GB2540023A - Sleeve for a magnet assembly of a magnetic separator - Google Patents

Sleeve for a magnet assembly of a magnetic separator Download PDF

Info

Publication number
GB2540023A
GB2540023A GB1608286.9A GB201608286A GB2540023A GB 2540023 A GB2540023 A GB 2540023A GB 201608286 A GB201608286 A GB 201608286A GB 2540023 A GB2540023 A GB 2540023A
Authority
GB
United Kingdom
Prior art keywords
sleeve
magnetic
assembly
members
sleeve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1608286.9A
Other versions
GB201608286D0 (en
GB2540023B (en
Inventor
Adey Christopher
Downie Simon
Pathan Kashem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adey Holdings 2008 Ltd
Original Assignee
Adey Holdings 2008 Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adey Holdings 2008 Ltd filed Critical Adey Holdings 2008 Ltd
Priority to GB1608286.9A priority Critical patent/GB2540023B/en
Publication of GB201608286D0 publication Critical patent/GB201608286D0/en
Publication of GB2540023A publication Critical patent/GB2540023A/en
Application granted granted Critical
Publication of GB2540023B publication Critical patent/GB2540023B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0003Making of sedimentation devices, structural details thereof, e.g. prefabricated parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0009Settling tanks making use of electricity or magnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/245Discharge mechanisms for the sediments
    • B01D21/2483Means or provisions for manually removing the sediments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/267Separation of sediment aided by centrifugal force or centripetal force by using a cyclone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/08Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members
    • F16L37/12Couplings of the quick-acting type in which the connection between abutting or axially overlapping ends is maintained by locking members using hooks, pawls or other movable or insertable locking members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/56Couplings of the quick-acting type for double-walled or multi-channel pipes or pipe assemblies
    • F16L37/565Concentric pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/08Joining pipes to walls or pipes, the joined pipe axis being perpendicular to the plane of the wall or to the axis of another pipe
    • F16L41/14Joining pipes to walls or pipes, the joined pipe axis being perpendicular to the plane of the wall or to the axis of another pipe by screwing an intermediate part against the inside or outside of the wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/28Parts being easily removable for cleaning purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

The insert 25 is for a magnet assembly of a magnetic separator (10, figure 1) used in a central heating system. The insert comprises a first sleeve member 29 and a second sleeve member 30 connected with one another at adjacent ends, ideally to seal against the ingress of magnetic particles. The connection may be provided by complimentary resilient latches 32 that engage with cooperating recesses 33 to form a snap-fit arrangement 31. Each sleeve member may include a conical roof 27 and a tray 36 ideally engages with tubular walls of one of the roofs to form a chamber having upstands to reduce central heating water flow through the chamber. The upstands ideally protrude through apertures provided in the roof in use. Providing an insert in two identical parts mitigates design and manufacturing problems in providing an insert having a thin plastic wall, particularly where magnets to be covered by the insert are greater than a certain length.

