GB2464264A - Vector comprising chloroplast replicating sequence - Google Patents

Vector comprising chloroplast replicating sequence Download PDF

Info

Publication number
GB2464264A
GB2464264A GB0818253A GB0818253A GB2464264A GB 2464264 A GB2464264 A GB 2464264A GB 0818253 A GB0818253 A GB 0818253A GB 0818253 A GB0818253 A GB 0818253A GB 2464264 A GB2464264 A GB 2464264A
Authority
GB
United Kingdom
Prior art keywords
vector
dna
yeast
seq
chloroplast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0818253A
Other versions
GB0818253D0 (en
Inventor
Michael Mendez
Bryan O'neill
Karl Mikkelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sapphire Energy Inc
Original Assignee
Sapphire Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapphire Energy Inc filed Critical Sapphire Energy Inc
Priority to GB0818253A priority Critical patent/GB2464264A/en
Publication of GB0818253D0 publication Critical patent/GB0818253D0/en
Publication of GB2464264A publication Critical patent/GB2464264A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8214Plastid transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2820/00Vectors comprising a special origin of replication system
    • C12N2820/65Vectors comprising a special origin of replication system from plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A vector is disclosed comprising a chloroplast replicating sequence, at least one bacterial element and at least one yeast element. The bacterial element may be a bacterial origin of replication, an antibiotic resistance marker, an auxotrophic marker, or a bacterial structural gene. The yeast element may be an autonomously replicating sequence, an antifungal resistance gene, an origin of replication, an auxotrophic marker, or a yeast structural marker. The chloroplast replicating sequence may be derived from C. reinhardtii. Also claimed are methods of producing such a vector comprising inserting a polynucleotide comprising targeting DNA into a vector comprising a yeast centromere and autonomous replicating sequence and a bacterial origin of replication, transforming an organism with said vector, and capturing (optionally by recombination) a portion of a chloroplast genome comprising a chloroplast origin of replication to produce the vector. The vectors may act as shuttle vectors.

