GB2542468A - Coldplate with integrated DC link capacitor for cooling thereof - Google Patents

Coldplate with integrated DC link capacitor for cooling thereof Download PDF

Info

Publication number
GB2542468A
GB2542468A GB1612283.0A GB201612283A GB2542468A GB 2542468 A GB2542468 A GB 2542468A GB 201612283 A GB201612283 A GB 201612283A GB 2542468 A GB2542468 A GB 2542468A
Authority
GB
United Kingdom
Prior art keywords
coldplate
pocket
link capacitor
assembly
potting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1612283.0A
Other versions
GB201612283D0 (en
GB2542468B (en
Inventor
N Topolewski John
Scott Duco Michael
Brar Parminder
Rai Rutunj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lear Corp
Original Assignee
Lear Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/805,664 external-priority patent/US9615490B2/en
Application filed by Lear Corp filed Critical Lear Corp
Publication of GB201612283D0 publication Critical patent/GB201612283D0/en
Publication of GB2542468A publication Critical patent/GB2542468A/en
Application granted granted Critical
Publication of GB2542468B publication Critical patent/GB2542468B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Abstract

A coldplate 12 and inverter 14 device and assembly 10 for an electric vehicle, the coldplate 12 comprising a coldplate member 22 with a pocket 28 to receive and surround a DC link capacitor 18. The coldplate 12 may comprise a second member (Figure 2, 24) joined to the first 22 to receive a fluid to cool the DC link capacitor 18. The coldplate 12 may comprise a potting material to surround the DC link capacitor 18. The pocket 28 may have a height and shape corresponding to the DC link capacitor 18 wherein the floor of the pocket 28 is on the side of a member 22, 24 and the walls extend from the floor. The DC link capacitor 18 may be a naked DC link capacitor and may comprise a stack of film capacitors (Figure 2, 20) wherein the potting material surrounds the film capacitors (Figure 2, 20).