Description

SLEEVE EOR A MAGNET ASSEMBLY OF A MAGNETIC SEPARATOR
The present invention relates to a sleeve for a magnet assembly of a magnetic separator for use in a central heating system.
BACKGROUND TO THE INVENTION
Separators, particularly magnetic separators, are now widely fitted to domestic and commercial central heating systems. The separators remove debris, and particularly magnetic debris, from the heating fluid. This keeps the heating fluid clean, preventing build-up of debris in, for example, the boiler, where it may cause expensive damage.
When a heating system is serviced, the magnetic separator must be cleaned to remove the particles which have been separated from the fluid. A removable screw-top is typically provided at the upper end of a cylindrical housing which, when removed, allows access to the inside of the cylindrical housing. A removable insert is typically provided within the housing, which can then be removed for cleaning. Although it is preferable to install the filter with enough space to allow the insert to be removed, this is not possible in every installation. It is therefore useful to provide a connection which allows the whole filter to be easily removed from the heating circuit.
The insert may also include a separate chamber, typically smaller than the main chamber, through which a portion of circulating flow may pass. The flow in the smaller chamber is generally slowed by obstacles, causing non-magnetic particulate matter to fall out of the flow. The benefit of having the separate chamber is that the flow in the main chamber is substantially unrestricted and pressure drop across the separator is minimised.
It is understood that where a magnet is used to separate magnetic debris, to be most effective, any plastics sleeve over the magnet needs to be of thin material to maximise the effect of the magnet in the chamber. Manufacturing a thin sleeve poses significant design and manufacturing problems, particularly where the magnets to be covered are greater than a certain length, for larger separators used in larger heating systems.
It is an object of this invention to provide a separator which reduces or substantially obviates the above mentioned problems.
STATEMENT OF INVENTION
According to the present invention, there is provided a sleeve for a magnet assembly of a magnetic separator for use in a central heating system, the sleeve comprising first and second sleeve members, and a connection for connecting respective ends of the first and second sleeve members together.
Magnetic separators typically include a magnetic assembly made up of a plurality of magnets, although the sleeve of the invention may equally be used with a magnetic assembly made from a single magnet.
The sleeve is made in two parts, connected together. This allows for a sleeve long enough to accommodate the magnetic assemblies needed in larger capacity filters, whilst maintaining a single central magnet around which fluid may circulate within the separator housing. The two-part sleeve can also be made to be thin as compared with prior art sleeves of similar length. A thin sleeve with a tight-fitting magnetic assembly results in more effective separation of magnetic particles, because the magnetic field inside the separator, where the fluid flows, is stronger.
The assembled two-part sleeve may be substantially sealed against ingress of magnetic particles. In other words, the sleeve may be free of significant gaps throughout, including in the area where the sleeves are connected together. Alternatively, there may be minor voids in the sleeve at the connection. The first and second sleeve members may be identical in shape, and this provides for a significant advantage in terms of tooling and manufacturing, since only a single part needs to be produced.
The connection means between the first and second members may include at least one resilient latch member on the first sleeve member and a co-operating recess on the second sleeve member and at least one resilient latch member on the second sleeve member and a co-operating recess on the first sleeve member. Most preferably, the connection may include two opposing resilient latch members and two opposing recesses on the first sleeve member, and two opposing resilient latch members and two opposing recesses on the second sleeve member, the latch members of the first sleeve member co-operating with the recesses of the second sleeve member and vice versa.
The connection system described above allows the first and second members to be easily assembled into a sleeve. The connection means can be engaged very quickly. Disconnection of the connection means to detach the first and second parts from each other may be fairly difficult, especially where two opposing resilient latches are provided on each sleeve member. However, once assembled, there is generally no reason to take the sleeve apart.
The connection system with opposing latches as described ensures that the sleeve members (which are preferably identical to each other) are attached to each other at a particular angle to each other. Where separation chambers or trays are provided integrally with the sleeve, as described below, this property can have a significant advantage, in that the relative orientation of the chambers or trays is maintained. In the preferred embodiment disclosed herein, the tray has 4-fold rotational symmetry, so the trays of the respective first and second sleeve members will be essentially identical to each other when they are at 90 degrees to each other, which is the angle enforced by the connection means. Other embodiments of trays, for example as described in the applicant’s co-pending application PCT/GB2013/051329, may have 2-fold rotational symmetry. However, such tray designs may work more effectively to separate particles where two are provided at a 90 degree angle to each other, to most evenly distribute the inlets and outlets to the separation trays around the housing of the separator. The advantage of identical sleeves connected at a 90 degree angle is therefore realised also with this type of tray.
The sleeve may include a roof and a tubular wall depending therefrom extending from the other end of each of the sleeve members, that is, from the end which does not have the connection means to connect to the other (possibly identical) sleeve member.
The roof may be substantially conical, and a circular tray may be adapted to connect with one of the tubular walls to form a chamber. The tray may include a plurality of upstands for slowing flow within the chamber. It will be understood that trays may be provided at both ends of the sleeve, or a tray may be provided only at one end. Preferably a tray is provided at the lower end, thereby facilitating collection of nonmagnetic particles in the tray as well as in the “roof’ of the upper sleeve, which is open and upwardly facing. In some embodiments, different trays may be provided at each end, even where the sleeve members (including their roofs) are identical.
Apertures may be provided in the roof, and top ends of the upstands may protrude through those apertures when the tray is attached.
BRIEF DESCRIPTION OF THE DRAWINGS
For a better understanding of the present invention, and to show more clearly how it may be carried into effect, reference will now be made, by way of example only, to the accompanying drawings, in which:
Figure 1 shows an exploded perspective view of a separator of the invention, including housing, insert and connection assemblies;
Figure 2 shows a perspective view of the separator and connection assemblies of Figure 1;
Figure 3 shows a plan view from above of the separator and connection assemblies of Figures 1 and 2;
Figure 4 shows a cross-sectional view through a port of the separator connected to a connection assembly of Figure 1;
Figure 5 shows a cross-sectional view through the assembled separator and connection assembly of Figure 1;
Figure 6 shows a perspective view of a force transfer element of the separator and connection assembly of Figure 1;
Figure 7 shows a perspective view of the assembled insert of the separator of Figure 1; and
Figure 8 shows a perspective exploded view of the assembled insert of Figure 7. DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
