/10.
[0009]
According to a mode of the present invention, the abovementioned filter is such that the catalytic substance is included in a range of between 10% and 50% of the total length of the partition walls in the lengthwise direction, from the gas inflow-side end portion.
[0010]
According to a mode of the present invention, when Pt and Pd are used as the catalytic substance, the abovementioned filter comprises said materials in a ratio of between 1:1 and 10:1.
[0011]
According to a mode of the present invention, the abovementioned filter includes at least one material selected from the group consisting of oxygen storage materials, alkali metals and perovskite materials.
[0012]
According to a mode of the present invention, the abovementioned filter is such that only one of the gas inflow-side end portion and outflow-side end portion is partially closed off.
[0013]
According to a mode of the present invention, the abovementioned filter is such that the porosity of the base material is between 40% and 70%.
[0014]
According to a mode of the present invention, the abovementioned filter is such that the void occupancy of the catalytic substance is less than 5%.
[0015]
The present invention makes it possible to provide a filter which does not suffer any loss in terms of performance relating to PM trapping efficiency, and which can also maintain high treatment efficiency afforded by the catalyst.
Brief Description of the Drawings [0016] [Fig. 1] is a schematic diagram to illustrate the filter according to a mode of embodiment; [Fig. 2] is an image of the filter as observed under an electron microscope; [Fig. 3] is a graph showing the correlation of void occupancy obtained from an SEM image and void occupancy obtained from measurement results using a mercury porosimeter; [Fig. 4] is a graph showing the relationship of catalyst particle size and pressure loss; [Fig. 5] is a graph showing the relationship of PM trapping efficiency and pore filling ratio in a CSF; [Fig. 6] is a graph showing the relationship of pressure loss increase rate and pore filling ratio in a CSF; and [Fig. 7] is a graph showing the relationship of Pt/Pd ratio and combustion temperature.
Mode of Embodiment of the Invention [0017] A mode of embodiment of the present invention will be described below with the aid of the drawings but the present invention is obviously not limited by this mode of embodiment.
[0018] [Filter]
The filter according to this mode of embodiment comprises a base material 1 and a catalytic substance provided within the base material 1, said filter being characterized in that the base material 1 comprises a plurality of cells 4 forming gas flow paths and having a gas inflow-side end portion 2 and outflow-side end portion 3, and a plurality of porous partition walls 5 defining said cells 4, the end portions of at least some of the cells 4 being closed off, and the void occupancy of the catalytic substance (not depicted) within the pores (not depicted) of the partition walls is 10% or less .
[0019]
The filter according to this mode of embodiment does not suffer any loss in terms of performance relating to PM trapping efficiency, and can also maintain high treatment efficiency afforded by the catalyst.
[0020]
As illustrated in fig. 1, the filter according to this mode of embodiment comprises the base material 1 and the catalytic substance provided within the base material. The base material 1 supports the catalytic substance and is preferably durable, without reducing the combustion efficiency of a connected engine.
[0021]
There is no particular limitation as to the material forming the base material 1, provided that pores are provided at least in the partition walls 5, but when the filter is utilized as an exhaust gas purification filter, for example, a porous ceramic material is preferably used.
[0022]
Preferred materials for the base material 1 include: cordierite ceramics comprising three components, namely aluminum oxide (AI2O3: alumina), silicon dioxide (SiCb: silica) and magnesium oxide (MgO); silicon carbide and aluminum titanate. By using these materials with an organic pore-forming material, it is possible to set the porosity of the partition walls 5 etc. in the base material 1 in a preferred range.
[0023] A honeycomb-shape comprising these materials is preferred as the base material 1. A honeycomb filter comprises a plurality of cells forming gas flow paths, but there is no particular limitation as to the cross-sectional shape of the cells and a "chessboard" grid such as that illustrated in fig. 1 may be used or hexagonal shapes may be used, for example, and there are no particular constraints on the shape thereof. Alternatively, it is egually possible to use what is known as an asymmetric cell structure having different cell sizes at the inlet and the outlet.
[0024]
There is no limitation as to the structure of the base material 1 in the filter according to this mode of embodiment, but the base material 1 comprises at least the gas inflow-side end portion 2 and outflow-side end portion 3. Furthermore, the base material 1 comprises at least the plurality of cells 4 that form the gas flow paths and the plurality of porous partition walls 5 that define said cells 4.
[0025]
In the filter according to this mode of embodiment, the plurality of cells 4 are such that the end portions of at least some of said cells 4 are closed off. By virtue of this kind of structure, gas flowing in from the inflow-side end portion 2 flows out from the outflow-side end portion 3, with some of the gas moving inside the cells 4 without passing through the partition walls, and some of the gas passing through the pores in the partition walls 5.
[0026]
There is no limitation as to the proportion of closed-off cells, nor is there any limitation as the arrangement of the closed-off cells. The filter according to this mode of embodiment more preferably employs a base material having a configuration such as that described above, but there is no limitation as to the configuration of the base material supporting the catalytic substance.
[0027]
The catalytic substance is supported and held on the surface of the base material 1, said catalytic substance comprising an active metal, an active metal support and a catalyst auxiliary etc.
[0028]
The active metal serves as a catalyst active component in an oxidation catalyst. Active metals include noble metals and base metals, with noble metals being preferred. Specific examples of noble metals include platinum (Pt) , palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), osmium (Os), gold (Au) and silver (Ag), with platinum, palladium or gold more preferably being used.
Furthermore, one of these noble metals may be used or a mixture of two or more may be used, and according to a preferred mode of the invention of this application, a mixture of platinum and palladium or a mixture of platinum, palladium and gold is more preferred.
[0029]