Description

SYSTEMS AND METhODS WITH CHLOROPLAST REPLICATING SEQUENCES
BACKGROUND OF THE INVENTION
[00011 For the functional analysis of many genes, investigators need to isolate and manipulate DNA fragments, including large DNA regions, such as for the study of genomic regions of DNA.
[00021 In general, two types of yeast vector systems are presently available. The first type of vector is one capable of transferring small insert DNA between yeast and bacteria. A second type of vector is a fragmenting vector which creates interstitial or terminal deletions in yeast artificial chromosomes (YACs). The small insert shuttle vectors are able to recombine with and recover homologous sequences. They are centromere-based and replicate stably and autonomously in yeast, but also contain a high-copy origin of replication for maintenance as bacterial plasmids. However, these vectors are limited by their small insert capacity. The second type of vector (also known as fragmenting vectors) has recombinogenic sequences, but is unable to transfer the recovered insert DNA to bacteria for large preparations of DNA.
[00031 Researchers use fragmentation techniques to narrow down the region of interest in YACs. However, isolating sufficient quantities of YAC DNA from agarose gels for microinjection or electroporation remains cumbersome. Purification remains a problem when the YAC comigrates with an endogenous chromosome. In addition, YACs may be chimeric or contain additional DNA regions that are not required for the particular functional study.
100041 Types of vectors available for cloning large fragments in bacteria are cosmids, Pis and bacterial artificial chromosomes (BACs). These vectors are limited to bacteria and cannot be shuttled to yeast for modification by homologous recombination. Bacterial vectors are also limited in their use for transforming plants and algae.
100051 Adding to the complexity of genetically engineering plants and algae is the presence of multiple chloroplasts with multiple copies of the chloroplast genome. Furthermore, chlorop last genes in general are maternally inherited. Thus, there exists a need for methods and systems to express proteins from fragments of DNA in the chloroplasts of plants and algae, in particular with the ability to replicate DNA fragments in chloroplasts. The present invention meets these needs, and provides related advantages as well.
SUMMARY OF ThE INVENTION
100061 The present invention relates to compositions and methods of isolating, characterizing, and/or using chloroplast replicating sequences. One aspect of this invention provides an ex vivo vector comprising: a polynucleotide comprising a chloroplast replicating sequence, such as a microalgal chloroplast replicating sequence, at least one bacterial element and at least one yeast element. The bacterial element can be selected from the group consisting of a bacterial origin of replication, an antibiotic resistance marker, a bacterial structural gene, an auxotrophic marker, or a combination thereof. In some examples, the yeast element is selected from the group consisting of an autonomously replicating sequence, an antifungal resistance gene, an origin of replication, a yeast structural gene, an auxotrophic marker, or a combination thereof. The polynucleotide can be derived from a non-vascular photosynthetic organism, such as a microalga or macroalga. In some examples, the alga is C. reinhardtii, Chiorella vulgaris, D. sauna, S. quadricanda or H. pluvalis. The polynucleotide can be at least 40 kb, and the vector can further comprise one or more selectable markers. For example, the selectable marker can be selected from the group consisting of an auxotrophic marker, an antibiotic resistance marker, a chloroplast marker, or combinations thereof. For example, the aid selectable marker is a kanamycin resistance gene or a psbA gene.
100071 Another aspect of the present invention is a host cell comprising the vector described herein. For example, the host cell can be a non-vascular photosynthetic organism, such as a microalga or macroalga, such as C. reinhardtii, Chiorella vulgaris, D. sauna, S. quadricanda or H. pluvalis.
[0008] In yet another aspect of the present invention, a method for producing a vector with a chioroplast replicating sequence is provided. The method can comprise: (a) inserting a polynucleotide comprising targeting DNA into a vector, wherein the vector comprises a yeast centromere, a yeast autonomous replicating sequence, and a bacterial origin of replication; (b) transforming an organism with the vector; and, (c) capturing a portion of a chioroplast genome comprising a chioroplast origin of replication, thereby producing a vector with the replicating sequence. The targeting DNA can be chloroplast genomic DNA. The portion captured can be approximately 10-250 kb in length, and can be co-transformed into the organism with the vector. The capturing step can occur by recombination, such as where recombination occurs in vivo.
The method can comprise transforming an organism that is eukaiyotic. The organism can be a higher plant, a non-vascular photosynthetic organism, or it may be a non-photosynthetic organism. The organism can be selected from the group consisting of: macroalgae, microalgae, C. reinhardtii, Chiorella vulgaris, D. sauna, S. quadricanda or H. pluvalis. In some examples, the organism is yeast.
[0009] The present invention also provides a vector comprising a yeast centromere, a yeast autonomous replicating sequence, and a bacterial origin of replication, that further comprises a nucleic acid which results in the production or increased production of a product, such as a product that is naturally produced by the organism, or a product that is not naturally produced by the organism. The product can be an enzyme, a terpene or a terpenoid.
[0010] Also provided herein is an isolated chioroplast comprising a vector as described herein. For example, the chloroplast can be from a microalga or macroalga, such as from C. reinhardtii.
INCORPORATION BY REFERENCE
[0011] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE DRAWINGS
[00121 The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which: [0013] In the figures, the following abbreviations are used: HIS3: yeast HIS3 gene; TRPI: yeast TRP1 gene; URA3: yeast URA3 gene; ADE2: yeast ADE2 gene; LYS2: yeast LYS2 gene; ThL: yeast telomere; CEN: yeast centromere; ARS: autonomously replicating sequences, yeast origin of replication; 5FOA: 5-fluoroorotic acid; Kan: kanamycin resistance gene; P1 plasmid rep: P1 plasmid replicon; pl lytic rep: p1 lytic replicon.
[0014] Figure 1 provides a general description of a hybrid vector of the present invention. A) Vector schematic. B) DNA shuttling between organisms.
100151 Figure 2 is a schematic showing construction of a hybrid vector.
(0016] Figure 3 is a schematic of selectable markers for modification and/or stabilization.
100171 Figure 4 is a schematic showing sites of integration in chioroplast genome DNA. Circled numbers indicate target sites for modification. The box indicates the site targeted by the hybrid gap-filling vector.
100181 Figure 5 is a schematic for introduction of hybrid vector into chioroplast genome DNA.
100191 Figure 6 is PCR data showing integration of hybrid vector (and stabilization vector) in algae.
[00201 Figure 7 shows analysis of captured DNA, A) Restriction digest with EcoRI of isolated vectors containing chloroplast(L, ladder C, parent hybrid vector; 1, Clone 1; and 2; Clone 2). B) Restriction digest with EcoRI of isolates of Clone I that were passaged through yeast (L, ladder; C,; I, Clone I; and A-M; yeast isolates). C) Southern analysis of Clones I and 2 digested with EcoRI and probed with radioactive Hindu-digested total DNA from C. reinhardtii.
[00211 Figure 8 is a schematic showing architecture of isolated ex vivo vectors containing chloroplast genome DNA.
[00221 Figure 9 shows growth of parent and transformed algae cells under various selection conditions.
100231 Figure 10 is a schematic of restriction analysis for manipulation vectors. A) Schematic of vector architecture. B) Analysis of modified vector by restriction analysis with EcoRI [00241 Figure 11 shows modification of a chlorop last genome to produce a biomass-degrading enzyme A) PCR screen of isolated transformants. B) Endoxylanasc activity from isolated transformants.
[00251 Figure 12 shows a PCR screen of isolated transformants modified to produce isoprenoids with the FPP synthase expression cassette targeted to site 3 (A) or site 4 (B).
DETAILED DESCRIPTION OF THE INVENTION
[00261 While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
[0027] Technical and scientific terms used herein have the meanings commonly understood by one of ordinary skill in the art to which the instant invention pertains, unless otherwise defined. Reference is made herein to various materials and methodologies known to those of skill in the art. Standard reference works setting forth the general principles of recombinant DNA technology include Sambrook et al., "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y., 1989; Kaufman et al., eds., "Handbook of Molecular and Cellular Methods in Biology and Medicine", CRC Press, Boca Raton, 1995; and McPherson, ed., "Directed Mutagenesis: A Practical Approach", IRL Press, Oxford, 1991. Standard reference literature teaching general methodologies and principles of yeast genetics useful for selected aspects of the invention include: Sherman et al. "Laboratory Course Manual Methods in Yeast Genetics", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1986 and Guthrie et al., "Guide to Yeast Genetics and Molecular Biology", Academic, New York, 1991.
100281 Any suitable materials and/or methods known to those of skill can be utilized in carrying out the instant invention.
Materials and/or methods for practicing the instant invention are described. Materials, reagents and the like to which reference is made in the following description and examples are obtainable from commercial sources, unless otherwise noted.
The present invention provides vectors comprising a chioroplast replicating sequence, systems and to methods of using the same. The present invention provides methods and systems for generating and using ex vivo vectors comprising a polynucleotide comprising a chloroplast replicating sequence, such as a chioroplast origin of replication, at least one bacterial element, and at least one yeast element. A chloroplast replicating sequence may also comprise a portion of a chioroplast genome which is sufficient for episomal maintenance of a vector containing such sequence. In some embodiments, a vector of the present invention will comprise C. reinhardtii chloroplast DNA, and may in particular comprise nucleotides 176,500- 76,400 (according to the sequence available from NCBI, NC_005353), or a functional portion thereof.
[0029] Vectors of the present invention may be utilized for multiple purposes. In one instance, a vector comprising a chloroplast replicating sequence may be added as an episomal element to a cell which contains chioroplasts. In such instances, the vectors may serve any purpose known in the art (e.g., carrying genes and/or genetic elements, expression cassettes, etc.). Additionally, plasmids of the present invention may be used as cloning means to manipulate, clone, duplicate, etc. any DNA which is contained therein.
[0030] The vectors may further comprise a nucleic acid sequence which may effect or result in the production or increased production of a product such as an enzyme, terpene or terpenoid. The invention further relates to recombinational cloning vectors comprising a chloroplast replicating sequence, such as systems and methods of using the same. The vectors may be capable of being propagated in different host cells, such as bacterial, yeast, and/or algal cells, and may be used as shuttle vectors. The vectors may also further comprise sequences or nucleic acids that result in the production of products, and the products may be expressed in different host cells, such as bacterial, yeast, and for algal cells.
[0031] The present invention provides a vector containing a chloroplast replicating sequence, at least one bacterial element (such as a bacterial origin of replication, an antibiotic resistance marker, an auxotrophic marker, a bacterial structural gene, or a combination thereof) and at least one yeast element (such as an autonomously replicating sequence, art antifungal resistance gene, an origin of replication, an auxotrophic marker, a yeast structural gene, or a combination thereof) an may optionally comprise a chloroplast selectable marker (such as an auxotrophic marker, an antibiotic resistance marker, or a combination thereof).. A chloroplast replicating sequence useful in the present invention may be derived from a non-vascular photosynthetic organism such as a macroalga or microalga (e.g., C. reinhardtii). In some instances, a chloroplast replication sequence may be at least 40 kb in legnth. The present invention also provides a host cell comprising the vectors described herein. Such host cells may be non-vascular photosynthetic organisms, such as microalgae or macroalgae.
[00321 The present invention also provides methods for producing the vectors of the present invention. Such methods may include the steps of: 1) inserting a polynucleotide comprising targeting DNA into a vector, where the vector contains a yeast element (such as a yeast centromere or yeast autonomous replicating sequence) and a bacterial origin of replication; 2) transforming an organism (such as an alga or yeast) with the vector and capturing a portion of a chioroplast genome (which may occur naturally in the organism or may be co-transformed with the vector), where the portion of the genome comprises a chioroplast origin of replication, thereby producing a vector with the chloroplast replication sequence.
[0033] The vectors described herein may comprise potynucleotides of at least 20kb, 21kb, 22kb, 23kb, 24kb, 25kb, 26kb, 27kb, 28kb, 29kb, 30kb, 3 1kb, 32kb, 33kb, 34kb, 35kb, 36kb, 37kb, 38kb, 39kb, 40kb, 4 1kb, 42kb, 43kb, 44kb, 45kb, 46kb, 47kb, 48kb, 49kb, 60kb, 5 1kb, 52kb, 53kb, 54kb, 55kb, 56kb, 57kb, 58kb, 59kb, 60kb, 61kb, 62kb, 63kb, 64kb, 65kb, 66kb, 67kb, 68kb, 69kb, 70kb, 71kb, 72kb, 73kb, 74kb, 75kb, 76kb, 77kb, 78kb, 79kb, 70kb, 7 1kb, 72kb, 73kb, 74kb, 75kb, 76kb, 77kb, 78kb, 79kb, 80kb, 8 1kb, 82kb, 83kb, 84kb, 85kb, 86kb, 87kb, 88kb, 89kb, 90kb, 91kb, 92kb, 93kb, 94kb, 95kb, 96kb, 97kb, 98kb, 99kb, 100kb or more of chloroplast origin.
100341 The vectors described herein may include captured and/or modified large pieces of DNA. The DNA may be from an organelle, such as mitochondrial DNA or plastid DNA (chloroplast DNA). The captured and/or modified large pieces of DNA may also comprise the entirety of a chloroplast genome. In other embodiments, the captured and/or modified large pieces of DNA comprise a portion of a chloroplast genome. In yet other embodiments, the captured and/or modified large pieces of DNA comprise a chloroplast replicating sequence such as a chioroplast origin of replication.
10035] The chloroplast genome may originate from any vascular or non-vascular plant, including algae, bryophytes (e.g., mosses, ferns), gymnosperms (e.g., conifers), and angiosperms (e.g., flowering plants -trees, grasses, herbs, shrubs). A chloroplast genome, or portions thereof, may comprise synthetic DNA, rearranged DNA, deletions, additions, and/or mutations. A chloroplast genome, or portions thereof, may comprise a combination of deletions, additions, mutations, and/or rearrangements. The deletions, additions, mutations, and/or rearrangements may be naturally found in an organism, for example a naturally occurring mutation, or may not be naturally found in nature. The chloroplast or plastid genomes of a number of organisms are widely available, for example, at the public database from the NCBI Organelle Genomes section available at http://www.ncbi.nlm.nih.gov/genomes/static/euk_o.html.
[0036] The captured DNA may comprise at least 1, 2, 3, 4, or 5 deletions, additions, mutations, and/or rearrangements as compared to a control sequence. In some embodiments, the mutations may be functional or nonfunctional. For example, a functional mutation may have an effect on a cellular function when the mutation is present in a host cell as compared to a control cell without the mutation. A non-functional mutation may be silent in function, for example, there is no discernable difference in phenotype of a host cell without the mutation as compared to a cell with the mutation.
[0037] The captured and/or modified DNA may comprise a chloroplast origin of replication or other genetic feature which is required for maintenance of episomal DNA in a plant chloroplast. The captured and/or modified DNA may comprise other chioroplast genes and/or genetic components (e.g., inverted tandem repeats, spacer regions, or regulatory elements).
[0038] Captured and optionally modified DNA may comprise at least 5, 10, 15, 20, 25, 30, 40, or 50 genes. In some embodiments, the captured DNA may comprise chioroplast genomic sequence of up to 150kb in length. In yet other embodiments, a portion of chloroplast genome DNA that is captured is between approximately 5-1000kb, 10-750kb, 10- 500kb, or 10-250kb. A portion that may be captured may include the chioroplast origin of replication.
[0039] The DNA may be single stranded or double stranded, linear or circular, relaxed or supercoiled. The DNA may also be in the form of an expression cassette. For example, an expression cassette may comprise a replication sequence and a gene to be expressed in a host cell. The expression cassette may comprise one or more homologous or heterologous genes as well as DNA sequences that promote the expression of the essential genes. The expression cassette may also comprise a region for integration into target DNA of a host (e.g., sites for homologous recombination. The expression cassette may also comprise one or more essential genes and one or more genes not naturally occurring in a host cell comprising the expression cassette. One of ordinary skill in the arts will easily ascertain various combinations of the aforementioned aspects of the expression cassettes.
(0040] The present invention also provides vectors comprising a cassette-able chloroplast genome or portion thereof (e.g., a removable DNA fragment comprising a chloroplast genome or functional portion thereof). A vector of the present invention may comprise functional chloroplast units (e.g., a unit essential for metabolic processes, photosynthesis, gene expression, photosystem 1, photosystem II). Vectors of the present invention may comprise a transplantable chloroplast genome or portion thereof. Additionally, the vectors of the present invention may comprise a transferable chloroplast genorne or portion thereof. Preferably, the vectors described herein comprise a chioroplast replicating sequence, such as a chioroplast origin of replication. En other embodiments, the vectors comprise: 1) one or more large pieces of modified DNA; 2) all genes necessary to carry out photosynthesis; 3) all genes required for chioroplast survival and/or function; 4) essential chloroplast genes; and/or 5) sufficient naturally occurring or modified chioroplast genes to perform one or more chloroplast functions, such as photosynthesis. A vector may comprise a portion, substantially all, or all of the chioroplast genes. A vector may comprise at least 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 or more chloroplast genes.
[00411 A vector may comprise one or more, or all, chloroplast genes and optionally one or more heterologous genes or genes from another organism. In some embodiments, a vector may comprise chioroplast genes and genes not naturally occurring in the chloroplast. Preferably the vector comprises a chloroplast replicating sequence, such as a chioroplast origin of replication. A vector may comprise one or more genes involved in chioroplast function, photosynthesis, carbon fixation, and/or hydrocarbon production. For example, a vector may comprise a sequence required for photosynthesis and a sequence involved in the isoprenoid, MVA, and/or MEP pathways, such as a DNA sequence encoding a terpene synthase, or other polypeptide that produces a hydrocarbon, such as a terpene or isoprenoid.
[0042] In some embodiments, the captured or target DNA is modified by adding, altering or removing genes, coding sequences, partial coding sequences, regulatory elements, positive and/or negative selection markers, recombination sites, restriction sites, and/or codon bias sites. For example, the target DNA sequence may be codon biased for expression in the organism being transformed. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Without being bound by theory, by using a host cell's preferred codons, the rate of translation may be greater. Therefore, when synthesizing a gene for improved expression in a host cell, it may be desirable to design the gene such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell. The codons of the present invention may be A/T rich, for example, A/T rich in the third nucleotide position of the codons. Typically, the AlT rich codon bias is used for algae. In some embodiments, at least 50% of the third nucleotide position of the codons are A or T. In other embodiments, at least 60%, 70%, 80%, 90%, or 99% of the third nucleotide position of the codons are A orT. (see also U.S. Publication No. 2004/0014 174).
10043] Such manipulations are well known in the art and can be performed in numerous ways. In some embodiments, the modifications may be performed using cloned sequences. In other embodiments, the modifications may be performed using synthetic DNA.
[0044] Genetic manipulations include cloning large pieces of target DNA (e.g., chromosomes, genomes) and/or dividing and reorganizing target DNA based on functional relations between genes, such as metabolic pathways or operons. Genetic manipulations also include introducing and removing metabolic pathways, recombining DNA into functional units (e.g., metabolic pathways, synthetic operons), and/or determining sites of instability in large pieces of DNA (e.g., sites where a native or non-native host tends to delete or recombine a sequence of DNA).
[0045] Vectors, Markers and Transformation.
[0046] The vectors of the present invention may be introduced into yeast. The yeast may be a suitable strain of Saccharomyces cerevisiae; however, other yeast models may be utilized. Introduction of vectors into yeast may allow for genetic manipulation of the vectors. Yeast vectors have been described extensively in the literature and methods of manipulating the same also are well known as discussed hereinafter (see e.g., Ketner et al. (1994) Proc. Nat!. Acad. Sci. (USA) 91:6186 6190).
100471 The vectors of the present invention may be introduced into bacteria. The invention also provides a shuttle vector comprising a yeast selectable marker, a bacterial selectable marker, a telomere, a centromere, a yeast origin of replication, and/or a bacterial origin of replication. For example, following genetic manipulation, the cloning system may allow for the transition to a bacterial environment, suitable for the preparation of larger quantities of nucleic acids. Representative examples include, but are not limited to, the P1 artificial chromosome, bacterial artificial chromosome (BAC) and single copy plasmid F factors (Shizuya et al. (1992) Proc. Nat!. Acad, Sci. 89:8794 8797). Similarly, bacterial vectors are well known in the art (e.g., Ioannou et al. (1994) Nature 6:84 89) and bacterial elements for the vectors of the present invention may include components from bacterial vectors known in the art.
[0048] Vectors of the present invention may be shuttle vectors that enable homologous recombination in yeast to capture and to integrate in a vector of interest a target nucleic acid of interest. Shuttle vectors may allow for the manipulation of target DNA in any of the hosts to which the vectors can be introduced. In some embodiments, after desired manipulations, shuttle vector components may be removed, leaving just the modified target DNA. Such extraction of vector sequences can be performed using standard methodologies and may occur in any host cell. The target nucleic acid of interest can be a large nucleic acid, and can include, for example, a vector, such as a viral vector, including the foreign gene of interest contained therein. The target nucleic acid can also be a bacterial (including archaebacteria and eubacteria), viral, fungal, protist, plant or animal genome, or a portion thereof. For example, the target nucleic acid of one embodiment of the present invention comprises an entire prokaryotic genome. As an additional example, a target nucleic acid of the present invention may comprise the chloroplast genome of a eukaryotic organism.
10049] The vectors according to the invention may comprise an appropriately oriented DNA that functions as a telomere in yeast and a centromere. Any suitable telomere may be used. Suitable telomeres include without limitation telomeric repeats from many organisms, which can provide telomeric function in yeast. The terminal repeat sequence in humans (ITAGOG)N, is identical to that in trypanosomes and similar to that in yeast ((TG)I))N and Tetrahymena (TT'GGG)N (Szostak & Blackburn (1982) Cell 29:245 255; Brown (1988) EMBO J. 7:2377 2385; and Moyzis et al. (1988) Proc. Nail. Acad. Sci. 85:6622 6626).
[0050] The term "centromere" is used herein to identify a nucleic acid, which mediates the stable replication and precise partitioning of the vectors of the invention at meiosis and at mitosis thereby ensuring proper segregation into daughter cells.
Suitable centromeres include, without limitation, the yeast centromere, CEN4, which confers mitotic and meiotic stability on large linear plasmids (Murray & Szostak (1983) Nature 305:189 193; Carbon (1984) Cell 37:351 353; and Clark eta1. (1990) Nature 287:504 509)).
[0051] Any of the nucleotide sequences of chloroplast DNA, target DNA, vector DNA, or synthetic DNA on the vectors of the invention can further include codons biased for expression of the nucleotide sequences in the organism transformed. In some instances, codons in the nucleotide sequences are All' rich in a third nucleotide position of the codons. For example, at least 50% of the third nucleotide position of the codons may be A or 1. In other instances, the codons are G/C rich, for example at least 50% of the third nucleotide positions of the codons may be G or C. 100521 The nucleotide sequences of the vectors of the present invention can be adapted for chloroplast expression. For example, a nucleotide sequence herein can comprise a chloroplast specific promoter or chloroplast specific regulatory control region. The nucleotide sequences can also be adapted for nuclear expression. For example, a nucleotide sequence can comprise a nuclear specific promoter or nuclear specific regulatory control regions. The nuclear sequences can encode a protein with a targeting sequence that encodes a chioroplast targeting protein (e.g., a chloroplast transit peptide), or a signal peptide that directs a protein to the endomembrane system for deposition in the endoplasmic reticulum or plasma membrane.
The nucleotide sequences of the vectors can also comprise a chioroplast replicating sequence, such as a chloroplast origin of replication.
(00531 In embodiments where a vector encodes genes capable of fuel production, fuel products are produced by altering the enzymatic content of the cell to increase the biosynthesis of specific fuel molecules. For example, nucleotides sequences (e.g., an ORF isolated from an exogenous source) encoding biosynthetic enzymes can be introduced into the chioroplast of a photosynthetic organism. Nucleotide sequences encoding fuel biosynthetic enzymes can also be introduced into the nuclear genome of the photosynthetic organisms. Nucleotide sequences introduced into the nuclear genome can direct accumulation of the biosynthetic enzyme in the cytoplasm of the cell, or may direct accumulation of the biosynthetic enzyme in the chioroplast of the photosynthetic organism.
(0054] Any of the nucleotide sequences herein may further comprise a regulatory control sequence. Regulatory control sequences can include one or more of the following: a promoter, an intron, an exon, processing elements, 3' untranslated region, 5' untranslated region, RNA stability elements, or translational enhancers A promoter may be one or more of the following: a promoter adapted for expression in the organism, an algal promoter, a chloroplast promoter, and a nuclear promoter, any of which may be a native or synthetic promoters. A regulatory control sequence can be inducible or autoregulatable. A regulatory control sequence can include autologous and/or heterologous sequences. In some cases, control sequences can be flanked by a first homologous sequence and a second homologous sequence. The first and second homologous sequences can each be at least 500 nucleotides in length. The homologous sequences can allow for either homologous recombination or can act to insulate the heterologous sequence to facilitate gene expression.
[00551 Vectors may also comprise sequences involved in producing products useful as biopharmaceuticals, such as, but not limited to, antibodies (including functional portions thereof), interleukins and other immune modulators, and antibiotics. See, e.g., Mayfield et al., (2003) Proc. Nat'lAcad. Sci.: 100 (438-42) and U.S. Pub. No. 2004/0014174.
100561 Vectors of the present invention may comprise a bacterial element, including, but not limited to, cassette-able bacterial genome or portion thereof (e.g., a removable DNA fragment comprising a bacterial genome or functional portion thereof). Additionally, vectors of the present invention may comprise functional bacterial genomic units (e.g., a unit essential for metabolic processes, biochemical pathways, gene expression). Vectors of the present invention may comprise a transplantable bacterial genome or portion thereof. Vectors of the present invention may comprise a transferable bacterial genome or portion thereof. The bacterial element can be, but not limited to, a bacterial origin of replication (such as described below for prokaryotic replication systems), an antibiotic resistance marker (such as described below, which may be used as a selectable marker), an auxotrophic marker, a bacterial structural gene, or any combination thereof.
100571 Vectors of the present invention may comprise a yeast element, including, but not limited to, cassette-able yeast genome or portion thereof (e.g., a removable DNA fragment comprising a yeast genome or functional portion thereof).
Additionally, vectors of the present invention may comprise functional yeast genomic units (e.g., a unit essential for metabolic processes, biochemical pathways, gene expression). Vectors of the present invention may comprise a transplantable yeast genome or portion thereof. The yeast element can be, but not limited to, a yeast origin of replication (such as described below), an antifungal resistance gene, a yeast auxotrophic marker, a yeast structural gene, or any combination thereof.
[00581 A vector may further include a yeast origin of replication capable of supporting the replication of large nucleic acids.
Non-limiting examples of replication regions according to the invention include the autonomously replicating sequence or "ARS element." ARS elements were identified as yeast sequences that conferred high-frequency transformation.
Tetrahymena DNA termini have been used as ARS elements in yeast along with ARSI and ARS4 (Kiss et al. (1981) Mo!.
Cell Biol. 1:535 543; Stinchcomb et al. (1979) Nature 282:39; and Barton & Smith (1986) Mo!. Cell Biol. 6:2354). For each segment (e.g., those corresponding to the yeast and bacterial elements of the gap-filling shuttle vector) there may be two or more origins of replication. A vector may replicate autonomously in a host cell and may be characterized further by one or a small number of restriction endonuclease recognition sites at which such nucleic acids may be cut in a determinable fashion and into which nucleic acid fragments may be inserted. The vector further may contain a selectable marker, for example an auxotrophic marker, suitable for the identification of cells transformed with the vector.
(00591 Target nucleic acids of the invention may vary considerably in complexity. The target nucleic acid may include viral, prokaryotic or eukaryotic DNA, cDNA, exonic (coding), and/or intronic (noncoding) sequences. Hence, the target nucleic acid of the invention may include one or more genes. A target nucleic acid may be a chromosome, genome, or operon and/or a portion of a chromosome, genome or operon. A target nucleic acid may comprise coding sequences for all the genes in a pathway, the minimum complement of genes necessary for survival of an organelle, and/or the minimum complement of genes necessary for survival of an organism. A target nucleic acid may comprise 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% of the genome of an organism or organelle. A target nucleic acid may comprise Zymomonas mobilis DNA sequence, including, but not limited to genomic DNA and/or cDNA. A target nucleic acid may comprise eukaryotic chloroplast DNA sequence, including but not limited to, chioroplast genome DNA and/or cDNA. A target nucleic acid may comprise cyanobacteria DNA, including but not limited to genomic DNA and/or cDNA. A target nucleic acid may comprise algal DNA, such as microalgal or macroalgal DNA, including but not limited to genomic DNA and/or cDNA. The algal DNA may be from C. reinhardtii. The target nucleic acid also may be of any origin and/or nature.
[0060] It may be desirable for the gene to also comprise a promoter operably linked to the coding sequence in order to effectively promote transcription. Enhancers, repressors and other regulatory sequences may also be included in order to modulate activity of the gene, as is well known in the art, A gene as provided herein can refer to a gene that is found in the genome of the individual host cell (i.e., endogenous) or to a gene that is not found in the genome of the individual host cell (i.e., exogenous or a "foreign gene"). Foreign genes may be from the same species as the host or from different species. For transfection of a cell using DNA containing a gene with the intent that the gene will be expressed in the cell, the DNA may contain any control sequences necessary for expression of the gene in the required orientation for expression. The term "intron" as used herein, refers to a DNA sequence present in a given gene which is not translated into protein and is generally found between exons, [0061] Genetic elements, or polynucleotides comprising a region that encodes a polypeptide or a region that regulates transcription or translation or other processes important to expression of the polypeptide in a host cell, or a polynucleotide comprising both a region that encodes a polypeptide and a region operably linked thereto that regulates expression. Genetic elements may be comprised within a vector that replicates as an episomal element; that is, as a molecule physically independent of the host cell genome. They may be comprised within mini-chromosomes, such as those that arise during amplification of transfected DNA by methotrexate selection in eukaryotic cells. Genetic elements also may be comprised within a host cell genorne; not in their natural state but, rather, following manipulation such as isolation, cloning and introduction into a host cell in the form of purified DNA or in a vector, among others.
[00621 The vectors of the invention may be modified further to include functional entities other than the target sequence which may find use in the preparation of the construct(s), amplification, transformation or transfection of a host cell, and--if applicable--for integration in a host cell. For example, the vector may comprise regions for integration into host DNA.
Integration may be into nuclear DNA of a host cell. In some embodiments, integration may be into non-nuclear DNA, such as chioroplast DNA. Other functional entities of the vectors may include, but are not limited to, markers, linkers and restriction sites.
[00631 For example, vectors of the present invention may contain sufficient linear identity or similarity (homology) to have the ability to hybridize to a portion of a target nucleic acid made or which is single-stranded, such as a gene, a transcriptional control element or intragenic DNA. Without being bound to theory, such hybridization is ordinarily the result of base-specific hydrogen bonding between complementary strands, preferably to form Watson-Crick base pairs. As a practical matter, such homology can be inferred from the observation of a homologous recombination event. In some embodiments, such homology is from about 8 to about 1000 bases of the linear nucleic acid. In other embodiments, such homology is from about 12 to about 500 bases. One skilled in the art will appreciate that homology may extend over longer stretches of nucleic acids.
[0064] The homologous regions of a vector may permit homologous recornbination between the vector and genomic DNA of a host cell. Homologous recombination is a type of genetic reconibination, a process of physical rearrangement occurring between two strands of DNA. Homologous recombination involves the alignment of similar sequences, a crossover between the aligned DNA strands, and breaking and repair of the DNA to produce an exchange of material between the strands. The process homologous recombination naturally occurs in organisms and is also utilized as a molecular biology technique for introducing genetic changes into organism.
[0065] A target nucleic acid may include a regulatory nucleic acid. This refers to any sequence or nucleic acid which modulates (either directly or indirectly, and either up or down) the replication, transcription andlor expression of a nucleic acid controlled thereby. Control by such regulatory nucleic acid may make a nucleic acid constitutively or inducibly transcribed and/or translated. Any of the nucleotide sequences herein may further comprise a regulatory control sequence.
Examples of regulatory control sequences can include, without limitation, one or more of the following: a promoter, an intron, an exon, processing elements, 3' untranslated region, 5' untranslated region, RNA stability elements, or translational enhancers. A promoter may be one or more of the following: a promoter adapted for expression in the organism (e.g., bacterial, fungal, viral, plant, mammalian, or protist), an algal promoter, a chloroplast (or other plastid) promoter, a mitochondrial promoter, and a nuclear promoter, any of which may be a native or synthetic promoters. A regulatory control sequence can be inducible or autoregulatable. A regulatory control sequence can include autologous and/or heterologous sequences. In some cases, control sequences can be flanked by a first homologous sequence and a second homologous sequence. The first and second homologous sequences can each be at least 500 nucleotides in length. The homologous sequences can allow for either homologous recombination or can act to insulate the heterologous sequence to facilitate gene expression.
[00661 In some instances, target DNA, vector DNA or other DNA present in a shuttle vector of the present invention does not result in production of a polypeptide product but rather allows for secretion of the product from the cell. In these cases, the nucleotide sequence may encode a protein that enhances or initiates or increases the rate of secretion of a product from an organism to the external environment. Thus, segments of vectors and/or vectors of the invention may include a transcriptional regulatory region such as, for example, a transcriptional initiation region. One skilled in the art will appreciate that a multitude of transcriptional initiation sequences have been isolated and are available, including thymidine kinase promoters, beta-actin promoters, immunoglobin promoters, methallothionein promoters, human cytomegalovirus promoters and SV40 promoters.
[00671 A vector or other recombinant nucleic acid molecule may include a nucleotide sequence encoding a selectable marker. The term or "selectable marker" or "selection marker" refers to a polynucleotide (or encoded polypeptide) that confers a detectable phenotype. A selectable marker generally encodes a detectable polypeptide, for example, a green fluorescent protein or an enzyme such as luciferase, which, when contacted with an appropriate agent (a particular wavelength of light or luciferin, respectively) generates a signal that can be detected by eye or using appropriate instrumentation (Giacomin, Plant Sci. 116:59-72, 1996; Scikantha, I Bacteriol. 178:121, 1996; Gerdes, FEBSLett. 389:44- 47, 1996; see, also, Jefferson, EMBO J. 6:3901-3907, 1997, fi-glucuronidase). A selectable marker generally is a molecule that, when present or expressed in a cell, provides a selective advantage (or disadvantage) to the cell containing the marker, for example, the ability to grow in the presence of an agent that otherwise would kill the cell.
10068] A selectable marker can provide a means to obtain prokaryotic cells or plant cells or both that express the marker and, therefore, can be useful as a component of a vector of the invention (see, for example, Bock, supra, 2001). Examples of selectable markers include, but are not limited to, those that confer antimetabolite resistance, for example, dihydrofolate reductase, which confers resistance to methotrexate (Reiss, Plant Physiol. (Lf Sci. Adv.) 13:143-149, 1994); neomycin phosphotransferase, which confers resistance to the aminoglycosides neomycin, kanamycin and paromycin (Herrera-Estrella, EMBOJ. 2:987-995, 1983), hygro, which confers resistance to hygromycin (Marsh, Gene 32:481-485, 1984), trpB, which allows cells to utilize indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman, Proc. Nati. Acad. Sci., USA 85:8047, 1988); mannose-6-phosphate isomerase which allows cells to utilize mannose (WO 94/20627); ornithine decarboxylase, which confers resistance to the orriithine decarboxylase inhibitor, 2-(difluoromethyt)-DL-ornithine (DFMO; McConlogue, 1987, In: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed.); and deaminase from Aspergillus terreus, which confers resistance to Blasticidin S (Tamura, Biosci. Biotechnol. Biochein. 59:2336-2338, 1995). Additrnnal selectable markers include those that confer herbicide resistance, for example, phosphinothricin acetyltransferase gene, which confers resistance to phosphinothricin (White et al., NucI. Acids Res. 18:1062, 1990; Spencer et al., Theor. Appl. Genet. 79:625-631, 1990), a mutant EPSPV-synthase, which confers glyphosate resistance (Hinchee et al., BioTechnology 9 1:915-922, 1998), a mutant acetolactate synthase, which confers imidazolione or sulfonylurea resistance (Lee et al., EMBO J. 7:1241-1248, 1988), a mutant psbA, which confers resistance to atrazine (Smeda et al., Plant Physiol. 103:911-917, 1993), or a mutant protoporphyrinogen oxidase (see U.S. Pat. No. 5,767,373), or other markers conferring resistance to an herbicide such as glufosinate. Selectable markers include polynucleotides that confer dihydrofolate reductase (DHFR) or neomycin resistance for eukaryotic cells and tetracycline; ampicillin resistance for prokaryotes such as E. coli; and bleomycin, gentamycin, glyphosate, hygromycin, kanamycin, methotrexate, phleomycin, phosphinotricin, spectinomycin, streptomycin, sulfonamide and sulfonylurea resistance in plants (see, for example, Maliga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Laboratory Press, 1995, page 39).
100691 Methods for nuclear and plastid transformation are routine and well known for introducing a polynucleotide into a plant cell chloroplast (see U.S. Pat. Nos. 5,451,513, 5,545,817, and 5,545,818; WO 95/16783; McBride et al., Proc. Nat!.
Acad. Sd., USA 91:7301-7305, 1994). In some embodiments, chioroplast transformation involves introducing regions of chioroplast DNA flanking a desired nucleotide sequence, allowing for homologous recombination of the exogenous DNA into the target chloroplast genome. In some instances one to 1.5 kb flanking nucleotide sequences of chioroplast genomic DNA maybe used. Using this method, point mutations in the chioroplast 16S rRNA and rpsl2 genes, which confer resistance to spectinomycin and streptomycin, can be utilized as selectable markers for transformation (Svab et al., Proc. Nat!. Acad. Sci., USA 87:8526-8530, 1990), and can result in stable homoplasmic transformants, at a frequency of approximately one per bombardments of target leaves.
[00701 Microprojectile mediated transformation also can be used to introduce a polynucleotide into a plant cell chloroplast (Klein et al., Nature 327:70-73, 1987). This method utilizes microprojectiles such as gold or tungsten, which are coated with the desired polynucleotide by precipitation with calcium chloride, spermidine or polyethylene glycol. The microprojectile particles are accelerated at high speed into a plant tissue using a device such as the BIOLISTIC PD-1000 particle gun (BioRad; Hercules Calif.). Methods for the transformation using biolistic methods are well known in the art (see, e.g.; Christou, Trends in Plant Science 1:423-431, 1996). Microprojectile mediated transformation has been used, for example, to generate a variety of transgenic plant species, including cotton, tobacco, corn, hybrid poplar and papaya. Important cereal crops such as wheat, oat, barley, sorghum and rice also have been transformed using microprojectile mediated delivery (Duan et al., Nature Biotech. 14:494-498, 1996; Shimamoto, Curr. Opin. Biotech. 5:158-162, 1994). The transformation of most dicotyledonous plants is possible with the methods described above. Transformation of monocotyledonous plants also can be transformed using, for example, biolistic methods as described above, protoplast transformation, electroporation of partially permeabilized cells, introduction of DNA using glass fibers, the glass bead agitation method, and the like.