Referring firstly to Figures 1 and 2, a separator device for separating particles from suspension in a fluid is indicated generally at 10. The separator has a housing 12 including a substantially cyhndrical body portion 14 with integral base 15, and a removable upper closure portion 16. The closure portion 16 is in the form of a screw-on cap, which screws onto the upper end of the housing 12. An 0-ring 18, seen in Figure 5, locates in a circumferential groove formed in the cap and forms a watertight seal against the upper end of the body portion 14, when the cap is screwed down.
Inlet and outlet ports 20, 22 are provided as first and second hollow cylindrical sockets in the wall of the housing body 14. The central axes of the ports 20, 22 are parallel and lie one above the other on a diameter of the housing. In other words, the ports are adjacent to one another and face in the same direction extending perpendicular to a tangent of the substantially cylindrical body portion 14. The parallel nature of the ports 20, 22 facilitates fitting to a heating circuit, since the inlet and outlet will be in the same straight pipe line, when the device is installed. It will be appreciated that the ports may be interchangeable, that is, the outlet port can be used as an inlet port and vice versa in some embodiments. The ports 20, 22 are externally screw-threaded. A bleed valve assembly 24 is provided through the centre of the screw-on cap 16. The assembly 24 is of the type that enables air to be bled out from the top of the separator, but also enables a rust inhibitor chemical to be injected into the separator. The assembly 24 also supports a magnet assembly 28, formed of one or more magnets, which depends centrally from the underside of the closure portion 16. The magnet assembly 28 is cylindrical and extends to proximate the base of the housing body 14. A drain valve 43 comprising of a screw-in plug with seal is provided in the floor 15 of the housing body 14. A connection assembly 50 is shown generally in Figures 1, 2 and 3, and in more detail in Figure 4. A connection assembly 50 is provided on each of the inlet and outlet ports 20, 22, for connecting the separator 10 to a central heating circuit.
Each connection assembly 50 includes a fitment 52, a threaded connector 54, a force transfer element 56 and a valve portion 58. The valve portion 58 is of a well known design and will not be described in further detail. It will be appreciated that substantially any type of valve or other connector may be provided as part of a connection assembly according to the invention.
The fitment 52 is formed from a first part 60 and a second part 62. The parts are attached to each other by mutually interlocking screw threads 64. A fluid-carrying bore 66 is provided all the way through both parts 60, 62 of the fitment 52, for carrying fluid between the valve portion 58 and the separator 10.
The bore 66 in the first part 60 of the fitment 52 has a tapered section. Therefore, the wall of the first part 60 of the fitment 52 is thin at the distal end of the first part 60, and thickens towards the other end of the first part 60 (to the right-hand side in the drawing). The thicker part of the wall accommodates a pair of recesses 68, 70 which receive respective 0-ring seals 69, 71. The thin part of the wall ensures that there is a smooth transition as fluid passes between the fitment 52 and the interior of the separator 10.
Adjacent the 0-ring recess 70 which is most inward of the distal end of the first part 60, a shoulder or flange 72 extends around the first part. In use, this shoulder 72 butts against an end of the port 22 of the separator 10. A second shoulder 74 is provided as part of the second part 62 of the fitment 52. The first and second shoulders 72, 74 define an area around the fitment 52 in which the threaded connector 54 can shde (in the drawing, the threaded connector can slide left-to-right). This allows the threaded connector 54 to be unscrewed from the port 22.
The force transfer element 56 is shown fitted between the shoulders 72, 74. When the force transfer element 56 is fitted in this position, the threaded connector 54 is prevented from shding towards the shoulder 74, but may still be unscrewed from the port 22 of the separator. This forces the port 22 off the fitment 52. The force transfer element can be removed to allow sliding of the connector 54 towards the shoulder 74 for access to the 0-ring seals.
The force transfer element 56 is shown in more detail in Figure 6, and is substantially C-shaped. It is made from a resilient plastics material, so that it can be deformed to clip over the substantially cylindrical sliding area between the shoulders 72, 74 of the fitment 52. The force transfer element 56 includes grip areas on its outer surface (only one grip area 76 is shown in the drawing, but another is provided on the other side, hidden in the drawing.) On the inner surface of the force transfer element 56, ribs 78 are provided. When the force transfer element 56 is installed on the fitment 52, the ribs 78 lift the inner surface of the force transfer element 56 away from the fitment, making a space between the force transfer element 56 and the fitment which allows the force transfer element 56 to be easily removed by hand. The ribs 78 also allow for a force transfer element which is thin enough to be resilient and easily deformable for clipping over the fitment 52, but which also has an “effective thickness” great enough in use to transfer the disconnection forces between the threaded connector 54 and the shoulder 74.
When the connector assembly 50 is fitted to the port 22 of the separator 10, the first part of the fitment 52 is located within the port 22 and pushed in. The threaded connector 54 is then screwed tight by hand. The threaded connector 54 is knurled and has an external diameter of 52nun in the embodiment shown, which is easy to grip. By virtue of the fitment 52 locating well into the port, there is a very low likelihood of cross-threading of the thread, which very important, because the thread on the port is made from plastics and a crossed thread would effectively require a new separator be fitted. The threaded connector 54 finally pushes the fitment 52 into and against the port 22. The 0-ring 69 nearest to the distal end of the fitment seals against an interior surface of the port 22 and acts in the manner of a piston seal. The other 0-ring 71, further to the right in the drawing, sits against a chamfered end 80 of the port 22 and seals in the manner of a trap seal. The seals are ideally lubricated with silicone grease. This sealing arrangement creates a highly effective watertight seal, which is easy to correctly apply even in a confined place, and requires only hand-tightening of the threaded connector 54. The force transfer element 56 can be clipped in behind the threaded connector 54, when tightened, to provide a visual indication that it has been tightened.
Referring now to Figures 5, 7, and 8, an insert assembly 25 is disposed within the housing. The insert assembly 25 includes a thin plastics sleeve 26, containing one or more magnets 28, for removing magnetic debris from flow through the separator. The insert assembly also includes a roof 27 at either end, which forms part of a chamber for separating nonmagnetic particles from flow within the separator 10. At one end, a tray 36 is provided which with the roof 27 forms a closed chamber. At the other end there is no tray, and so the chamber is more open.
The insert assembly is formed as a first part 29 and a second part 30. The first and second parts 29, 30 are in fact identical. They are joined together to form the complete insert assembly 25, as shown in Figure 7.
The two parts 29, 30 of the insert assembly 25 are joined by a snap-fit connection 31, which is best seen in Figure 8. Each part 29, 30 includes two opposing resilient latch members 32 and two opposing walls with recesses 33. The latch members of one sleeve cooperate with the recesses of the other sleeve, and vice versa, to securely and semi-permanently attach the parts of the insert assembly together.
The snap fit connector is ideal, because the connection is semi-permanent, secure, free from substantial gaps, and enforces correct orientation of the roofs 27 with respect to each other. It solves the manufacturing problems involved with making a sleeve of such length in one piece, and allows the wall of the sleeve to be very thin, for the best magnetic separation.
The embodiments described above are provided by way of example only, and various changes and modifications will be apparent to persons skilled in the art without departing from the scope of the present invention as defined by the appended claims.