Specific examples of base metals which may be mentioned include copper (Cu), iron (Fe), cobalt (Co), zinc (Zn), potassium (K), cesium (Cs), silver (Ag), so-called oxygen storage materials comprising a rare-earth metal and perovskite compounds comprising Fe, Μη, Y, Ce and La etc. Among these, alkali metals, oxygen storage materials and iron are more preferred. Furthermore, one of these base metals may be used or a mixture of two or more may be used.
[0030]
In the filter according to this mode of embodiment, the void occupancy of the catalytic substance occupying the pores in the plurality of porous partition walls is preferably 10% or less. By virtue of this configuration, it is possible to achieve a balance between reducing pressure loss and carbon material trapping efficiency. More preferably, 5% or less of the catalytic substance is present within the pores of the partition walls.
[0031]
As a result of the catalytic substance being present within the pores of the partition walls 5 at a void occupancy of 10% or less, it is possible to restrict resistance to the passage of gas flowing inside the cells 4 while it is also possible to achieve a balance with maintaining the trapping capacity of the PM component.
[0032]
The form of the pores and the void occupancy of the catalytic substance may be obtained using a scanning electron microscope (SEM)/electron probe micro-analyzer (ΕΡΜΑ) . For example, by means of SEM/EPMA, it is possible to obtain the pore area (A) of the base material before application of the catalytic substance in a field of view of between 150 times and 500 times by means of image processing (illustrated in fig. 2). Furthermore, the pore area (B) after application of the catalyst can also be obtained by the same method. Furthermore, the area of the base material portion is obtained by means of image processing using the same two-dimensional method, whereby the relative proportion of the pore area of the base material 1 and the area occupancy can be calculated.
[0033]
Furthermore, a mercury intrusion method is generally used as a method for three-dimensional pore structure volume measurement, and the correlation between that method and the abovementioned image method affords results such as illustrated in fig. 3; there is a correlation between the two-dimensional void occupancy (proportion of occupied area) obtained from an SEM image, and the void occupancy volume obtained from mercury porosimeter measurement results constituting three-dimensional information.
[0034]
Here, according to the SEM image method, an EPM method with a magnification of 150-200 times is preferably used, e.g., it is possible to obtain the occupied area by separating the base material and the area occupied by the catalyst according to color using an RGB method.
In the filter according to this mode of embodiment, when the occupied area is obtained by image processing, the image is binarized and the calculation is made using an automatic mode or the like in order to prevent human error .
[0035]
In the filter according to this mode of embodiment, the mean particle size D50 of the catalytic substance is preferably 1/10 or less of the mean pore size D50 of the pores in the partition walls 5.
[0036]
The mean particle size D50 of the catalytic substance may be specifically measured by laser diffraction or the like. The mean pore size D50 of the partition walls 5 may be measured specifically by mercury porosimetry. For example, if the mean pore size D50 of the pores in the partition walls 5 is 10 pm, then the mean particle size D50 of the catalytic substance is preferably 0.5 pm or less .
[0037]
Here, the "mean particle size D50" means the size of particles (median size) corresponding to a median value (50%) in the grain size distribution of the particles.
[0038]
The mean pore size D50 of the pores in the partition walls 5 is preferably between 8 pm and 20 pm, and 10 pm or greater is more preferable from the point of view that there is a high initial level of trapping efficiency with respect to carbon materials. The mean particle size D50 of the catalytic substance is preferably 1/10 or less of the mean pore size of the partition walls, but a mean particle size of 20 nm or greater is preferred for reasons of stability etc. of the dispersed state of solid material in a catalyst slurry.
[0039]
Furthermore, if particles larger than this are used, it tends to be difficult for the catalytic substance to reach the pores in the walls, and if the catalytic substance is deposited on the walls on the catalyst slurry supply-side in particular (on-wall), this is likely to cause a reduction in PM trapping efficiency and trapping capacity.
[0040]
In the filter according to this mode of embodiment, the amount of catalytic substance may have a gradient in the lengthwise direction of the base material, and the void occupancy of the catalyst is preferably 10% or less. By virtue of this configuration, it is possible to increase the efficiency contributed by the catalyst in terms of exhaust gas purification.
[0041]
The amount of catalytic substance, expressed another way, means the concentration of active metal such as Pt or Pd acting as a catalyst. That is to say, the concentration of active metal may have a gradient in the lengthwise direction of the base material and the concentration ratio of active metal at the gas inflow-side end portion and outflow-side end portion may be between 10/90 and 90/10.
[0042]
If the inflow side is at a high concentration, this makes it possible for the noble metal on the filter to contribute to exhaust gas purification, while it is effective for the outflow side to be at a high concentration if NO2 or the like is to be supplied downstream, for example.
[0043]
If the filter according to this mode of embodiment has the base material configuration described above, it is possible to restrict a reduction in PM trapping efficiency and efficiency of the treatment afforded by the catalyst in a state in which the catalyst is locally present at the inflow-side end portion 2 and the outflow-side end portion 3.
[0044]
In the filter according to this mode of embodiment, the catalytic substance is preferably included in a range of between 10% and 50% of the total length of the partition walls in the lengthwise direction, from the gas inflow-side end portion.
By setting the range of application of the catalytic substance at between 10% and 50% of the total length of the partition walls in the lengthwise direction, it is possible to achieve an effect of enabling particularly high NOx purification performance to be achieved. In this case, the range of application of the catalytic substance is preferably started from the gas inflow-side end portion, but the catalytic substance is preferably not provided at the gas outflow side.
[0045]
In the filter according to this mode of embodiment, Pt and Pd are preferably included in a ratio of between 1:1 and 10:1 as the catalytic substance. By virtue of this configuration, it is possible to achieve an effect enabling suppression of thermal sintering (aggregation) of the noble metal. Pt and Pd are more preferably included in a ratio of between 2:1 and 5:1.