100711 Transformation frequency may be increased by replacement of recessive rRNA or r-protein antibiotic resistance genes with a dominant selectable marker, including, but not limited to the bacterial aadA gene (Svab and Maliga, Proc. Nat!.
Acad. Sci., USA 90:913-917, 1993). Approximately 15 to 20 cell division cycles following transformation are generally required to reach a honioplastidic state. It is apparent to one of skill in the art that a chloroplast may contain multiple copies of its genome, and therefore, the term "homoplasmic" or "homoplasmy" refers to the state where all copies of a particular locus of interest are substantially identical. Plastid expression, in which genes are inserted by homologous recombination into all of the several thousand copies of the circular plastid genome present in each plant cell, takes advantage of the enormous copy number advantage over nuclear-expressed genes to permit expression levels that can readily exceed 10% of the total soluble plant protein.
[00721 Transformation can be performed, for example, according to the method of Cohen et al. (Proc. Nati. Acad. Sci. USA, 69:2110(1972)), the protoplast method (Mol. Gen. Genet., 168:111(1979)), or the competent method (J. Mol. Biol., 56:209 (1971)) when the hosts are bacteria(E. co/i, Bacillus subtilis, and such), the method of Hinnen et al. (Proc. NatI.
Acad. Sci. USA, 75:1927 (1978)), or the lithium method (J. Bacteriol., 153:163 (1983)) when the host is S. cerevisiae, the method of Graham (Virology, 52:456 (1973)) when the hosts are animal cells, and the method of Summers et al. (Mol. Cell.
Biol., 3:2156-2 165 (1983)) when the hosts are insect cells. Typically, following a transformation event, potential transformants are plated on nutrient media for selection and/or cultivation.
[00731 The nutrient media preferably comprises a carbon source, an inorganic nitrogen source, or an organic nitrogen source necessary for the growth of host cells (transformants). Examples of the carbon source are glucose, dextran, soluble starch, and sucrose, and examples of the inorganic or organic nitrogen source are ammonium salts, nitrates, amino acids, corn steep liquor, peptone, casein, meat extract, soy bean cake, and potato extract. If desired, the media may comprise other nutrients (for example, an inorganic salt (for example, calcium chloride, sodium dihydrogenphosphate, and magnesium chloride), vitamins, antibiotics (for example, tetracycline, neomycin, ampicillin, kanamycin, etc.). Media for some photosynthetic organisms may not require a carbon source as such organisms may be photoautotrophs and, thus, can produce their own carbon sources.
[00741 Cultivation and/or selection are performed by methods known in the art. Cultivation and selection conditions such as temperature, pH of the media, and cultivation time are selected appropriately for the vectors, host cells and methods of the present invention. One of skill in the art will recognize that there are numerous specific media and cultivation/selection conditions which can be used depending on the type of host cell (transformant) and the nature of the vector (e.g., which selectable markers are present). The media herein are merely described by way of example and are not limiting.
[00751 When the hosts are bacteria, actinomycetes, yeast, or filamentous fungi, media comprising the nutrient source(s) mentioned above are appropriate. When the host is E. coil, examples of preferable media are LB media, M9 media (Miller et al. Exp. Mol. Genet., Cold Spring Harbor Laboratory, p.431 (1972)), and so on. When the host is yeast, an example of medium is Burkhoter minimal medium (Bostian, Proc. Nat!. Acad. Sci. USA, 77:4505 (1980)).
[00761 The selection of vectors in yeast may be accomplished by the use of yeast selectable markers. Examples include, but are not limited to, FHS3, TRP1, URA3, LEU2 and ADE markers. In some embodiments of the invention, a vector or segment thereof may comprise two or more selectable markers. Thus, in one embodiment, a segment of a vector of the present invention may comprise an ADE marker to be lost upon homologous recombination with the target nucleic acid, and a HIS3 marker. The other segment may comprise a TRP1 marker. Selection is achieved by growing transformed cells on a suitable drop-out selection media (see e.g., Watson et al. (1992) Recombinant DNA, 2.sup.nd ed., Freeman and Co., New York, N.Y.). For example, HIS3 allows for selection of cells containing the first segment. TRP1 allows for selection of cells containing the second segment. ADE allows screening and selection of clones in which homologous recombination took place. ADE enables color selection (red).
[00771 Recombinant yeast cells may be selected using the selectable markers described herein according to methods well known in the art. Hence, one skilled in the art will appreciate that recombinant yeast cells harboring a gap-filled vector of the invention may be selected on the basis of the selectable markers included therein. For example, recombinant vectors carrying HIS3 and TRPI may be selected by growing transformed yeast cells in the presence of drop-out selection media lacking histidine and tryptophan. Isolated positive clones may be purified further and analyzed to ascertain the presence and structure of the recombinant vector of the invention by, e.g., restriction analysis, electrophoresis, Southern blot analysis, polymerase chain reaction or the like. The invention further provides gap-filled vectors engineered according to the method of the invention. Such a vector is the product of homologous recombination between the segments or vectors of the invention and a target nucleic acid of choice. The invention also provides a prokaryotic cell and/or a eukaryotic host cell harboring the cloning system or vector according to the invention. The organism can be unicellular or multicellular. The organism may be naturally photosynthetic or naturally non-photosynthetic. Other examples of organisms that can be transformed include vascular and non-vascular organisms. When hosts, such as plant, yeast, animal, algal, or insect cells are used, a vector of the present invention may contain, at least, a promoter, an initiation codon, the polynucleotide encoding a protein, and a termination codon. The vectors of the present invention may also contain, if required, a polynucleotide for gene amplification (marker) that is usually used.
[00781 Products.
[0079] The vectors of the present invention may comprise sequences that result in production of a product naturally, or not naturally, produced in the organism comprising the vector. In some instances the product encoded by one or more sequences on a vector is a polypeptide, for example an enzyme. Enzymes utilized in practicing the present invention may be encoded by nucleotide sequences derived from any organism, including bacteria, plants, fungi and animals. Vectors may also comprise nucleotide sequences that affect the production or secretion of a product from the organism. In some instances, such nucleotide sequence(s) encode one or more enzymes that function in isoprenoid biosynthetic pathway. Examples of polypeptides in the isoprenoid biosynthetic pathway include synthases such as C5, ClO, C15, C20, C30, and C40 synthases.
In some instances, the enzymes are isoprenoid producing enzymes. In some instances, an isoprenoid producing enzyme produces isoprenoids with two phosphate groups (e.g., GPP synthase, FPP synthase, DMAPP synthase). In other instances, isoprenoid producing enzymes produce isoprenoids with zero, one, three or more phosphates or may produce isoprenoids with other functional groups. Polynucleotides encoding enzymes and other proteins useful in the present invention may be isolated and/or synthesized by any means known in the art, including, but not limited to cloning, sub-cloning, and PCR.
100801 An isoprenoid producing enzyme for use in the present invention may also be botryococcene synthase, 3-caryophyllene synthase, germacrene A synthase, 8-epicedrol synthase, valencene synthase, (+)-ö-cadinene synthase, germacrene C synthase, (E)-3-famesene synthase, casbene synthase, vetispiradiene synthase, 5-epi-aristolochene synthase, aristolchene synthase, a-humulene, (E,E)-a-farnesene synthase, (-)--pinene synthase, y-terpinene synthase, limonene cyclase, linalool synthase, (+)-bornyl diphosphate synthase, levopimaradiene synthase, isopiniaradiene synthase, (E)-y- bisabolene synthase, copalyl pyrophosphate synthase, kaurene synthase, longifolene synthase, y-humulene synthase, ö-selinene synthase, 3-phellandrene synthase, terpinolene synthase, (+)-3-carene synthase, syn-copalyl diphosphate synthase, c-terpineol synthase, syn-pimara-7, 1 5-diene synthase, ent-sandaaracopimaradiene synthase, sterner-13 -ene synthase, E--ocimene, S-linalool synthase, geraniol synthase, y-terpinene synthase, I inalool synthase, E-13-ocimene synthase, epi-cedrol synthase, a-zingiberene synthase, guaiadiene synthase, cascarilladiene synthase, cis-muuroladiene synthase, aphidicolan-I 6b-ol synthase, elizabethatriene synthase, sandalol synthase, patchoulol synthase, zinzanol synthase, cedrol synthase, scareol synthase, copalol synthase, or manool synthase.
[008 11 Other enzymes which may be produced by vectors of the present invention include biomass-degrading enzymes.
Non-limiting examples of biomass-degrading enzymes include: cellulolytic enzymes, hemicellulolytic enzymes, pectinolytic enzymes, xylanases, ligninolytic enzymes, cellulases, cellobiases, softening enzymes (e.g., endopolygalacturonase), amylases, lipases, proteases, RNAses, DNAses, inulinase, lysing enzymes, phospholipases, pectinase, pullulanase, glucose isomerase, endoxylanase, beta-xylosidase, alpha-L-arabinofuranosidase, alpha-glucoronidase, alpha-galactosidase, acetyixylan esterase, and feruloyl esterase. Examples of genes that encode such enzymes include, but are not limited to, amylases, cellulases, hemicellulases, (e.g., 3-glucosidase, endocellulase, exocellulase), exo-3-glucanase, endo--gIucanase and xylanse (endoxylanase and exoxylanse). Examples of ligninolytic enzymes include, but are not limited to, lignin peroxidase and manganese peroxidase from Phanerochaete chryososporium. One of skill in the art will recognize that these enzymes are only a partial list of enzymes which could be used in the present invention.
[0082J The present invention contemplates making enzymes that contribute to the production of fatty acids, lipids or oils by transforming host cells (e.g., alga cells such as C. reinhardtii, D. sauna, H pluvalis and cyanobacterial cells) and/or organisms comprising host cells with nucleic acids encoding one or more different enzymes. In some embodiments the enzymes that contribute to the production of fatty acids, lipids or oils are anabolic enzymes. Some examples of anabolic enzymes that contribute to the synthesis of fatty acids include, but are not limited to, acetyl-CoA carboxylase, ketoreductase, thioesterase, malonyltransferase, dehydratase, acyl-CoA ligase, ketoacylsynthase, enoylreductase and a desaturase. In some embodiments the enzymes are catabolic or biodegrading enzymes. In some embodiments, a single enzyme is produced.
100831 Some host cells may be transformed with multiple genes encoding one or more enzymes. For example, a single transformed cell may contain exogenous nucleic acids encoding enzymes that make up an entire fatty acid synthesis pathway.
One example of a pathway might include genes encoding an acetyl CoA carboxylase, a malonyltransferase, a ketoacylsynthase, and a thioesterase. Cells transformed with entire pathways and/or enzymes extracted from them, can synthesize complete fatty acids or intermediates of the fatty acid synthesis pathway. In some embodiments constructs may contain multiple copies of the same gene, and/or multiple genes encoding the same enzyme from different organisms, and/or multiple genes with mutations in one or more parts of the coding sequences.
100841 In some instances, a product (e.g. fuel, fragrance, insecticide) is a hydrocarbon-rich molecule, e.g. a terpene. A terpene (classified by the number of isoprene units) can be a hemiterpene, monoterperle, sesquiterpene, diterpene, triterpene, or tetraterpene. In specific embodiments the terpene is a terpenoid (aka isoprenoid), such as a steroid or carotenoid.
Subclasses of carotenoids include carotenes and xanthophylls. In specific embodiments, a fuel product is limonene, 1, 8- cineole, a-pinene, camphene, (+)-sabinene, myrcene, abietadiene, taxadiene, farnesyl pyrophosphate, amorphadiene, (E)-a-bisabolene, beta carotene, alpha carotene, lycopene, or diapophytoene Some of these terpenes are pure hydrocarbons (e.g. limonene) and others are hydrocarbon derivatives (e.g. cineole).
[00851 Examples of fuel products include petrochemical products and their precursors and all other substances that may be useful in the petrochemical industry. Fuel products include, for example, petroleum products, and precursors of petroleum, as well as petrochemicals and precursors thereof. The fuel product may be used for generating substances, or materials, useful in the petrochemical industry, including petroleum products and petrochemicals. The fuel or fuel products may be used in a combustor such as a boiler, kiln, dryer or furnace. Other examples of combustors are internal combustion engines such as vehicle engines or generators, including gasoline engines, diesel engines, jet engines, and others. Fuel products may also be used to produce plastics, resins, fibers, elastomers, lubricants, and gels.
[0086] Examples of products contemplated herein include hydrocarbon products and hydrocarbon derivative products. A hydrocarbon product is one that consists of only hydrogen molecules and carbon molecules. A hydrocarbon derivative product is a hydrocarbon product with one or more heteroatoms, wherein the heteroatom is any atom that is not hydrogen or carbon. Examples of heteroatoms include, but not limited to, nitrogen, oxygen, sulfur, and phosphorus. Some products are hydrocarbon-rich, wherein as least 50%, 60%, 70%, 80%, 90%, or 95% of the product by weight is made up carbon and hydrogen.
100871 Fuel products, such as hydrocarbons, may be precursors or products conventionally derived from crude oil, or petroleum, such as, but not limited to, liquid petroleum gas, naptha (ligroin), gasoline, kerosene, diesel, lubricating oil, heavy gas, coke, asphalt, tar, and waxes. For example, fuel products may include small alkanes (for example, 1 to approximately 4 carbons) such as methane, ethane, propane, or butane, which may be used for heating (such as in cooking) or making plastics.
Fuel products may also include molecules with a carbon backbone of approximately 5 to approximately 9 carbon atoms, such as naptha or ligroin, or their precursors. Other fuel products may be about 5 to about 12 carbon atoms or cycloalkanes used as gasoline or motor fuel. Molecules and aromatics of approximately 10 to approximately 18 carbons, such as kerosene, or its precursors, may also be fuel products. Fuel products may also include molecules, or their precursors, with more than 12 carbons, such as used for lubricating oil. Other fuel products include heavy gas or fuel oil, or their precursors, typically containing alkanes, cycloalkanes, and aromatics of approximately 20 to approximately 70 carbons. Fuel products also includes other residuals from crude oil, such as coke, asphalt, tar, and waxes, generally containing multiple rings with about or more carbons, and their precursors.
(0088] Host Cells and Organisms 10089] Examples of organisms that can be transformed using the vectors and methods herein include vascular and non-vascular organisms. The organism can be prokaroytic or eukaroytic. The organism can be unicellular or multicellular.
10090] Eukaryotic cells, such as a fungal cell (e.g., Saccharomyces cerevisiae, Schizosaccharomyces pombe or Ustilago maydis) may be transformed using the methods and compositions of the present invention. Methods for introducing nucleic acids in a fungal/yeast cells are well known in the art. Hence, such a step may be accomplished by conventional transformation methodologies. Non-limiting examples of suitable methodologies include electroporation, alkali cations protocols and spheroplast transformation.
10091] Examples of non-vascular photosynthetic organisms include bryophtyes, such as marchantiophytes or anthocerotophytes. In some instances the organism is a cyanobacteria. In some instances, the organism is algae (e.g., macroalgae or microalgae). The algae can be unicellular or multicellular algae. In some instances the organism is a rhodophyte, chlorophyte, heterokontophyte, tribophyte, glaucophyte, chiorarachniophyte, euglenoid, haptophyte, cryptomonad, dinoflagellum, or phytoplankton.
100921 The methods of the present invention are exemplified using the microalga, C. reinhardtii. The use of microalgae to express a polypeptide or protein complex according to a method of the invention provides the advantage that large populations of the microalgae can be grown, including commercially (Cyanotech Corp.; Kailua-Kona HI), thus allowing for production and, if desired, isolation of large amounts of a desired product. However, the ability to express, for example, functional polypeptides, including protein complexes, in the chioroplasts of any plant and/or modifiy the chloroplasts or any plant allows for production of crops of such plants and, therefore, the ability to conveniently produce large amounts of the polypeptides. Accordingly, the methods of the invention can be practiced using any plant having chloroplasts, including, for example, macroalgae, for example, marine algae and seaweeds, as well as plants that grow in soil, for example, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B.juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Pan icum,niliaceurn), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis vpogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassaya (Manihot esculenta), coffee (Cofea spp.), coconut (Cocos nuc(fera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camel/ia sinensis), banana (Musa spp.), avocado (Persea ultilane), fig (Ficus casica), guava (Psidium guajava), mango (Man gifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrjfolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugar cane (Saccharum spp.), oats, duckweed (Lemna), barley, tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo). Omamentals such as azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia puicherrima), and chrysanthemum are also included. Additional omamentals useful for practicing a method of the invention include impatiens, Begonia, Pelargonium, Viola, Cyclamen, Verbena, Vinca, Tagetes, Primula, Saint Paulia, Agertum, Amaranthus, Antihirrhinum, Aquilegia, Cineraria, Clover, Cosmo, Cowpea, Dahlia, Datura, Delphinium, Gerbera, Gladiolus, Gloxinia, Hippeastrum, Mesembiyanthemum, Salpiglossos, and Zinnia. Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata), Douglas-fir (Pseudotsuga Pnenziesii); Western hemlock (Tsuga ultilane); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis noolkatensis).
[00931 Leguminous plants useful for practicing a method of the invention include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mung bean, lima bean, fava bean, lentils, chickpea, etc. Legumes include, but are not limited to, Arachis, e.g., peanuts, Vicia, e.g., crown vetch, hairy vetch, adzuki bean, mung bean, and chickpea, Lupinus, e.g., lupine, trifolium, Phaseolus, e.g., common bean and lima bean, Pisurn, e.g., field bean, Melilotus, e.g., clover, Medicago, e.g., alfalfa, Lotus, e.g., trefoil, lens, e.g., lentil, and false indigo. Preferred forage and turf grass for use in the methods of the invention include alfalfa, orchard grass, tall fescue, perennial ryegrass, creeping bent grass, and redtop. Other plants useful in the invention include Acacia, aneth, artichoke, arugula, blackberry, canola, cilantro, clementines, escarole, eucalyptus, fennel, grapefruit, honey dew, jicama, kiwifruit, lemon, lime, mushroom, nut, okra, orange, parsley, persimmon, plantain, pomegranate, poplar, radiata pine, radicchio, Southern pine, sweetgum, tangerine, triticale, vine, yams, apple, pear, quince, cherry, apricot, melon, hemp, buckwheat, grape, raspberry, chenopodium, blueberry, nectarine, peach, plum, strawberry, watermelon, eggplant, pepper, cauliflower, Brassica, e.g., broccoli, cabbage, ultilan sprouts, onion, carrot, leek, beet, broad bean, celery, radish, pumpkin, endive, gourd, garlic, snapbean, spinach, squash, turnip, ultilane, chicory, groundnut and zucchini. Thus, the compositions contemplated herein include host organisms comprising any of the above nucleic acids. The host organism can be any chloroplast-containing organism.
100941 The term "plant" is used broadly herein to refer to a eukaryotic organism containing plastids, particularly chloroplasts, and includes any such organism at any stage of development, or to part of a plant, including a plant cutting, a plant cell, a plant cell culture, a plant organ, a plant seed, and a plantlet. A plant cell is the structural and physiological unit of the plant, comprising a protoplast and a cell wall. A plant cell can be in the form of an isolated single cell or a cultured cell, or can be part of higher organized unit, for example, a plant tissue, plant organ, or plant. Thus, a plant cell can be a protoplast, a gamete producing cell, or a cell or collection of cells that can regenerate into a whole plant. As such, a seed, which comprises multiple plant cells and is capable of regenerating into a whole plant, is considered plant cell for purposes of this disclosure. A plant tissue or plant organ can be a seed, protoplast, callus, or any other groups of plant cells that is organized into a structural or functional unit. Particularly useful parts of a plant include harvestable parts and parts useful for propagation of progeny plants. A harvestable part of a plant can be any useful part of a plant, for example, flowers, pollen, seedlings, tubers, leaves, stems, fruit, seeds, roots, and the like. A part of a plant useful for propagation includes, for example, seeds, fruits, cuttings, seedlings, tubers, rootstocks, and the like.
(00951 Eukaryotic host cells may be a fungal ceLl (e.g., S. cerevisiae, Sz. pombe or U maydis). Examples of prokaryotic host cells include E. ccli and B. subtilis, cyanobacteria and photosynthetic bacteria (e.g. species of the genus Synechocyst is or the genus Synechococcu.s or the genus Athrospira). Examples of non-vascular plants which may be a host organism (or the source of target DNA) include bryophtyes, such as marchantiophytes or anthocerotophytes. In some instances, the organism is algae (e.g., macroalgae or microalgae, such as Chiamydomonas reinhardtii, Chorella vulgaris, Dunaliella sauna, Haematococcus pluvalis, Scenedesmus ssp.). The algae can be unicellular or multicellular algae. In some instances the organism is a rhodophyte, chiorophyte, heterokontophyte, tribophyte, glaucophyte, chlorarachniophyte, euglenoid, haptophyte, cryptomonad, dinoflagellum, or phytoplankton. In other instancesOne of skill in the art will recognize that these organisms are given merely as examples and other organisms may be substituted where appropriate positive and negative selectable markers are available.
100961 The vectors described herein can also be used to co-transform an organism. For example, a vector described herein may be co-transformed with a polynucleotide sequence in an organism, wherein both the vector and polynucleotide sequence have homologous ends and thus can undergo homologous recombination. As a result of recombination, the vector can comprise the polynucleotide sequence. For example, a vector comprising a yeast element, such as an ARS, a bacterial element, such as a bacterial origin of replication, a yeast centromere, a selectable marker may be co-transformed with a portion of chloroplast genome, wherein the portion comprises a chloroplast origin of replication. The vector also comprises nucleic acid sequences that are homologous to the portion of chloroplast genome, such that the homology is to a regionS' to the chioroplast origin of replication and to a region 3' to the chioroplast origin of replication. A host cell, such as a yeast cell is co-transformed with the aforementioned vector and portion of chloroplast genome, where homologous recombination can occur and the chloroplast origin of replication can be combined with the vector, resulting in a vector with a chloroplast replicating sequence. Variations can be performed, such as different DNA sequences can be used instead of the portion of chloroplast genorne, and the vector can comprise different elements. For example, the vector used in co-transforming a host cell can further comprise a chloroplast origin of replication, and be co-transformed with a DNA fragment for generating a product such as an enzyme.
100971 In some embodiments, target DNA is modified by adding, altering or removing genes, coding sequences, partial coding sequences, regulatory elements, positive and/or negative selection markers (or selectable markers), recombination sites, restriction sites, and/or codon bias sites. For example, the target DNA sequence may be codon biased for expression in the organism being transformed. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Without being bound by theory, by using a host cell's preferred codons, the rate of translation may be greater. Therefore, when synthesizing a gene for improved expression in a host cell, it may be desirable to design the gene such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell. The codoris of the present invention may be ALT rich, for example, ALT rich in the third nucleotide position of the codons. Typically, the AlT rich codon bias is used for algae. In some embodiments, at least 50% of the third nucleotide position of the codons are A or T. In other embodiments, at least 60%, 70%, 80%, 90%, or 99% of the third nucleotide position of the codons are A or T. (see also U.S. Publication No. 2004/0014174) 10098] Such manipulations are well known in the art and can be performed in numerous ways. In some embodiments, the modifications may be performed using cloned sequences. In other embodiments, the modifications may be performed using synthetic DNA.
[0099] Genetic manipulations include cloning large pieces of target DNA (e.g., chromosomes, genomes) and/or dividing and reorganizing target DNA based on functional relations between genes, such as metabolic pathways or operons. Genetic manipulations also include introducing and removing metabolic pathways, recombining DNA into functional units (e.g., metabolic pathways, synthetic operons), and/or determining sites of instability in large pieces of DNA (e.g., sites where a native or non-native host tends to delete or recombine a sequence of DNA).
1001001 Target DNA may be DNA from a prokaryote. Target DNA may also be genonlic DNA, mitochondrial DNA, or chloroplast DNA from a eukaryote. Examples of such organisms from which genomic and/or organelle DNA may serve as target DNA include, but are not limited to Z. mobilis, algae (e.g., niacroalgae or microalgae, such as Chiorella vulgaris or Chla,nydomonas reinhardtii), a rhodophyte, a chiorophyte, a heterokontophyte, a tribophyte, a glaucophyte, a chlorarachniophyte, a euglenoid, a haptophyte, a cryptomonad, a dinoflagellum, or a phytoplankton. One of skill in the art will recognize that these organisms are listed only as examples and that the methods disclosed herein are applicable to the large DNA from any organism, including bacteria, plants, fungi, protists, and animals.
[00101] Genetic manipulations of the present invention may include stabilizing large pieces of DNA by removing or inserting sequences that force transformed cells to preserve certain sequences of DNA and to stably maintain the sequences in its progeny. Genetic manipulations may also include altering codons of the target DNA, vector DNA, and/or synthetic DNA to reflect any codon bias of the host organism. Additionally, genetic manipulations of the present invention may include determining the minimal set of genes required for an organism to be viable. In another embodiment, the genetic manipulations of the present invention include determining the minimal set of genes required for a certain metabolic pathway to be created or maintained.
[00102] The genetic manipulations of the present invention may include determining redundant genes both within a genome, and between two genomes (e.g., redundancy between the nuclear and chioroplast genome). Additionally, the genetic manipulations of the present invention may include determining a functional sequence of DNA that could be artificially synthesized (e.g. the genes in a certain metabolic pathway, the genes of a functional genome). In another embodiment, the genetic manipulations of the present invention include creating DNA and genomes packaged into cassettes (e.g., sites within a vector where genes can be easily inserted or removed). The genetic manipulations of the present invention may also include creating a nuclear or organelle genome that is viable in multiple species (e.g. a transplantable chloroplast genome).
Furthermore, the genetic manipulations of the present invention may include a method for testing the viability of any of these manipulations or creations (e.g., transferring a shuttle vector back into a host system and assaying for survival).
[001031 Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
EXAMPLES
Example 1: DNA Purification and Analysis 1001041 DNA is isolated and analyzed according to methods known in the art.
1001051 To prepare DNA from Chlamydomona. reinhardtii to use as a template for PCR, 106 algae cells (from agar plate or liquid culture) are suspended in 10 mM EDTA and heated to 95°C for 10 minutes, then cooled to near 23°C. The solution is added to the PCR mixture directly.
[00106] To prepare purified chloroplast DNA from Chiamydomonas reinhardtii, 5x108 algae cells are collected from liquid culture by centrifugation at 3000 x g for 10 mm, washed once with water, centrifuged at 3000 x g for 10 mm, resuspended in ml of lysis solution (10 mM Tris pH=8.0, 10 mM EDTA, 150 mlvi NaCI, 2% SDS, 2% Sarkosyl, and 25 ug/mL Pronase (Roche)), and incubated at 37°C for 1 hour. The lysate is then gently extracted with phenol/chloroform followed by two chloroform washes. Total DNA is isolated by ethanol precipitation and resuspension in resuspension buffer (10 mlvi Tris pH=7.4, 1 mM EDTA, and 0.1 mg/mL RNase). Chloroplast DNA can be purified by adding of denaturing solution (200mM NaOH and 1% SDS (w/v)) is added to the resuspended DNA and inverted several times. Neutralizing solution (3.0 M potassium acetate, pH=5.5) is added, mixed, incubated on ice for 10 mm and centrifuged at 15000 RPM for 30 mm. The supernatant is decanted and applied to a QIAGEN-tip 500 and the DNA is isolated according to the QIAGEN Plasmid Maxi Kit..
1001071 M alternative method for preparing purified chioroplast DNA from Chiarnydomonas reinhardtii involves embedding algae cells or purified chloroplasts in low-melt agarose plugs to prevent shearing of the DNA. Chioroplasts are isolated by lysing whole cells in a nitrogen decompression chamber and separating intact cells and debris from the chloroplasts by percoll density gradient centrifugation. To lyse the cells and/or chioroplasts, the plugs are incubated at 55°C for 36 hours in lysis buffer (0.5 M EDTA, 1% Sarkosyl, 0.2 mg/mL proteinase K). When lysis is complete, plugs are washed 3 times with TE, and then stored in storage buffer (10 mM Tris pHr=7.4, 1 mM EDTA). To release chloroplast DNA into solution, the plugs are washed 3 times with 30 mM NaCI, and melted at 65°C for 10 mm. The melted plugs are shifted to 42°C and treated with J3-agarase (New England Biolabs) for 1 hour. The solution of DNA can be used directly for downstream applications or ethanol precipitated to concentrate the sample.
[001081 To prepare DNA from yeast to use as a template for PCR, 106 yeast cells (from agar plate or liquid culture) are suspended in lysis buffer (6 mM KHPO4, pH°7.S, 6 mM NaCI, 3% gLycerol, IU/mL zymotyase) and heated to 37°C for 30 mm, 95°C for 10 minutes, then cooled to near 23°C. The solution is added to the PCR mixture directly.
[001091 To prepare plasmid DNA from yeast, desired clones are grown in selective liquid media (e.g., CSM-Trp) to saturation at 30°C. Cells are collected by centrifugation at 3000 x g for 10 minutes and resuspended in 150 uL of lysis buffer (1 M sorbitol, 0.1 M sodium citrate, 0.06 M EDTA pH=7.0, 100 mM beta-mercaptoethanol, and 2.5 mg/mL zymolyase). The solution is incubated for 1 hr at 37°C. 300 uL of denaturing solution (1% SDS and 0.2N NaOH) is added and solution is incubated at 60°C for 15 mm. 150 uL of neutralizing solution (3M potassium acetate, pH=4.8) is added and the solution is incubated on ice for 10 mm. The solution is centrifuged at 14,000 RPM for 10 mm and the supernatant is transferred to another tube. 1 mL of isopropanol is added, the mixture is gently mixed and centrifuged at 14,000 RPM for 10 mm. The pellet is washed once with I mL of 70% ethanol and centrifuged at 14,000 RPM for 10 mm. The DNA pellet is air-dried and resuspended in 60 uL of resuspension buffer (10mM Tris pH7.4, 1 mM EDTA, and 0.1 mg/niL RNase).
[001101 To prepare plasmid DNA from bacteria, cells are grown to saturation at 37°C in LB containing the appropriate antibiotic (Kan or Amp). If the DNA of interest contains standard replication elements, cells are harvested by centrifugation.
If the DNA of interest contains P1 replication elements, saturated cell cultures are diluted 1:20 in LB+Kan+IPTG and grown for 4 hours at 37°C, then harvested. The Plasmid Maxi kit (QIAGEN) is used to prepare plasmid DNA from the cell pellets.
[001111 For illustrative purposes, and without limiting the invention to the specific methods described, DNA samples prepared from algae, yeast, or bacteria (in plugs or in solution) are analyzed by pulse-field gel electrophoresis (PFGE), or digested with the appropriate restriction endonuclease (e.g., Smal) and analyzed by PFGE, conventional agarose gel electrophoresis, and/or Southern blot. Standard protocols useful for these purposes are fully described in Gemmill et al. (in "Advances in Genome Biology", Vol. 1, "Unfolding The Genome," pp 217 251, edited by Ram S. Verma).
(001121 One of skill wilt appreciate that many other methods known in the art may be substituted in lieu of the ones specifically described or referenced.
Example 2: Transformation methods [001131 E. co/i strains DH10B or Genehog are made electrocompetent by growing the cells to an OD600 of 0.7, then collected and washed twice with ice-cold 10% glycerol, flash frozen in a dry-ice ethanol bath and kept at -80°C. Total yeast or algae DNA is prepared and electroporated into E. co/i by using, for example, a 0.1 cm cuvette at 1,800 V, 200 ohms and mF in a Bio-Rad Gene Pulsar Electroporator. Cells are allowed to recover and clones are selected on agar growth media containing one or more antibiotics, such as kanamycin (50.ig/mL), ampicillin (100.ig/mL), gentamycin (50 g/mL), tetracycline (51.LgfmL), or chloramphenicol (34.ig/mL).
(001141 Yeast strains YPH8S7, YPH858 orABl38O may be transformed by the lithium acetate method as described in Sheistl & Geitz (Curr. Genet. 16:339 346, 1989) and Sherman et al., "Laboratory Course Manual Methods in Yeast Genetics" (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1986) or a spheroplast method such as the one described by Sipiczki et al., Curr. Microbiol., 12(3):169-173 (1985). Yeast transformants are selected and screened on agar media lacking amino and/or nucleic acids, such as tryptophan, leucine, or uracil. Standard methods for yeast growth and phenotype testing are employed as described by Sherman et al., supra.
[00115] Algae strains cscl 37c (mt+), WI.1, or Wi -1 may be transformed by particle bombardment. Cells are grown to late log phase (approximately 7 days) in TAP medium in the presence or absence of 0.5 mM 5-fluorodeoxyuridine (Gorman and Levine, Proc. Nat!. Acad. Sd., USA 54:1665-1669, 1965, which is incorporated herein by reference) at 23°C under constant illumination of 450 Lux on a rotary shaker set at 100 rpm. Fifty ml of cells are harvested by centrifugation at 4,000xg at 23°C for 5 mm. The supernatant is decanted and cells resuspended in 4 ml TAP medium for subsequent chloroplast transformation by particle bombardment (Cohen et al., supra, 1998).
(00116] One of skill will appreciate that many other transformation methods known in the art may be substituted in lieu of the ones specifically described or referenced herein.
Example 3: A hybrid gap-filling vector to capture a chioroplast genome (00117] In this example, a system is established using a hybrid gap-filling vector to capture chloroplast DNA (FIG. 1). The hybrid gap filling vector backbone contains yeast elements that allow it to function as a yeast artificial plasmid (YAP) and bacterial elements that allow it to function as a plasmid artificial chromosome (PAC). The yeast elements include a yeast selection marker sequence (e.g. TRPJ or LEU2), a yeast centromere sequence (CEN), and a yeast autonomously replicating nucleotide sequence (ARS). Bacterial elements include a P1 or bacterial origin of replication sequence and a bacterial selection maker sequence (e.g. Kant).
1001181 To manipulate the hybrid gap-filling vector, the vector pDOC1 (SEQ ID NO. 1) was generated. Portions of pTRP-AU (FIG. 2) were amplified using PCR primer pairs that anneal to sites surrounding the region encompassing TEL, ADE2, and URA3. One pair amplifies a region within the yeast elements (SEQ ID NOs. 21 and 22) and the other pair amplifies a region within the bacterial elements (SEQ ID NOs. 23 and 24). The PCR products were assembled into a single DNA fragment by PCR assembly using a single primer pair (SEQ ID NOs. 21 and 24). The assembled product was digested with Not! and ligated to NotI-digested pUC-SE (SEQ ID NO. 2) to form pDOCI (SEQ ID NO. 1).
1001191 To adapt the hybrid gap-filling vector to capture chioroplast DNA, the vector pDOCI-10 (SEQ ID NO. 3) was generated. Portions of the C. reinhardtii chloroplast genome were PCR amplified using two primer pairs specific for two adjacent regions (SEQ 113 NOs. 25 and 26 and SEQ ID NOs. 27 and 28) near the psbD locus (FIG. 3; indicated by number 10 surrounded by a box). Each PCR product was digested with Notl and 1-SceI and ligated to pDOCI (SEQ ID NO. 1) that was digested with 1-SceI to form pDOCI-10 (SEQ ID NO. 3).
1001201 To adapt pDOCI-10 to confer antibiotic resistance in algae, a selection marker was cloned. pSE-3HB-Kan (SEQ ID NO. 4), which contains a kanamycin resistance encoding gene from bacteria, which is regulated by the 5' UTR and promoter sequence for the atpA gene from C. reinhardtii and the 3' UTR sequence for the rbcL gene from from C. reinhardtii, was digested with SnaB! , which liberated the kanamycin resistance cassette. The cassett was ligated to SnaBI-digested pDOCI-to form pDOCI-10-Kan (SEQ ID NO. 5).
[001211 The hybrid gap-filling for capturing chioroplast DNA, pTRP-10-Kan (SEQ ID NO. 6), was constructed using recombination in yeast (FIG. 2). Briefly, pDOCI-10-Kan was digested with Pad and AscI to liberate the cassette that introduces chloroplast genome-specific elements into the hybrid gap-filling vector. This cassette was transformed along with pTRP-AU into the yeast strain YPH858 using the lithium acetate method. Homologous recombination takes place in vivo in the transformed yeast cells. Transformants that correctly integrated with cassette were isolated based on growth on CSM-Trp agar media containing 5-fluorooratic acid (5-FOA) and by red color. 5-FOA selects for clones that lack a functional URA3 gene and the red color results when the ADE2 gene is eliminated. Plasmid DNA was isolated from yeast clones that were grown in CSM-Trp liquid media and transformed into if. coli(DHIOB). To generate large amounts of pTRP-10-Kan, DH1OB cells harboring pTRP-lO-Kan were grown to saturation at 37°C in LB+Kan (50 ug/mL), and then diluted 1:20 in LB+Kan+IPTG and grown for 4 hours at 37°C. DNA was prepared from the bacterial culture using the Plasmid Maxi kit (QIAGEN).
[00122] The composition of the vector was verified by DNA sequencing of the entire plasmid.
Example 4: Vectors to stabilize and/or modify chloroplast genome DNA in an exogenous host [001231 Often, large pieces of heterologous DNA are instable in host organisms such as yeast or bacteria. This may be due to multiple factors, including, but not limited to, the presence of toxic gene products or codon bias and/or lack of selective pressure. Therefore, the target DNA within the shuttle vector may be altered within yeast or bacteria. For example, certain portions of a target DNA sequence (e.g., coding regions or promoters) may be deleted or moved by recombination within the host organism. In a similar way, when a shuttle vector carrying the target DNA is transferred back to the organism (or a closely related species) that donated the target DNA, the target DNA can become unstable.
1001241 Such sites of instability and susceptible sequences are readily discovered by determining which pieces of genoniic DNA elude capture or disappear over time. These sites can be detected by comparing initially isolated gap-filling: :target DNA plasmids with plasmids isolated from transformed strains which have been sequentially passaged in the laboratory under conditions which select for the presence of the plasmid-encoded selectable marker (e.g., TRPI) or by comparison with native target DNA (e.g., C. reinhardtii chloroplast DNA). Such comparison may be performed, for example, by restriction fragment length polymorphism (RFLP) analysis or direct sequencing. One of skill in the art will recognize that there are multiple other protocols and methods to determine such differences.
1001251 Once identified, such sites and sequences can be forced to remain through selection of markers. Fig. 4 shows examples of arrangements of selectable markers in the multiple cloning site of a vector.
[00126j To generate a stabilization vector containing yeast and algae stability elements, the region of DNA in plrp-AU encompassing the ADE2 and URA3 genes was liberated by digestion with Sf1 followed by gel purification of the desired fragment. The fragment was treated with Kienow fragment to create blunt ends and ligated to Fn!I-degested pSE-3HB-Strep (SEQ ID NO. 7), creating pSE-3HB-Strep-AU (Fig. 4B). pSE-3HB-Strep is a vector that targets a streptomycin resistance encoding gene from bacteria, which is regulated by the 5' UTR and promoter sequence for the atpA gene from C. reinhardtii and the 3' UTR sequence for the rbcL gene from C. reinhardtii, to the 3FIB locus of the C. reinhardtii chloroplast genome.
[001271 To generate vectors that target other regions of the chioroplast genome, 800-1000 bp regions were amplified using PCR primer pairs that anneal to 5' and 3' regions flanking the sites indicated by numbered circles in Fig. 3 (site 1-5', SEQ ID NOs. 29 and 30; site 1-3', SEQ ID NOs. 31 and 32; site 3-5', SEQ ID NOs. 33 and 34; site 3-3', SEQ 1D NOs. 35 and 36; site 4-5', SEQ ED NOs. 37 and 38; site 4-3', SEQ lD NOs. 39 and 40; site 5-5', SEQ ID NOs. 41 and 42; site 5-3', SEQ ID NOs.
43 and 44; and site 7-5', SEQ ID NOs. 45 and 46; site 7-3', SEQ ID NOs. 47 and 48). Each pair of PCR products was digested with NotI and I-SceI, mixed, and ligated to NotI-digested pUC-SE (SEQ ID NO. 2), producing plasmids pUC1, pUC3, pUC4, pUC5 and pUC7 (named for their position of integration).
[001281 Pairs of yeast selection markers were constructed so that multiple stabilization sites could be employed simultaneously (FIG. 4B). Each marker pair contains the URA3 gene (SEQ ID NO. 8), which was PCR amplified from pRS41 6. Each marker pair also contains the LEU2 gene (SEQ ID NO. 9) amplified from pRS4 15, the HIS3 gene (SEQ ID NO. 10) amplified from pRS4l3, the ADE2 gene (SEQ ID NO. 11) amplified from pTrp-AU, the LYS2 gene (SEQ ID NO.
12) amplified from S. cerevisiae genomic DNA, or the kanMX6 gene (SEQ ID NO. 13) from pFA6a-kanMX6, which confers resistance to the antifungal agent G418. The primers used for the URA3 gene add the XmaI restriction site to the 5' end (SEQ ID NO. 49) and Sal! and Sad! to the 3' end (SEQ ID NO. 50). The primers used for the LEU2, HIS3, ADE2, LYS2, and G41 8' genes add the XmaI restriction site to the 5' end (SEQ ID NO. 51 for LEU2, SEQ ID NO. 52 for HJS3, SEQ ID NO. 53 for ADE2, SEQ ID NO. 54 for LYS2, and SEQ ID NO. 55 for G418') and Sail, FseI, and SpeI sites to the 3' end (SEQ ID NO. 56 for LEU2, SEQ ID NO. 57 for HIS3, SEQ ID NO. 58 for ADE2, SEQ ID NO. 59 for LYS2, and SEQ ID NO. 60 for G418'). Each PCR product was digested with XmaI and Sail, mixed pairwise, and ligated into the desired integration vector, resulting in pUC1-URA3/ADE2, pUC3-URA3/LEU2, pUC4-URA3/HIS3, pUC5-URA3/ADE2, and pUC7-URA3/LYS2. URA3 is used in each case because it allows for positive and negative selection. Marker pairs can be introduced based on selection for either gene (in the case of a single modification), the non-URA3 gene in the case of two or more modification. Then the markers can be removed by introducing DNA with terminal sequences homologous to those surrounding the marker pairs and selecting for growth on minimal media containing 5-FOA.