Claims (10)

1. A sleeve for a magnet assembly of a magnetic separator for use in a central heating system, the sleeve comprising first and second sleeve members, and a connection for connecting respective ends of the first and second sleeve members together.
2. A sleeve for a magnet assembly as claimed in claim 1, in which the assembled two-part sleeve is substantially sealed against ingress of magnetic particles.
3. A sleeve as claimed in claim 1 or claim 2, in which the first and second sleeve members are identical in shape.
4. A sleeve as claimed in and of claims 1 to 3, in which the connection includes at least one resilient latch member on the first sleeve member and a cooperating recess on the second sleeve member and at least one resilient latch member on the second sleeve member and a co-operating recess on the first sleeve member.
5. A sleeve as claimed in claim 4, in which the connection includes two opposing resilient latch members and two opposing recesses on the first sleeve member, and two opposing resilient latch members and two opposing recesses on the second sleeve member, the latch members of the first sleeve member cooperating with the recesses of the second sleeve member and vice versa.
6. A sleeve as claimed in any one of claims 1 to 5, in which a roof and a tubular wall depending therefrom extend from the other end of each of the sleeve members.
7. A sleeve as claimed in claim 6, in which the roof is substantially conical.
8. A sleeve as claimed in claim 6 or claim 7, in which a circular tray is adapted to connect with one of the tubular walls, to form a chamber.
9. A sleeve as claimed in claim 8, in which the tray has a plurality of upstands for slowing flow within the chamber.
10. A magnetic sleeve assembly as claimed in claim 9, in which apertures are provided in the roof, and top ends of the upstands protrude through the apertures when the tray is attached.
10. A sleeve as claimed in claim 9, in which apertures are provided in the roof, and top ends of the upstands protrude through the apertures when the tray is attached.
11. A sleeve substantially as described herein with reference to and as illustrated in Figures 1, 5, 7 and 8 of the accompanying drawings. Amendment to the claims have been filed as follows: CLAIMS
1. A magnetic sleeve assembly for a magnetic separator for use in a central heating system comprising a magnet and a sleeve, the magnet being disposed within the sleeve and the sleeve comprising first and second sleeve members, and a connection for connecting respective ends of the first and second sleeve members together.
2. A magnetic sleeve assembly as claimed in claim 1, in which the assembled two-part sleeve is substantially sealed against ingress of magnetic particles.
3. A magnetic sleeve assembly as claimed in claim 1 or claim 2, in which the first and second sleeve members are identical in shape.
4. A magnetic sleeve assembly as claimed in any of claims 1 to 3, in which the connection includes at least one resilient latch member on the first sleeve member and a co-operating recess on the second sleeve member and at least one resilient latch member on the second sleeve member and a co-operating recess on the first sleeve member.
5. A magnetic sleeve assembly as claimed in claim 4, in which the connection includes two opposing resilient latch members and two opposing recesses on one end of the first sleeve member, and two opposing resilient latch members and two opposing recesses on one end of the second sleeve member, the latch members of the first sleeve member co-operating with the recesses of the second sleeve member and vice versa.
6. A magnetic sleeve assembly as claimed in claim 5, in which a roof and a tubular wall depending therefrom extend from the other end of each of the sleeve members.
7. A magnetic sleeve assembly as claimed in claim 6, in which the roof is substantially conical.
8. A magnetic sleeve assembly as claimed in claim 6 or claim 7, in which a circular tray is adapted to connect with one of the tubular walls, to form a chamber.
9. A magnetic sleeve assembly as claimed in claim 8, in which the tray has a plurality of upstands for slowing flow within the chamber.
GB1608286.9A 2014-03-13 2014-03-13 Magnetic sleeve assembly for a magnetic separator Expired - Fee Related GB2540023B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1608286.9A GB2540023B (en) 2014-03-13 2014-03-13 Magnetic sleeve assembly for a magnetic separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1608286.9A GB2540023B (en) 2014-03-13 2014-03-13 Magnetic sleeve assembly for a magnetic separator
GB1404432.5A GB2524056B (en) 2014-03-13 2014-03-13 Connection assembly