Description

COLDPLATE WITH INTEGRATED DC LINK CAPACITOR FOR COOLING THEREOF
TECHNICAL FIELD
[0001] The present disclosure relates to coldplates for cooling electrical components of inverters of electric vehicles.
BACKGROUND
[0002] An automotive vehicle powered fully or partially by an electric motor is referred to herein as an “electric vehicle” (e.g., a fully electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), etc.).
[0003] An electric vehicle includes an inverter for converting direct current (DC) voltage supplied by a high-voltage (HV) battery of the vehicle to an alternating current (AC) voltage for powering the motor. The inverter includes switching modules, such as integrated gate bipolar transistor (IGBT) modules, and a DC link capacitor having film capacitors. In converting a DC voltage input to an AC voltage output, the film capacitors of the DC link capacitor generate heat as a result of the switching operations of the IGBT power modules. The generated heat should be dissipated so that the inverter may continue to operate efficiently. The generated heat may be dissipated using a coldplate provided as part of the inverter.
[0004] Due to the heat generated as a result particularly of the operation of the DC link capacitor, a need exists for additional heat dissipation beyond that which may be provided by standard coldplates currently in use with inverters of electric vehicles.
SUMMARY
[0005] A coldplate for use with an inverter of an electric vehicle includes a coldplate member. The coldplate member includes a pocket configured to receive a DC link capacitor of the inverter therein. The pocket is sized to surround the DC link capacitor when the DC link capacitor is received within the pocket to thereby provide physical integration of the DC link capacitor in the coldplate member.
[0006] The coldplate may further include a second coldplate member. The coldplate members are adapted to be joined together to form a manifold therebetween proximate to the pocket to receive a fluid for use in cooling the DC link capacitor when the DC link capacitor is received within the pocket.
[0007] The coldplate may further include a potting material received within the pocket. The potting material surrounds the DC link capacitor when the DC link capacitor is received within the pocket. The potting material provides heat transfer, electrical isolation, and mechanical support to the DC link capacitor when the DC link capacitor is received in the pocket.
[0008] The pocket may have a depth corresponding to a height of the DC link capacitor. The pocket may have a shape corresponding to a shape of the DC link capacitor.
[0009] The pocket includes a floor and one or more walls. The floor is arranged on a side of the coldplate member and the walls extend from the floor of the pocket outward from the side of the coldplate member whereby the pocket opens outward from the side of the coldplate member.
[0010] An assembly for an electric vehicle includes an inverter and a coldplate. The inverter includes a DC link capacitor. The coldplate includes a coldplate member having a pocket. The DC link capacitor is received within and surrounded by the pocket to thereby be physically integrated in the coldplate.
[0011] The DC link capacitor may be a naked DC link capacitor lacking an encapsulated housing.
[0012] The coldplate may further include a potting material received within the pocket. The potting material surrounds the DC link capacitor as an encapsulated unit or may directly surround a stack of film capacitors of the DC link capacitor.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] FIG.1 illustrates a perspective view of an assembly including a coldplate and an inverter of an electric vehicle; [0014] FIG. 2 illustrates a sectional view of the assembly; [0015] FIG. 3 illustrates a cross-sectional view of the assembly; and [0016] FIG. 4 illustrates an exploded view of the coldplate.
DETAILED DESCRIPTION
[0017] Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the present invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
[0018] With reference to FIGS. 1, 2, 3, and 4, a more detailed description of an embodiment of a coldplate for use in cooling electrical components of inverters of electric vehicles will be described. For ease of illustration and to facilitate understanding, like reference numerals have been used herein for like components and features throughout the drawings.
[0019] As previously described, an inverter of an electric vehicle converts a DC voltage input supplied by the HV battery of the vehicle into an AC voltage output for powering the motor of the vehicle. The inverter includes switching modules and a DC link capacitor having film capacitors. The film capacitors of the DC link capacitor generate heat as a result of their operation. The generated heat may be dissipated using a coldplate provided as part of the inverter. However, a need exists for additional heat dissipation for the DC link capacitor beyond that which may be provided by standard coldplates currently in use.
[0020] A coldplate in accordance with the present disclosure satisfies this need. The coldplate satisfies this need by having a pocket sized to substantially surround the DC link capacitor when received in the pocket to provide physical integration of the DC link capacitor in the coldplate in order to facilitate dissipation of the heat generated by operation of the DC link capacitor.
[0021] Referring now to FIGS. 1, 2, 3, and 4, perspective, sectional, and cross-sectional views of an assembly 10 having a coldplate 12 and an inverter 14 of an electric vehicle and an exploded view of the cold plate are respectively shown.
[0022] Inverter 14 includes an integrated gate bipolar transistor (IGBT) switching module 16 and a DC link capacitor 18. IGBT switching module 16 and DC link capacitor 18 are provided in electrical communication with one another via bus bars 26. IGBT switching module 16 and DC link capacitor 18 are for use in converting a DC input voltage from the HV battery into an AC output voltage for powering the electric motor.