[00129J To promote sequence stability in bacteria, antibiotic resistance markers were cloned into the yeast selection marker pairs. The bacterial stability markers include, but are not limited to, the ampicillin resistance gene (Amp', SEQ ID NO. 14) amplified from pET-21a, the tetracycline resistance gene (Tet', SEQ ID NO. 15) amplified from pBR322, the chioramphenicol resistance gene (Cam', SEQ ID NO. 16) amplified from pETcoco-1, and the gentamycin resistance gene (Gentr, SEQ ID NO. 17) amplified from pJQ200. For each gene, primer pairs (SEQ ID NOs. 61 and 62 for Amp', SEQ ID NOs. 63 and 64 for lett, SEQ ID NOs. 65 and 66 for Cam1, and SEQ ID NOs. 67 and 68 for Gent1) that add XinaI sites to both the 5' and 3' ends were used to PCR amplify the antibiotic resistance fragment. Each PCR product was digested with XmaI and ligated into Xinal-digested pUCI -URA3/ADE2, pUC3-URA3/LEU2, pUC4-URA3/HZS3, pUC5-UR43/ADE2, and pUC7-URA3/LYS2. Fig. 4C shows the arrangement of the yeast and bacterial stability markers.
Example 5: Introduction of hybrid and stabilization vectors into a chioroplast genome [001301 To generate a C. reinhardtii chloroplast genome that contains a hybrid vector with or without a stabilization vector, pTRP-10-Kan and pSE-3HB-Strep-AU were transformed into algae cells. pTRP-10-Kan was digested with Notl to linearize the vector such that the chloroplast targeting elements on are on each end (FIG. 5). pSE-3HB-Strep-AU was transformed as circular DNA.
100131] For these experiments, all transformations are carried out on C. reinhardtii strain 137c (mt+). Cells are grown to late log phase (approximately 7 days) in the presence of 0.5 mM 5-fluorodeoxyuridine in TAP medium (Gorman and Levine, Proc. Nat!. Acad. Sci., USA 54:1665-1669, 1965, which is incorporated herein by reference) at 23°C under constant illumination of 450 Lux on a rotary shaker set at 100 rpm. Fifty ml of cells are harvested by centrifugation at 4,000xg at 23°C for 5 rein. The supernatant is decanted and cells resuspended in 4 ml TAP medium for subsequent chloroplast transformation by particle bombardment (Cohen et al., supra, 1998). All transformations are carried out under kanamycin selection (100 g/ml) in which resistance is conferred by the gene encoded by the segment in Fig. 5 labeled "Kan." (Chiamydomonas Stock Center, Duke University).
[00132] PCR is used to identify transformed strains. For PCR analysis, 106 algae cells (from agar plate or liquid culture) are suspended in 10 mM EDTA and heated to 95'C for 10 minutes, then cooled to near 23C. A PCR cocktail consisting of reaction buffer, MgCl2, dNTPs, PCR primer pair(s), DNA polymerase, and water is prepared. Algae lysate in EDTA is added to provide a template for the reaction. The magnesium concentration is varied to compensate for amount and concentration of algae lysate and EDTA added. Annealing temperature gradients are employed to determine optimal annealing temperature for specific primer pairs.
1001331 Fig. 6 shows examples of isolated algae strains that contain pTrp-10-Kan with and without pSE-3HB-Strep-AU.
Strains that integrated pTRP-l0-Kan were identified using any of a set of primer pairs that amplify different regions in the vector backbone (Lane 1, SEQ ID NOs. 69 and 70; Lane 2, SEQ ID NOs. 71 and 72; Lane 3, SEQ ID NOs. 73 and 74; Lane 4, SEQ ID NOs. 75 and 76; Lane 5, SEQ ID NOs. 77 and 78; Lane 6, SEQ ID NOs. 79 and 80; Lane 7, SEQ ID NOs. 81 and 82; Lane 8, SEQ ID NOs. 83 and 84; and Lane 9, SEQ ID NOs. 85 and 86) or primer pairs that span the junction between pTrp-10-Kan DNA and chloroplast genome DNA (Lane 10, SEQ ID NOs. 87 and 88; Lane 11, SEQ ID NOs. 89 and 90). To identify strains that have integrated pSE-3HB-Strep-AU, primer pairs (lane 12, SEQ ID NOs. 91 and 92) were used which amplify regions within the ADE2 gene. Desired clones are those that yield PCR products of expected size.
Example 6: Capture of a chioroplast genome into an exogenous host 1001341 In this example, C. reinhardtii chloroplast DNA is isolated using standard techniques as described above. C. reinhardtii chloroplast DNA containing the pTRP-lO-Kan vector with or without pSE-3HB-Strep-AU was used to transform bacteria. Electrocompetent E. coli strains DH 103 or Genehog were transformed and selected on LB agar growth medium with kanamycin (50 mg/I). DNA from individual clones was isolated by growing the cells to saturation at 3TC in LB liquid growth medium with kanamycin (50 mg/I). Saturated cell cultures are diluted 1:20 in LB+Kan+IPTG and grown at 37CC for 4 hours. The Plasmid Maxi kit (QIAGEN) is used to prepare plasmid DNA from the isolated clones.
[001351 Fig. 7A shows the restriction analysis of two types of clones obtained from bacterial transformation (Clone 1 and Clone 2) compared to the parent hybrid vector (Clone C). Clones 1 and 2 are composed of >100 kb of DNA while the parent hybrid vector is composed of only 23 kb of DNA, demonstrating that large portions of DNA were indeed captured by the hybrid vector. Restriction mapping indicates that Clone 1 comprises approximately half of the chioroplast genome (FIG.
8A). DNA sequencing of the regions flanking the hybrid vector indicate that a recombination event occurred between the 3' UTR of the C. reinhardtii kanamycin resistance cassette (which is the 3' UTR from the rbcL gene in C. reinhardtii) and the 3' UTR of the C. reinhardtii streptomycin resistance cassette (which is the 3' UTR from the rbcL gene in C. reinhardtii).
Clone 1 retained the C. reinhardtii kanamycin resistance cassette, but lost the C. reinhardtii streptomycin resistance cassette.
Restriction mapping indicates that Clone 2 also comprises approximately half of the chloroplast genome (FIG. 8B).
However, DNA sequencing of the regions flanking the hybrid vector indicate that a different recombination event occurred to give rise to Clone 2. The 5' UTR of the C. reinhardtii kanamycin resistance cassette (which is the 5' UTR from the atpA gene in C. reinhardtii) recombined with the 5' UTR of the alpA gene in the C. reinhardtii chloroplast genome and the inverted repeat B (IR-B in FIG. 8) recombined with inverted repeat A (JR-A in FIG. 8). Clone 2 lost both the C. reinhardtii kanamycin resistance cassette and the C. reinhardtii streptomycin resistance cassette.
[00136] To demonstrate that the hybrid vector would support stable replication in yeast, Clone 1 was transformed into the yeast strain AB 1380 by the lithium acetate method and transfomants were selected on CSM-Trp agar media. Transformants were PCR screened using a primer pair (SEQ ID NOs 97 and 98) that amplifies a region with the chloroplast genome DNA of Clone 1. Desired clones are those that give rise to a PCR product of expected size. Individual PCR-positive clones were streaked to generate multiple clones per isolate. DNA was prepared from the isolated yeast clones and transformed into bacteria. Bacteria were PCR screened using a primer pair (SEQ ID NOs 97 and 98) that amplifies a region within the chioropiast genome DNA of Clone I. Desired clones are those that give rise to a PCR product of expected size. DNA was prepared from the isolated bacterial clones and analyzed by restriction digest with EcoRI. Fig. 7B shows that all isolated clones were have restriction maps that are identical to the originally isolated Clone 1. Thus, the hybrid vector supports stable replication in yeast.
[001371 To determine if the captured DNA is indeed chloroplast genome DNA, a Southern blot was performed. Clones I and 2 prepared from bacteria were digested with EcoRl, separated by gel ekctrophoresis, transferred to a membrane, and probed with radioactive HindITI-digested total DNA from C. reinhardtii. Fig. 7C shows that the DNA in Clones 1 and 2 give rise to a signal, thus indicating that the captured DNA is chloroplast genome DNA.
Example 7: Reintroduction of chloroplast genome DNA into algae 1001381 For these experiments, all transformations are carried out on either C. reinhardtii strain WI.1, which expresses SAA from the endogenouspsbA loci, or Wi-i, which expresses LuxAB from the endogenouspsbA loci. Both WI.! and WI-I are resistant to spectinomycin by virtue of transformation of p228, which introduces a mutation in the 16S rRNA, Cells are grown to late log phase (approximately 7 days) in TAP medium (Gorman and Levine, Proc. Nat!. Acad. Sd., USA 54:1665- 1669, 1965, which is incorporated herein by reference) at 23°C under constant illumination of 450 Lux on a rotary shaker Set at 100 rpm. Fifty ml of cells are harvested by centrifugation at 4,000xg at 23°C for 5 mm. The supernatant is decanted and cells resuspended in 4 ml}ISM medium for subsequent chloroplast transformation by particle bombardment (Cohen Ct al., supra, 1998). All transformations are carried out on HSM agar.
1001391 Transformants were selected by growth on HSM, indicating that function of the psbA gene locus was restored.
Clones were also subsequently checked for growth on TAP, TAP with spectinomycin (150 1ig/ml),TAP with kanamycin (100 tg/ml), HSM, and HSM with kanamycin (100 pg/mI). Fig. 9A shows that W1-l transformed with Clone I is able to grow on all media types. Fig. 9A also shows that WI-I transformed with Clone 2 is unable to grow on media containing kanamycin, which is expected since Clone 2 does not contain a Kan resistance marker.
Example 8: Reisolation of a chlorolast plasmid from algae 1001401 In this example, C. reinhardtii chloroplast DNA is isolated using standard techniques as described above. C. reinhardtii chloroplast DNA from cells transformed with Clone 1 was used to transform bacteria. Electrocompetent E. coli strains DH 1 OB or Genehog were transformed and selected on LB agar growth medium with kanamycin (50 mg/I). DNA from individual clones was isolated by growing the cells to saturation at 37°C in LB liquid growth medium with kanamycin (50 mg/I). Saturated cell cultures are diluted 1:20 in LB+Kan+!PTG and grown at 37°C for 4 hours. The Plasmid Maxi kit (QIAGEN) is used to prepare plasmid DNA from the isolated clones. Restriction analysis shown in Fig. 9B demonstrates that DNA with the same restriction map as Clone I can be isolated from algae transformed with Clone 1, indicating that Clone 1 is maintained as a plasmid while in algae.
Example 9: Modification of Chloroplasts for Producing biomass-degrading enzym [0014 1] To modify captured chloroplast genome DNA for production of a xylanase, an algae expression cassette was cloned into the yeast marker vectors described in EXAMPLE 4. Briefly, a C. reinhardtii chloroplast expression vector was digested with Spel to liberate a fragment of DNA (SEQ ID NO. 18) with xylanase from T. reesei regulated by the 5' UTR for the psbD gene from C. reinhardtii and the 3' UTR for the psbA gene from C reinhardtii. The fragment was treated with Klenow fragment to create blunt ends and cloned into Smal (XthaI) site between the yeast markers in pUC1 -UR.43/ADE2, pUC3-URA3/LEU2, and pUC4-URA3/HIS3. Fig. 1OA shows the arrangement of the various elements in the new vectors.
[001421 Chloroplast genome DNA was modified by transforming the modification vector into yeast that harbored the captured DNA. For transformation, all modification vectors were linearized by digestion with Not!. Yeast harboring Clone I (from EXAMPLE 6) were grown to saturation in CSM-Trp media at 30°C, then diluted 1:20 in YPAD and grown for 4 hours at 30°C. Yeast were transformed using the lithium-acetate method and transformants were selected for by growth on CSM-Ura media. Transformants were propagated on CSM-Trp-Ura media and then PCR screened using primers specific for the xylanase expression cassette (SEQ ID NOs 95 and 96) and a region within the chloroplast genome DNA (SEQ ID NOs 97 and 98). Desired clones are those that give PCR products of expected size for both reactions. DNA was prepared from the isolated yeast clones and transformed into bacteria. Bacteria were PCR screened using primers specific for the xylanase expression cassette (SEQ ID NOs 95 and 96) and a region within the chloroplast genome DNA (SEQ ID NOs 97 and 98).
Desired clones are those that give PCR products of expected size for both reactions. DNA was prepared from the isolated bacterial clones and analyzed by restriction digest with EcoRI. Fig. lOB shows that clones were isolated that have restriction maps that are consistent with integration of the xylanase expression cassette in the desired position.
[00143] For these experiments, all transformations are carried out on either C. reinhardtii strain W1.I, which expresses SAA from the endogenouspsbA loci, or Wi-i, which expresses LuxAB from the endogenouspsbA loci. Both Wl.l and WI-I are resistant to spectinomycin by virtue of transformation of p228, which introduces a mutation in the 16S rRNA. Cells are grown to late log phase (approximately 7 days) in TAP medium (Gorman and Levine, Proc. Nat!. Acad. Sd., USA 54:1665- 1669, 1965, which is incorporated herein by reference) at 23°C under constant illumination of 450 Lux on a rotary shaker set at 100 rpm. Fifty ml of cells are harvested by centrifugation at 4,000xg at 23°C for 5 mm. The supernatant is decanted and cells resuspended in 4 ml HSM medium for subsequent chloroplast transformation by particle bombardment (Cohen et al., supra, 1998). All transformations are carried out on HSM agar.
(001441 Transformants were identified by growth on HSM, indicating that function of the psbA gene locus was restored.
PCR is used to identify transformants that also contain the endoxylanase expression cassette. For PCR analysis, 106 algae cells (from agar plate or liquid culture) are suspended in 10 mM EDTA and heated to 95'C for 10 minutes, then cooled to near 23'C. A PCR cocktail consisting of reaction buffer, MgCI2, dNTPs, PCR primer pair(s) (Table 2), DNA polymerase, and water is prepared. Algae lysate in EDTA is added to provide a template for the reaction. The magnesium concentration is varied to compensate for amount and concentration of algae lysate and EDTA added. Annealing temperature gradients are employed to determine optimal annealing temperature for specific primer pairs.
1001451 To identify strains that have the endoxylanase expression cassette, a primer pair (SEQ ID NOs 95 and 96) was used which amplifies a region within the endoxylanase expression cassette. Desired clones are those that yield PCR products of expected size. Fig. hA shows that multiple algae strains were obtained that contain the endoxylanase expression cassette (PCR products indicated with asterisk).
1001461 To determine whether functional xylanase is expressed, enzyme activity is examined. Patches of cells (approximately 2mg per patch) from TAP agar plates containing kanamycin (100 tgImL)were resuspended in 50 ul of 100mM sodium acetate pH 4.8 in a round bottom 96 well plate (Corning). Resuspended cells were lysed by addition of 20u1 of I3ugBuster Protein Extraction Reagent (Novagcn) and shaken for five minutes at room temperature. Cell lysate (SOul) was transferred to a black 96 well plate, and the chlorophyll fluorescence of the resulting wells was measured in a SpectraMax M2 microplate reader (Molecular Devices), with an excitation wavelength of 440 rim and an emission wavelength of 740 rim, with a 695 nm cutoff filter. The measured chlorophyll signal in RFUs (relative fluorescence units) was used to normalize the xylanase activity signal to the amount of biomass added to the reaction.
(00147] After measurement of the chlorophyll fluorescence, xylanase substrate was added. EnzCheck Ultra Xylanase substrate (Invitrogen) was dissolved at a concentration of 5OugIml in 100mM sodium acetate pFl 4.8, and SOul of substrate was added to each well of the microplate. The fluorescent signal was measured in a SpectraMax M2 microplate reader (Molecular Devices), with an excitation wavelength of 360 nni and an emission wavelength of 460 rim, without a cutoff filter and with the plate chamber set to 42 degrees Celsius. The fluorescence signal was measured for 15 minutes, and the enzyme velocity was calculated with Softmax Pro v5.2 (Molecular Devices). Enzyme velocities were recorded as RFU/minute.
Enzyme specific activities were calculated as milliRFU per minute per RFU of chlorophyll fluorescence. Fig. 1IB shows that multiple algae strains containing the xylanase expression cassette at site 1, 3, and 4 (see FIGS. 3 and 10) were obtained that produce functional xylanase enzyme.
Example 10: Modification of a chloroplast genome to produce terpenes 100148] To modify captured chloroplast genome DNA for production of an FPP synthase, an algae expression cassette was cloned into the yeast marker vectors described in EXAMPLE 4. Briefly, a C. reinhardtii chloroplast expression vector was digested with Spel to liberate a fragment of DNA (SEQ ID NO. 19) with FPP synthase from G. gal/us regulated by the 5' UTR for the psbD gene from C. reinhardtii and the 3' UTR for the psbA gene from C. reinhardtii. The fragment was treated with Klenow fragment to create blunt ends and cloned into SmaI (XmaI) site between the yeast markers in pUC 1-URA3/ADE2, pUC3-URA3/LEU2, and pUC4-URA3/HIS3. Fig. 1OA shows the arrangement of the various elements in the new vectors.
1001491 Chioroplast genome DNA was modified by transforming the modification vector into yeast that harbored the captured DNA. For transformation, all modification vectors were linearized by digestion with NotI. Yeast harboring Clone 1 (from EXAMPLE 6) were grown to saturation in CSM-Trp media at 30°C, then diluted 1:20 in YPAD and grown for 4 hours at 30°C. Yeast were transformed using the lithium-acetate method and transformants were selected for by growth on CSM-Ura media. Transformants were propagated on CSM-Trp-Ura media and then PCR screened using primers specific for the FPP synthase expression cassette (SEQ ID NOs 95 and 99) and a region within the chioroplast genome DNA (SEQ ID NOs 97 and 98). Desired clones are those that gave PCR products of expected size for both reactions. DNA was prepared from the isolated yeast clones and transformed into bacteria. Bacteria were PCR screened using primers specific for the FPP synthase expression cassette (SEQ ID NOs 95 and 99) and a region within the chloroplast genome DNA (SEQ IDs 97 and 98). Desired clones are those that gave PCR products of expected size for both reactions. DNA was prepared from the isolated bacterial clones and analyzed by restriction digest. Fig. 1OC shows that clones were isolated that have restriction maps that are consistent with integration of the FPP synthase expression cassette in the desired position.
1001501 For these experiments, all transformations are carried out on either C. reinhardtii strain WI.1, which expresses SAA from the endogenouspsbA loci, or Wi-i, which expresses LuxAB from the eridogenouspsbA loci. Both W1.I and WI-i are resistant to spectinomycin by virtue of transformation of p228, which introduces a mutation in the 16S rRNA. Cells are grown to late log phase (approximately 7 days) in TAP medium (Gorman and Levine, Proc. Nat!. Acad. Sci., USA 54:1665- 1669, 1965, which is incorporated herein by reference) at 23°C under constant illumination of 450 Lux on a rotary shaker set at 100 rpm. Fifty ml of cells are harvested by centrifugation at 4,000xg at 23°C for 5 mm. The supernatarit is decanted and cells resuspended in 4 ml HSM medium for subsequent chioroplast transformation by particle bombardment (Cohen et at., supra, 1998). All transformations are carried out on HSM agar.
1001511 Transformants were identified by growth on HSM, indicating that function of the psbA gene locus was restored.
PCR is used to identify transformants that also contain the FPF synthase expression cassette. For PCR analysis, 106 algae cells (from agar plate or liquid culture) are suspended in 10 mM EDTA and heated to 95°C for 10 minutes, then cooled to near 23°C. A PCR cocktail consisting of reaction buffer, MgCl2, dNTPs, PCR primer pair(s), DNA polymerase, and water is prepared. Algae lysate in EDTA is added to provide a template for the reaction. The magnesium concentration is varied to compensate for amount and concentration of algae lysate and EDTA added. Annealing temperature gradients are employed to determine optimal annealing temperature for specific primer pairs.
1001521 To identify strains that have the FPP synthase expression cassette, a primer pair was used which amplifies a region within the endoxylanase expression cassette, Desired clones are those that yield PCR products of expected size. Multiple algae strains were obtained that contain the FPP synthase expression cassette at (FIG. 12, PCR products indicated with asterisk).
[001531 Various modifications, processes, as well as numerous structures that may be applicable herein will be apparent.
Various aspects, features or embodiments may have been explained or described in relation to understandings, beliefs, theories, underlying assumptions, and/or working or prophetic examples, although it will be understood that any particular understanding, belief, theory, underlying assumption, and/or working or prophetic example is not limiting. Although the various aspects and features may have been described with respect to various embodiments and specific examples herein, it will be understood that any of same is not limiting with respect to the full scope of the appended claims or other claims that may be associated with this application.
Sequence Listing SEQ ID NO. 1 <211> 4572 <212> DN <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 1 tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac 60 cgcgagaccc acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg 120 ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc 180 gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgcta 240 caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac 300 gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc 360 ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac 420 tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact 480 caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa 540 tacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt 600 cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca 660 ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa 720 aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac 780 tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg 840 gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc 900 gaaaagtgcc acctgacgtc taagaaacca ttattatcat gacattaacc tataaaaata 960 ggcgtatcac gaggcccttt cgtctcgcgc gtttcggtga tgacggtgaa aacctctgac 1020 acatgcagct cccggagacg gtcacagctt gtctgtaagc ggatgccggg agcagacaag 1080 cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac tatgcggcat 1140 cagagcagat tgtactgaga gtgcaccata gggcggccgc ggcgcgccgt tccggatctg 1200 catcctgcga tgcagatccg gaacataatg gtgcagggcg ctgacttccg cgtttccaga 1260 ctttacgaaa cacggaaacc gaagaccatt catgttgttg ctcaggtcgc agacgttttg 1320 cagcagcagt cgcttcacgt tcgctcgcgt atcggtgatt cattctgcta accagtaagg 1380 caaccccgcc agcctagccg ggtcctcaac gacaggagca cgatcatgcg cacccgtggc 1440 caggacccaa cgctgcccga gatgcgccgc gtgcggctgc tggagatggc ggacgcgatg 1500 gatatgttct gccaagggtt ggtttgcgca ttcacagttc tccgcaagaa ttgattggct 1560 ccaattcttg gagtggtgaa tccgttagcg aggtgccgcc ggcttccatt caggtcgagg 1620 tggcccggct ccatgcaccg cgacgcaacg cggggaggca gacaaggtat agggcggogc 1680 ctacaatcca tgccaacccg ttccatgtgc tcgccgaggc ggcataaatc gccgtgacga 1740 tcagcggtcc aatgatcgaa gttaggctgg taagagccgc gagcgatcct tgaagctgtc 1800 cctgatggtc gtcatctacc tgcctggaca gcatggcctg caacgcgggc atcccgatgc 1860 cgccggaagc gagaagaatc ataatgggga aggccatcca gcctcgcgtc gcgaacgcca 1920 gcaagacgta gcccagcgcg tcggccgcca tgccggcgat aatggcctgc ttctcgccga 1980 aacgtttggt ggcgggacca gtgacgaagg cttgagcgag ggcgtgcaag attccgaata 2040 ccgcaagcga caggccgatc atcgtcgcgc tccagcgaaa gcggtcctcg ccgaaaatga 2100 cccagagcgc tgccggcacc tgtcctacga gttgcatgat aaagaagaca gtcataagtg 2160 cggcgacgat agtcatgccc cgcgcccacc ggaaggagct gactgggttg aaggctctca 2220 agggcatcgg tcgagcttga cattgtagga cgtttaaaca ttaccctgtt atccctaggc 2280 cggcctaaga aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc 2340 cctttcgtct tcaagaaatt cggtcgaaaa aagaaaagga gagggccaag agggagggca 2400 ttggtgacta ttgagcacgt gagtatacgt gattaagcac acaaaggcag cttggagtat 2460 gtctgttatt aatttcacag gtagttctgg tccattggtg aaagtttgcg gcttgcagag 2520 cacagaggcc gcagaatgtg ctctagattc cgatgctgac ttgctgggta ttatatgtgt 2580 gcccaataga aagagaacaa ttgacccggt tattgcaagg aaaatttcaa gtcttgtaaa 2640 agcatataaa aatagttcag gcactccgaa atacttggtt ggcgtgtttc gtaatcaacc 2700 taaggaggat gttttggctc tggtcaatga ttacggcatt gatatcgtcc aactgcatgg 2760 agatgagtcg tggcaagaat accaagagtt cctcggtttg ccagttatta aaagactcgt 2820 atttccaaaa gactgcaaca tactactcag tgcagcttca cagaaacctc attcgtttat 2880 tcccttgttt gattcagaag caggtgggac aggtgaactt ttggattgga actcgatttc 2940 tgactgggtt ggaaggcaag agagccccga aagcttacat tttatgttag ctggtggact 3000 gacgccagaa aatgttggtg atgcgcttag attaaatggc gttattggtg ttgatgtaag 3060 cggagtgtg gagacaaatg gtgtaaaaga ctctaacaaa atagcaaatt tcgtcaaaaa 3120 tgctaagaaa taggttatta ctgagtagta tttatttaag tattgtttgt gcacttgcct 3180 gcaggccttt tgaaaagcaa gcataaaaga tctaaacata aaatctgtaa aataacaaga 3240 tgtaaagata atgctaaatc atttggcttt ttgattgatt gtacaggaaa atatacatcg 3300 ttaattaagc ggccgcgagc ttggcgtaat catggtcata gctgtttcct gtgtgaaatt 3360 gttatccgc cacaattcca cacaacatac gagccggaag cataaagtgt aaagcctggg 3420 gtgcctaatg agtgagctaa ctcacattaa ttgcgttgcg ctcactgccc gctttccagt 3480 cgggaaacct gtcgtgccag ctgcattaat gaatcggcca acgcgcgggg agaggcggtt 3540 tgcgtattgg gcgctcttcc gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc 3600 tgcggcgagc ggtatcagct cactcaaagg cggtaatacg gttatccaca gaatcagggg 3660 ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg 3720 ccgcgttgct ggcgtttttc cataggctcc gcccccctga cgagcatcac aaaaatcgac 3780 gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg 3840 gaagctccct cgtgcgctct cctgttccga ccctgccgct taccggatac ctgtccgcct 3900 ttctcccttc gggaagcgtg gcgctttctc atagctcacg ctgtaggtat ctcagttcgg 3960 tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct 4020 gcgccttatc cggtaactat cgtcttgagt ccaacccggt aagacacgac ttatcgccac 4080 tggcagcagc cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt 4140 tcttgaagtg gtggcctaac tacggctaca ctagaagaac agtatttggt atctgcgctc 4200 tgctgaagcc agttaccttc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca 4260 ccgctggtag cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat 4320 ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc tcagtggaac gaaaactcac 4380 gttaagggat tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt 4440 aaaaatgaag ttttaaatca atctaaagta tatatgagta aacttggtct gacagttacc 4500 aatgcttaat cagtgaggca cctatctcag cgatctgtct atttcgttca tccatagttg 4560 cctgactccc cg 4572 SEQ ID NO. 2 <211> 2474 <212> DN <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 2 tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 accatagggc ggccgccagc tggaattcta cgtactgcag agtactgcgg ccgcgagctt 240 ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca caattccaca 300 caacatacga gccggaagca taaagtgtaa agcctggggt gcctaatgag tgagctaact 360 cacattaatt gcgttgcgct cactgcccgc tttccagtcg ggaaacctgt cgtgccagct 420 gcattaatga atcggccaac gcgcggggag aggcggtttg cgtattgggc gctcttccgc 480 ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagetca 540 ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg 600 agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca 660 taggctccgc ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa 720 cccgacagga ctataaagat accaggcgtt tccccctgga agctccctcg tgcgctctcc 780 tgttccgacc ctgccgctta ccggatacct gtccgccttt ctcccttcgg gaagcgtggc 840 gctttctcat agctcacgct gtaggtatct cagttcggtg taggtcgttc gctccaagct 900 gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg 960 tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag 1.020 gattagcaga gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta 1080 cggctacact agaagaacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg 1140 aaaaagagtt ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggtttttt 1200 tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgatctt 1260 ttctacgggg tctgacgctc agtggaacga aaactcacgt taagggattt tggtcatgag 1320 attatcaaaa aggatcttca cctagatcct tttaaattaa aaatgaagtt ttaaatcaat 1380 ctaaagtata tatgagtaaa cttggtctga cagttaccaa tgcttaatca gtgaggcacc 1440 tatctcagcg atctgtctat ttcgttcatc catagttgcc tgactccccg tcgtgtagat 1500 aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac cgcgagaccc 1560 acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg ccgagcgcag 1620 aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc gggaagctag 1680 agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgcta caggcatcgt 1740 ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac gatcaaggcg 1800 agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt 1860 tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac tgcataattc 1920 tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact caaccaagtc 1980 attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa 2040 taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt cttcgg-ggcg 2100 aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca ctcgtgcacc 2160 caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa aaacaggaag 2220 gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac tcatactctt 2280 cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt 2340 tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc 2400 acctgacgtc taagaaacca ttattatcat gacattaacc tataaaaata ggcgtatcac 2460 gaggcccttt cgtc 2474 SEQ ID NO. 3 211> 6638 212> DMA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 3 tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac 60 cgcgagaccc acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg 120 ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc 180 gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgcta 240 caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac 300 gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc 360 ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac 420 tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact 480 caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa 540 tacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt 600 cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca 660 ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa 720 aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tttgaatac 780 tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg 840 gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc 900 gaaaagtgcc acctgacgtc taagaaacca ttattatcat gacattaacc tataaaaata 960 ggcgtatcac gaggcccttt cgtctcgcgc gtttcggtga tgacggtgaa aacctctgac 1020 acatgcagct cccggagacg gtcacagctt gtctgtaagc ggatgccggg agcagacaag 1080 cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac tatgcggcat 1140 cagagcagat tgtactgaga g-tgcaccata gggcggccgc ggcgcgccgt tccggatctg 1200 catcctgcga tgcagatccg gaacataatg gtgcagggcg ctgacttccg cgtttccaga 1260 ctttacgaaa cacggaaacc gaagaccatt catgttgttg ctcaggtcgc agacgttttg 1320 cagcagcagt cgcttcacgt tcgctcgcgt atcggtgatt cattctgcta accagtaagg 1380 caaccccgcc agcctagccg ggtcctcaac gacaggagca cgatcatgcg cacccgtggc 1440 caggacccaa cgctgcccga gatgcgacgc gtgcggctgc tggagatggc ggacgagatg 1500 gatatgttct gccaagggtt ggtttgcgca ttcacagttc tccgcaagaa ttgattggct 1560 ccaattcttg gagtggtgaa tccgttagcg aggtgccgcc ggcttccatt caggtcgagg 1620 tggcccggct ccatgcaccg cgacgcaacg cggggaggca gacaaggtat agggcggcgc 1680 ctacaatcca tgccaacccg ttccatgtgc tcgccgaggc ggcataaatc gccgtgacga 1740 tcagcggtcc aatgatcgaa gttaggctgg taagagccgc gagcgatcct tgaagctgtc 1800 cctgatggtc gtcatctacc tgcctggaca gcatggcctg caacgcgggc atcccgatgc 1860 cgccggaagc gagaagaatc ataatgggga aggccatcca gcctcgcgtc gcgaacgcca 1920 gcaagacgta gcccagcgcg tcggccgcca tgccggcgat aatggcctgc ttctcgccga 1980 aacgtttggt ggcgggacca gtgacgaagg cttgagcgag ggcgtgcaag attccgaata 2040 ccgcaagcga caggccgatc atcgtcgcgc tccagcgaaa gcggtcctcg ccgaaaatga 2100 cccagagcgc tgccggcacc tgtcctacga gttgcatgat aaagaagaca gtcataagtg 2160 cggcgacgat agtcatgccc cgcgcccacc ggaaggagct gactgggttg aaggctctca 2220 agggcatcgg tcgagcttga cattgtagga cgtttaaaca ttaccctgtt atccctagga 2280 tcctacgtat acatactccg aaggaggaca aatttattta ttgtggtaca ataaataagt 2340 ggtacaataa ataaattgta tgtaaacccc ttccccttcg ggacgtcccc ttacgggaat 2400 ataaatatta gtggcagttg cctgccaaca aatttattta ttgtattaac ataggcagtg 2460 gcggtaccac tgccactggc gtcctaatat aaatattggg caactaaagt ttatcgcagt 2520 attaacatag gcagtggcgg taccactgcc actggcgtcc tccttcggag tatgtaaacc 2580 tgctaccgca gcaaataaat tttattctat tttaatacta caatatttag attcccgtta 2640 ggggataggc caggcaattg tcactggcgt catagtatat caatattgta acagattgac 2700 accctttaag taaacatttt ttttaggatt catatgaaat taaatggata tttggtacat 2760 ttaattccac aaaaatgtcc aatacttaaa atacaaaatt aaaagtatta gttgtaaact 2820 tgactaacat tttaaatttt aaattttttc ctaattatat attttacttg caaaatttat 2880 aaaaatttta tgcattttta tatcataata ataaaacctt tattcatggt ttataatata 2940 ataattgtga tgactatgca caaagcagtt ctagtcccat atatataact atatataacc 3000 cgtttaaaga tttatttaaa aatatgtgtg taaaaaatgc ttatttttaa ttttattta 3060 tataagttat aatattaaat acacaatgat taaaattaaa taataataaa tttaacgtaa 3120 cgatgagttg tttttttatt ttggagatac acgcaatgac aattgcgatc ggtacatatc 3180 aagagaaacg cacatggttc gatgacgctg atgactggct tcgtcaagac cgtttcgtat 3240 tcgtaggttg gtcaggttta ttactattcc cttgtgctta ctttgcaact ccggtccggc 3300 ggccgcctcg agacgacttg tccgcttcat cagacacggc tttcctaacc atcaatggtg 3360 gattttcagg aaagacgttt aaagaagtgg cataaagttt atttgttgaa gaattggttt 3420 tgtttccatt caaagaattg ttagggataa aactttgcat ttttttataa tttgttataa 3480 gtttttcaaa cttatatgtt tttaaaaatg catttaattg cttattaatg cgttcatttt 3540 gtaatgtttc aataggtctt gcttgcgcta atcgcagtat tcccgatact ttgtctgctt 3600 gtttttcggg tattgagaat aagtaagtat aatgatttaa aaaagtcatg ttttgattaa 3660 atctttttta tatggttaaa aacattatgg tatatctaaa taaatttatt ttttactaaa 3720 tctccaattt gcaatttaga gatataatta aaactataaa gttatttaag ttaatttgta 3780 atcaaatcca acacaaaaat gtttttatat agttaacatg ttaaatttaa catatgttaa 3840 acaactaaaa ttctgtaaca gagaacaata aaataaatgc tagattttgt gtaatgccga 3900 agtatattta tatacttccc tttcaaaaaa ataaatactc ttgccactaa aattcatttg 3960 cctaggacgt ccccttcccc ttacgggatg tttatatact aggacgtccc cttcccctta 4020 cgggatattt atatactccg aaggacgtcc ccttcgggca aataaatttt agtggcagtt 4080 gcctgccaac tgcctaggca agtaaactta gggattttaa tgcaataaat aaatttgtcc 4140 ccttacggga cgtcagtggc agttgcctgc caactgccta atataaatat tagtggatat 4200 ttatatactc cgaaggaggc agttacctgc caactgccga ggcaaataaa ttttagtggc 4260 agtggtaccg ccactgcctg ctccctcctt ccccttcggg caagtaaact tagcatgttg 4320 tcgacattac cctgttatcc ctaggccggc ctaagaaacc attattatca tgacattaac 4380 ctataaaaat aqgcgtatca cgaggccctt tcgtcttcaa gaaattcggt cgaaaaaaga 4440 aaaggagagg gccaagaggg agggcattgg tgactattga gcacgtgagt atacgtgatt 4500 aagcacacaa aggcagcttg gagt.atgtct gttattaatt tcacaggtag ttctggtcca 4560 ttggtgaaag tttgcggctt gcagagcaca gaggccgcag aatgtgctct agattccgat 4620 gctgacttgc tgggtattat atgtgtgccc aatagaaaga gaacaattga cccggttatt 4680 gcaaggaaaa tttcaagtct tgtaaaagca tataaaaata gttcaggcac tccgaaatac 4740 ttggttggcg tgtttcgtaa tcaacctaag gaggatgttt tggctctggt caatgattac 4800 ggcattgata tcgtccaact gcatggagat gagtcgtggc aagaatacca agagttcctc 4860 ggtttgccag ttattaaaag actcgtattt ccaaaagact gcaacatact actcagtgca 4920 gcttcacaga aacctcattc gtttattccc ttgtttgatt cagaagcagg tgggacaggt 4980 gaacttttgg attggaactc gatttctgac tgggttggaa ggcaagagag ccccgaaagc 5040 ttacatttta tgttagctgg tggactgacg ccagaaaatg ttggtgatgc gcttagatta 5100 aatggcgtta ttggtgttga tgtaagcgga ggtgtggaga caaatggtgt aaaagactct 5160 aacaaaatag caaatttcgt caaaaatgct aagaaatagg ttattactga gtagtattta 5220 tttaagtatt gtttgtgcac ttgcctgcag gccttttgaa aagcaagcat aaaagatcta 5280 aacataaaat ctgtaaaata acaagatgta aagataatgc taaatcattt ggctttttga 5340 ttgattgtac aggaaaatat acatcgttaa ttaagcggcc gcgagcttgg cgtaatcatg 5400 gtcatagctg tttcctgtgt gaaattgtta tccgctcaca attccacaca acatacgagc 5460 cggaagcata aagtgtaaag cctggggtgc ctaatgagtg agctaactca cattaattgc 5520 gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc attaatgaat 5580 cggccaacgc gcggggagag gcggtttgcg tattgggcgc tcttccgctt cctcgctcac 5640 gactcgctg cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt 5700 aatacggtta tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca 5760 gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc 5820 ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact 5880 ataaagatac caggcgtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct 5940 gccgcttacc ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcatag 6000 ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca 6060 cgaacccccc gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa 6120 cccggtaaga cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc 6180 gaggtatgta ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag 6240 aagaacagta tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg 6300 tagctcttga tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca 6360 gcagattacg cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc 6420 tgacgctcag tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag 6480 gatcttcacc tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata 6540 tgagtaaact tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat 6600 ctgtctattt cgttcatcca tagttgcctg actccccg 6638 SEQ ID NO. 4 <211> 7855 <212> DNP <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 4 gtgcactctc agtacaatct gctctgatgc cgcatagtta agccagcccc gacacccgcc 60 aacacccgct gacgcgccct gacgggcttg tctgctcccg gcatccgctt acagacaagc 120 tgtgaccgtc tccgggagct gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc 180 gagacgaaag ggcctcgtga tacgcctatt tttataggtt aatgtcatga taataatggt 240 ttcttagacg tcaggtggca cttttcgggg aaatgtgcgc ggaaccccta tttgtttatt 300 tttctaaata cattcaaata tgtatccgct catgagacaa taaccctgat aaatgcttca 360 ataatattga aaaaggaaga gtatgagtat tcaacatttc cgtgtcgccc ttattccctt 420 ttttgcgca ttttgccttc ctgtttttgc tcacccagaa acgctggtga aagtaaaaga 480 tgctgaagat cagttgggtg cacgagtggg ttacatcgaa ctggatctca acagcggtaa 540 gatccttgag agttttcgcc ccgaagaacg ttttccaatg atgagcactt ttaaagttct 600 ctatgtggc gcggtattat cccgtattga cgccgggcaa gagcaactcg gtcgccgcat 660 acactattct cagaatgact tggttgagta ctcaccagtc acagaaaagc atcttacqga 720 tggcatgaca gtaagagaat tatgcagtgc tgccataacc atgagtgata acactgcggc 780 caacttactt ctgacaacga tcggaggacc gaaggagcta accgcttttt tgcacaacat 840 gggggatcat gtaactcgcc ttgatcgttg ggaaccggag ctgaatgaag ccataccaaa 900 cgacgagcgt gacaccacga tgcctgtagc aatggcaaca acgttgcgca aactattaac 960 tggcgaacta cttactctag cttcccggca acaattaata gactggatgg aggcggataa 1020 agttgcagga ccacttctgc gctcggccct tccggctggc tggtttattg ctgataaatc 1080 tggagccggt gagcgtgggt ctcgcggtat cattgcagca ctggggccag atggtaagcc 1140 ctcccgtatc gtagttatct acacgacggg gagtcaggca actatggatg aacgaaatag 1200 acagatcgct gagataggtg cctcactgat taagcattgg taactgtcag accaagttta 1260 ctcatatata ctttagattg atttaaaact tcatttttaa tttaaaagga tctaggtgaa 1320 gatccttttt gataatctca tgaccaaaat cccttaacgt gagttttcgt tccactgagc 1380 gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat cctttttttc tgcgcgtaat 1440 ctgctgcttg caaacaaaaa aaccaccgct accagcggtg gtttgtttgc cggatcaaga 1500 gctaccaact ctttttccga aggtaactgg cttcagcaga gcgcagatac caaatactgt 1560 tcttctagtg tagccgtagt taggccacca cttcaagaac tctgtagcac cgcctacata 1620 cctcgctctg ctaatcctgt taccagtggc tgctgccagt ggcgataagt cgtgtcttac 1680 cgggttggac tcaagacgat agttaccgga taaggcgcag cggtcgggct gaacgggggg 1740 ttcgtgcaca cagcccagct tggagcgaac gacctacacc gaactgagat acctacagcg 1800 tgagctatga gaaagcgcca cgcttcccga agggagaaag gcggacaggt atccggtaag 1860 cggcagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacg cctggtatct 1920 ttatagtcct gtcgggtttc gccacctctg acttgagcgt cgatttttgt gatgctcgtc 1980 aggggggcgq agcctatgga aaaacgccag caacgcggcc tttttacggt tcctqgcctt 2040 ttgctggcct tttgctcaca tgttctttcc tgcgttatcc cctgattctg tggataaccg 2100 tattaccgcc tttgagtgag ctgataccgc tcgccgcagc cgaacgaccg agcgcagcga 2160 gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa ccgcctctcc ccgcgcgttg 2220 gccgattcat taatgcagct ggcacacag gtttcccgac tggaaagcgg gcagtgagcg 2280 caacgcaatt aatgtgagtt agctcactca taggcaccc caggctttac actttatgct 2340 tccggctcgt atgttgtgtg gaattgtgag cggataacaa tttcacacag gaaacagcta 2400 tgaccatgat tacgccaagc tcgcggccgc agtactctgc agattttatg caaaattaaa 2460 gtcttgtgac aacagctttc tccttaagtg caaatatcgc ccattctttc ctcttttcgt 2520 atataaatgc tgtaatagta ggatgtcgta cccgtaaagg tacgacattg aatattaata 2580 tactcctaag tttactttcc caatatttat attaggacgt ccccttcggg taaataaatt 2640 ttagtggcag tggtaccgcc actccctatt ttaatactgc gaaggaggca gttggcaggc 2700 aactcgtcgt tcgcagtata taaatatcca ctaatattta tattcccgta aggggacgtc 2760 ccgaagggga aggggaaaga agcagtcgcc tccttgcgaa aaggtttact tgcccgacca 2820 gtgaaaagca tgctgtaaga tataaatcta ccctgaaagg gatgcatttc accataatac 2880 tatacaaatg gtgttaccct ttgaggatca taacggtgct actggaatat atggtctctt 2940 catggataga cgatagccat ttatttaccc attaagggga cattagtggc ctgtcactgc 3000 tccttacgag acgccagtgg acgttcgtcc tagaaaattt atgcgctgcc tagaagcccc 3060 aaaagggaag tttactgact cgttagagcg tgagctaaca ggtttaaata cttcaatatg 3120 tatattagga cgccggtggc agtggtaccg ccactgccac cgtcggagga cgtcccttac 3180 ggtatattat atactaggat tttaatactc cgaaggaggc agtggcggta ccactgccac 3240 taatatttat attcccgtaa gggacgtcct ccttcggagt atgtaaacat tctaagttta 3300 cttgcccaat atttatatta ggcagttggc aggcaactgc tagctctcct ccttcggagt 3360 atgtaaacat cgcagtatat aaatatccac taatatttat attcccgtaa ggggacgtcc 3420 cgaaggggaa ggggaaggac gtcagtggca gttgcctgcc aactgcctag gcaagtaaac 3480 ttaggagtat ataaatatag gcagtcgcgg taccactgcc actgacgtcc tgccaactgc 3540 ctaggcaagt aaacttaagt ggcactaaaa tgcatttgcc cgaaggggaa ggaggacgcc 3600 agtggcagtg gtaccgccac tgcctccttc ggagtattaa aatcctagta tgtaaatctg 3660 ctagcgcagg aaataaattt tattctattt atatactccg ttaggaggta agtaaacccc 3720 ttccccttcg ggacgtcagt gcagttgcct gccaactgcc taatataaat attagaccac 3780 taaagtttgg caactgccaa ctgttgtcct tcggaggaaa aaaaatggtt aactcgcaag 3840 cagttaacat aactaaagtt tgttacttta ccgaagacgt ttaccctttc tcggttaagg 3900 agacggagac agttgcactg tgactgccta gtatagcaat tttgtttttg tttatatgct 3960 cgacaaaatg actttcataa aaatataaag tagttagcta gttattttat atcactataa 4020 ctagggttct cagaggcacc gaagtcactt gtaaaaatag tactttttaa cttgtttaat 4080 cttcgtgttc ttcaaaagga tcacgtaatt tttttgaagg tggaccaaaa ctaacataaa 4140 ctgaatagcc agttacactt aacagaagaa accataaaaa aaaggtaaag aaaaaagctg 4200 gactttccat agctcattta ataataaaat tattctcttt tcaacatatc tcttagatag 4260 ttcaaaagac ttgacgactg tgtcccacat ttttaaacaa aattaatcta ctcaaaattt 4320 tgccctgaga aagaataact tacttcgttt ttgcagtagc cattcatgtc actttgaaac 4380 tgtccttaca aagttaaaca ttaattaaaa attatttaat ttttatataa caaatattat 4440 attaaataaa aaatgaacaa agaacttcta agatcgtctt tagtgagtaa ttaaagagtt 4500 ttacttacca gacaaggcag ttttttcatt cttttaaagc aggcagttct gaaggggaaa 4560 agggactgcc tactgcggtc ctaggtaaat acatttttat gcaatttatt tcttgtgcta 4620 gtaggtttct atactcacaa gaagcaaccc cttgacgaga gaacgttatc ctcagagtat 4680 ttataatcct gagagggaat gcactgaaga atattttcct tattttttac agaaagtaaa 4740 taaaatagcg ctaataacgc ttaattcatt taatcaatta tggcaacagg aacttctaaa 4800 gctaaaccat caaaagtaaa ttcagacttc caagaacctg gtttagttac accattaggt 4860 actttattac gtccacttaa ctcagaagca ggtaaagtat taccaggctg gggtacaact 4920 gttttaatgg ctgtatttat ccttttattt gcagcattct tattaatcat tttagaaatt 4980 tacaacagtt ctttaatttt agatgacgtt tctatgagtt gggaaacttt agctaaagtt 5040 tcttaatttt atttaacaca aacataaaat ataaaactgt ttgttaaggc tagctgctaa 5100 gtcttctttt cgctaaggta aactaagcaa ctcaaccata tttatattcg gcagtggcac 5160 cgccaactgc cactggcctt ccgttaagat aaacgcgtgg atctcacgtg actagtgata 5220 tctacgtaat cgatgaattc gatcccattt ttataactgg atctcaaaat acctataaac 5280 ccattgttct tctcttttag ctctaagaac aatcaattta taaatatatt tattattatg 5340 ctataatata aatactatat aaatacattt acctttttat aaatacattt accttttttt 5400 taatttgcat gattttaatg cttatgctat cttttttatt tagtccataa aacctttaaa 5460 ggaccttttc ttatgggata tttatatttt cctaacaaag caatcggcgt cataaacttt 5520 agttgcttac gacgcctgtg gacgtcccac ccttcccctt acgggcaagt aaacttaggg 5580 attttaatgc aataaataaa tttgtcctct tcgggcaaat gaattttagt atttaaatat 5640 gacaagggtg aaccattact tttgttaaca agtgatctta ccactcacta tttttgttga 5700 attttaaact tatttaaaat tctcgagaaa gattttaaaa ataaactttt ttaatctttt 5760 atttattttt tcttttttcg tatggaattg cccaatatta ttcaacaatt tatcggaaac 5820 agcgttttag agccaaataa aattggtcag tcgccatcgg atgtttattc ttttaatcga 5880 aataatgaaa ctttttttct taagcgatct agcactttat atacagagac cacatacagt 5940 gtctctcgtg aagcgaaaat gttgagttgg ctctctgaga aattaaaggt gcctgaactc 6000 atcatgactt ttcaggatga gcagtttgaa tttatgatca ctaaagcgat caatgcaaaa 6060 ccaatttcag cgcttttttt aacagaccaa gaattgcttg ctatctataa ggaggcactc 6120 aatctgttaa attcaattgc tattattgat tgtccattta tttcaaacat tgatcatcgg 6180 ttaaaagagt caaaattttt tattgataac caactccttg acgatataga tcaagatgat 6240 tttgacactg aattatgggg agaccataaa acttacctaa gtctatggaa tgagttaacc 6300 gagactcgtg ttgaagaaag attggttttt tctcatggcg atatcacgga tagtaatatt 6360 tttatagata aattcaatga aatttatttt ttagaccttg gtcgtgctgg gttagcagat 6420 gaatttgtag atatatcctt tgttgaacgt tgcctaagag aggatgcatc ggaggaaact 6480 gcgaaaatat ttttaaagca tttaaaaaat gatagacctg acaaaaggaa ttatttttta 6540 aaacttgatg aattgaattg attccaagca ttatctaaaa tactctgcag gcacgctagc 6600 ttgtactcaa gctcgtaacg aaggtcgtga ccttgctcgt gaaggtggcg acgtaattcg 6660 ttcagcttgt aaatggtctc cagaacttgc tgctgcatgt gaagtttgga aagaaattaa 6720 attcgaattt gatactattg acaaacttta atttttattt ttcatgatgt ttatgtgaat 6780 agcataaaca tcgtttttat