Publications (3)

Publication Number Publication Date
GB201608286D0 GB201608286D0 (en) 2016-06-22
GB2540023A true GB2540023A (en) 2017-01-04
GB2540023B GB2540023B (en) 2017-07-05

Family

ID=50634668

Family Applications (2)

Application Number Title Priority Date Filing Date
GB1608286.9A Expired - Fee Related GB2540023B (en) 2014-03-13 2014-03-13 Magnetic sleeve assembly for a magnetic separator
GB1404432.5A Expired - Fee Related GB2524056B (en) 2014-03-13 2014-03-13 Connection assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
GB1404432.5A Expired - Fee Related GB2524056B (en) 2014-03-13 2014-03-13 Connection assembly

Country Status (10)

Country Link
US (4) US10024552B2 (en)
EP (2) EP3236163B1 (en)
KR (1) KR20160132451A (en)
CN (2) CN111503716B (en)
AU (1) AU2015228586B2 (en)
CA (2) CA3113903C (en)
DK (1) DK3117154T3 (en)
GB (2) GB2540023B (en)
RU (1) RU2680364C2 (en)
WO (1) WO2015136249A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491246B (en) * 2012-05-21 2013-05-15 Adey Holdings 2008 Ltd Separator device
GB2540023B (en) * 2014-03-13 2017-07-05 Adey Holdings 2008 Ltd Magnetic sleeve assembly for a magnetic separator
USD802713S1 (en) * 2016-01-07 2017-11-14 Adey Holdings (2008) Limited Water filter
USD867568S1 (en) * 2016-12-09 2019-11-19 Briggs & Stratton Corporation Air filter
USD816798S1 (en) * 2016-12-14 2018-05-01 Keith Rayle Wine filter assembly with transparent container
CA179927S (en) * 2017-09-08 2019-02-13 Adey Holdings 2008 Ltd Filter for a central heating system
USD876600S1 (en) 2018-01-12 2020-02-25 Briggs & Stratton Corporation Air filter
GB2570923B (en) * 2018-02-12 2020-08-19 Abubakkar Imran Fluid storage apparatus
GB2573117B (en) * 2018-04-24 2021-02-17 Adey Holdings 2008 Ltd Magnetic filter
EP3608007B1 (en) * 2018-08-06 2021-02-24 AFRISO-EURO-INDEX GmbH Air/sludge separator
USD957592S1 (en) * 2019-01-11 2022-07-12 Adey Holdings (2008) Limited Valve for magnetic filter
USD957587S1 (en) * 2019-01-11 2022-07-12 Adey Holdings (2008) Limited Magnetic filter without valves
USD950009S1 (en) * 2019-01-24 2022-04-26 Rohm And Haas Electronic Materials Singapore Pte. Ltd Membrane filtration module
USD963814S1 (en) * 2019-03-07 2022-09-13 Adey Holdings (2008) Limited Connector
USD963813S1 (en) * 2019-03-07 2022-09-13 Adey Holdings (2008) Limited Canister and connector
USD972074S1 (en) * 2019-03-21 2022-12-06 Mahle International Gmbh End plate for a filter element
USD966457S1 (en) * 2019-03-21 2022-10-11 Mahle International Gmbh End plate for a filter element
DE102019109972A1 (en) * 2019-04-16 2020-10-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Position detection unit, clutch actuator with position detection unit and vehicle coupling with position detection unit
CA191351S (en) * 2019-05-30 2022-06-22 Adey Holdings 2008 Ltd Connection assembly for a filter
USD964509S1 (en) * 2019-05-30 2022-09-20 Adey Holdings (2008) Limited Magnetic filter and connection assembly
USD964508S1 (en) * 2019-05-30 2022-09-20 Adey Holdings (2008) Limited Canister for magnetic filter
EP3872383B1 (en) 2020-02-28 2022-09-07 A. Raymond et Cie Adaptor with quick connect coupling
USD1002793S1 (en) * 2020-07-01 2023-10-24 Evoqua Water Technologies Llc Regenerative media filter
US11547959B2 (en) 2020-07-17 2023-01-10 The Metraflex Company Magnetic baffle insert for use with a basket strainer
US11253870B2 (en) 2020-07-17 2022-02-22 The Metraflex Company Magnetic baffle insert for use with a basket strainer
CA3192068A1 (en) * 2020-09-15 2022-03-24 The Metraflex Company Magnetic baffle insert for use with a basket strainer
USD991426S1 (en) * 2020-12-24 2023-07-04 Tianjin Yunda Industry and Trade Co., Ltd, Inc. Filter cartridge
USD1007641S1 (en) 2021-07-14 2023-12-12 Evoqua Water Technologies Llc Regenerative media filter with view window
GB2614703A (en) * 2021-12-22 2023-07-19 Intaco Ltd Connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547230A (en) * 1995-04-28 1996-08-20 The Lamson & Sessions Co. Joint for variable wall thickness conduit
US20030235463A1 (en) * 2002-06-20 2003-12-25 Neumann Peter M. Push-lock handle assembly
GB2502383A (en) * 2012-05-21 2013-11-27 Adey Holdings 2008 Ltd Separator device
KR20130133388A (en) * 2012-05-29 2013-12-09 장기운 Elbow assembly structure having a control apparatus for angle