[0023] As seen in FIGS. 2 and 3, DC link capacitor 18 includes a plurality of film capacitors 20 configured in a stack. As seen in FIGS. 1, 2, and 3, DC link capacitor 18 including its stack of film capacitors 20 form a substantially rectangular prism, although other polygonal prism shapes may be employed.
[0024] Coldplate 12 includes a first coldplate member 22 (i.e., coldplate body) and a second coldplate member 24 (i.e., coldplate cover). Coldplate body 22 includes a top side and a bottom side. IGBT switching module 16 and DC link capacitor 18 are mounted onto the top side of coldplate body 22. The bottom side of coldplate body 22 and coldplate cover 24 are adapted to be joined together to form coldplate 12.
[0025] Coldplate 12, which acts as and may also be referred to as a heat extractor or heat sink, extracts, removes, and/or dissipates (collectively “dissipates”) heat generated by IGBT switching module 16 and DC link capacitor 18. In that regard, coldplate body 22 and coldplate cover 24 may include any material known in the art for use in facilitating such cooling, such as a metal.
[0026] Coldplate body 22 includes a pocket 28 on the top side of the coldplate body. Pocket 28 opens outward from the top side of coldplate body 22. Pocket 28 is configured to receive DC link capacitor 18 including its stack of film capacitors 20. Pocket 28 is sized to substantially surround DC link capacitor 18 when the DC link capacitor is received in the pocket to thereby provide physical integration of the DC link capacitor in coldplate 12. This physical integration of DC link capacitor 18 in coldplate 12 enhances the functioning of the coldplate in dissipating heat generated by the DC link capacitor.
[0027] Coldplate body 22 and coldplate cover 24 may be adapted to be joined together to form a chamber, manifold, or channel 30 (collectively “channel”). Channel 30 is proximate the bottom side of coldplate body 22 underneath pocket 28 of the coldplate body. Channel 30 is for receiving a coolant (not shown) for use in cooling DC link capacitor 18 received in pocket 28. The coolant to be circulated through channel 30 may include any fluid known in the art for use in facilitating such cooling, such as water. In that regard, coldplate cover 24 may include a coolant inlet 32 and a coolant outlet 34 for use in circulating a coolant through the channel 30 to facilitate cooling of DC link capacitor 18 received in pocket 28 of coldplate body 22. Coldplate 12 further includes a coolant seal 40 positioned between coldplate body 22 and coldplate cover 24 for sealing channel 30.
[0028] Pocket 28 of coldplate body 22 includes a floor 36 and one or more walls 38 extending from the floor of the pocket. Floor 36 of pocket 28 is arranged on a portion of the top side of coldplate body 22. Walls 38 of pocket 28 rise out from the top side of coldplate body 22. Walls 38 of pocket 28 are configured such that the pocket has a shape of a substantially rectangular prism corresponding to the substantially rectangular prism shape of the stack of film capacitors 20 of DC link capacitor 18. Pocket 28 may have a depth substantially equal to a height of the stack of film capacitors 20 of DC link capacitor 18.
[0029] In accordance with the present disclosure, and as indicated in FIGS. 2 and 3, DC link capacitor 18 is a “naked” capacitor. That is, DC link capacitor 18 is not encapsulated (i.e., “potted”) within its own casing. As such, film capacitors 20 of DC link capacitor 18 are exposed. DC link capacitor 18 in this naked state is received within pocket 28 of coldplate body 22. Without more, DC link capacitor 18 remains naked while received within pocket 28 of coldpate body 22. Operation of coldplate 12 in dissipating heat generated by DC link capacitor 18 can occur in this state.
[0030] However, pocket 28 of coldplate body 22 is further adapted to receive a potting material such that the potting material substantially surrounds the naked DC link capacitor 18 (more particularly, substantially surrounds film capacitors of the DC link capacitor) when received in the pocket. In that regard, such a potting material may provide heat transfer, electrical isolation, and/or mechanical support to DC link capacitor 18. The potting material may be any material known in the art suitable for any such purposes, (for example, a liquid gel). In this way, DC link capacitor 18 is “potted” within pocket 28. Such potting material provided within pocket 28 and/or the pocket itself enable DC link capacitor 18 to be integrated into coldplate body 22 and mounted thereto without the use of separate housings and/or fasteners, thereby reducing costs associated with coldplate 12 as well as improving cooling of the DC link capacitor.
[0031] Accordingly, in embodiments of a coldplate in accordance with the present disclosure, pocket 28 of coldplate body 22 receives therein DC link capacitor 18. DC link capacitor 18 may be a naked DC link capacitor. Pocket 28 may further receive therein a potting material 42. Potting material 42 within pocket 28 substantially surrounds DC link capacitor 18. Potting material 42 within pocket 28 substantially surrounds film capacitors 20 of DC link capacitor 18 when the DC link capacitor is a naked DC link capacitor. A coolant channel 30 may be proximate to (e.g., underneath) pocket 28. Bus bars 26, which electrically connect DC link capacitor 18 received within pocket 28 with IGBT switching module 16, extend into pocket 28 to make electrical contact with the DC link capacitor.
[0032] As is readily apparent from the foregoing, embodiments of a coldplate for use in cooling a DC link capacitor have been described. Such embodiments include a coldplate having a pocket sized to substantially surround the DC link capacitor when received in the pocket to provide physical integration of the DC link capacitor in the coldplate in order to facilitate dissipation of the heat generated by operation of the DC link capacitor. Such embodiments further include the DC link