[0046]
Furthermore, even if only a PM combustion catalyst comprising a transition metal group is used in conjunction with a noble metal, only the PM combustion catalyst comprising a transition metal group may be applied, or the two may be mixed for use.
[0047]
In the filter according to this mode of embodiment, at least one material selected from the group consisting of oxygen storage materials, alkali metals and perovskite materials is preferably further included as a catalyst auxiliary. By further including this kind of PM combustion catalyst comprising a transition metal group, it is possible to achieve an effect of promoting combustion of carbon materials.
[0048]
Examples of oxygen storage materials which may be cited include materials comprising Ce, Pr, Zr and Nd. Among these, Ce is particularly preferably used for reasons of promoting combustion.
[0049]
Examples of alkali metals which may be cited include K, Cs and Mg. Among these, K and Cs are particularly preferably used for reasons of promoting combustion.
[0050]
Examples of perovskite materials which may be cited include Βΐ4Τί3θ4 (JP 2010-69471 A) and Ceo.5Bi0.iPr0.4 JP 2009-112907 A), among others.
[0051]
The oxygen storage materials are most preferred among the oxygen storage materials, alkali metals and perovskite materials .
[0052]
In the filter according to this mode of embodiment, only one of the gas inflow-side end portion and outflow-side end portion is preferably partially closed off. By virtue of this configuration, it is possible to achieve an effect of making the filter less likely to become clogged in actual use.
[0053]
In the filter according to this mode of embodiment, the porosity of the base material 1 is preferably between 40% and 70%. By virtue of this configuration, it is possible to achieve an effect of a balance between reduced pressure loss and carbon material trapping capacity.
The porosity of the base material 1 is more preferably between 45% and 65% from the point of view of a balance between pressure loss and PM trapping performance.
[0054]
In the filter according to this mode of embodiment, the void occupancy of the catalytic substance in the pores of the partition walls 5 in accordance with image processing is preferably less than 10%. By virtue of this configuration, it is possible to achieve an effect whereby it is possible to restrict a reduction in PM trapping efficiency and increased pressure loss.
The void occupancy of the catalytic substance in the pores of the partition walls 5 is more preferably less than 5%.
[0055]
The filter according to this mode of embodiment is used for exhaust gas purification, and a device employing the filter according to this mode of embodiment is preferably used in an exhaust system of an internal combustion engine, in particular a spark-ignition engine (e.g. a gasoline engine) or a compression-ignition engine (e.g. a diesel engine).
[0056]
Furthermore, these engines may be engines which combust fuel while adjusting the air/fuel ratio, and specific preferred examples thereof which may be cited include lean-burn engines and direct-injection engines, and preferably engines combining same (i.e., direct-injection lean-burn engines). A direct-injection engine employs a fuel supply system which enables an increased compression ratio, an improvement in fuel efficiency and also a reduction in exhaust gas. It is therefore possible to envision a reduction in exhaust gas and an improvement in combustion efficiency by combining a direct-injection engine with a lean-burn engine.
[0057]
The filter according to this mode of embodiment is preferably used in an exhaust system of an internal combustion engine mounted in a transportation vehicle or machine etc. Specific examples of transportation vehicles and machines which may be cited include: transportation vehicles such as automobiles, buses, trucks, dump trucks, tracked vehicles, motorcycles, moving vehicles equipped with an engine, watercraft, tankers, motorboats, and aircraft; agricultural machines such as cultivators, tractors, combine harvesters, chainsaws, and forestry machines; marine fishery machines such as fishing boats; civil engineering machines such as tanker trucks, cranes, compressors, and excavators; power generators; and similar machines.
[0058]
When the filter according to this mode of embodiment is installed in a vehicle exhaust system, for example, it may be provided in a start catalyst, an underfloor system or a manifold converter.
[Exemplary Embodiments] [0059]
Exemplary embodiments in accordance with the present invention will be described below. The content of the present invention should not be construed as being limited by these exemplary embodiments.
[0060] <Exemplary Embodiment 1> A slurry comprising alumina particles having a mean particle size (D50) of 0.02 pm, 0.5 pm, 2.1 pm or 4.5 pm was coated in an amount of 11 g/L on a diesel particulate filter (DPF) base material (diameter 143.8 mm, length 152.4 mm, after which the materials were dried and baked at 500°C to produce a catalyzed DPF. The pressure loss (BP) under an air stream of 300 kg/h was measured for said catalyzed DPF.
[0061]
Fig. 4 is a graph showing the relationship of catalyst particle size (D50) and pressure loss (BP) with respect to a DPF having a mean pore size of 10 pm for the base material. It is clear from this graph that when the mean pore size of the DPF is 10 pm, the mean particle size is preferably approximately 0.5 pm or less.
[0062] <Exemplary Embodiment 2>
Three types of catalyzed soot filters (CSF) in which the amount of catalyst was 11 g/L, 25 g/L and 45 g/L were prepared using alumina particles having a mean particle size of 0.02 pm.
The filling ratio of the pores of the CSFs were obtained by means of an image processing method, and the PM trapping efficiency was measured using a PM generator. The results are shown in fig. 5. It is clear from the results in fig. 5 that the PM trapping efficiency decreases as the pore filling ratio increases.
[0063] <Exemplary Embodiment 3>
Pressure loss measurements were carried out using the CSFs prepared in Exemplary Embodiment 2. The results are shown in fig. 6. It is clear from results in fig. 6 that the pressure loss increases as the as the pore filling ratio increases. The catalyst is therefore preferably present from the point of view of PM combustion, but it is clear that the filling ratio of the filter base material is preferably lower, based on the results of Exemplary Embodiments 2 and 3.
[0064] <Exemplary Embodiment 4>
Fig. 7 is a graph showing the relationship of Pt/Pd ratio and combustion temperature. The graph in fig. 7 shows cases of Pt/Pd = 1/0, 3/1, 2/1 and 1/1. It is clear from the results in fig. 7 that the Pd ratio is preferably higher in order to cause the PFF to contribute to emission reduction, and it is clear that the proportion of Pt is preferably higher in order to cause the PFF to contribute to PM combustion.