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US219032A (en) * 1879-08-26 Improvement in hose-couplings
US2704678A (en) * 1955-03-22 Means for coupling a lubricant line to
BE546074A (en) *
US509742A (en) * 1893-11-28 James h
US292349A (en) * 1884-01-22 Service-cock
US762350A (en) * 1903-05-16 1904-06-14 John L Rehnstrom Hose-coupling.
US1151851A (en) * 1915-03-03 1915-08-31 Lacey Babos Hose-coupling.
US1672679A (en) * 1923-08-11 1928-06-05 Harold D Fitzgerald Coupling
GB274729A (en) * 1927-01-19 1927-07-28 James Lever Rushton Improvements in or relating to fluid tight couplings or unions for pipes or tubes
US1726238A (en) * 1928-02-15 1929-08-27 Homer C Pipher Hose coupling
US2367447A (en) * 1942-10-10 1945-01-16 F A Bartlett Tree Expert Compa Hose coupling
US2417350A (en) * 1944-03-30 1947-03-11 Charles L Conroy Method of manufacture of an adaptor union
US2449588A (en) * 1946-08-13 1948-09-21 Floyd R Clafford Adjustable pipe union
GB737822A (en) 1953-05-11 1955-10-05 Farm Production Engineers Inc Method of separating dispersed matter from fluid masses
US3339740A (en) 1964-04-30 1967-09-05 Starzyk Boris Centrifugal-type oil reconditioner having deflecting and settling partitions
US3342510A (en) * 1964-09-22 1967-09-19 Walters Tom Coupling
US3373397A (en) * 1965-10-06 1968-03-12 Amp Inc Electrical connector and insulation housing therefor
SE323651B (en) 1969-02-13 1970-05-11 Celleco Ab
CA961888A (en) * 1971-04-15 1975-01-28 Leonard P. Spontelli Tube fitting
US3749356A (en) * 1972-04-24 1973-07-31 Coleman Co Adaptor coupling for fluid flow conduits
US3877731A (en) * 1973-09-14 1975-04-15 Robert A Kraus Coupling
US4090956A (en) * 1976-09-02 1978-05-23 Wilmot Engineering Co. Hydrocyclone
US4260180A (en) * 1979-07-23 1981-04-07 Hughes Aircraft Company Mechanical coupling
FI65920C (en) 1983-01-21 1984-08-10 Nobar Ky REFERENCE TO A RESULT OF SEPARATION AV ETT MEDIUM I OLIKA KOMPONENTER
US4544483A (en) 1984-03-12 1985-10-01 Puratrol, Inc. Dynamic, reverse-flow oil purifier device
US4881573A (en) 1989-01-31 1989-11-21 Deere & Company Female hydraulic coupler with push-connect and lever disconnect
DE4037308C1 (en) 1990-11-23 1992-04-16 Rasmussen Gmbh, 6457 Maintal, De Multiple pipeline coupling with interconnected tubular members - which are linked by flexible holder in releasable manner
US5280966A (en) * 1992-02-25 1994-01-25 Hubbell Incorporated Conduit connector for non-metallic enclosures
US5203891A (en) * 1992-04-03 1993-04-20 The United States Of America As Represented By The Secretary Of The Navy Gas/liquid separator
US5257525A (en) 1992-06-24 1993-11-02 Atco Products, Inc. Portable slim-line hose fitting crimper
FR2693662B1 (en) 1992-07-17 1994-09-23 Bruno Valdenaire Filtering and water treatment device to prevent scale build-up.
US5261240A (en) * 1992-09-23 1993-11-16 General Electric Company Fuel shroud system with spherical ferrule/drain can interface
DE4310795C1 (en) 1993-04-02 1994-07-14 Rasmussen Gmbh Plug-in type union between pipes
AUPM676394A0 (en) * 1994-07-12 1994-08-04 Philmac Pty Ltd Transition means between fittings dimensioned to one standard and pipes dimensioned to another standard
AU707930B2 (en) * 1993-07-20 1999-07-22 Philmac Pty Ltd A fitting and a transition means for a polymeric pipe
DE69418701T2 (en) * 1993-07-20 1999-09-30 Philmac Pty Ltd COUPLING ATTACKING THE EXTERNAL SURFACE OF A POLYMER TUBE
US5534156A (en) * 1994-02-17 1996-07-09 Magnatech Corporation Regulation of Escherichia coli and other microorganisms through magnetic water treatment
CA2147960C (en) * 1994-04-27 1999-11-02 Akira Horimoto Coupling apparatus
KR200146979Y1 (en) * 1996-10-11 1999-06-15 양덕희 Apparatus for the purification of drinking water
AUPO562797A0 (en) * 1997-03-14 1997-04-10 Hoselink Pty. Limited Improved hose fitting
US5944973A (en) * 1997-09-26 1999-08-31 Watertek International, Ltd. Water treatment device
GB9803539D0 (en) 1998-02-19 1998-04-15 Arnold Adrian C Cleaning apparatus
GB9809902D0 (en) * 1998-05-08 1998-07-08 Marlowe John A magnetic filtration system
DE60000971T2 (en) 1999-02-02 2003-07-17 Bekaert Sa Nv TAPE-WRAPPED FILTER CARTRIDGE
US6143171A (en) * 1999-04-07 2000-11-07 Van Aarsen; Freda Martha Magnetic device for treatment of fluids
GB2349685A (en) * 1999-04-21 2000-11-08 H P Rota Valve Systems Ltd Radiator valve with rotational seal that enables rotation of radiator away from wall