ttttatggtg tttaggttaa atacctaaac atcattttac 6840 atttttaaaa ttaagttcta aagttatctt ttgtttaaat ttgcctgtct ttataaatta 6900 cgatgtgcca gaaaaataaa atcttagctt tttattatag aatttatctt tatgtattat 6960 attttataag ttataataaa agaaatagta acatactaaa gcggatgtag cgcgtttatc 7020 ttaacggaag gaattcggcg cotacgtacc cgggtcgcga ggatccacgc gttaatagct 7080 cacttttctt taaatttaat ttttaattta aaggtgtaag caaattgcct gacgagagat 7140 ccacttaaag gatgacagtg gcgggctact gcctacttcc ctccgggata aaatttattt 7200 gaaaaacgtt agttacttcc taacggagca ttgacatccc catatttata ttaggacgtc 7260 cccttcgggt aaataaattt tagtggacgt ccccttcggg caaataaatt ttagtggaca 7320 ataaataaat ttgttgcctg ccaactgcct aggcaagtaa acttgggagt attaaaatag 7380 gacgtcagtg gcagttgcct gccaactgcc tatatttata tactgcgaag caggcagtgg 7440 cggtaccact gccactggcg tcctaatata aatattgggc aactaaagtt tatagcagta 7500 ttaacatcct atatttatat actccgaagg aacttgttag ccgataggcg aggcaacaaa 7560 tttatttatt gtcccgtaaa aggatgcctc cagcatcgaa ggggaagggg acgtcctagg 7620 ccataaaact aaagggaaat ccatagtaac tgatgttata aatttataga ctccaaaaaa 7680 cagctgcgtt ataaataact tctgttaaat atggccaagg ggacaggggc actttcaact 7740 aagtgtacat taaaaattga caattcaatt ttttttaatt ataatatata tttagtaaaa 7800 tataacaaaa agcccccatc gtctaggtag aattccagct ggcggccgcc ctatg 7855 SEQ ID NO. 5 <211> 8458 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polyriucleotide <400> 5 tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac 60 cgcgagaccc acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg 120 ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc 180 gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgcta 240 caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac 300 gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc 360 ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac 420 tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact 480 caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa 540 tacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt 600 cttcggggcg aaaactctca aggatottac cgctgttgag atccagttcg atgtaaccca 660 ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa 720 aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac 780 tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg 840 gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc 900 gaaaagtgcc acctgacgtc taagaaacca ttattatcat gacattaacc tataaaaata 960 ggcgtatcac gaggcccttt cgtctcgcgc gtttcggtga tgacggtgaa aacctctgac 1020 acatgcagct cccggagacg gtcacagctt gtctgtaagc ggatgccggg agcagacaag 1080 cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac tatgcggcat 1140 cagageagat tgtactgaga gtgcaccata gggcggccgc ggcgcgccgt tccggatctg 1200 catcctgcga tgcagatccg gaacataatg gtgcagggcg ctgacttccg cgtttccaga 1260 ctttacgaaa cacggaaacc gaagaccatt catgttgttg ctcaggtcgc agacgttttg 1320 cagcagcagt cgcttcacgt tcgctcgcgt atcggtgatt cattctgcta accagtaagg 1380 caaccccgcc agcctagccg ggtcctcaac gacaggagca cgatcatgcg cacccgtggc 1440 caggacccaa cgctgcccga gatgcgccgc gtgcggctgc tggagatggc ggacgcgatg 1500 gatatgttct gccaagggtt ggtttgcgca ttcacagttc tccgcaagaa ttgattggct 1560 ccaattcttg gagtggtgaa tccgttagcg aggtgccgcc ggcttccatt caggtcgagg 1620 tggcccggct ccatgcaccg cgacgcaacg cggggaggca gacaaggtat agggcggcgc 1680 ctacaatcca tgccaacccg ttccatgtgc tcgccgaggc ggcataaatc gccgtgacga 1740 tcagcggtcc aatgatcgaa gttaggctgg taagagccgc gagcgatcct tgaagctgtc 1800 cctgatggtc gtcatctacc tgcctggaca gcatggcctg caacgcgggc atcccgatgc 1860 cgccggaagc gagaagaatc ataatgggga aggccatcca gcctcgcgtc gcgaacgcca 1920 gcaagacgta gcccagcgcg tcggccgcca tgccggcgat aatggcctgc ttctcgccga 1980 aacgtttggt ggcgggacca gtgacgaagg cttgagcqag ggcgtgcaag attccgaata 2040 ccgcaagcga caggccgatc atcgtcgcgc tccagcgaaa gcggtcctcg ccgaaaatga 2100 cccagagcgc tgccggcacc tgtcctacga gttgcatgat aaagaagaca gtcataagtg 2160 cggcgacgat agtcatgccc cgcgcccacc ggaaggagct gactgggttg aaggctctca 2220 agggcatcgg tcgagcttga cattgtagga cgtttaaaca ttaccctgtt atcectagga 2280 tcctacgtaa tcgatgaatt cgatcccatt tttataactg gatctcaaaa tacctataaa 2340 cccattgttc ttctctttta gctctaagaa caatcaattt ataaatatat ttattattat 2400 gctataatat aaatactata taaatacatt taccttttta taaatacatt tacctttttt 2460 ttaatttgca tgattttaat gcttatgcta tcttttttat ttagtccata aaacctttaa 2520 aggacctttt cttatgggat atttatattt tcctaacaaa gcaatcggcg tcataaactt 2580 tagttgctta cgacgcctgt ggacgtcccc cccttcccct tacgggcaag taaacttagg 2640 gattttaatg caataaataa atttgtcctc ttcgggcaaa tgaattttag tatttaaata 2700 tgacaagggt gaaccattac ttttgttaac aagtgatctt accactcact atttttgttg 2760 aattttaaac ttatttaaaa ttctcgagaa agattttaaa aataaacttt tttaatcttt 2820 tatttatttt ttcttttttc gtatggaatt gcccaatatt attcaacaat ttatcggaaa 2880 cagcgtttta gagccaaata aaattggtca gtcgccatcg gatgtttatt cttttaatcg 2940 aaataatgaa actttttttc ttaagcgatc tagcacttta tatacagaga ecacatacag 3000 tgtctctcgt gaagcgaaaa tgttgagttg gctctctgag aaattaaagg tgcctgaact 3060 catcatgact tttcaggatg agcagtttga atttatgatc actaaagcga tcaatgcaaa 3120 accaatttca gcgctttttt taacagacca agaattgctt gctatctata aggaggcact 3180 caatctgtta aattcaattg ctattattga ttgtccattt atttcaaaca ttgatcatcg 3240 gttaaaagag tcaaaatttt ttattgataa ccaactcctt gacgatatag atcaagatga 3300 ttttgacact gaattatggg gagaccataa aacttaccta agtctatgga atgagttaac 3360 cgagactcgt gttgaagaaa gattggtttt ttctcatggc gatatcacgg atagtaatat 3420 ttttatagat aaattcaatg aaatttattt tttagacctt ggtcgtgctg ggttagcaga 3480 tgaatttgta gatatatcct ttgttgaacg ttgcctaaga gaggatgcat cggaggaaac 3540 tgcgaaaata tttttaaagc atttaaaaaa tgatagacct gacaaaagga attatttttt 3600 aaaacttgat gaattgaatt gattccaagc attatctaaa atactctgca ggcacgctag 3660 cttgtactca agctcgtaac gaaggtcgtg accttgctcg tgaaggtggc gacgtaattc 3720 gttcagcttg taaatggtct ccagaacttg ctgctgcatg tgaagtttgg aaagaaatta 3780 aattcgaatt tgatactatt gacaaacttt aatttttatt tttcatgatg tttatgtgaa 3840 tagcataaac atcgttttta tttttatggt gtttaggtta aatacctaaa catcatttta 3900 catttttaaa attaagttct aaagttatct tttgtttaaa tttgcctgtc tttataaatt 3960 acgatgtgcc agaaaaataa aatcttagct ttttattata gaatttatct ttatgtatta 4020 tattttataa gttataataa aagaaatagt aacatactaa agcggatgta gcgcgtttat 4080 cttaacggaa ggaattcggc gcctacgtat acatactccg aaggaggaca aatttattta 4140 ttgtggtaca ataaataagt ggtacaataa ataaattgta tgtaaacccc ttccccttcg 4200 ggacgtcccc ttacgggaat ataaatatta gtggcagttg cctgccaaca aatttattta 4260 ttgtattaac ataggcagtg gcggtaccac tgccactggc gtcctaatat aaatattggg 4320 caactaaagt ttatcgcagt attaacatag gcagtggcgg taccactgcc actggcgtcc 4380 tccttcggag tatgtaaacc tgctaccgca gcaaataaat tttattctat tttaatacta 4440 caatatttag attcccgtta ggggataggc caggcaattg tcactggcgt catagtatat 4500 caatattgta acagattgac accctttaag taaacatttt ttttaggatt catatgaaat 4560 taaatggata tttggtacat ttaattccac aaaaatgtcc aatacttaaa atacaaaatt 4620 aaaagtatta gttgtaaact tgactaacat tttaaatttt aaattttttc ctaattatat 4680 attttacttg caaaatttat aaaaatttta tgcattttta tatcataata ataaaacctt 4740 tattcatggt ttataatata ataattgtqa tgactatgca caaaqcagtt ctagtcccat 4800 atatataact atatataacc cgtttaaaga tttatttaaa aatatgtgtg taaaaaatgc 4860 ttatttttaa ttttatttta tataagttat aatattaaat acacaatgat taaaattaaa 4920 taataataaa tttaacgtaa cgatgagttg tttttttatt ttggagatac acgcaatgac 4980 aattgcgatc ggtacatath aagagaaacg cacatggttc gatgacgctg atgactggct 5040 tcgtcaagac cgtttcgtat tcgtaggttg gtcaggttta ttactattcc cttgtgctta 5100 ctttgcaact ccggtccggc ggccgcctcg agacgacttg tccgcttcat cagacacggc 5160 tttcctaacc atcaatggtg gattttcagg aaagacgttt aaagaagtgg cataaagttt 5220 atttgttgaa gaattggttt tgtttccatt caaagaattg ttagggataa aactttgcat 5280 ttttttataa tttgttataa gtttttcaaa cttatatgtt tttaaaaatg catttaattg 5340 cttattaatg cgttcatttt gtaatgtttc aataggtctt gcttgcgcta atcgcagtat 5400 tcccgatact ttgtctgctt gtttttcggg tattgagaat aagtaagtat aatgatttaa 5460 aaaagtcatg ttttgattaa atctttttta tatggttaaa aacattatgg tatatctaaa 5520 taaatttatt ttttactaaa tctccaattt gcaatttaga gatataatta aaactataaa 5580 gttatttaag ttaatttgta atcaaatcca acacaaaaat gtttttatat agttaacatg 5640 ttaaatttaa catatgttaa acaactaaaa ttctgtaaca gagaacaata aaataaatgc 5700 tagattttgt gtaatgccga agtatattta tatacttccc tttcaaaaaa ataaatactc 5760 ttgccactaa aattcatttg cctaggacgt ccccttcccc ttacgggatg tttatatact 5820 aggacgtccc cttcccctta cgggatattt atatactccg aaggacgtcc ccttcgggca 5880 aataaatttt agtggcagtt gcctgccaac tgcctaggca agtaaactta gggattttaa 5940 tgcaataaat aaatttgtcc ccttacggga gtcagtggc agttgcctgc caactgccta 6000 atataaatat tagtggatat ttatatactc cgaaggaggc agttacctgc caactgccga 6060 ggcaaataaa tttagtggc agtggtacag ccactgcctg ctccctcctt ccccttcggg 6120 caagtaaact tagcatgttg tcgacattac cctgttatec ctaggccggc ctaagaaacc 6180 attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt tcgtcttcaa 6240 gaaattcggt cgaaaaaaga aaaggagagg gccaagaggg agggcattgg tgactattga 6300 gcacgtgagt atacgtgatt aagcacacaa aggcagcttg gagtatgtct gttattaatt 6360 tcacaggtag ttctggtcca ttggtgaaag tttgcggctt gcagagcaca gaggccgcag 6420 aatgtgctct agattccgat gctgacttgc tgggtattat atgtgtgccc aatagaaaga 6480 gaacaattga cccggttatt gcaaggaaaa tttcaagtct tgtaaaagca tataaaaata 6540 gttcaggcac tccgaaatac ttggttggcg tgtttcgtaa tcaacctaag gaggatgttt 6600 tggctctggt caatgattac ggcattgata tcgtccaact gcatggagat gagtcgtggc 6660 aagaatacca agagttcctc ggtttgccag ttattaaaag actcgtattt ccaaaagact 6720 gcaacatact actcagtgca gcttcacaga aacctcattc tttattccc ttgtttgatt 6780 cagaagcagg tgggacaggt gaacttttgg attggaactc gatttctgac tgggttggaa 6840 ggcaagagag ccccgaaagc ttacatttta tgttagctgg tggactgacg ccagaaaatg 6900 ttggtgatgc gcttagatta aatggcgtta ttggtgttga tgtaagcgga ggtgtggaga 6960 caaatggtgt aaaagactot aacaaaatag caaatttcgt caaaaatgct aagaaatagg 7020 ttattactga gtagtattta tttaagtatt gtttgtgcac ttgcctgcag gccttttgaa 7080 aagcaagcat aaaagatcta aacataaaat ctgtaaaata acaagatgta aagataatgc 7140 taaatcattt ggctttttga ttgattgtac aggaaaatat acatcgttaa ttaagcggcc 7200 gcgagcttgg cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca 7260 attccacaca acatacgagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg 7320 agctaactca cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg 7380 tgccagctgc attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc 7440 tcttccgctt cctcgctcac tgactcgatg cgctcggtc,g ttcggctgcg gcgagcggta 7500 tcagctcaot caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag 7560 aacatgtgag caaaaggcoa gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg 7620 tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg 7680 tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg 7740 cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga 7800 agcgtggcgc tttctcatag ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc 7860 tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt 7920 aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact 7980 ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg 8040 cctaaatacg gctacactag aagaacagta tttggtatct gcgctctgct gaagccagtt 8100 accttcggaa aaagagttgg tagctcttga tccggcaaac aaacoaccgc tggtagcggt 8160 ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct 8220 ttgatcttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg 8280 gtcatgagat tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt 8340 aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt 8400 gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg actccccg 8458 SEQ ID NO. 6 211> 22908 <212> DNA <2 13> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 6 tgaatttatc agatctaact gaggagtaag aaacccccat gtcaaagaaa aacagaccaa 60 caattgggcg aacccttaat ccttcaatat taagcggatt tgatagttct tcagcctctg 120 gcgatcgagt cgagcaggta ttcaagttat caactggtcg ccaggccaca tttattgaag 180 aggtaatacc tccgaaccag gtagaaagcg atacctttgt tgatcagcat aacaacgggc 240 gtgaccaggc atctcttacg ccaaaatcat taaaaagtat ccgaagcact attaagcatc 300 agcaatttta ccctgcaata ggtgttagac gggctacagg gaaaattgaa attttggatg 360 gttcccggcg tcgagcttct gccatcttag agaacgtagg gttgcgggtt ttagtcacgg 420 accaggagat cagcgttcag gaagcgcaaa atttagcgaa agacgttcag acagcattgc 480 agcacagcat tcgagaaata ggtctgcgtt tgatgcgaat gaaaaatgat gggatgagtc 540 agaaggatat tgcagccaaa gaagggctgt ctcaggcgaa ggtcacgcgt gctctccagg 600 cagcgagtgc tccggaagaa ttagtcgccc ttttccctgt gcagtcggaa ttaacctttt 660 cggactacaa aacgctttgt gctgttggcg acgaaatggg gaacaagaat ttagagtttg 720 atcagcttat tcaaaacata tccccggaaa taaacgacat cttatccatt gaagaaatgg 780 ccgaagatga agttaaaaat aaaatcctgc gcttgataac aaaggaagcc tcactactca 840 cggataaagg ttctaaagat aagtccgtag ttactgaatt atggaaattt gaggacaagg 900 atcgctttgc aaggaagcgc gtgaaaggcc gtgcattttc ttatgagttt aatcgactct 960 caaaagagtt acaggaagaa ctcgacagga tgattgggca tatcettaga aagagcctcg 1020 ataaaaagcc gaagccttaa actttcgcca ttcaaatttc actattaact gactgttttt 1080 aaagtaaatt actctaaaat ttcaaggtga aatcgccacg atttcacctt ggattttacc 1140 ttcctcccct cctcccgaaa aaaataaaaa aattgcttgt cacgagaaag tcaacaagtg 1200 actttcaata aaatctcttc cgaaaaggga ttcacacaag tgccttgtgt ttaaggaaga 1260 gtaaattgag taacttacgc gaataccaga atcgtattgc agatatcgca aaacgctcta 1320 aagctgtgct tggctgggca agcactgcgc agttcggtac tgataaccaa ttcattaaag 1380 atgatgccgc gcgtgccgca tctatccttg aagctgcacg taaagacccg gtttttgcgg 1440 gtatctctga taatgccacc gctcaaatcg ctacagcgtg ggcaagtgca ctggctgact 1500 acgccgcagc acataaatct atgccgcgtc cggaaattct ggcctcctgc caccagacgc 1560 tggaaaactg cctgatagag tccacccgca atagcatgga tgccactaat aaagcgatgc 1620 tggaatctgt cgcagcagag atgatgagcg tttctgacgg tgttatgcgt ctgcctttat 1680 tcctcgcgat gatcctgcct gttcagttgg gggcagctac cgctgatgcg tgtaccttca 1740 ttccggttac gcgtgaccag tccgacatct atgaagtctt taacgtggca ggttcatctt 1800 ttggttctta tgctgctggt gatgttctgg acatgcaatc cgtcggtgtg tacagccagt 1860 tacgtcgccg ctatgtgctg gtggcaagct ccgatggcac cagcaaaacc gcaaccttca 1920 agatggaaga cttcgaaggc cagaatgtac caatccgaaa aggtcgcact aacatctacg 1980 ttaaccgtat taagtctgtt gttgataacg gttccggcag cctacttcac tcgtttacta 2040 atgctgctgg tgagcaaatc actgttacct gctctctgaa ctacaacatt ggtcagattg 2100 ccctgtcgtt ctccaaagcg ccggataaag gcactgagat cgcaattgag acggaaatca 2160 atattgaagc cgctcctgag ctgatcccgc tgatcaacca cgaaatgaag aaatacaccc 2220 tgttcccaag tcagttcgtt atcgcggctg agcacacggt acaggcggcg tatgaagcac 2280 agcgtgaatt tggtctggac ctgggttccc tacagttccg caccctgaag gaatacctgt 2340 ctcatgaaca ggatatgctg cgtcttcgca tcatgatctg gcgcactctt gcgaccgaca 2400 cctttgacat cgctctgccg gttaaccagt cctttgatgt atgggcaacc atcattcgtg 2460 gcaaattcca gactgtatat cgcgacatta ttgagcgcgt taaatcttct ggtgcgatgg 2520 ggatgtttgc tggtgctgat gcagcatctt tcttcaaaca gttgccgaag gatttcttcc 2580 agccagccga agactatate cagactccgt atgttcacta catcggtacc ccatttagga 2640 ecaccoacag cacctaacaa aacggcatca gccttcttgg aggcttccag cgcctcatct 2700 ggaagtggaa cacctgtagc atcgacctgc aggggggggg gggcgctgag gtctgcctcg 2760 tgaagaaggt gttgctgact cataccaggc ctgaatcgcc ccatcatcca gccagaaagt 2820 gagggagcca cggttgatga gagctttgtt gtaggtggac cagttggtga ttttgaactt 2880 ttgctttgcc acggaacggt ctgcgttgtc gggaagatgc gtgatctgat ccttcaactc 2940 agcaaaagtt cgatttattc aacaaagccg ccgtcccgtc aagtcagcgt aatgctctgc 3000 cagtgttaca accaattaac caattctgat tagaaaaact catcgagcat caaatgaaac 3060 tgcaatttat tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat 3120 gaaggagaaa actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg 3180 attccgactc gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta 3240 tcaagtgaga aatcaccatg agtgacgact gaatccggtg agaatggcaa aagcttatgc 3300 atttctttcc agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca 3360 tcaaccaaac cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg 3420 ttaaaaggac aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca 3480 tcaacaatat tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg 3540 gggatcgcag tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc 3600 ggaagaggca taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg 3660 gcaacgctac ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat 3720 cgatagattg tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa 3780 tcagcatcca tgttggaatt taatcgcggc ctcgagcaag acgtttcccg ttgaatatgg 3840 ctcataacac cccttgtatt actgtttatg taagcagaca gttttattgt tcatgatgat 3900 atatttttat cttgtgcaat gtaacatcag agattttgag acacaacgtg gctttccccc 3960 ccccccctgc aggtcgatag cagcaccacc aattaaatga ttttcgaaat cgaacttgac 4020 attggaacga acatcagaaa tagctttaag aaccttaatg gcttcggctg tgatttcttg 4080 accaacgtgg tcacctggca aaacgacgat cttcttaggg gcagacatta gaatggtata 4140 tccttgaaat atatatatat attgctgaaa tgtaaaaggt aagaaaagtt agaaagtaag 4200 acgattgcta accacctatt ggaaaaaaca ataggtcctt aaataatatt gtcaacttca 4260 agtattgtga tgcaagcatt tagtcatgaa cgcttctcta ttctatatga aaagccggtt 4320 ccggcgctct cacctttcct ttttctccca atttttcagt tgaaaaaggt atatgcgtca 4380 ggcgacctct gaaattaaca aaaaatttcc agtcatcgaa tttgattctg tgcgatagcg 4440 cccctgtgtg ttctcgttat gttgaggaaa aaaataatgg ttgctaagag attcgaactc 4500 ttgcatctta cgatacctga gtattcccac agttaactgc ggtcaagata tttcttgaat 4560 caggcgcctt agaccgctcg gccaaacaac caattacttg ttgagaaata gagtataatt 4620 atcctataaa tataacgttt ttgaacacac atgaacaagg aagtacagga caattgattt 4680 tgaagagaat gtggattttg atgtaattgt tgggattcca tttttaataa ggcaataata 4740 ttaggtatgt agatatacta gaagttctcc tcgacgctct cccttatgcg actcctgcat 4800 taggaagcag cccagtagta ggttgaggcc gttgagcacc gccgccgcaa ggaatggtgc 4860 atgcaaggag atggcgccca acagtccccc ggccacgggg cctgccacca tacccacgcc 4920 gaaacaagcg ctcatgagcc cgaagtggcg agcccgatct tccccatcgg tgatgtcggc 4980 gatataggcg ccagcaaccg cacctgtggc gccggtgatg ccggccacga tgcgtccggc 5040 gtagaggatc tacaactcca cttattgtta ggtagaattg tccgttagtt gtttattaat 5100 tgcaataatg gggcgtccag ttttggcaac agtgtcctct taccaggaca cctatgagtt 5160 tgcctcatgg caaactagag gtgttgaaag tatgcatggt tataattaga gcaattcatt 5220 accctctgaa tcctgccggt ataccccatt gttcgttatc tttatttttg gctaaaaccg 5280 cattaagagc ttcgtttacc gtcatgcaat gcggtaggtt atcgaagttt gatatcccgc 5340 caatatcagg cgaacgcttg ttcttcaggt aagcatattt ccgcgcagcc gcctctactt 5400 tctgcttgaa ctcatgtttt tgagtgcgtt ttttggataa ccgcagattg tcagcctttg 5460 cttttgectt agcgatccat gaagtcaatt ttttgaggct ggttgttccg gcaccgccgg 5520 aaactgatct ttttgttttt ttaacttgtg acttcttatt ctttattgcc acgtcatcct 5580 gacaggggga gggggtatca ttttgacatg ggggtgtgga taaaaaatta aataaagcca 5640 atgtcttagc gagaacagct ttaaccttgg ttgccgctga agagatcttt aatttgcttt 5700 ctatcagcgc atttttggct tgttgtgcga aggccaaaaa ggatggtgta aaccggtaca 5760 ggttagcgcg acgttcacgg tgatcgccga taacaatctc tacagacaga attcctttgt 5820 ttacagcttc acggaatgca cgaacgacgg ttgattggct ataaccagtt tctgccgcga 5880 tcaggcggtg aggcttgtga atgaagtatt cactggttgt tgccgcgaga tttgcacatt 5940 gagacaggat atgcccggcg ctacgggata gaccggagtg tgttacaaag caggccaatt 6000 catagocaga aaaagtaaaa tcgctcatcg ttatacagct caggaaagtg actttagcca 6060 gcattacaat gctggtggtt cttactacgt ctgttagcgc gttgccgcga caggtaccag 6120 cacaccagca tcaagcaatc getteatcag ccactgctga cctttgccgg ttatacgagt 6180 cgtgaaagaa atcctgcttc cattgcttgt atcgatcacg gtttctttaa gggtgaaata 6240 cccacgagat atgtattctt gtttggggac gttcctgcgt tcaccggttg cgatcagaat 6300 tccgttatca cgcaaccagg tgaagagata gttttggccc aggccgagca ctttggcata 6360 gttgccgatt agaaccccgc tggcggtagc aacgcgttca gcgaattcga ctttaggtgc 6420 atccataagc attttttgct ccagccgttg cttttgctct gccaggtcgg cagccaaacg 6480 gagagcttca gggagactct gcggaatagc aggttgtaat cttccggttc gatagtcgat 6540 aaatgtctgg tttaccttca gccgaaacgc gggagaaatc cagcctgcgt actccacagc 6600 gagcaattca tgggcaaaag tgccgccgcc acggccttcg acctgcaggc atgcaagctt 6660 ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca caattccaca 6720 caacatacga gccggaagca taaagtgtaa agcctggggt gcctaatgag tgagctaact 6780 cacattaatt gcgttgcgct cactgcccgc tttccagtcg ggaaacctgt cgtgccaggt 6840 agtcgatatg gtgcactctc agtacaatct gctctgatgc cgcatagtta agccagtata 6900 cactccgcta tcgctacgtg actgggtcat ggctgcgccc cgacacccgc caacacccgc 6960 tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt 7020 ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgaggcagct 7080 gcggtaaagc tcatcagcgt ggtcgtgaag egattoacag atgtctgcct gttcatccgc 7140 gtccagctcg ttgagtttct ccagaagcgt taatgtctgg cttctgataa agcgggccat 7200 gttaagggcg gttttttcct gtttggtcac tgatgcctcc gtgtaagggg gatttctgtt 7260 catgggggta atgataccga tgaaacgaga gaggatgctc acgatacggg ttactgatga 7320 tgaacatgcc cggttactgg aacgttgtga gggtaaacaa ctggcggtat ggatgcggcg 7380 ggaccagaga aaaatcactc agggtcaatg ccagcgcttc gttaatacag atgtaggtgt 7440 tccacagggt agccagcagc atcctgcgat gcagatccgg aacataatgg tgcagggcgc 7500 tgacttccgc gtttccagac tttacgaaac acggaaaccg aagaccattc atgttgttgc 7560 tcaggtcgca gacgttttgc agcagcagtc gcttcacgtt cgctcgcgta tcggtgattc 7620 attctgctaa ccagtaaggc aaccccgcca gcctagccgg gtcctcaacg acaggagcac 7680 gatcatgcgc acccgtggcc aggacccaac gctgcccgag atgcgccgcg tgcggctgct 7740 ggagatggcg gacgcgatgg atatgttctg ccaagggttg gtttgcgcat tcacagttct 7800 ccgcaagaat tgattggctc caattcttgg agtggtgaat ccgttagcga ggtgccgccg 7860 gcttccattc aggtcgaggt ggcccggctc catgcaccgc gacgcaacgc ggggaggcag 7920 acaaggtata gggcggcgcc tacaatccat gccaacccgt tccatgtgct cgccgaggcg 7980 gcataaatcg ccgtgacgat cagcggtcca atgatcgaag ttaggctggt aagagccgcg 8040 agcgatcctt gaagctgtcc ctgatggtcg tcatctacct gcctggacag catggcctgc 8100 aacgcgggca tcccgatgcc gccggaagcg agaagaatca taatggggaa ggccatccag 8160 cctcgcgtcg cgaacgccag caagacgtag cccagcgcgt cggccgccat gccggcgata 8220 atggcctgct tctcgccgaa acgtttggtg gcgggaccag tgacgaaggc ttgagcgagg 8280 gcgtgcaaga ttccgaatac cgcaagcgac aggccgatca tcgtcgcgct ccagcgaaag 8340 cggtcctcgc cgaaaatgac ccagagcgct gccggcacct gtcctacgag ttgcatgata 8400 aagaagacag tcataagtgc ggcgacgata gtcatgcccc gcgcccaccg gaaggagctg 8460 actgggttga ggctctcaag ggcatcggtc gagcttgaca ttgtaggacg tttaaacatt 8520 accctgttat ccctaggatc ctacgtaatc gatgaattcg atcccatttt tataactgga 8580 tctcaaaata cctataaacc cattgttctt ctcttttagc tctaagaaca atcaatttat 8640 aaatatattt attattatgc tataatataa atactatata aatacattta cctttttata 8700 aatacattta cctttttttt aatttgcatg attttaatgc ttatgctatc ttttttattt 8760 agtccataaa acctttaaag gaccttttct tatgggatat ttatattttc ctaacaaagc 8820 aatcggcgtc ataaacttta gttgcttacg acgcctgtgg acgtcccccc cttcccctta 8880 cgggcaagta aacttaggga ttttaatgca ataaataaat ttgtcctctt cgggcaaatg 8940 aattttagta tttaaatatg acaagggtga accattactt ttgttaacaa gtgatcttac 9000 cactcactat ttttgttgaa ttttaaactt atttaaaatt ctcgagaaag attttaaaaa 9060 taaacttttt taatctttta tttatttttt cttttttcgt atggaattgc ccaatattat 9120 tcaacaattt atcggaaaca gcgttttaga gccaaataaa attggtcagt cgccatcgga 9180 tgtttattct tttaatcgaa ataatgaaac tttttttctt aagcgatcta gcactttata 9240 tacagagacc acatacagtg tctctcgtga agcgaaaatg ttgagttggc tctctgagaa 9300 attaaaggtg cctgaactca tcatgacttt tcaggatgag cagtttgaat ttatgatcac 9360 taaagcgatc aatgcaaaac caatttcagc gcttttttta acagacaag aattgcttgc 9420 tatctataag gaggcactca atctgttaaa ttcaattgct attattgatt gtccatttat 9480 ttcaaacatt gatcatcggt taaaagagtc aaaatttttt attgataacc aaetccttga 9540 cgatatagat caagatgatt ttgacactga attatgggga gaccataaaa cttacctaag 9600 tctatggaat gagttaaccg agactcgtgt tgaagaaaga ttggtttttt ctcatggcga 9660 tatcacggat agtaatattt ttatagataa attcaatgaa atttattttt tagaccttgg 9720 tcgtgctggg ttagcagatg aatttgtaga tatatccttt gttgaacgtt gcctaagaga 9780 ggatgcatcg gaggaaactg cgaaaatatt tttaaagcat ttaaaaaatg atagacctga 9840 caaaaggaat tattttttaa aacttgatga attgaattga ttccaagcat tatctaaaat 9900 actctgcagg cacgctagct tgtactcaag ctcgtaacga aggtcgtgac cttgctcgtg 9960 aaggtggcga cgtaattcgt tcagcttgta aatggtctcc agaacttgct gctgcatgtg 10020 aagtttggaa agaaattaaa ttcgaatttg atactattga caaactttaa tttttatttt 10080 tcatgatgtt tatgtgaata gcataaacat cgtttttatt tttatggtgt ttaggttaaa 10140 tacctaaaca tcattttaca tttttaaaat taagttctaa agttatcttt tgtttaaatt 10200 tgcctgtctt tataaattac gatgtgccag aaaaataaaa tcttagcttt ttattataga 10260 atttatcttt atgtattata ttttataagt tataataaaa gaaatagtaa catactaaag 10320 cggatgtagc gcgtttatct taacggaagg aattcggcgc ctacgtatac atactccgaa 10380 ggaggacaaa tttatttatt gtggtacaat aaataagtgg tacaataaat aaattgtatg 10440 taaacccctt ccccttcggg acgtcccctt acgggaatat aaatattagt ggcagttgcc 10500 tgccaacaaa tttatttatt gtattaacat aggcagtggc ggtaccactg ccactggcgt 10560 cctaatataa atattgggca actaaagttt atcgcagtat taacataggc agtggcggta 10620 ccactgccac tggcgtcctc cttcggagta tgtaaacctg ctaccgcagc aaataaattt 10680 tattctattt taatactaca atatttagat tcccgttagg ggataggcca ggcaattgtc 10740 actggcgtca tagtatatca atattgtaac agattgacac cctttaagta aacatttttt 10800 ttaggatca tatgaaatta aatggatatt tggtacattt aattccacaa aaatgtcaaa 10860 tacttaaaat acaaaattaa aagtattagt tgtaaacttg actaacattt taaattttaa 10920 attttttcct aattatatat tttacttgca aaatttataa aaattttatg catttttata 10980 tcataataat aaaaccttta ttcatggttt ataatataat aattgtgatg actatgcaca 11040 aagcagttct agtcccatat atataactat atataacccg tttaaagatt tatttaaaaa 11100 tatgtgtgta aaaaatgctt atttttaatt ttattttata taagttataa tattaaatac 11160 acaatgatta aaattaaata ataataaatt taacgtaacg atgagttgtt tttttatttt 11220 ggagatacac gcaatgacaa ttgcgatcgg tacatatcaa gagaaacgca catggttcga 11280 tgacgctgat gactggcttc gtcaagaccg tttcgtattc gtaggttggt caggtttatt 11340 actattccct tgtgcttact ttgcaactcc ggtccggcgg ccgcctcgag acgacttgtc 11400 cgcttcatca gacacggctt tcctaaccat caatggtgga ttttcaggaa agacgtttaa 11460 agaagtggca taaagtttat ttgttgaaga attggttttg tttccattca aagaattgtt 11520 aggataaaa ctttgcattt ttttataatt tgttataagt ttttcaaact tatatgtttt 11580 taaaaatgca tttaattgct tattaatgcg ttcattttgt aatgtttcaa taggtcttgc 11640 ttgcgctaat cgcagtattc ccgatacttt gtctgcttgt ttttcgggta ttgagaataa 11700 gtaagtataa tgatttaaaa aagtcatgtt ttgattaaat cttttttata tggttaaaaa 11760 cattatggta tatctaaata aatttatttt ttactaaatc tccaatttgc aatttagaga 11820 tataattaaa actataaagt tatttaagtt aatttgtaat aaaatcaaac acaaaaatgt 11880 ttttatatag ttaacatgtt aaatttaaca tatgttaaac aactaaaatt ctgtaacaga 11940 gaacaataaa ataaatgcta gattttgtgt aatgccgaag tatatttata tacttccctt 12000 tcaaaaaaat aaatactctt gccactaaaa ttcatttgcc taggacgtcc ccttcccctt 12060 acgggatgtt tatatactag gacgtcccct tccccttacg ggatatttat atactccgaa 12120 ggacgtcccc ttcgggcaaa taaattttag tggcagttgc ctgccaactg cctaggcaag 12180 taaacttagg gattttaatg caataaataa atttgtcccc ttacgggacg tcagtggcag 12240 ttgcctgcca actgcctaat ataaatatta gtggatattt atatactccg aaggaggcag 12300 ttacctgcca actgccgagg caaataaatt ttagtggcag tggtaccgcc actgcctgct 12360 ccctcattcc ccttcgggca agtaaactta gcatgttgtc gacattaccc tgttatccct 12420 aggccggcct aagaaaccat tattatcatg acattaacct ataaaaatag gcgtatcacg 12480 aggccctttc gtcttcaaga aattcggtcg aaaaaagaaa aggagagggc caagagggag 12540 ggcattggtg actattgagc acgtgagtat acgtgattaa gcacacaaag gcagcttgga 12600 gtatgtctgt tattaatttc acaggtagtt ctggtccatt ggtgaaagtt tgcggcttgc 12660 agagcacaga ggccgcagaa tgtgctctag attccgatgc tgacttgctg ggtattatat 12720 gtgtgcccaa tagaaagaga acaattgacc cggttattgc aaggaaaatt tcaagtcttg 12780 taaaagcata taaaaatagt tcaggcactc cgaaatactt ggttggcgtg tttcgtaatc 12840 aacctaagga ggatgttttg gctctggtca atgattacgg cattgatatc gtccaactgc 12900 atggagatga gtcgtggcaa gaataccaag agttcctcgg tttgccagtt attaaaagac 12960 tcgtatttcc aaaagactgc aacatactac tcagtgcagc ttcacagaaa cctcattcgt 13020 ttattccctt gtttgattca gaagcaggtg ggacaggtga acttttggat tggaactcga 13080 tttctgactg ggttggaagg caagagagcc ccgaaagctt acattttatg ttagctggtg 13140 gactgacgcc agaaaatgtt ggtgatgcgc ttagattaaa tggcgttatt ggtgttgatg 13200 taagcggagg tgtggagaca aatggtgtaa aagactctaa caaaatagca aatttcgtca 13260 aaaatgctaa gaaataggtt attactgagt agtatttatt taagtattgt ttgtgcactt 13320 gcctgcaggc cttttgaaaa gcaagcataa aagatctaaa cataaaatct gtaaaataac 13380 aagatgtaaa gataatgcta aatcatttgg ctttttgatt gattgtacag gaaaatatac 13440 atcgcagggg gttgactttt accatttcac cgcaatggaa tcaaacttgt tgaagagaat 13500 gttcacaggc gcatacgcta caatgacccg attcttgcta gccttttctc ggtcttgcaa 13560 acaaccgccg gcagcttagt atataaatac acatgtacat acctctctcc gtatcctcgt 13620 aatcattttc ttgtatttat cgtcttttcg ctgtaaaaac tttatcacac ttatctcaaa 13680 tacacttatt aaccgctttt actattatct tctacgctga cagtaatatc aaacagtgac 13740 acatattaaa cacagtggtt tctttgcata aacaccatca gcctcaagtc gtcaagtaaa 13800 gatttcgtgt tcatgcagat agataacaat ctatatgttg ataattagcg ttgcctcatc 13860 aatgcgagat ccgtttaacc ggaccctagt gcacttaccc cacgttcggt ccactgtgtg 13920 ccgaacatgc tccttcacta ttttaacatg tggaattaat tctaaatcct ctttatatga 13980 tctgccgata gatagttcta agtcattgag gttcatcaac aattggattt tctgtttact 14040 cgacttcagg taatgaaatg agatgatact tgcttatctc atagttaact ggcataaatt 14100 ttagtat.agg ttaactctaa gaggtgatac ttatttactg taaaactgtg acgataaaac 14160 cggaaggaag aataagaaaa ctcgaactga tctataatgc ctattttctg taaagagttt 14220 aagctatgaa agcctcggca ttttggccgc tcctaggtag tgcttttttt ccaaggacaa 14280 aacagtttct ttttcttgag caggttttat gtttcggtaa tcataaacaa taaataaatt 14340 atttcattta tgtttaaaaa taaaaaataa aaaagtattt taaattttta aaaaagttga 14400 ttataagcat gtgacctttt gcaagcaatt aaattttgca atttgtgatt taggcaaaag 14460 ttactatttc tggctcgtgt aatatatgta tgctaatgtg aacttttaca aagtcgatat 14520 ggacttagtc aaaagaaatt ttcttaaaaa tatatagcac tagccaattt agcacttctt 14580 tatgagatat attatagact ttattaagcc agatttgtgt attatatgta tttacccggc 14640 gaatcatgga catacattct gaaataggta atattctcta tggtgagaca gcatagataa 14700 cotaggatac aagttaaaag ctagtactgt tttgcagtaa tttttttctt ttttataaga 14760 atgttaccac ctaaataagt tataaagtca atagttaagt ttgatatttg attgtaaaat 14820 accgtaatat atttgcatga tcaaaaggct caatgttgac tagccagcat gtcaaccact 14880 atattgatca cagatattag gacttccaca ccaactagta atatgacaat aaattcaaga 14940 tattcttcat gagaatggcc cagctcatgt ttgacagctt atcatcgata agctttaatg 15000 cggtagttta tcacagttaa attgctaacg cagtcaggca ccgtgtatga aatctaacaa 15060 tgcgctcatc gtcatcctcg gcaccgtcac cctggatgct gtaggcatag gcttggttat 15120 gccggtactg ccgggcctct tgcgggatat cgtccattcc gacagcatcg ccagtcacta 15180 tggcgtgctg ctagcgctat atgcgttgat gcaatttcta tgcgcacccg ttctcggagc 15240 actgtccgac cgctttggcc gccgcccagt cctgctcgct tcgctacttg gagccactat 15300 cgactacgcg atcatggcga ccacacccgt cctgtggatc aattctttag tataaatttc 15360 actctgaacc atcttggaag gaccggataa ttatttgaaa tctctttttc aattgtatat 15420 gtgttatgta gtatactctt tcttcaacaa ttaaatactc tcggtagcca agttggttta 15480 aggcgcaaga ctttaattta tcactacgga attggcctat taggcctacc cactagtcaa 15540 ttcgggagga tcgaaacggc agatcgcaaa aaacagtaca tacagaagga gacatgaaca 15600 tgaacatcaa aaaaattgta aaacaagcca cagttctgac ttttacgact gcacttctgg 15660 caggaggagc gactcaagcc ttcgcgaaag aaaataacca aaaagcatac aaagaaacgt 15720 acggcgtctc tcatattaca cgccatgata tgctgcagat ccctaaacag cagcaaaacg 15780 aaaaatacca agtgcctcaa ttcgatcaat caacgattaa aaatattgag tctgcaaaag 15840 gacttgatgt gtgggacagc tggccgctgc aaaacgctga cggaacagta gctgaataca 15900 acggctatca cgttgtgttt gctcttgcgg gaagcccgaa agacgctgat gacacatcaa 15960 tctacatgtt ttatcaaaag gtcggcgaca actcaatcga cagctggaaa aacgcgggcc 16020 gtgtctttaa agacagcgat aagttcgacg ccaacgatcc gatcctgaaa gatcagacgc 16080 aagaatggtc cggttctgca acctttacat ctgacggaaa aatccgttta ttctacactg 16140 actattccgg taaacattac ggcaaacaaa gcctgacaac agcgcaggta aatgtgtcaa 16200 aatctgatga cacactcaaa atcaacggag tggaagatca caaaacgatt tttgacggag 16260 acggaaaaac atatcagaac gttcagcagt ttatcgatga aggcaattat acatccggcg 16320 acaaccatac gctgagagac cctcactacg ttgaagacaa aggccataaa taccttgtat 16380 tcgaagccaa cacgggaaca gaaaacggat accaaggcga agaatcttta tttaacaaag 16440 cgtactacgg cggcggcacg aacttcttcc gtaaagaaag ccagaagctt cagcagagcg 16500 ctaaaaaacg cgatgctgag ttagcgaacg gcgccctcgg tatcatagag ttaaataatg 16560 attacacatt gaaaaaagta atgaagccgc tgatcacttc aaacacggta actgatgaaa 16620 tcgagcgcgc gaatgttttc aaaatgaacg gcaaatggta cttgttcact gattcacgcg 16680 gttcaaaaat gacgatcgat ggtattaact caaacgatat ttacatgctt ggttatgtat 16740 caaactcttt aaccggccct tacaagccgc tgaacaaaac agggcttgtg ctgcaaatgg 16800 gtcttgatcc aaacgatgtg acattcactt actctcactt cgcagtgccg caagccaaag 16860 gcaacaatgt ggttatcaca agctacatga caaacagagg cttcttcgag gataaaaagg 16920 caacatttgc gccaagcttc ttaatgaaca tcaaaggcaa taaaacatcc gttgtcaaaa 16980 acagcatcct ggagcaagga cagctgacag tcaactaata acagcaaaaa gaaaatgccg 17040 atacttcatt ggcattttct tttatttctc aacaagatgg tgaattgact agtgggtaga 17100 tccacaggac gggtgtggtc gccatgatcg cgtagtcgat agtggctcca agtagcgaag 17160 cgagcaggac tgggcggcgg ccaaagcggt cggacagtgc tccgagaacg ggtgcgcata 17220 gaaattgcat caacgcatat agcgctagca gcacgccata gtgactggcg atgctgtcgg 17280 aatggacgat atcccgcaag aggcccggca gtaccggcat aaccaagcct atgcctacag 17340 catccagggt gacggtgccg aggatgacga tgagcgcatt gttagatttc atacacggtg 17400 cctgactgcg ttagcaattt aactgtgata aactaccgca ttaaagctta tcgatgataa 17460 gctgtcaaac atgagaattg atccggaacc cttaatataa cttcgtataa tgtatgctat 17520 acgaagttat taggtccctc gactacgtcg ttaaggccgt ttctgacaga gtaaaattct 17580 tgagggaact ttcaccatta tgggaaatgg ttcaagaagg tattgactta aactccatca 17640 aatggtcagg tcattgagtg ttttttattt gttgtatttt ttttttttag agaaaatcct 17700 ccaatatata aattaggaat catagtttca tgattttctg ttacacctaa ctttttgtgt 17760 ggtgccctcc tccttgtcaa tattaatgtt aaagtgcaat tctttttcct tatcacgttg 17820 agccattagt atcaatttgc ttacctgtat tcctttacat cctccttttt ctccttcttg 17880 ataaatgtat gtagattgcg tatatagttt cgtctaccct atgaacatat tccattttgt 17940 aatttcgtgt cgtttctatt atgaatttca tttataaagt ttatgtacaa atatcataaa 18000 aaaagagaat ctttttaagc aaggattttc ttaacttctt cggcgacagc atcaccgact 18060 tcggtggtac tgttggaacc acctaaatca ccagttctga tacctgcatc caaaaccttt 18120 ttaactgcat cttcaatggc cttaccttct tcaggcaagt tcaatgacaa tttcaacatc 18180 attgcagcag acaagatagt ggcgataggg ttgaccttat tctttggcaa atctggagca 18240 gaaccgtggc atggttcgta caaaccaaat gcggtgttct tgtctggcaa agaggccaag 18300 gacgcagatg gcaacaaacc caaggaacct gggataacgg aggcttcatc ggagatgata 18360 tcaccaaaca tgttgctggt gattataata ccatttaggt gggttgggtt cttaactagg 18420 atcatggcgg cagaatcaat caattgatgt tgaaccttca atgtagggaa ttcgttcttg 18480 atggtttcct ccacagtttt tctccataat cttgaagagg ccaaaacatt agctttatcc 18540 aaggaccaaa taggcaatgg tggctcatgt tgtagggcca tgaaagcggc cattcttgtg 18600 attctttgca cttctggaac ggtgtattgt tcactatccc aagcgacacc atcaccateg 18660 tcttcctttc tcttaccaaa gtaaatacct cccactaatt ctctgacaac aacgaagtca 18720 gtacctttag caaattgtgg cttgattgga gataagteta aaagagagtc ggatgcaaag 18780 ttacatggtc taagttggc gtacaattga agttctttac ggatttttag taaaccttgt 18840 tcaggtctaa cactaccggt accgcgcttg cggaagcatc agcaaataag gccagcacag 18900 ccagcgcagt tgccgctttg gttcctgatt ctgttcttga tgaattaaac aaagcggcac 18960 agtaacaaag gacttcattg ataatttttc ttcaggagga agacatgtca ttcttttcta 19020 cgttaaaaac agctttgtct ttgaaggaga aacttgctgc tactggtgtt cttgttctga 19080 tttgcgcact tgttggtgct gggtttgcat gggaacgtca tcagctaaag caagccatag 19140 agaaaattgg cagtcttgat caggctgtta aggaacgtga taagtcaata atggatctta 19200 accagaccat tgagacgatg aacaaagcag agcaacattt tcacagccag gaagtgaaaa 19260 atgaatcaga acaagccaag tatgctgaca ggcaaatgga acgaaaagct gaagttcaga 19320 aacaactggt tgcggcgggt aatgttcgcc agcgtattcc tgctgacact cagcggttgc 19380 tccgggagtc gatcagcgaa tttaacgccg acgccgacaa aggttaacca ccctgccccc 19440 aaaagtgcat ttatgtgtag gatgccagag tttagcagtg aatattttga tgatctgcca 19500 gcgtatatcc tcgatacaga aacgatgctg atggggatta acaggaagaa tcgcaacgtt 19560 aatgattaca accgagctat tagcggtaac taaaagggat ttttatgtct gataaagtaa 19620 cagtaaagca aactatcaac aaagcgactt caatctacaa aattgagcaa atcactgttg 19680 gcaagccagg atctgaacaa taccgtcgtg ctttcgagct tgccgatcag cttggtttaa 19740 aacacccgga ttgcattgag catgtatttc cgacctatgc tgatgagcaa tgtactcatg 19800 ttcttaccga agaggatttt ttcagcactg aagaacgaga aggcgttgat cgctgcattq 19860 gtgtgatttg ttcttcggta agtgatgagt tattccctaa tgtgcctgaa tatggtggta 19920 ttggatacca attcctgtac gagggcgatg agcttaaatg ctatgaacat ggtcttctca 19980 tcgaaagcgt agaataatac gactcccttc caaccggcta cgttggccgg tttttcactt 20040 atccacatta tccactggat agatccaata atcaggtcca tacagatccc aattagatcc 20100 atatagatcc ctgatcgttg caggccgcgc cacgtctggc ttagaagtgt atcgcgatgt 20160 gtgctggagg gaaaacgatg tgtgctggag ggataaaaat gtgtgctgac gggttgctaa 20220 tgtgtgctgg cgggatatag gatgtgtgtt gacgggaaag cttgggtagt tatcaccact 20280 tataaaaact atccacacaa ttcggaaaaa gtaatatgaa tcaatcattt atctccgata 20340 ttctttacgc agacattgaa agtaaggcaa aagaactaac agttaattca aacaacactg 20400 tgcagcctgt agcgttgatg cgcttggggg tattcgtgcc gaagccatca aagagcaaag 20460 gagaaagtaa agagattgat gccaccaaag cgttttccca gctggagata gctaaagccg 20520 agggttacga tgatattaaa atcaccggtc ctcgactcga tatggatact gatttcaaaa 20580 cgtggatcgg tgtcatctac gcgttcagca aatacggctt gtcctcaaac accatccagt 20640 tatcgtttca ggaattcgct aaagcctgtg gtttcccctc aaaacgtctg gatgcgaaac 20700 tgcgtttaac cattcatgaa tcacttggac gcttgcgtaa caagggtatc gcttttaagc 20760 gcggaaaaga tgctaaaggc ggctatcaga ctggtctgct gaaggtcggg cgttttgatg 20820 ctgaccttga tctgatagag ctggaggctg attcgaagtt gtgggagctg ttccagcttg 20880 attatcgcgt tctgttgcaa caccacgcct tgcgtgccct tccgaagaaa gaagctgcac 20940 aagccattta cactttcatc gaaagccttc cgcagaaccc gttgccgcta tcgttcgcgc 21000 gaatccgtga gcgcctggct ttgcagtcag ctgttggcga gcaaaaccgt atcattaaga 21060 aagcgataga acagcttaaa acaatcggct atctcgactg ttctattgag aagaaaggcc 21120 gggaaagttt tgtaatcgtc cattctcgca atccaaagct gaaactcccc gaataagtgt 21180 gtgctggagg gaaaccgcat taaaaagatg tggctgccg ggaaggcttg tccaatttcc 21240 tgtttttgat gtgcgctgga gggggacgcc cctcagtttg cccagacttt ccctccagca 21300 cacatctgtc catccgcttt tccctccagt gcacatgtaa ttctctgcct ttccotccag 21360 cacacatatt tgataccagc gatccctcca cagcacataa ttcaatgcga cttccctcta 21420 tcgcacatct tagactttta ttctccctoc ageacacato gaagctgccg ggcaagccgt 21480 tctcaccagt tgatagagag tgaagcttgg otgcccattg aagcaggaaa tcaccaaaat 21540 gattcaggct acaacctgaa cgtagaagaa atccgcgtcc tttatgcgtg gaggatgcca 21600 aagcatgttg tgacacactt ggcaaaggag taagcatgca gagaatgcta tgtacaagca 21660 tctacgcata cattattatt ttatgcagca tttttaatta aattcaaaaa tacagcataa 21720 aggatgactt tcgatgagtg attccagcca gcttcacaag gttgctcaaa gagcaaacag 21780 aatgctcaat gttctgactg aacaagtaca gttgcaaaag gatgagctac acgcgaacga 21840 gttttaccag gtctatgcga aagcggcact ggcaaaattg cctctactga ctcgagcgaa 21900 cgttgactat gccgtaagtg aaatggaaga aaagggttat gttttcgata aacgccctgc 21960 tggctcttca atgaaatatg cgatgtcaat tcagaacatc attgacatat atgaacatcg 22020 cggagtgcca aaataccggg atcgctacag cgaagcgtat gtgattttca tctccaatct 22080 taaaggcggt gtgtcaaaaa ctgtatcgac ggtttctctg gcgcatgcaa tgcgtgctca 22140 ccctcatctt cttatggagg atttaaggat tctggttatt gaccttgatc cgcaatcttc 22200 agcaacgatg tttttaagcc ataaacactc tattggtatc gtaaacgcaa catctgcaca 22260 ggctatgttg cagaatgtaa gccgtgaaga gctgttagag gagtttattg ttccttctgt 22320 tgtacctggg gttgacgtta tgcctgcgtc gattgacgat gcctttattg catccgattg 22380 gagagagctg tgcaatgagc atctaccggg tcagaacatc catgctgtcc tgaaagaaaa 22440 tgtgattgat aagctgaaga gcgattatga ctttatcctc gttgatagtg gtcctcacct 22500 tgacgccttc ctgaaaaatg ctttggcctc ggccaatata ctgtttacac ctctgccgcc 22560 agcaactgtc gatttccact catcgcttaa atacgttgcc cgccttcctg agttggtgaa 22620 actcatttcg gatgaaggct gcgagtgcca gcttgcgact aacattggtt ttatgtccaa 22680 gttgagtaac aaggcagacc ataagtattg ccatagcctg gctaaagaag tgttcggtgg 22740 ggatatgctt gatgtcttcc tccctcgcct tgacggtttt gaacgctgcg gcgagtcttt 22800 tgacactgtt atttcagcta acccggcaac gtatgttggt agtgctgatg cattgaagaa 22860 cgcgcgaatt gccgcggaag attttgctaa agcagttttt gaccgtat 22908 SEQ ID NO. 7 <211> 7870 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 7 gtgcactctc agtacaatct gctctgatgc cgcatagtta agccagcccc gacacccgcc 60 aacacccgct gacgcgccct gacgggcttg tctgctcccg gcatccgctt acagacaagc 120 tgtgaccgtc tccgggagct gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc 180 gagacgaaag ggcctcgtga tacgcctatt tttataggtt aatgtcatga taataatggt 240 ttcttagacg tcaggtggca cttttcgggg aaatgtgcgc ggaaccccta tttgtttatt 300 tttctaaata cattcaaata tgtatccgct catgagacaa taaccctgat aaatgcttca 360 ataatattga aaaaggaaga gtatgagtat tcaacatttc cgtgtcgccc ttattccctt 420 ttttgcggca ttttgccttc ctgtttttgc tcacccagaa acgctggtga aagtaaaaga 480 tgctgaagat cagttgggtg cacgagtggg ttacatcgaa ctggatctca acagcggtaa 540 gatccttgag agttttcgcc ccgaagaacg ttttccaatg atgagcactt ttaaagttct 600 gctatgtggc gcggtattat cccgtattga cgccgggcaa gagcaactcg gtagccgcat 660 acactattct cagaatgact tggttgagta ctcaccagtc acagaaaagc atattacgga 720 tggcatgaca gtaagagaat tatgcagtgc tgccataaec atgagtgata acactgcggc 780 caacttactt ctgacaacga thggaggacc gaaggagcta accgcttttt tgcacaacat 840 gggggatcat gtaactcgcc ttgatcgttg ggaaccggag ctgaatgaag ccataccaaa 900 cgacgagcgt gacaccacga tgcctgtagc aatggcaaca acgttgcgca aactattaac 960 tggcgaacta cttactctag cttcccggca acaattaata gactggatgg aggcggataa 1020 agttgcagga ccacttctgc gctcggccct tccggctggc tggtttattg ctgataaatc 1080 tggagccggt gagcgtgggt ctcgcggtat cattgcagca ctggggccag atggtaagcc 1140 ctcccgtatc gtagttatct acacgacggg gagtcaggca actatggatg aacgaaatag 1200 acagatcgct gagataggtg cctcactgat taagcattgg taactgtcag accaagttta 1260 ctcatatata ctttagattg atttaaaact tcatttttaa tttaaaagga tctaggtgaa 1320 gatccttttt gataatctca tgaccaaaat cccttaacgt gagttttcgt tccactgagc 1380 gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat cctttttttc tgcgcgtaat 1440 ctgctgcttg caaacaaaaa aaccaccgct accagcggtg gtttgtttgc cggatcaaga 1500 gctaccaact ctttttccga aggtaactgg cttcagcaga gcgcagatac caaatactgt 1560 tcttctagtg tagcagtagt taggccacca cttcaagaac tctgtagcac cgcctacata 1620 cctcgctctg ctaatcctgt taccagtggc tgctgccagt ggcgataagt cgtgtcttac 1680 cgggttggac tcaagacgat agttaccgga taaggcgcag cggtcgggct gaacgggggg 1740 ttcgtgcaca cagcccagct tggagcgaac gacctacacc gaactgagat acctacagcg 1800 tgagctatga gaaagcgcca cgcttcccga agggagaaag gcggacaggt atccggtaag 1860 cggcagggtc ggaacaggag agcgcacgag ggagcttcca gggggaaacg cctggtatct 1920 ttatagtcct gtcgggtttc gccacctctg aettgagcgt cgatttttgt gatgctcgtc 1980 aggggggcgg agcctatgga aaaacgccag caacgcggcc tttttacggt tcctggcctt 2040 ttgctgqcct tttgctcaca tgttctttcc tgcgttatcc cctgattctg tggataaccg 2100 tattaccgcc tttgagtgag ctgataccgc tcgccgcagc cgaacgaccg agcgcagcga 2160 gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa ccgcctctcc ccgcgcgttg 2220 gccgattcat taatgcagct ggcacgacag gtttcccgac tggaaagcgg gcagtgagcg 2280 caacgcaatt aatgtgagtt agctcactca ttaqgcaccc caggctttac actttatgct 2340 tccggctcgt atgttgtgtg gaattgtgag cggataacaa tttcacacag gaaacagcta 2400 tgaccatgat tacgccaagc tcgcggccgc agtactctgc agattttatg caaaattaaa 2460 gtcttgtgac aacagctttc tccttaagtg caaatatcgc ccattctttc ctcttttcgt 2520 atataaatgc tgtaatagta ggatgtcgta cccgtaaagg tacgacattg aatattaata 2580 tactcctaag tttactttcc caatatttat attaggacgt ccccttcggg taaataaatt 2640 ttagtggcag tggtaccgcc actccctatt ttaatactgc gaaggaggca gttggcaggc 2700 aactcgtcgt tcgcagtata taaatatcca ctaatattta tattcccgta aggggacgtc 2760 ccgaagggga aggggaaaga agcagtcgcc tccttgcgaa aaggtttact tgcccgacca 2820 gtgaaaagca tgctgtaaga tataaatcta acctgaaagg gatgcatttc accataatac 2880 tatacaaatg gtgttaccct ttgaggatca taacggtgct actggaatat atggtctctt 2940 catggataga cgatagccat ttatttaccc attaagggga cattagtggc ctgtcactgc 3000 tccttacgag acgccagtgg acgttcgtcc tagaaaattt atgcgctgcc tagaagcccc 3060 aaaagggaag tttactgact cgttagagcg tgcgctaaca ggtttaaata cttcaatatg 3120 tatattagga cgccggtggc agtggtaccg ccactgccac cgtcggagga cgtcccttac 3180 ggtatattat atactaggat tttaatactc cgaaggaggc agtggcggta ccactgccac 3240 taatatttat attcccgtaa gggacgtcct ccttcggagt atgtaaacat tctaagttta 3300 cttgcccaat atttatatta ggcagttggc aggcaactgc tagctctcct ccttcggagt 3360 atgtaaacat cgcagtatat aaatatccac taatatttat attcccgtaa ggggacgtcc 3420 cgaaggggaa ggggaaggac gtcagtggca gttgcctgcc aactgcctag gcaagtaaac 3480 ttaggagtat ataaatatag gcagtcgcgg taccactgcc actgacgtcc tgccaactgc 3540 ctaggcaagt aaacttaagt ggcactaaaa tgcatttgcc cgaaggggaa ggaggacgcc 3600 agtggcagtg gtaccgccac tgcctacttc ggagtattaa aatcctagta tgtaaatctg 3660 ctagcgcagg aaataaattt tattctattt atatactccg ttaggaggta agtaaacccc 3720 ttccccttcg ggacgtcagt gcagttgcct gccaactgcc taatataaat attagaccac 3780 taaagtttgg caactgccaa ctgttgtcct tcggaggaaa aaaaatggtt aactcgcaag 3840 cagttaacat aactaaagtt tgttacttta ccgaagacgt ttaccctttc tcggttaagg 3900 agacggagac agttgcactg tgactgccta gtatagcaat tttgtttttg tttatatgct 3960 cgacaaaatg actttcataa aaatataaag tagttagcta gttattttat atcactataa 4020 ctagggttct cagaggcacc gaagtcactt gtaaaaatag tactttttaa cttgtttaat 4080 cttcgtgttc ttcaaaagga tcacgtaatt tttttgaagg tggaccaaaa ctaacataaa 4140 ctgaatagcc agttacactt aacagaagaa accataaaaa aaaggtaaag aaaaaagctg 4200 gactttccat agctcattta ataataaaat tattctcttt tcaacatatc tcttagatag 4260 ttcaaaagac ttgacgactg tgtcccacat ttttaaacaa aattaatcta ctcaaaattt 4320 tgccctgaga aagaataact tacttcgttt ttgcagtagc cattcatgtc actttgaaac 4380 tgtccttaca aagttaaaca ttaattaaaa attatttaat ttttatataa caaatattat 4440 attaaataaa aaatgaacaa agaacttcta agatcgtctt tagtgagtaa ttaaagagtt 4500 ttacttacca gacaaggcag ttttttcatt cttttaaagc aggcagttct gaaggggaaa 4560 agggactgcc tactgcggtc ctaggtaaat acatttttat gcaatttatt tcttgtgcta 4620 gtaggtttct atactcacaa gaagcaaccc cttgacgaga gaacgttatc ctcagagtat 4680 ttataatcct gagagggaat gcactgaaga atattttcct tattttttac agaaagtaaa 4740 taaaatagcg ctaataacgc ttaattcatt taatcaatta tggcaacagg aacttctaaa 4800 gctaaaccat caaaagtaaa ttcagacttc caagaacctg gtttagttac accattaggt 4860 actttattac gtccacttaa ctcagaagca ggtaaagtat taccaggctg gggtacaact 4920 gttttaatgg ctgtatttat ccttttattt gcagcattct tattaatcat tttagaaatt 4980 tacaacagtt ctttaatttt agatgacgtt tctatgagtt gggaaacttt agctaaagtt 5040 tcttaatttt atttaacaca aacataaaat ataaaactgt ttgttaaggc tagctgctaa 5100 gtcttctttt cgctaaggta aactaagcaa ctcaaccata tttatattcg gcagtggcac 5160 cgccaactgc cactggcctt ccgttaagat aaacgcgtgg atctcacgtg actagtgata 5220 tctacgtaat cgatgaattc gatcccattt ttataactgg atctcaaaat acctataaac 5280 ccattgttct tctcttttag ctctaagaac aatcaattta taaatatatt tattattatg 5340 ctataatata aatactatat aaatacattt acctttttat aaatacattt accttttttt 5400 taatttgcat gattttaatg cttatgctat cttttttatt tagtccataa aacctttaaa 5460 ggaccttttc ttatgggata tttatatttt cctaacaaag caatcggcgt cataaacttt 5520 agttgcttac gacgcctgtg gacgtccccc ccttcccctt acgggcaagt aaacttaggg 5580 attttaatgc aataaataaa tttgtcctct tcgggcaaat gaattttagt atttaaatat 5640 gacaagggtg aaccattact tttgttaaQa agtgatctta ccactcacta tttttgttga 5700 attttaaact tatttaaaat tctcgagaaa gattttaaaa ataaactttt ttaatctttt 5760 atttattttt tcttttttcg tatggctcgt gaagcggtta tcgccgaagt atcaactcaa 5820 ctatcagagg tagttggcgt catcgagcgc catctcgaac cgacgttgct ggccgtacat 5880 ttgtacggct ccgcagtgga tggcggcctg aagccacaca gtgatattga tttgctggtt 5940 acggtgaccg taaggcttga tgaaacaacg cggcgagctt tgatcaacga ccttttggaa 6000 acttcggctt cccctggaga gagcgagatt ctccgcgctg tagaagtcac cattgttgtg 6060 cacgacgaca tcattccgtg gcgttatcca gctaagcgcg aactgcaatt tggagaatgg 6120 cagcgcaatg acattcttgc aggtatcttc gagccagcca cgatcgacat tgatctggct 6180 atcttgctga caaaagcaag agaacatagc gttgccttgg taggtccagc ggcggaggaa 6240 