Claims (9)

1. A filter comprising a base material and a catalytic substance provided within the base material, wherein the base material comprises a plurality of cells forming gas flow paths and having a gas inflow-side end portion and outflow-side end portion, and a plurality of porous partition walls defining said cells, the end portions of at least some of the cells being closed off, and the void occupancy of the catalytic substance within the pores of the partition walls is 10% or less.
2. The filter as claimed in claim 1, wherein the catalytic substance has a mean particle size D50 of 1/10 or less of the mean pore size D50 of the pores in the partition walls.
3. The filter as claimed in claim 1 or 2, wherein the concentration ratio of noble metals contained in the catalytic substance at the gas inflow-side end portion and outflow-side end portion is between 10/90 and 90/10.
4. The filter as claimed in any one of claims 1 to 3, wherein the catalytic substance is included in a range of between 10% and 50% of the total length of the partition walls in the lengthwise direction, from the gas inflow-side end portion.
5. The filter as claimed in any one of claims 1 to 4, comprising Pt and Pd in a ratio of between 1:1 and 10:1 as the catalytic substance.
6. The filter as claimed in any one of claims 1 to 5, further including at least one material selected from the group consisting of oxygen storage materials, alkali metals and perovskite materials.
7. The filter as claimed in any one of claims 1 to 6, wherein only one of the gas inflow-side end portion and outflow-side end portion is partially closed off.
8. The filter as claimed in any one of claims 1 to 7, wherein the porosity of the base material is between 40% and 70%.
9. The filter as claimed in any one of claims 1 to 8, wherein the void occupancy of the catalytic substance is less than 5%.
GB1700232.0A 2016-01-07 2017-01-06 Particulate filter with catalytic substance Expired - Fee Related GB2547325B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016050353 2016-01-07