USD454614S1 (en) * 2000-08-31 2002-03-19 Hozelock Limited Water treatment unit
CN1293331A (en) * 2000-12-11 2001-05-02 甘国工 Flexible pipe link assemble of cut-off valve in rigid pipeline linking system
US7416225B2 (en) * 2001-02-06 2008-08-26 Swagelok Company Fitting for metal pipe and tubing
US6368135B1 (en) * 2001-04-18 2002-04-09 Chi-Wen Chen Coupling device for interconnecting slender members
JP2005539185A (en) * 2002-09-18 2005-12-22 スウエイジロク・カンパニー Pipe fitting with pipe grip ring and sealing material
US20050167352A1 (en) 2004-02-03 2005-08-04 Oasis Corporation Filter cartridge and manifold for a water purification system
US20070085645A1 (en) * 2004-08-31 2007-04-19 Ruttley David J Magnetic tool for retrieving metal objects from a well bore
US20080000820A1 (en) 2006-06-30 2008-01-03 Mitchell Alan J Water Filter Cartridge and Valve with Autobypass Feature
US7963572B2 (en) * 2006-11-16 2011-06-21 Halliburton Energy Services Inc. Differential pitch hammerless connection with hydraulic driving mechanism
JP2008209330A (en) * 2007-02-28 2008-09-11 Hitachi High-Technologies Corp Magnetic separator and analyzing apparatus using the same
US7914052B1 (en) * 2007-08-12 2011-03-29 Showertek, Inc. Splined connector for a position-sensitive device such as a showerhead
US7770941B2 (en) * 2008-04-17 2010-08-10 Onset Pipe Products Ii, Inc. Apparatus and method for supporting a pipe coupling
GB0903182D0 (en) * 2009-02-25 2009-04-08 Singh Johal P Magnetic filter
GB2482001A (en) * 2010-07-14 2012-01-18 Balvinder Singh Nagi Fluid filter
KR101191909B1 (en) * 2010-07-28 2012-10-17 (주)소프트켐 Plastic male screw connector using an injection moulding
KR101217238B1 (en) * 2010-08-31 2012-12-31 주식회사 켐텍 Magnetic Filter
US8999158B2 (en) * 2010-09-16 2015-04-07 Wallace Taylor Irvin In-line fuel conditioner
DE102010043932A1 (en) * 2010-11-15 2012-05-16 BSH Bosch und Siemens Hausgeräte GmbH Connection system for installing a water-conducting device
GB2486173B (en) * 2010-12-01 2017-02-01 Adey Holdings 2008 Ltd Separator
GB2508257B (en) * 2010-12-01 2014-07-23 Adey Holdings 2008 Ltd Water and dirt separator
US8555765B2 (en) * 2010-12-16 2013-10-15 Silencerco, Llc Systems methods and devices for attaching a suppressor to a firearm
US8459698B2 (en) * 2010-12-23 2013-06-11 North American Specialty Products Llc Riser cap and irrigation piping system using same
USD654558S1 (en) * 2011-01-30 2012-02-21 Shenzhen Lenyo Aquatics Co., Ltd. UV stabilizer
GB2491361B (en) * 2011-05-31 2013-05-15 Neil Johnson Magnetic filter apparatus
USD675705S1 (en) * 2011-09-05 2013-02-05 I.D. Electroquimica, S.L. Water treatment apparatus
US20130194058A1 (en) * 2011-10-05 2013-08-01 Valeria Denise Franklin Back saver
WO2013055304A1 (en) * 2011-10-12 2013-04-18 Irizarry Armando Slip joint with clamp
US20130126644A1 (en) * 2011-11-22 2013-05-23 Jeremy Popovich Threaded Injector Mount
US9803783B2 (en) * 2011-12-26 2017-10-31 Gates Corporation Hand tightened hydraulic fitting
CA147251S (en) * 2012-03-07 2013-05-15 Mitsubishi Rayon Co Degassing aeration membrane module
GB2500908B (en) * 2012-04-04 2015-02-25 Eclipse Magnetics Ltd Magnetic filtration device
GB2491246B (en) * 2012-05-21 2013-05-15 Adey Holdings 2008 Ltd Separator device
GB2504537B (en) * 2012-08-02 2015-08-05 Alpha Fry Ltd Connection device
JP2015532200A (en) * 2012-10-01 2015-11-09 インテグリス・インコーポレーテッド Purification system
DE202013103050U1 (en) * 2013-07-09 2013-09-10 Kreyenborg Verwaltungen Und Beteiligungen Gmbh & Co. Kg Length-adjustable adapter device for connecting a plant part of a plastics processing plant with a pipeline
CN103615792B (en) * 2013-11-08 2016-05-04 黄山金晖能源科技有限公司 A kind of water circulation central air-conditioning flow homogenizer
GB2540023B (en) * 2014-03-13 2017-07-05 Adey Holdings 2008 Ltd Magnetic sleeve assembly for a magnetic separator
US10295092B2 (en) * 2014-04-25 2019-05-21 Neoperl Gmbh Security adapter
CN104180115B (en) * 2014-08-27 2016-04-13 深圳市飞托克实业有限公司 Fluid shunt device
GB2535500B (en) * 2015-02-19 2017-06-21 Adey Holdings 2008 Ltd Magnetic filter for a central heating system
US9964246B2 (en) * 2015-08-19 2018-05-08 Mike Thibodeaux Hose crimp fitting or hydraulic adaptors that utilize a reverse threaded lock nut that engages to a JIC nut or similar swivel nut to prevent the nut from loosening