ctctttgatc cggttcctga acaggatcta tttgaggcgc taaatgaaac cttaacgcta 6300 tggaactcgc cgcccgactg ggctggcgat gagcgaaatg tagtgcttac gttgtcccgc 6360 atttggtaca gcgcagtaac cggcaaaatc gcgccgaagg atgtcgctgc cgactgggca 6420 atggagcgcc tgccggccca gtatcagccc gtcatacttg aagctagaca ggcttatctt 6480 ggacaagaag aagatcgctt ggcctcgcgc gcagatcagt tggaagaatt tgtccactac 6540 gtgaaaggcg agatcactaa ggtagttggc aaataattcc aagcattatc taaaatactc 6600 tgcaggcacg ctagcttgta ctcaagctcg taacgaaggt cgtgaccttg etcgtgaagg 6660 tggcgacgta attcgttcag cttgtaaatg gtctccagaa cttgctgctg catgtgaagt 6720 ttggaaagaa attaaattcg aatttgatac tattgacaaa ctttaatttt tatttttcat 6780 gatgtttatg tgaatagcat aaacatcgtt tttattttta tggtgtttag gttaaatacc 6840 taaacatcat tttacatttt taaaattaag ttctaaagtt atcttttgtt taaatttgcc 6900 tgtctttata aattacgatg tgccagaaaa ataaaatctt agctttttat tatagaattt 6960 atctttatgt attatatttt ataagttata ataaaagaaa tagtaacata etaaagcgga 7020 tgtagcgcgt ttatcttaac ggaaggaatt cggcgcctac gtacccgggt cgcgaggatc 7080 cacgcgttaa tagctcactt ttctttaaat ttaattttta atttaaaggt gtaagcaaat 7140 tgcctgacga gagatccact taaaggatga cagtggcggg otactgccta cttccctccg 7200 ggataaaatt tatttgaaaa acgttagtta cttcctaacg gagcattgac atccccatat 7260 ttatattagg acgtcccctt cgggtaaata aattttagtg gacgtcccct tcgggcaaat 7320 aaattttagt ggacaataaa taaatttgtt gcctgccaac tgcctaggca agtaaacttg 7380 ggagtattaa aataggacgt cagtggcagt tgcctgccaa ctgcctatat ttatatactg 7440 cgaagcaggc agtggcggta ccactgccac tggcgtccta atataaatat tgggcaacta 7500 aagtttatag cagtattaac atcctatatt tatatactcc gaaggaactt gttagccgat 7560 aggcgaggca acaaatttat ttattgtccc gtaaaaggat gcctccagca tcgaagggga 7620 aggggacgtc ctaggccata aaactaaagg gaaatccata gtaactgatg ttataaattt 7680 atagacteca aaaaacagct gcgttataaa taacttctgt taaatatggc caaggggaca 7740 ggggcacttt caactaagtg tacattaaaa attgacaatt caattttttt taattataat 7800 atatatttag taaaatataa caaaaagccc ccatcgtcta ggtagaattc cagctggcgg 7860 ccgccctatg 7870 SEQ ID NO. 8 <211> 1353 <212> DNA <213> Saccharomyces cerevisiae <400> 8 tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggagcg cgtcagcggg 120 tgttggcggg tgtcggggct ggcttaacta tgcggcatca gagcagattg tactgagagt 180 gcaccatacc acagcttttc aattcaattc atcatttttt ttttattctt ttttttgatt 240 tcggtttctt tgaaattttt ttgattcggt aatctccgaa cagaaggaag aacgaaggaa 300 ggagcacaga cttagattgg tatatatacg catatgtagt gttgaagaaa catgaaattg 360 cccagtattc ttaacccaac tgcacagaac aaaaacctgc aggaaacgaa gataaatcat 420 gtcgaaagct acatat.aagg aacgtgctgc tactcatcct agtcctgttg ctgccaagct 480 atttaatatc atgcacgaaa agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac 540 caaggaatta ctggagttag ttgaagcatt aggtcccaaa atttgtttac taaaaacaca 600 tgtggatatc ttgactgatt tttccatgga gggcacagtt aagccgctaa aggcattatc 660 cgccaagtac aattttttac tcttcgaaga cagaaaattt gctgacattg gtaatacagt 720 caaattgcag tactctgcgg gtgtatacag aatagcagaa tgggcagaca ttacgaatgc 780 acacggtgtg gtgggcccag gtattgttag cggtttgaag caggcggcag aagaagtaac 840 aaaggaacct agaggccttt tgatgttagc agaattgtca tgcaagggct ccctatctac 900 tggagaatat actaagggta ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg 960 ctttattgct caaagagaca tgggtggaag agatgaaggt tacgattggt tgattatgac 1020 acccggtgtg ggtttagatg acaagggaga cgcattgggt caacagtata gaaccgtgga 1080 tgatgtggtc tctacaggat ctgacattat tattgttgga agaggactat ttgcaaaggg 1140 aagggatgct aaggtagagg gtgaacgtta cagaaaagca ggctgggaag catatttgag 1200 aagatgcgc cagcaaaact aaaaaactgt attataagta aatgcatgta tactaaactc 1260 acaaattaga gcttcaattt aattatatca gttattaccc tatgcggtgt gaaataccgc 1320 acagatgcgt aaggagaaaa taccgcatca gga 1353 SEQ ID NO. 9 <211> 2474 <212> DNA <213> Saccharomyces cerevisiae <400> 9 tcctgatgcg gtattttctc cttacgcatc tgtgcggtat ttcacaccgc atatcgacgg 60 tcgaggagaa cttctagtat atccacatac ctaatattat tgccttatta aaaatggaat 120 cccaacaatt acatcaaaat ccacattctc ttcaaaatca attgtcctgt acttccttgt 180 tcatgtgtgt tcaaaaacgt tatatttata ggataattat actctatttc tcaacaagta 240 attggttgtt tggccgagcg gtctaaggcg cctgattcaa gaaatatctt gaccgcagtt 300 aactgtggga atactcaggt atcgtaagat gcaagagttc gaatctctta gcaaccatta 360 tttttttcct caacataacg agaacacaca ggggcgctat cgcacagaat caaattcgat 420 gactggaaat tttttgttaa tttcagaggt cgcctgacgc atataccttt ttcaactgaa 480 aaattgggag aaaaaggaaa ggtgagaggc cggaaccggc ttttcatata gaatagagaa 540 gcgttcatga ctaaatgctt gcatcacaat acttgaagtt gacaatatta tttaaggacc 600 tattgttttt tccaataggt ggttagcaat cgtcttactt tctaactttt cttacctttt 660 acatttcagc aatatatat.a tatatttcaa ggatatacca ttctaatgtc tgcccctatg 720 tctgccccta agaagatcgt cgttttgcca ggtgaccacg ttggtcaaga aatcacagcc 780 gaagccatta aggttcttaa agctatttct gatgttcgtt ccaatgtcaa gttcgatttc 840 gaaaatcatt taattggtgg tgctgctatc gatgctacag gtgtcccact tccagatgag 900 gcgctggaag cctccaagaa ggttgatgcc gttttgttag gtgctgtggg tggtcctaaa 960 tggggtaccg gtagtgttag acctgaacaa ggtttactaa aaatccgtaa agaacttcaa 1020 ttgtacgcca acttaagacc atgtaacttt gcatccgact ctcttttaga cttatctcca 1080 atcaagccac aatttgctaa aggtactgac ttcgttgttg tcagagaatt agtgggaggt 1140 atttactttg gtaagagaaa ggaagacgat ggtgatggtg tcgcttggga tagtgaacaa 1200 tacaccgttc cagaagtgca aagaatcaca agaatggccg ctttcatggc cctacaacat 1260 gagccaccat tgcctatttg gtccttggat aaagctaatg ttttggcctc ttcaagatta 1320 tggagaaaaa ctgtggagga aaccatcaag aacgaattcc ctacattgaa ggttcaacat 1380 caattgattg attctgccgc catgatccta gttaagaacc caacccacct aaatggtatt 1440 ataatcacca gcaacatgtt tggtgatatc atctccgatg aagcctccgt tatccCaggt 1500 tccttgggtt tgttgccatc tgcgtccttg gcctctttgc cagacaagaa caccgcattt 1560 ggtttgtacg aaccatgcca cggttctgct ccagatttgc caaagaataa ggttgaccct 1620 atcgccacta tcttgtctgc tgcaatgatg ttgaaattgt cattgaactt gcctgaagaa 1680 ggtaaggcca ttgaagatgc agttaaaaag gttttggatg caggtatcag aactggtgat 1740 ttaggtggtt ccaacagtac caccgaagtc ggtgatgctg tcgccgaaga agttaagaaa 1800 atccttgctt aaaaagattc tcttttttta tgatatttgt acataaactt tataaatgaa 1860 attcataata gaaacgacac gaaattacaa aatggaatat gttcataggg tagacgaaac 1920 tatatacgca atctacatac atttatcaag aaggagaaaa aggaggatag taaaggaata 1980 caggtaagca aattgatact aatggctcaa cgtgataagg aaaaagaatt gcactttaac 2040 attaatattg acaaggagga gggcaccaca caaaaagtta ggtgtaacag aaaatcatga 2100 aactacgatt cctaatttga tattggagga ttttctctaa aaaaaaaaaa atacaacaaa 2160 taaaaaacac tcaatgacct gaccatttga tggagtttaa gtcaatacct tcttgaacca 2220 tttcccataa tggtgaaagt tccctcaaga attttactct gtcagaaacg gccttacgac 2280 gtagtcgata tggtgcactc tcagtacaat ctgctctgat gccgcatagt taagccagcc 2340 ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc cggcatccgc 2400 ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt caccgtcatc 2460 accgaaacgc gcga 2474 SEQ ID NO. 10 <211> 1177 <212> DNA <213> Saccharomyces cerevisiae <400> 10 aattcccgtt ttaagagctt ggtgagcgct aggagtcact gccaggtatc gtttgaacac 60 ggcattagtc agggaagtca taacacagtc ctttcccgca attttctttt tctattactc 120 ttggcctcct ctagtacact ctatattttt ttatgcctcg gtaatgattt tcattttttt 180 ttttccccta gcggatgact cttttttttt cttagcgatt ggcattatca cataatgaat 240 tatacattat ataaagtaat gtgattectt cgaagaatat actaaaaaat gagcaggcaa 300 gataaacgaa ggcaaagatg acagagcaga aagccctagt aaagcgtatt acaaatgaaa 360 ccaagattca gattgcgatc tctttaaagg gtggtcccct agcgatagag cactcgatct 420 tcccagaaaa agaggcagaa gcagtagcag aacaggccac acaatcgcaa gtgattaacg 480 tccacacagg tatagggttt ctggaccata tgatacatgc tctggccaag cattccggct 540 ggtcgctaat cgttgagtgc attggtgact tacacataga cgaccatcac accactgaag 600 actgcgggat tgctctcggt caagctttta aagaggccct actggcgcgt ggagtaaaaa 660 ggtttggatc aggatttgcg cctttggatg aggcactttc cagagcggtg gtagatcttt 720 cgaacaggcc gtacgcagtt gtcgaacttg gtttgcaaag ggagaaagta ggagatctct 780 cttgcgagat gatcccgcat tttcttgaaa gctttgcaga ggctagcaga attaccctcc 840 acgttgattg tctgcgaggc aagaatgatc atcaccgtag tgagagtgcg ttcaaggctc 900 ttgcggttgc cataagagaa gccacctcgc ccaatggtac caacgatgtt ccctccacca 960 aaggtgttct tatgtagtga caccgattat ttaaagctgc agcatacgat atatatacat 1020 gtgtatatat gtatacctat gaatgtcagt aagtatgtat acgaacagta tgatactgaa 1080 gatgacaagg taatgcatca ttctatacgt gtcattctga acgaggcgcg ctttcctttt 1140 ttctttttgc tttttctttt tttttctctt gaactcg 1177 SEQ ID NO. 13.
<211> 3008 <212> DNA <213> Saccharomyces cerevisiae <400> 11 tgggcaattt catgtttctt caacactaca tatgcgtata tataccaatc taagtctgtg 60 ctccttcctt cgttcttcct tctgttcgga gattaccgaa tcaaaaaaat ttcaaggaaa 120 ccgaaatcaa aaaaaagaat aaaaaaaaaa tgatgaattg aaaccccccc cccccccccc 180 gatgagccgc gtgcggctgc tggagatgc ggacgcgatg gatatgttct gccaagggtt 240 gggtcgacgc taccttaaga gagacgcgtg cggccgcaag cttgcatgcc tgcaggtcga 300 tcgactctag aaatcgatag atctgaatta attcttgaat aatacataac ttttcttaaa 360 agaatcaaag acagataaaa tttaagagat attaaatatt agtgagaagc cgagaatttt 420 gtaacaccaa cataacactg acatctttaa caacttttaa ttatgataca tttcttacgt 480 catgattgat tattacagct atgctgacaa atgactcttg ttgcatggct acgaaccggg 540 taatactaag tgattgactc ttgctgacct tttattaaga actaaatgga caatattatg 600 gagcatttca tgtataaatt ggtgcgtaaa atcgttggat ctctcttcta agtacatcct 660 actataacaa tcaagaaaaa caagaaaatc ggacaaaaca atcaagtatg gattctagaa 720 cagttggtat attaggaggg ggacaattgg gacgtagat tgttgaggca gcaaacaggc 780 tcaacattaa gacggtaata ctagatgctg aaaattctcc tgccaaacaa ataagcaact 840 ccaatgacca cgttaatggc tccttttcca atcctct.tga tatcgaaaaa ctagctgaaa 900 aatgtgatgt gctaacgatt gagattgagc atgttgatgt tcctacacta aagaatcttc 960 aagtaaaaca tcccaaatta aaaatttacc cttctccaga aacaatcaga ttgatacaag 1020 acaaatatat tcaaaaagag catttaatca aaaatgg.at agcagttacc caaagtgttc 1080 ctgtggaaca agccagtgag acgtccctat tgaatgttgg aagagatttg ggttttccat 1140 tcgtcttgaa gtcgaggact ttggcatacg atggaagagg taacttcgtt gtaaagaata 1200 aggaaatgat tccggaagct ttggaagtac tgaaggatcg tcctttgtac gccgaaaaat 1260 gggcaccatt tactaaagaa ttagcagtca tgattgtgag gtctgttaac ggtttagtgt 1320 tttcttaccc aattgtagag actatccaca aggacaatat ttgtgactta tgttatgcgo 1380 ctgctagagt tccggactcc gttcaactta aggcgaagtt gttggcagaa aatgcaatca 1440 aatcttttcc cggttgtggt atatttggtg tggaaatgtt ctatttagaa acaggggaat 1500 tgcttattaa cgaaattgcc ccaaggcctc acaactctgg acattatace attgatgctt 1560 gcgtcacttc tcaatttgaa gctcatttga gatcaatatt ggatttgcca atgccaaaga 1620 atttcacatc tttctccacc attacaacga acgccattat gctaaatgtt cttggagaca 1680 aaeatacaaa agataaagag ctagaaactt gcgaaagagc attggcgact ccaggttcct 1740 cagtgtactt atatggaaaa gagtctagac ctaacagaaa agtaggtcac ataaatatta 1800 ttgcctccag tatggcggaa tgtgaacaaa ggctgaacta cattacaggt agaactgata 1860 ttccaatcaa aatctctgtc gctcaaaagt tggacttgga agcaatggtc aaaccattgg 1920 ttggaatcat catgggatca gactctgact tgccggtaat gtctgccgca tgtgcggttt 1980 taaaagattt tggcgttcca tttgaagtga caatagtctc tgctcataga actccacata 2040 ggatgtcaga atatgatatt tccgcaagca agcgtggaat taaaacaatt atcgctggag 2100 ctggtggggc tgctcacttg ccaggtatgg tggctgcaat gacaccactt cctgtcatcg 2160 gtgtgcccgt aaaaggttct tgtctagatg gagtagattc tttacattca attgtgcaaa 2220 tgcctagagg tgttccagta gctaccgtcg ctattaataa tagtacgaac gctgcgctgt 2280 tgqctgtcag actgcttggc gcttatgatt caagttatac aacgaaaatg gaacagtttt 2340 tattaaagca agaagaagaa gttcttgtca aagcacaaaa gttagaaact gtaggttacg 2400 aagcttatct agaaaacaag taatatataa gtttattgat atacttgtac agcaaataat 2460 tataaaatga tatacctatt ttttaggctt tgttatgatt acatcaaatg tggacttcat 2520 acatagaaat caacgcttac aggtgtcctt ttttaagaat ttcatacata agatctctcg 2580 aggatccccg ggtaccgagc tcgaattcgc ggccgcccgc gggttaaccc tagggcatgc 2640 actagtggCc taattggccg acgtcaggtg gcacttttcg gggaaatgtg cgcggaaccc 2700 ctatttgttt atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct 2760 gataaatgct tcaataatat tgaaaaagga agagtatgag tattcaacat ttccgtgtcg 2820 cccttattcc cttttttgcg gcattttgcc ttcctgtttt tgctcaccca gaaacgctgg 2880 tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt gggttacatc gaactggatc 2940 taaacagcgg taagatcctt gagagttttc gccccgaaga acgttttcca atgatgagca 3000 cttttaaa 3008 SEQ ID NO. 12 <211> 4879 <212> DNA <213> Saccharoinyces cerevisiae <400> 12 agcagttgct ttctcctatg ggaagagctt tctaagtctg aagaagtaaa cagttctttg 60 ctatttcaca cttcctggtt gatggtcact tgctgcctga aatatatata tatgtatgac 120 atatgtactt gttttctttt ttgtgccttt gttacgtcta tattcattga aactgattat 180 tcgattttct tcttgctgac cgcttctaga ggcatcgcac agttttagcg aggaaaactc 240 ttcaatagtt ttgccagcgg aattccactt gcaattacat aaaaaattcc ggcggttttt 300 cgcgtgtgac tcaatgtcga aatacctgcc taatgaacat gaacatcgcc caaatgtatt 360 tgaagacccg ctgggagaag ttcaagatat ataagtaaca agcagccaat agtataaaaa 420 aaaatctgag tttattacct ttcctggaat ttcagtgaaa aactgctaat tatagagaga 480 tatcacagag ttactcacta atgactaacg aaaaggtctg gatagagaag ttggataatc 540 caactctttc agtgttacca catgactttt tacgcccaca acaagaacct tatacgaaac 600 aagctacata ttcgttacag ctacctcagc tcgatgtgcc tcatgatagt ttttctaaca 660 aatacgctgt cgctttgagt gtatgggctg cattgatata tagagtaacc ggtgacgatg 720 atattgttct ttatattgcg aataacaaaa tcttaagatt caatattcaa ccaacgtggt 780 catttaatga gctgtattct acaattaaca atgagttgaa caagctcaat tctattgagg 840 ccaatttttc ctttgacgag ctagctgaaa aaattcaaag ttgccaagat ctggaaagga 900 cccctcagtt gttccgtttg gcctttttgg aaaaccaaga tttcaaatta gacgagttca 960 agcatcattt agtggacttt gctttgaatt tggataccag taataatgcg catgttttga 1020 acttaattta taacagctta ctgtattcga atgaaagagt aaccattgtt gcggaccaat 1080 ttactcaata tttgactgct gcgctaagcg atccatccaa ttgcataact aaaatctctc 1140 tgatcaccgc atcatccaag gatagtttac ctgatccaac taagaacttg ggctggtgcg 1200 atttcgtggg gtgtattcac gacattttcc aggacaatgc tgaagccttc ccagagagaa 1260 cctgtgttgt ggagactcca acactaaatt ccgacaagtc ccgttctttc acttatcgcg 1320 acatcaaccg cacttctaac atagttgccc attatttgat taaaacaggt atcaaaagag 1380 gtgatgtagt gatgatctat tcttctaggg gtgtggattt gatggtatgt gtgatgggtg 1440 tcttgaaagc cggcgcaacc ttttcagtta tcgaccctgc atatccccca gccagacaaa 1500 ccatttactt aggtgttgct aaaccacgtg ggttgattgt tattagagct gctggacaat 1560 tggatcaact agtagaagat tacatcaatg atgaattgga gattgtttca agaatcaatt 1620 ccatcgctat tcaagaaaat ggtaccattg aaggtggcaa attggacaat ggcgaggatg 1680 ttttggctcc atatgatcac tacaaagaca ccagaacagg tgttgtagtt ggaccagatt 1740 ccaacccaac cctatctttc acatctggtt ccgaaggtat tcctaagggt gttcttggta 1800 gacatttttc cttggctat tatttcaatt ggatgtccaa aaggttcaac ttaacagaaa 1860 atgataaatt cacaatgctg agcggtattg cacatgatcc aattcaaaga gatatgttta 1920 caccattatt tttaggtgcc caattgtatg tccctactca agatgatatt ggtacaccgg 1980 gccgtttagc ggaatggatg agtaagtatg gttgcacagt tacccattta acacctgcca 2040 tgggtcaatt acttactgcc caagctacta caccattccc taagttacat catgcgttct 2100 ttgtgggtga cattttaaca aaacgtgatt gtctgaggtt acaaaccttg gcagaaaatt 2160 gccgtattgt taatatgtac ggtaccactg aaacacagcg tgcagtttct tatttcgaag 2220 ttaaatcaaa aaatgacgat ccaaactttt tgaaaaaatt gaaagatgtc atgcctgctg 2280 gtaaaggtat gttgaacgtt cagctactag ttgttaacag gaacgatcgt actcaaatat 2340 gtggtattgg cgaaataggt gagatttatg ttcgtgcagg tggtttggcc gaaggttata 2400 gaggattacc agaattgaat aaagaaaaat ttgtgaacaa ctggtttgtt gaaaaagatc 2460 actggaatta tttggataag gataatggtg aaccttggag acaattctgg ttaggtccaa 2520 gagatagatt gtacagaacg ggtgatttag gtcgttatct accaaacggt gactgtgaat 2580 gttgcggtag ggctgatgat caagttaaaa ttcgtgggtt cagaatcgaa ttaggagaaa 2640 tagatacgca catttcccaa catccattgg taagagaaaa cattacttta gttcgcaaaa 2700 atgccgacaa tgagccaaca ttgatcacat ttatggtccc aagatttgac aagccagatg 2760 acttgtctaa gttccaaat gatgttccaa aggaggttga aactgaccct atagttaagg 2820 gcttaatcgg ttaccatctt ttatccaagg acatcaggac tttcttaaag aaaagattgg 2880 ctagctatgc tatgccttcc ttgattgtgg ttatggataa actaccattg aatccaaatg 2940 gtaaagttga taagcctaaa cttcaattcc caactcccaa gcaattaaat ttggtagctg 3000 aaaatacagt ttctgaaact gacgactctc agtttaccaa tgttgagcgc gaggttagag 3060 acttatggtt aagtatatta cctaccaagc cagcatctgt atcaccagat gattcgtttt 3120 tcgatttagg tggtcattct atcttggcta ccaaaatgat ttttacctta aagaaaaagc 3180 tgcaagttga tttaccattg ggcacaattt tcaagtatcc aacgataaag gcctttgccg 3240 cggaaattga cagaattaaa tcatcgggtg gatcatctca aggtgaggtc gtcgaaaatg 3300 tcactgcaaa ttatgcggaa gacgccaaga aattggttga gacgctacca agttcgtacc 3360 cctctcgaga atattttgtt gaacctaata gtgccgaagg aaaaacaaca attaatgtgt 3420 ttgttaccgg tgtcacagga tttctqggct cctacatcct tgcagatttg ttaggacgtt 3480 ctccaaagaa ctacagtttc aaagtgtttg cccacgtcag ggccaaggat gaagaagctg 3540 catttgcaag attacaaaag gcaggtatca cctatggtac ttggaacgaa aaatttgcct 3600 caaatattaa agttgtatta ggcgatttat ctaaaagcca atttggtctt tcagatgaga 3660 agtggatgga tttggcaaac acagttgata taattatcca taatggtgcg ttagttcact 3720 gggtttatcc atatgccaaa ttgagggatc caaatgttat ttcaactatc aatgttatga 3780 gcttagccgc cgtcggcaag ccaaagttct ttgactttgt ttcctccact tctactcttg 3840 acactgaata ctactttaat ttgtcagata aacttgttag cgaagggaag ccaggcattt 3900 tagaatcaga cgatttaatg aactctgcaa gcgggctcac tggtggatat ggtcagtcca 3960 aatgggctgc tgagtacatc attagacgtg caggtgaaag gggcctacgt gggtgtattg 4020 tcagaccagg ttacgtaaca ggtgcctctg ccaatggttc ttcaaacaca gatgatttct 4080 tattgagatt tttgaaaggt tcagtccaat taggtaagat tccagatatc gaaaattccg 4140 tgaatatggt tccagtagat catgttgctc gtgttgttgt tgctacgtct ttgaatcctc 4200 ccaaagaaaa tgaattggcc gttgctcaag taacgggtca cccaagaata ttattcaaag 4260 actacttgta tactttacac gattatggtt acgatgtcga aatcgaaagc tattctaaat 4320 ggaagaaatc attggaggcg tctgttattg acaggaatga agaaaatgcg ttgtatcctt 4380 tgctacacat ggtcttagac aacttacctg aaagtaccaa agctccggaa ctagacgata 4440 ggaacgccgt ggcatcttta aagaaagaca ccgcatggac aggtgttgat tggtctaatg 4500 gaataggtgt tactccagaa gaggttggta tatatattgc atttttaaac aaggttggat 4560 ttttacctcc accaactcat aatgacaaac ttccactgcc aagtatagaa ctaactcaag 4620 cgcaaataag tctagttgct tcaggtgctg gtgctcgtgg aagctccgca gcagcttaag 4680 gttgagcatt acgtatgata tgtccatgta caataattaa atatgaatta ggagaaagac 4740 ttagcttctt ttcgggtgat gtcacttaaa aactccgaga ataatatata ataagagaat 4800 aaaatattag ttattgaata agaactgtaa atcagctggc gttagtctgc taatggcagc 4860 ttcatcttgg tttattgta 4879 SEQ ID NO. 13 <211> 1475 <212> DNA.
<213> Artificial Sequence <223> Description of Artificial Sequence Synthetic polynucleotide <400> 13 ttaggtctag agatctgttt agcttgcctc gtccccgccg ggtcacccgg ccagcgacat 60 ggaggcccag aataccctcc ttgacagtct tgacgtgcgc agctcagggg catgatgtga 120 ctgtcgcccg tacatttagc ccatacatcc ccatgtataa tcatttgcat ccatacattt 180 tgatggccgc acggcgcgaa gcaaaaatta cggctcctcg ctgcagacct gcgagcaggg 240 aaacgctccc ctcacagacg cgttgaattg tccccacgcc gcgcccctgt agagaaatat 300 aaaaggttag gatttgccac tgaggttctt ctttcatata cttcctttta aaatcttgct 360 aggatacagt tctcacatca catccgaaca taaacaacca tgggtaagga aaagactcac 420 gtttcgaggc cgcgattaaa ttccaacatg gatgctgatt tatatgggta taaatgggct 480 cgcgataatg tcgggcaatc aggtgcgaca atctatcgat tgtatgggaa gcccgatgcg 540 ccagagttgt ttctgaaaca tggcaaaggt agcgttgcca atgatgttac agatgagatg 600 gtcagactaa actggctgac ggaatttatg cctcttccga ccatcaagca ttttatccgt 660 actcctgatg atgcatggtt actcaccact gcgatccccg gcaaaacagc attccaggta 720 ttagaagaat atcctgattc aggtgaaaat attgttgatg cgctggcagt gttcctgcgc 780 cggttgcatt cgattcctgt ttgtaattgt ccttttaaca gcgatcgcgt atttcgtctc 840 gctcaggcgc aatcacgaat gaataacggt ttggttgatg cgagtgattt tgatgacgag 900 cgtaatggct ggcctgttga acaagtctgg aaagaaatgc ataagctttt gccattctca 960 ccggattcag tcgtcactca tggtgatttc tcacttgata accttatttt tgacgagggg 1020 aaattaatag gttgtattga tgttggacga gtcggaatcg cagaccgata ccaggatctt 1080 gccatcctat ggaactgcct cggtgagttt tctccttcat tacagaaacg gctttttcaa 1140 aaatatggta ttgataatcc tgatatgaat aaattgcagt ttcatttgat gctcqatgag 1200 tttttctaat cagtactgac aataaaaaga ttcttgtttt caagaacttg tcatttgtat 1260 agttttttta tattgtagtt gttctatttt aatcaaatgt tagcgtgatt tatatttttt 1320 ttcgcctcga catcatctgc ccagatgcga agttaagtgc gcagaaagta atatcatgcg 1380 tcaatcgtat gtgaatgctg gtcgctatac tgctgtcgat tcgatactaa cgccgccatc 1440 cagtgtcgaa aacgagctct cgagaaccct taata 1475 SEQ ID NO. 14 <211> 931 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 14 ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat aatattgaaa 60 aaggaagagt atgagtattc aacatttccg tgtcgccott attccctttt ttgcggcatt 120 ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca 180 gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag 240 ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc 300 ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca 360 gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt 420 aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca acttacttct 480 gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt 540 aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga 600 caccacgatg cctgcagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact 660 tactctagct tcccggcaac aattaataga ctggatggag gcggataaag ttgcaggacc 720 acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg gagccggtga 780 gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct cccgtatcgt 840 agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga 900 gataggtgcc tcactgatta agcattggta a 931 SEQ ID NO. 15 <211> 1382 <212> DN?J <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 15 ttctcatgtt tgacagctta tcatcgataa gctttaatgc ggtagtttat cacagttaaa 60 ttgctaacgc agtcaggcac cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg 120 caccgtcacc ctggatgctg taggcatagg cttggttatg ccggtactgc cgggcctctt 180 gcgggatatc gtccattccg acagcatcgc cagtcactat ggcgtgctgc tagcgctata 240 tgcgttgatg caatttctat gcgcacccgt tctcggagca ctgtccgacc gctttggccg 300 ccgcccagtc ctgctcgctt cgctacttgg agccactatc gactacgcga tcatggcgac 360 cacacccgtc ctgtggatcc tctacgccgg acgcatcgtg gccggcatca ccggcgccac 420 aggtgcggtt gctggcgcct atatcgccga catcaccgat ggggaagatc gggctcgcca 480 cttcgggctc atgagcgctt gtttcggcgt gggtatggtg gcaggccccg tggccggggg 540 actgttgggc gccatctcct tgcatgcacc attccttgcg gcggcggtgc tcaacggcct 600 caacctacta ctgggctgct tcctaatgca ggagtcgcat aagggagagc gtcgaccgat 660 gcccttgaga gccttcaacc cagtcagctc cttccggtgg gcgcggggca tgactatcgt 720 cgccgcactt atgactgtct tctttatcat gcaactcgta ggacaggtgc cggcagcgct 780 ctgggtcatt ttcggcgagg accgctttcg ctggagcgcg acgatgatcg gcctgtcgct 840 tgcggtattc ggaatcttgc acgccctcgc tcaagccttc gtcactggtc ccgccaccaa 900 acgtttcggc gagaagcagg ccattatcgc cggcatggcg gccgacgcgc tgggctacgt 960 cttgctggcg ttcgcgacgc gaggctggat ggccttcccc attatgattc ttctcgcttc 1020 cggcggcatc gggatgcccg cgttgcaggc catgctgtcc aggcaggtag atgacgacca 1080 tcagggacag cttcaaggat cgctcgcggc tcttaccagc ctaacttcga tcattggacc 1140 gctgatcgtc acggcgattt atgccgcctc ggcgagcaca tggaacgggt tggcatggat 1200 tgtaggcgcc gccctatacc ttgtctgcct ccccgcgttg cgtcgcggtg catggagccg 1260 ggccacctcg acctgaatgg aagccggcgg cacctcgcta acggattcac cactccaaga 1320 attggagcca atcaattctt gcggagaact gtgaatgcgc aaaccaaccc ttggcagaac 1380 at 1382 SEQ ID NO. 16 <211> 679 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 16 cccaatggca tcgtaaagaa cattttgagg catttcagtc agttgctcaa tgtacctata 60 accagaccgt tcagctggat attacggcct ttttaaagac cgtaaagaaa aataagcaca 120 agttttatcc ggcctttatt cacattcttg cccgcctgat gaatgctcat ocggaattcc 180 gtatggcaat gaaagacggt gagctggtga tatgggatag tgttcaccct tgttacaccg 240 ttttccatga gcaaactgaa acgttttcat cgctctggag tgaataccac gacgatttcc 300 ggcagtttct acacatatat tcgcaagatg tggcgtgtta cggtgaaaac ctggcctatt 360 tccctaaagg gtttattgag aatatgtttt tcgtctcagc caatccctgg gtgagtttca 420 ccagttttga tttaaacgtg gccaatatgg acaacttctt cgcccccgtt ttcaccatgg 480 gcaaatatta tacgcaaggc gacaaggtgc tgatgccgct ggcgattcag gttcatcatg 540 ccgtttgtga tggcttccat gtcggcagaa tgcttaatga attacaacag tactgcgatg 600 agtggcaggg cggggcgtaa tttttttaag gcagttattg gtgcccttaa acgcctggtt 660 gctacgcctg aataagtga 679 SEQ ID NO. 17 <211> 875 <212> DN <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 17 ttgccgggtg acgcacaccg tggaaacggra tgaaggcacg aacccagttg acataagcct 60 gttcggttcg taaactgtaa tgcaagtagc gtatgcgctc acgcaactgg tccagaacct 120 tgaccgaacg cagcggtggt aacggcgcag tggcggtttt catggcttgt tatgactgtt 180 tttttgtaca gtctatgcct cgggcatcca agcagcaagc gcgttacgcc gtgggtcgat 240 gtttcatgtt atggagcagc aacgatgtta cgcagcagca acgatgttac gcagcagggc 300 agtcgcccta aaacaaagtt aggtggctca agtatgggca tcattcgcac atgtaggctc 360 ggccctgacc aagtcaaatc catgcgggct gctcttgatc ttttcggtag tgagttcgga 420 gacgtagcca cctactccca acatcagccg gactccgatt acctcgggaa cttgctccgt 480 agtaagacat tcatcgcgct tgctgccttc gaccaagaag cggttgttgg cgctctcgcg 540 gcttacgttc tgcccaggtt tgagcagccg cgtagtgaga tctatatcta tgatctcgca 600 gtctccggcg agcaccggag gcagggcatt gccaccgcgc tcatcaatct cctcaagcat 660 gaggccaacg cgcttggtgc ttatgtgatc tacgtgcaag cagattacgg tgacgatccc 720 gcagtggctc tctatacaaa gttgggcata cgggaagaag tgatgcactt tgatatcgac 780 ccaagtaccg ccacctaaca attcgttcaa gccgagatcg gcttcccggc cgcggagttg 840 ttcggtaaat tgtcacaacg ccgcggccat cggca 875 SEQ ID NO. 18 <211> 1582 <212> DN <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 18 actagtatga aattaaatgg atatttggta catttaattc cacaaaaatg tccaatactt 60 aaaatacaaa attaaaagta ttagttgtaa acttgactaa cattttaaat tttaaatttt 120 ttcctaatta tatattttac ttgcaaaatt tataaaaatt ttatgcattt ttatatcata 180 ataataaaac ctttattcat ggtttataat ataataattg tgatgactat gcaeaaagca 240 gttctagtcc catatatata actatatata acccgtttaa agatttattt aaaaatatgt 300 gtgtaaaaaa tgcttatttt taattttatt ttatataagt tataatatta aatacacaat 360 gattaaaatt aaataataat aaatttaacg taacgatgag ttgttttttt attttggaga 420 tacacgcata tggtaccagt atctttcaca agtcttttag cagcatctcc accttcacgt 480 gcaagttgcc gtccagctgc tgaagtggaa tcagttgcag tagaaaaacg tcaaacaatt 540 caaccaggta caggttacaa taacggttac ttttattctt actggaatga tggacacggt 600 ggtgttacat atactaatqg acctggtggt caatttagtg taaattggag taactcaggc 660 aattttgttg gaggaaaagg ttggcaacct ggtacaaaga ataaggtaat caatttctct 720 ggtagttaca accctaatgg taattcttat ttaagtgtat acggttggag ccgtaaccca 780 ttaattgaat attatattgt agagaacttt ggtacataca acccttcaac aggtgctact 840 aaattaggtg aagttacttc agatggatca gtttatgata tttatcgtac tcaacgcgta 900 aatcaaccat ctataattgg aactgccact ttctaccaat actggagtgt aagacgtaat 960 catcgttcaa gtggtagtgt taatacagca aaccacttta atgcatgggc tcaacaaggt 1020 ttaacattag gtacaatgga ctatcaaatt gtagctgttg aaggttattt ttcatcaggt 1080 agtgcttcta tcactgttag cggtaccggt gaaaacttat actttcaagg ctcaggtggc 1140 ggtggaagtg attacaaaga tgatgatgat aaaggaaccg gttaatctag acttagcttc 1200 aactaactct agctcaaaca actaattttt ttttaaacta aaataaatct ggttaaccat 1260 acctggttta ttttagttta gtttatacac acttttcata tatatatact taatagctac 1320 cataggcagt tggcaggacg tccccttacg ggacaaatgt atttattgtt gcctgccaac 1380 tgcctaatat aaatattagt ggacgtcccc ttccccttac gggcaagtaa acttagggat 1440 tttaatgctc cgttaggagg caaataaatt ttagtggcag ttgcctcgcc tatcggctaa 1500 caagttcctt cggagtatat aaatatcctg ccaactgccg atatttatat actaggcagt 1560 ggcggtacca ctcgacacta gt 1582 SEQ ID NO. 19 <211> 2017 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotida <400> 19 actagtatga aattaaatgg atatttggta catttaattc cacaaaaatg tccaatactt 60 aaaatacaaa attaaaagta ttagttgtaa acttgactaa cattttaaat tttaaatttt 120 ttcctaatta tatattttac ttgcaaaatt tataaaaatt ttatgcattt ttatatcata 180 ataataaaac ctttattcat ggtttataat ataataattg tgatgactat gcacaaagca 240 gttctagtcc catatatata actatatata acccgtttaa agatttattt aaaaatatgt 300 gtgtaaaaaa tgcttatttt taattttatt ttatataagt tataatatta aatacacaat 360 gattaaaatt aaataataat aaatttaacg taacgatgag ttgttttttt attttggaga 420 tacacgcata tggtaccaca caagttcaca ggtgttaacg ctaaattcca gcaaccagca 480 ttaagaaatt tatctccagt ggtagttgag cgcgaacgtg aggaatttgt aggattcttt 540 ccacaaattg ttcgtgactt aactgaagat ggtattggtc atccagaagt aggtgacgct 600 gtagctcgtc ttaaagaagt attacaatac aacgcacctg gtggtaaatg caatagaggt 660 ttaacagttg ttgcagctta ccgtgaactt tctggaccag gtcaaaaaga cgctgaaagt 720 cttcgttgtg ctttagcagt aggatggtgt attgaattat tccaagcctt tttcttagtt 780 gctgacgata taatggacca gtcattaact agacgtggtc aattatgttg gtacaagaaa 840 gaaggtgttg gtttagatgc aataaatgat tcttttcttt tagaaagctc tgtgtatcgc 900 gttcttaaaa agtattgccg tcaacgtcca tattatgtac atttattaga gctttttctt 960 caaacagctt accaaacaga attaggacaa atgttagatt taatcactgc tcctgtatct 1020 aaggtagatt taagccattt ctcagaagaa cgttacaaag ctattgttaa gtataaaact 1080 gctttctatt cattctattt accagttgca gcagctatgt atatggttgg tatagattet 1140 aaagaagaac atgaaaacgc aaaagctatt ttacttgaga tgggtgaata cttccaaatt 1200 caagatgatt atttagattg ttttggcgat cctgctttaa caggtaaagt aggtactgat 1260 attcaagata acaaatgttc atggttagtt gtgcaatgct tacaaagagt aacaccagaa 1320 caacgtcaac ttttagaaga taattacggt cgtaaagaac cagaaaaagt tgctaaagtt 1380 aaagaattat atgaggctgt aggtatgaga gccgcctttc aacaatacga agaaagtagt 1440 taccgtcgtc ttcaagagtt aattgagaaa cattctaatc gtttaccaaa agaaattttc 1500 ttaggtttag ctcagaaaat atacaaacgt caaaaaggta ccggtgaaaa cttatacttt 1560 caaggctcag gtggcggtgg aagtgattac aaagatgatg atgataaagg aaccggttaa 1620 tctagactta gcttcaacta actctagctc aaacaactaa ttttttttta aactaaaata 1680 aatctggtta accatacctg gtttatttta gtttagttta tacacacttt teatatatat 1740 atacttaata gctaccatag gcagttggca ggacgtcccc ttacgggaca aatgtattta 1800 ttgttgcctg ccaactgcct aatataaata ttagtggacg tccccttccc cttacgggca 1860 agtaaactta gggattttaa tgctccgtta ggaggcaaat aaattttagt ggcagttgcc 1920 tcgcctatcg gctaacaagt tccttcggag tatataaata tcctgccaac tgccgatatt 1980 tatatactag gcagtggcgg taccactcga cactagt 2017 SEQ ID NO. 20 <211> 6521 <212> DN <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic polynucleotide <400> 20 tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct gcaatgatac 60 cgcgagaccc acgctcaccg gctccagatt tatcagcaat aaaccagcca gccggaaggg 120 ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt aattgttgcc 180 gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt gccattgcta 240 caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc ggttcccaac 300 gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc tccttcggtc 360 ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt atggcagcac 420 tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtact 480 caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa 540 tacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt ggaaaacgtt 600 cttcggggcg aaaactctca aggatettac cgctgttgag atccagttcg atgtaaccca 660 ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct gggtgagcaa 720 aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tgttgaatac 780 tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg 840 gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc acatttcccc 900 gaaaagtgcc acctgacgtc taagaaacca ttattatcat gacattaacc tataaaaata 960 ggcgtatcac gaggcccttt cgtctcgcgc gtttcggtga tgacggtgaa aacctctgac 1020 acatgcagct cccggagacg gtcacagctt gtctgtaagc ggatgccggg agcagacaag 1080 cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac tatgcggcat 1140 cagagcagat tgtactgaga gtgcaccata ggcggccgcg gcgcgccgtt ccggatctgc 1200 atcctgcgat gcagatccgg aacataatgg tgcagggcgc tgacttccgc gtttccagac 1260 tttacgaaac acggaaaccg aagaccattc atgttgttgc tcaggtcgca gacgttttgc 1320 agcagcagtc gcttcacgtt cgctcgcgta tcggtgattc attctgctaa ccagtaaggc 1380 aaccccgcca gcctagccgg gtcctcaacg acaggagcac gatcatgcgc acccgtggcc 1440 aggacccaac gctgcccgag atgcgccgcg tgcggctgct ggagatggcg gacgcgatgg 1500 atatgttctg ccaagggttg gtttgcgcat tcacagttct ccgcaagaat tgattggctc 1560 caattcttgg agtggtgaat ccgttagcga ggtgccgccg gcttccattc aggtcgaggt 1620 ggcccggctc catgcaccgc gacgcaacgc ggggaggcag acaaggtata gggcggcgcc 1680 tacaatccat gccaacccgt tccatgtgct cgccgaggcg gcataaatcg ccgtgacgat 1740 cagcggtcca atgatcgaag ttaggctggt aagagccgcg agcgatcctt gaagctgtcc 1800 ctgatggtcg tcatctacct gcctggacag catggcctgc aacgcgggca tcccgatgcc 1860 gccggaagcg agaagaatca taatggggaa ggccatccag cctcgcgtcg cgaacgccag 1920 caagacgtag cccagcgcgt cggccgccat gccggcgata atggcctgct tctcgccgaa 1980 acgtttggtg gcgggaccag tgacgaaggc ttgagcgagg gcgtgcaaga ttccgaatac 2040 cgcaagcgac aggccgatca tcgtcgcgct ccagcgaaag cggtcctcgc cgaaaatgac 2100 ccagagcgct gccggcacct gtcctacgag ttgcatgata aagaagacag tcataagtgc 2160 ggcgacgata gtcatgcccc gcgcccaccg gaaggagctg actgggttga aggctctcaa 2220 gggcatcggt cgagcttgac attgtaggac gtttaaacat taccctgtta tccctaggat 2280 cctacgtata catactccga aggaggacaa atttatttat tgtggtacaa taaataagtg 2340 gtacaataaa taaattgtat gtaaacccct tccccttcgg gacgtcccct tacgggaata 2400 taaatattag tggcagttgc ctgccaacaa atttatttat tgtattaaca taggcagtgg 2460 cggtaccact gccactggcg tcctaatata aatattgggc aactaaagtt tatcgcagta 2520 ttaacatagg cagtggcggt accactgcca ctggcgtcct ccttcggagt atgtaaacct 2580 gctaccgcag caaataaatt ttattctatt ttaatactac aatatttaga ttcccgttag 2640 gggataggcc aggcaattgt cactggcgtc atagtatatc aatattgtaa cagattgaca 2700 ccctttaagt aaacattttt tttaggattc atatgaaatt aaatggatat ttggtacatt 2760 taattccaca aaaatgtcca atacttaaaa tacaaaatta aaagtattag ttgtaaactt 2820 gactaacatt ttaaatttta aattttttcc taattatata ttttacttgc aaaatttata 2880 aaaattttat gcatttttat atcataataa taaaaccttt attcatggtt tataatataa 2940 taattgtgat gactatgcac aaagcagttc tagtcccata tatataacta tatataaccc 3000 gtttaaagat ttatttaaaa atatgtgtgt aaaaaatgct tatttttaat tttattttat 3060 ataagttata atattaaata cacaatgatt aaaattaaat aataataaat ttaacgtaac 3120 gatgagttgt ttttttattt tggagataca cgcaatgaca attgcgatcg gtacatatca 3180 agagaaacgc acatggttcg atgacgctga tgactggctt gtcaagacc gtttcgtatt 3240 cgtaggttgg tcaggtttat tactattccc ttgtgcttac tttgcaactc cggtccggcg 3300 gccgcctcga gacgcttacc agacaaggca gttttttcat tcttttaaag caggcagttc 3360 tgaaggggaa aagggactgc ctactgcggt actaggtaaa tacattttta tgcaatttat 3420 ttcttgtgct agtaggtttc tatactcaca agaagcaacc ccttgacgag agaacgttat 3480 cctcagagta tttataatcc tgagagggaa tgcactgaag aatattttcc ttatttttta 3540 cagaaagtaa ataaaatagc gctaataacg cttaattcat ttaatcaatt atggcaacag 3600 gaacttctaa agctaaacca tcaaaagtaa attcagactt ccaagaacct ggtttagtta 3660 caccattagg tactttatta cgtccactta actcagaagc aggtaaagta ttaccaggct 3720 ggggtacaac tgttttaatg gctgtattta tccttttatt tgcagcattc ttattaatca 3780 ttttagaaat ttacaacagt tctttaatt tagatgacgt ttctatgagt tgggaaactt 3840 tagctaaagt ttcttaattt tatttaacac aaacataaaa tataaaactg tttgttaagg 3900 ctagctgcta agtcttcttt tcgctaaggt aaactaagca actcaaccat atttatattc 3960 ggcagtggca ccgccactgc cactggcctt ccgttaagat aaacgcgtta atagctcact 4020 tttctttaaa tttaattttt aatttaaagg tgtaagcaaa ttgcctgacg agagatccac 4080 ttaaaggatg acagtggcgg gctactgcct acttccctcc gggataaaat ttatttgaaa 4140 aacgttagtt acttcctaac ggagcattga catccccata tttatattag gacgtcccct 4200 tcgtcgacat taccctgtta tccctaggcc ggcctaagaa accattatta tcatgacatt 4260 aacctataaa aataggcgta tcacgaggcc ctttcgtctt caagaaattc ggtcgaaaaa 4320 agaaaaggag agggccaaga gggagggcat tggtgactat tgagcacgtg agtatacgtg 4380 attaagcaca caaaggcagc ttggagtatg tctgttatta atttcacagg tagttctggt 4440 ccattggtga aagtttgcgg cttgcagagc acagaggccg cagaatgtgc tctagattcc 4500 gatgctgact tgctgggtat tatatgtgtg cccaatagaa agagaacaat tgacccggtt 4560 attgcaagga aaatttcaag tcttgtaaaa gcatataaaa atagttcagg cactccgaaa 4620 tacttggttg gcgtgtttcg taatcaacct aaggaggatg ttttggctct ggtcaatgat 4680 tacggcattg atatcgtcca actgcatgga gatgagtcgt ggcaagaata ccaagagttc 4740 ctcggtttgc cagttattaa aagactcgta tttccaaaag actgcaacat actactcagt 4800 gcagcttcac agaaacctca ttcgtttatt cccttgtttg attcagaagc aggtgggaca 4860 ggtgaacttt tgattggaa ctcgatttct gactgggttg gaaggcaaga gagccccgaa 4920 agcttacatt ttatgttagc tggtggactg aagccagaaa atgttggtga tgcgcttaga 4980 ttaaatggcg ttattggtgt tgatgtaagc ggaggtgtgg agacaaatgg tgtaaaagac 5040 tctaacaaaa tagcaaattt cgtcaaaaat gctaagaaat aggttattac tgagtagtat 5100 ttatttaagt attgtttgtg cacttgcctg caggcctttt gaaaagcaag cataaaagat 5160 ctaaacataa aatctgtaaa ataacaagat gtaaagataa tgctaaatca tttggctttt 5220 tgattgattg tacaggaaaa tatacatcgt taattaagcg gccgcgagct tggcgtaatc 5280 atggtcatag ctgtttcctg tgtgaaattg ttatccgctc acaattccac acaacatacg 5340 agccggaagc ataaagtgta aagcctgggg tgcctaatga gtgagctaac tcacattaat 5400 tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg tcgtgccagc tgcattaatg 5460 aatcggccaa cgcgcgggga gaggcggttt gcgtattggg cgctcttccg cttcctcgct 5520 cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 5580 ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg 5640 ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 5700 cccccctgac gagcatcaca aaaatcgacg ctcaagtcag agglggcgaa acccgacagg 5760 actataaaga taccaggcgt ttcccactgg aagctccctc gtgcgctctc ctgttccgac 5820 cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 5880 tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 5940 gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 6000 caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 6060 agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 6120 tagaagaaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 6180 tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 6240 gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 6300 gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 6360 aaggatattc acatagatca ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 6420 atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc 6480 gatctgtcta tttcgttcat ccatagttgc ctgactcccc g 652].
SEQ ID NO. 21 <211> 46 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 21 ttggttgcgg ccgcttaatt aacgatgtat attttcctgt acaatc 46 SEQ ID NO. 22 <211> 58 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 22 gtttaaacat taccctgtta tccctaggcc ggcctaagaa accattatta tcatgaca 58 SEQ ID NO. 23 <211> 58 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 23 ggccggccta gggataacag ggtaatgttt aaacgtccta caatgtcaag ctcgaccg 58 SEQ ID NO. 24 <211> 46 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 24 ttggttgcgg ccgcggcgcg ccgttccgga tctgcatcgc aggatg 46 SEQ ID NO. 25 <211> 54 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 25 ttggtttag-g gataacaggg taatgtcgac aacatgctaa gtttacttgc ccga 54 SEQ ID NO. 26 <211> 52 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 26 actccggtcc ggcggccgcc tcgagacgac ttgtccgctt catcagacac gg 52 SEQ ID NO. 27 <211> 52 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 27 cgtctcgagg cggccgccgg accggagttg caaagtaagc acaagggaat ag 52 SEQ ID NO. 28 <211> 59 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 28 tggttattac cctgttatcc ctaggatcct acgtatacat actccgaagg aggacaaat 59 SEQ ID NO. 29 <211> 48 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 29 cgtctcgagg cggccgccgg accggagtca tccgccccat ctaataaa 48 SEQ ID NO. 30 <211> 56 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 30 ttggttatta ccctgttatc cctaggatcc tacgtacagt ggcggtacca caataa 56 SEQ ID NO. 31 <211> 53 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 31 ttggtttagg gataacaggg taatgtcgac gtatgtaaac cccttcgggc aac 53 SEQ ID NO. 32 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 32 actccggtcc ggcggccgcc tcgagacgcc gtaaacagat aggaatgacg 50 SEQ ID NO. 33 <211> 48 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 33 cgtctcgagg cggccgccgg accggagtga atccaggcat cttgggta 48 SEQ ID NO. 34 <211> 56 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 34 ttggttatta ccctgttatc cctaggatcc tacgtaggga aaggtgcaac tacctg 56 SEQ ID NO. 35 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 35 ttggtttagg gataacaggg taatgtcgac aacatgcttg gcactggttt 50 SEQ ID NO. 36 <211> 54 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 36 actccggtcc ggcggccgcc tcgagacgtg gtaatttatt tggtaatttg gtca 54 SEQ ID NO. 37 <211> 48 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 37 cgtctcgagg cggccgccgg accggagtaa ccaaccattg tgtgacca 48 SEQ ID NO. 38 <211> 56 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 38 ttggttatta ccctgttatc cctaggatcc tacgtaagag tacgggatgt gggatg 56 SEQ ID NO. 39 <211> 53 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 39 ttggtttagg gataacaggg taatgtcgac ccataagtaa actccctttt gga 53 SEQ ID NO. 40 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 40 actccggtcc ggcggccgcc tcgagacgta aaattgtttg tgtggtctgg 50 SEQ ID NO. 41 <211> 52 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 41 cgtctcgagg cggccgccgg accggagtaa atgtaacttt tgttgtcgat cc 52 SEQ ID NO. 42 <211> 60 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 42 ttggttatta ccctgttatc cctaggatec tacgtagggt aaataaattt tagtggacgt 60 SEQ ID NO. 43 <211> 54 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 43 ttggtttagg gataacaggg taatgtcgac gaaggggacg tcctaatata aata 54 SEQ ID NO. 44 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 44 actccggtCc ggcggccgcc tcgagacgct taccagacaa ggcagttttt 50 SEQ ID NO. 45 <211> 48 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 45 cgtctcgagg cggccgccgg accggagtgc tgctggttat gcagttga 48 SEQ ID NO. 46 <211> 56 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 46 ttggttatta ccctgttatc cctaggatcc tacgtagagg accaaatcct gcgtta 56 SEQ ID NO. 47 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 47 ttggtttagg gataacaggg taatgtcgac tttgcttgcc tacaagagca 50 SEQ ID NO. 48 <211> 48 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 48 actccggtcc ggcggccgcc tcgagacgtt gcattaaaat ccggaagg 48 SEQ ID NO. 49 <211> 36 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 49 ttggttcccg ggtcgcgcgt ttcggtgatg acggtg 36 SEQ ID NO. 50 <211> 42 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 50 ttggttgtcg acccgcggtg atgcggtatt ttctccttac gc 42 SEQ ID NO. 51 <211> 36 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 51 ttggttcccg ggtcctgatg cggtattttc tcctta 36 SEQ ID NO. 52 <211> 36 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 52 ttggttcccg ggtcgcgcgt ttcggtgatg acggtg 36 SEQ ID NO. 53 <211> 36 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 53 ttggttcccg ggaagcttgc atgcctgcag gtcgat 36 SEQ ID NO. 54 <211> 36 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 54 ttggttcccg ggagcagttg ctttctccta tgggaa 36 SEQ ID NO. 55 <211> 36 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 55 ttggttcccg ggttaggtct agagatctgt ttagct 36 SEQ ID NO. 56 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 56 ttggttgtcg acggccggcc actagttcgc gcgtttcggt gatgacggtg 50 SEQ ID NO. 57 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 57 ttggttgtcg acggccggcc actagttgat gcggtatttt ctccttacgc 50 SEQ ID NO. 58 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 58 ttggttgtcg acggccggcc actagtgatc ctcgagagat cttatgtatg 50 SEQ ID NO. 59 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 59 ttggttgtcg acggccggcc actagttaca ataaaccaag atgaagctgc 50 SEQ ID NO. 60 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 60 ttggttgtcg acggccggcc actagttatt aagggttctc gagagctcgt 50 SEQ ID NO. 61 <211> 39 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 61 ttggttcccg gggatatcaa tacattcaaa tatgtatcc 39 SEQ ID NO. 62 <211> 41 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 62 ttggttcccg gggatatcat ccttttaaat taaaaatgaa g 43.
SEQ ID NO. 63 <211> 42 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 63 ttggttcccg gggatatctt ctcatgtttg acagcttatc at 42 SEQ ID NO. 64 <211> 42 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 64 aaccaacccg gggatatcat gttctgccaa gggttggttt go 42 SEQ ID NO. 65 <211> 42 <212> DNP <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 65 ttggttcccg gggatatccc caatccaggt cctgaccgtt ct 42 SEQ ID NO. 66 <211> 42 <212> DMA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 66 aaccaacccg gggatatctc acttattcag gcgtagcaac ca 42 SEQ ID NO. 67 <211> 42 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 67 ttggttcccg gggatatctt gccgggtgac gcacaccgtg ga 42 SEQ ID NO. 68 <211> 42 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 68 aaccaacccg gggatatctg ccgatggccg cggcgttgtg ac 42 SEQ ID NO. 69 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 69 catactactc agtgcagctt cac 23 SEQ ID NO. 70 <211> 25 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 70 gtgaaggagc atgttcggca cacag 25 SEQ ID NO. 71 <211> 25 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 71 ctgtgtgccg aacatgctcc ttcac 25 SEQ ID NO. 72 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 72 ttgtcatatt actagttggt gtgg 24 SEQ ID NO. 73 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 73 ggtcggcgac aactcaatcg acag 24 SEQ ID NO. 74 <211> 23 <212> DN <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 74 caacggatgt tttattgcct ttg 23 SEQ ID NO. 75 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 75 gcaaggattt tcttaacttc ttcg 24 SEQ ID NO. 76 <211> 25 <212> DNP <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 76 atgaagtcct ttgttactgt gccgc 25 SEQ ID NO. 77 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 77 caggaattcg ctaaagcctg tgg 23 SEQ ID NO. 78 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 78 gagaataaaa gtctaagatg tgcg 24 SEQ ID NO. 79 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 79 gacatatatg aacatcgcgg agtg 24 SEQ ID NO. 80 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 80 cttcaatgca tcagcactac caac 24 SEQ ID NO. 81 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 81 ggtcagattg ccctgtcgtt etc 23 SEQ ID NO. 82 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artifj.cial Sequence: Synthetic primer <400> 82 cagtttcatt tgatgctcga tgag 24 SEQ ID NO. 83 <211> 25 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 83 ggtagaattg tccgttagtt gttta 25 SEQ ID NO. 84 <211> 25 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 84 aacagacgta gtaagaacca ccagc 25 SEQ ID NO. 85 <211> 25 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 85 ctccagaagc gttaatgtct ggctt 25 SEQ ID NO. 86 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 86 cgaccatcag ggacagcttc aagg 24 SEQ ID NO. 87 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 87 ggtctccaga acttgctgct 20 SEQ ID NO. 88 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 88 cctatcccct aacgggaatc 20 SEQ ID NO. 89 <211> 22 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 89 agattttgtg taatgccgaa gt 22 SEQ ID NO. 90 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 90 tgccgtaatc attgaccaga 20 SEQ ID NO. 91 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 91 ggtgcgtaaa atcgttggat 20 SEQ ID NO. 92 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 92 tttttcggcg tacaaaggac 20 SEQ ID NO. 93 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 93 ctcgcctatc ggctaacaag 20 SEQ ID NO. 94 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 94 cacaagaagc aaccccttga 20 SEQ ID NO. 95 <211> 23 <212> DN <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 95 aaatttaacg taacgatgag ttg 23 SEQ ID NO. 96 <211> 23 <212> DM <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 96 gcactacctg atgaaaaata acc 23 SEQ ID NO. 97 <211> 23 <212> DN <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 97 ggaaggggac gtaggtacat aaa 23 SEQ ID NO. 98 <211> 23 <212> DNP <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 98 ttagaacgtg ttttgttccc aat 23 SEQ ID NO. 99 <211> 22 <212> DMPk <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic primer <400> 99 cgttcttctg agaaatggct ta 22