Publications (3)

Publication Number Publication Date
GB201700232D0 GB201700232D0 (en) 2017-02-22
GB2547325A true GB2547325A (en) 2017-08-16
GB2547325B GB2547325B (en) 2020-03-04

Family

ID=58463720

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1700232.0A Expired - Fee Related GB2547325B (en) 2016-01-07 2017-01-06 Particulate filter with catalytic substance

Country Status (1)

Country Link
GB (1) GB2547325B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614920A (en) * 2018-04-03 2018-10-02 同济大学 A kind of multiple devices local exhaust simultaneity factor determines method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094360A (en) * 2012-11-12 2014-05-22 Cataler Corp Exhaust gas cleaning filter and method for producing exhaust gas cleaning filter
EP3162428A1 (en) * 2015-10-30 2017-05-03 Cataler Corporation Exhaust gas purification device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094360A (en) * 2012-11-12 2014-05-22 Cataler Corp Exhaust gas cleaning filter and method for producing exhaust gas cleaning filter
EP3162428A1 (en) * 2015-10-30 2017-05-03 Cataler Corporation Exhaust gas purification device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614920A (en) * 2018-04-03 2018-10-02 同济大学 A kind of multiple devices local exhaust simultaneity factor determines method
CN108614920B (en) * 2018-04-03 2021-10-12 同济大学 Method for determining simultaneous coefficient of local air exhaust of multiple devices

Also Published As

Publication number Publication date
GB201700232D0 (en) 2017-02-22
GB2547325B (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6189936B2 (en) Filter base with a three-way catalyst
US7625529B2 (en) Catalyst-carrying filter
JP5726414B2 (en) Catalyst-carrying filter and exhaust gas purification system
JP2020008022A (en) Contaminant reduction device for gasoline automobile
WO2009139107A4 (en) Exhaust gas purifying catalyst and manufacturing method of the same
US10233803B2 (en) Exhaust gas purification filter
KR20150119140A (en) Positive ignition engine and exhaust system comprising three-way catalysed filter
WO2019065206A1 (en) Exhaust-gas purifying catalyst
JP2006110485A (en) Exhaust gas catalyst and exhaust gas trteatment apparatus using the catalyst
KR20190039151A (en) Monomethalidium-containing quaternary conversion catalyst for gasoline engine emissions treatment systems
JPWO2020039649A1 (en) Exhaust gas purification catalyst
JP7023770B2 (en) Exhaust gas purification catalyst
WO2020031975A1 (en) Catalyst-coated gasoline particulate filter and method for producing same
WO2020100582A1 (en) Particulate filter
EP3636340A1 (en) Catalyst for exhaust gas purification
CN105813735A (en) Exhaust purification catalyst
US10137412B2 (en) Filter
JP2004330025A (en) Exhaust gas catalyst and exhaust gas treatment apparatus using it
GB2547325A (en) Filter
WO2011125773A1 (en) Honeycomb filter
EP4147778A1 (en) Exhaust gas purification catalyst
EP2614872B1 (en) Honeycomb filter
KR20230079369A (en) Catalyst articles for filtering fine particles and uses thereof
JP2006051475A (en) Exhaust gas purification catalyst and method for manufacturing the same

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20210106