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547230A (en) * 1995-04-28 1996-08-20 The Lamson & Sessions Co. Joint for variable wall thickness conduit
US20030235463A1 (en) * 2002-06-20 2003-12-25 Neumann Peter M. Push-lock handle assembly
GB2502383A (en) * 2012-05-21 2013-11-27 Adey Holdings 2008 Ltd Separator device
KR20130133388A (en) * 2012-05-29 2013-12-09 장기운 Elbow assembly structure having a control apparatus for angle

Also Published As

Publication number Publication date
USD793523S1 (en) 2017-08-01
GB2524056B (en) 2016-11-02
EP3236163A1 (en) 2017-10-25
RU2680364C2 (en) 2019-02-19
CN106461237B (en) 2020-02-25
WO2015136249A1 (en) 2015-09-17
NZ724956A (en) 2021-03-26
US20180340697A1 (en) 2018-11-29
US20170074524A1 (en) 2017-03-16
GB201608286D0 (en) 2016-06-22
CA2942468C (en) 2021-10-26
RU2016140054A (en) 2018-04-13
CA3113903A1 (en) 2015-09-17
AU2015228586A1 (en) 2016-10-27
EP3236163B1 (en) 2018-10-24
GB201404432D0 (en) 2014-04-30
CN106461237A (en) 2017-02-22
US20170043354A1 (en) 2017-02-16
AU2015228586B2 (en) 2019-01-03
KR20160132451A (en) 2016-11-18
GB2540023B (en) 2017-07-05
EP3117154B1 (en) 2018-09-26
US10641502B2 (en) 2020-05-05
US10024552B2 (en) 2018-07-17
DK3117154T3 (en) 2019-01-02
CN111503716B (en) 2021-08-17
CA3113903C (en) 2024-03-12
EP3117154A1 (en) 2017-01-18
RU2016140054A3 (en) 2019-01-29
US10174955B2 (en) 2019-01-08
GB2524056A (en) 2015-09-16
CA2942468A1 (en) 2015-09-17
CN111503716A (en) 2020-08-07

Similar Documents

Publication Publication Date Title
EP3236163B1 (en) Magnetic separator
EP3357553B1 (en) Magnetic filter for a central heating system
US20150129491A1 (en) Separator Device
NZ724956B2 (en) Connection assembly

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20190313