Claims (15)

WHAT WE CLAIM IS:
1. A coldplate for use with an inverter of an electric vehicle, the coldplate comprising: a coldplate member including a pocket configured to receive a DC link capacitor of the inverter therein, the pocket being sized to surround the DC link capacitor when the DC link capacitor is received within the pocket to thereby provide physical integration of the DC link capacitor in the coldplate member.
2. The coldplate of claim 1 further comprising: a second coldplate member; and wherein the coldplate members are adapted to be joined together to form a manifold therebetween proximate to the pocket to receive a fluid for use in cooling the DC link capacitor when the DC link capacitor is received within the pocket.
3. The coldplate of claim 1 further comprising: a potting material received within the pocket, the potting material surrounding the DC link capacitor when the DC link capacitor is received within the pocket.
4. The coldplate of claim 3 wherein: the potting material provides heat transfer, electrical isolation, and mechanical support to the DC link capacitor when the DC link capacitor is received in the pocket.
5. The coldplate of claim 1 wherein: the pocket has a depth corresponding to a height of the DC link capacitor.
6. The coldplate of claim 1 wherein: the pocket has a shape corresponding to a shape of the DC link capacitor.
7. The coldplate of claim 1 wherein: the pocket includes a floor and one or more walls, the floor of the pocket being arranged on a side of the coldplate member and the walls of the pocket extending from the floor of the pocket outward from the side of the coldplate member whereby the pocket opens outward from the side of the coldplate member.
8. An assembly for an electric vehicle, the assembly comprising: an inverter including a DC link capacitor; a coldplate including a coldplate member having a pocket; and wherein the DC link capacitor is received within the pocket to thereby be physically integrated in the coldplate.
9. The assembly of claim 8 wherein: the DC link capacitor is a naked DC link capacitor lacking an encapsulation housing.
10. The assembly of claim 8 wherein: the coldplate further includes a potting material received within the pocket, the potting material surrounding the DC link capacitor.
11. The assembly of claim 10 wherein: the potting material provides heat transfer, electrical isolation, and mechanical support to the DC link capacitor.
12. The assembly of claim 10 wherein: the DC link capacitor includes a stack of film capacitors; and the potting material surrounds the stack of film capacitors of the DC link capacitor.
13. The assembly of claim 8 wherein: the pocket includes a floor and one or more walls, the floor of the pocket being arranged on a side of the coldplate member and the walls of the pocket extending from the floor of the pocket outward from the side of the coldplate member whereby the pocket opens outward from the side of the coldplate member.
14. The assembly of claim 8 wherein: the coldplate further includes a second coldplate member; and the coldplate members are adapted to be joined together to form a manifold therebetween proximate to the pocket to receive a fluid for use in cooling the DC link capacitor.
15. The assembly of claim 8 wherein: the pocket has a shape corresponding to a shape of the DC link capacitor.
GB1612283.0A 2015-07-22 2016-07-15 Coldplate with integrated DC link capacitor for cooling thereof Active GB2542468B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/805,664 US9615490B2 (en) 2014-05-15 2015-07-22 Coldplate with integrated DC link capacitor for cooling thereof

Publications (3)

Publication Number Publication Date
GB201612283D0 GB201612283D0 (en) 2016-08-31
GB2542468A true GB2542468A (en) 2017-03-22
GB2542468B GB2542468B (en) 2017-12-13

Family

ID=56890602

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1612283.0A Active GB2542468B (en) 2015-07-22 2016-07-15 Coldplate with integrated DC link capacitor for cooling thereof

Country Status (2)