Claims (24)

  1. CLAIMSWe claim: I. An ex vivo vector comprising: a chioroplast replicating sequence, at least one bacterial element and at least one yeast element.
  2. 2. The vector of claim 1, wherein said bacterial element is selected from the group consisting of a bacterial origin of replication, an antibiotic resistance marker, an auxotrophic marker, a bacterial structural gene, or a combination thereof.
  3. 3. The vector of claim 1, wherein said yeast element is selected from the group consisting of an autonomously replicating sequence, an antifungal resistance gene, an origin of replication, an auxotrophic marker, a yeast structural gene, or a combination thereof.
  4. 4. The vector of claim 1, wherein said chloroplast replicating sequence is derived from a non-vascular photosynthetic organism.
  5. 5. The vector of claim 4, wherein said organism is a microalga or macroalga.
  6. 6. The vector of claim 5, wherein said alga is C. reinhardtii.
  7. 7. The vector of claim 1, wherein said polynucleotide is at least 40 kb.
  8. 8. The vector of claim 1, further comprising one or more chloroplast selectable markers.
  9. 9. The vector of claim 8, wherein said chioroplast, selectable marker is selected from the group consisting of an auxotrophic marker, an antibiotic resistance marker, or combinations thereof.
  10. 10. The vector of claim 8, wherein said chioroplast selectable marker is a kanamycin resistance gene or a psbA structural gene.
  11. 11. A host cell comprising the vector of claim 1.
  12. 12. The host cell of claim 11, wherein said host cell is a non-vascular photosynthetic organism.
  13. 13. The host cell of claim 1, wherein said host cell is a microalga or macroalga.
  14. 14. The host cell of claim 1, wherein said host cell is C. reinhardtii.
  15. 15. A method for producing a vector with a chloroplast replication sequence comprising: (a) inserting a polynucleotide comprising targeting DNA into a vector, wherein said vector comprises a yeast centromere, a yeast autonomous replicating sequence, and a bacterial origin of replication; (b) transforming an organism with said vector; and (c) capturing a portion of a chioroplast genome comprising a chloroplast origin of replication, thereby producing a vector with said replication sequence.
  16. 16. The method of claim 15, wherein said targeting DNA is chloroplast genomic DNA.
  17. 17. The method of claim 15, wherein said portion of said chioroplast genome is 10-250 kb in length
  18. 18. The method of claim 15, wherein said capturing step occurs by recombination.
  19. 19. The method of claim 18, wherein said portion of a chloroplast genome is co-transformed into said organism with said vector.
  20. 20. The method of claim 18, wherein said recombination occurs in vivo.
  21. 21. The method of claim 15, wherein said organism is eukaryotic.
  22. 22. The method of claim 15, wherein said organism is a non-vascular photosynthetic organism.
  23. 23. The method of claim 15, wherein said organism is a non-vascular photosynthetic organism.
  24. 24. The method of claim 23, wherein said organism is selected from the group consisting of: macroalgae, microalgae, Chorella vulgaris, and Chiamydomonas reinhardtii.The method of claim 15, wherein said organism is non-photosynthetic.26. The method of claim 25, wherein said organism is yeast.27. The method of claim 15, wherein said vector further comprises a nucleic acid which results in the production or increased production of a product.28. The method of claim 27, wherein said product is naturally produced by said organism.29. The method of claim 27, wherein said product is not naturally produced by said organism.30. The method of claim 27, wherein said product is an enzyme, a terpene or a terpenoid.31. An isolated chloroplast comprising the vector of claim 1.
GB0818253A 2008-10-06 2008-10-06 Vector comprising chloroplast replicating sequence Withdrawn GB2464264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0818253A GB2464264A (en) 2008-10-06 2008-10-06 Vector comprising chloroplast replicating sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0818253A GB2464264A (en) 2008-10-06 2008-10-06 Vector comprising chloroplast replicating sequence