Country Link
CN (1) CN106376215B (en)
GB (1) GB2542468B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3847742A4 (en) * 2018-09-03 2022-08-31 Milspec Technologies Pty Ltd A dc to dc converter for a vehicle alternator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330679A (en) * 2019-02-18 2021-08-31 日产自动车株式会社 Power conversion device
CN111107734B (en) * 2019-09-27 2021-03-16 法雷奥西门子新能源汽车(深圳)有限公司 Electronic equipment and radiator thereof
CN113692155A (en) * 2021-08-03 2021-11-23 深圳麦格米特电气股份有限公司 Power supply and electric equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090009980A1 (en) * 2007-07-06 2009-01-08 Gm Global Technology Operations, Inc. Capacitor with direct dc connection to substrate
US20130044434A1 (en) * 2011-08-15 2013-02-21 Lear Corporation Power module cooling system
US20130113074A1 (en) * 2010-11-05 2013-05-09 Semikron Elektronik GmbH & Ko. KG Capacitor system and method for producing a capacitor system
US20130258596A1 (en) * 2012-03-29 2013-10-03 Lear Corporation Coldplate for Use with an Inverter in an Electric Vehicle (EV) or a Hybrid-Electric Vehicle (HEV)
KR20160062447A (en) * 2014-11-25 2016-06-02 현대모비스 주식회사 Film capacitor module of inverter for vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008809B2 (en) * 1995-03-31 2000-02-14 住友電装株式会社 Electric connection box with built-in electronic circuit unit
JP5095459B2 (en) * 2008-03-25 2012-12-12 株式会社小松製作所 Capacitor module
DE102010028927A1 (en) * 2010-05-12 2011-11-17 Zf Friedrichshafen Ag Power electronics arrangement
US20130312933A1 (en) * 2012-05-22 2013-11-28 Lear Corporation Coldplate for Use in an Electric Vehicle (EV) or a Hybrid-Electric Vehicle (HEV)
CN203219166U (en) * 2013-03-29 2013-09-25 青岛天信变频电机有限公司 Power and energy storage structure of mining explosion-proof frequency conversion speed regulation all-in-one machine
CN203851004U (en) * 2014-04-17 2014-09-24 国家电网公司 Power unit structure for wind power current transformer
CN204442853U (en) * 2015-01-06 2015-07-01 湖南南车时代电动汽车股份有限公司 The electric machine controller of electric automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090009980A1 (en) * 2007-07-06 2009-01-08 Gm Global Technology Operations, Inc. Capacitor with direct dc connection to substrate
US20130113074A1 (en) * 2010-11-05 2013-05-09 Semikron Elektronik GmbH & Ko. KG Capacitor system and method for producing a capacitor system
US20130044434A1 (en) * 2011-08-15 2013-02-21 Lear Corporation Power module cooling system
US20130258596A1 (en) * 2012-03-29 2013-10-03 Lear Corporation Coldplate for Use with an Inverter in an Electric Vehicle (EV) or a Hybrid-Electric Vehicle (HEV)
KR20160062447A (en) * 2014-11-25 2016-06-02 현대모비스 주식회사 Film capacitor module of inverter for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3847742A4 (en) * 2018-09-03 2022-08-31 Milspec Technologies Pty Ltd A dc to dc converter for a vehicle alternator

Also Published As

Publication number Publication date
GB201612283D0 (en) 2016-08-31
CN106376215A (en) 2017-02-01
GB2542468B (en) 2017-12-13
CN106376215B (en) 2018-10-26

Similar Documents

Publication Publication Date Title
US9615490B2 (en) Coldplate with integrated DC link capacitor for cooling thereof
US8971041B2 (en) Coldplate for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US8971038B2 (en) Coldplate for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US10505427B2 (en) Rotating electrical machine system
JP5488565B2 (en) Power converter
CN110692189B (en) Motor vehicle and converter device for motor vehicle
JP5851372B2 (en) Power converter
US9526194B2 (en) Power conversion device with flow conduits for coolant
US10438869B2 (en) Power semiconductor module for a motor vehicle and motor vehicle
US9148985B2 (en) Power pole inverter
US20150289411A1 (en) Inverter device
KR101541181B1 (en) Inverter and Converter for Electric Vehicle
GB2542468A (en) Coldplate with integrated DC link capacitor for cooling thereof
JP2010153527A (en) Device for cooling semiconductor module
JP2010104204A (en) Power converter
US8902582B2 (en) Coldplate for use with a transformer in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US20130312933A1 (en) Coldplate for Use in an Electric Vehicle (EV) or a Hybrid-Electric Vehicle (HEV)
JP6303130B2 (en) Power converter
JP6161550B2 (en) Power converter
JP2015053776A (en) Electric power conversion system
JP6591673B2 (en) Power converter
JP2012005191A (en) Power conversion apparatus
KR102415020B1 (en) Power semiconductor mounting structure
JP5676154B2 (en) Power converter
JP2019126203A (en) Power converter