Publications (2)

Publication Number Publication Date
GB0818253D0 GB0818253D0 (en) 2008-11-12
GB2464264A true GB2464264A (en) 2010-04-14

Family

ID=40042332

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0818253A Withdrawn GB2464264A (en) 2008-10-06 2008-10-06 Vector comprising chloroplast replicating sequence

Country Status (1)

Country Link
GB (1) GB2464264A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440733A (en) * 2020-02-07 2020-07-24 天津大学 Recombinant saccharomyces cerevisiae for producing terpineol, construction method and application
CN115948450B (en) * 2022-08-01 2024-02-13 深圳大学 Chlamydomonas reinhardtii chloroplast-saccharomyces cerevisiae-escherichia coli shuttle vector and construction method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970000686B1 (en) * 1993-12-29 1997-01-18 농촌진흥청 Dna and vector for transformation of plant cell
US20040177402A1 (en) * 1988-09-26 2004-09-09 Auburn University Genetic engineering of plant chloroplasts
EP1571220A2 (en) * 1997-08-07 2005-09-07 Auburn University Universal chloroplast integration and expression vectors, transformed plants and products thereof
US20060253935A1 (en) * 1997-08-07 2006-11-09 Henry Daniell Expression of human serum albumin insulin in plastids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040177402A1 (en) * 1988-09-26 2004-09-09 Auburn University Genetic engineering of plant chloroplasts
KR970000686B1 (en) * 1993-12-29 1997-01-18 농촌진흥청 Dna and vector for transformation of plant cell
EP1571220A2 (en) * 1997-08-07 2005-09-07 Auburn University Universal chloroplast integration and expression vectors, transformed plants and products thereof
US20060253935A1 (en) * 1997-08-07 2006-11-09 Henry Daniell Expression of human serum albumin insulin in plastids

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Cell, Vol. 36, No. 4, 1984, J-D Rochaix et al., "Construction and characterization of autonomously replicating plasmids in the green unicellular alga Chlamydomonas reinhardii", pages 925-932. *
Folia Microbiologica, Vol. 45, No. 6, 2000, MM El-Sheekh, et al., "Stable chloroplast transformation in Chlamydomonas reinhardtii using microprojectile bombardment", pages 496-504. *
Invitrogen website, pYES-DEST52 vector protocols, available from http://tools.invitrogen.com/content/sfs/manuals/pyesdest52_man.pdf, last modified 20 November 2002 [accessed 29 January 2009]. *
Molecular and General Genetics, Vol. 192, No. 1-2, 1983, H Uchimiya, et al., "Molecular cloning of tobacco nicotiana-tabacum chromosomal and chloroplast DNA segments capable of replication in yeast saccharomyces-cerevisiae", pages 1-4 *
Molecular and General Genetics, Vol. 195, No. 1-2, 1984, T Ohtani, et al., "Location and nucleotide sequence of a tobacco nicotiana-tabacum chloroplast DNA segment capable of replication in yeast saccharomyces-cerevisiae", pages 1-4. *
NATO ASI Series, Series A, Life Sciences, Vol. 83, 1985, J-D Rochaix, et al., "Strategy progress and prospects of transformation in chlamydomonas-reinhardii", pages 579-592. *
Nucleic Acids Research, Vol. 12, No. 9, May 1984, XM Wang, et al., "Cloning and delimiting one chloroplast DNA replicative origin of Chlamydomonas.", pages 3857 - 3872. *

Also Published As

Publication number Publication date
GB0818253D0 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
GB2460351A (en) Vectors comprising essential chloroplast genes
KR101794298B1 (en) Compositions and methods for the assembly of polynuceleotides
KR102147005B1 (en) Fad2 performance loci and corresponding target site specific binding proteins capable of inducing targeted breaks
KR102274445B1 (en) Methods for genomic integration
CN101939434B (en) Dgat genes from yarrowia lipolytica for increased seed storage lipid production and altered fatty acid profiles in soybean
CA2834053C (en) Yeast strains engineered to produce ethanol from glycerol
KR20190088512A (en) Simultaneous gene editing and haploid induction
US20030167538A1 (en) Use of the maize x112 mutant ahas 2 gene and imidazolinone herbicides for selection of transgenic monocots, maize, rice and wheat plants resistant to the imidazolinone herbicides
CN101815432A (en) Plants with altered root architecture, related constructs and methods involving genes encoding nucleoside diphosphatase kinase (NDK) polypeptides and homologs thereof
CA2730126C (en) Plant regulatory sequence
CN101827938A (en) Plants with altered root architecture, involving the RT1 gene, related constructs and methods
IL236992A (en) Genetically modified cyanobacteria producing ethanol
KR20140113997A (en) Genetic switches for butanol production
KR20140099224A (en) Keto-isovalerate decarboxylase enzymes and methods of use thereof
KR20100037031A (en) Gene knockout mesophilic and thermophilic organisms, and methods of use thereof
KR20130032897A (en) Production of alcohol esters and in situ product removal during alcohol fermentation
BRPI0806354A2 (en) transgender oilseeds, seeds, oils, food or food analogues, medicinal food products or medicinal food analogues, pharmaceuticals, beverage formulas for babies, nutritional supplements, pet food, aquaculture feed, animal feed, whole seed products , mixed oil products, partially processed products, by-products and by-products
CN112204147A (en) Cpf 1-based plant transcription regulatory system
CN113621642A (en) Genetic intelligent breeding system for crop cross breeding seed production and application thereof
CN115997023A (en) Novel resistance genes associated with disease resistance in soybean
CN101918560B (en) Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding LNT2 polypeptides and homologs thereof
CN101868545B (en) Plants with altered root architecture, related constructs and methods involving genes encoding leucine rich repeat kinase (LLRK) polypeptides and homologs thereof
KR20180137558A (en) Structures and vectors for plant transformation in genes
CN114085858B (en) L-serine producing strain and construction method thereof
GB2475435A (en) Producing a product using shuttle vectors containing essential chloroplast genes

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)