CN111440733A - Recombinant saccharomyces cerevisiae for producing terpineol, construction method and application - Google Patents
Recombinant saccharomyces cerevisiae for producing terpineol, construction method and application Download PDFInfo
- Publication number
- CN111440733A CN111440733A CN202010083019.2A CN202010083019A CN111440733A CN 111440733 A CN111440733 A CN 111440733A CN 202010083019 A CN202010083019 A CN 202010083019A CN 111440733 A CN111440733 A CN 111440733A
- Authority
- CN
- China
- Prior art keywords
- terpineol
- recombinant
- artificial sequence
- saccharomyces cerevisiae
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/22—Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01034—Hydroxymethylglutaryl-CoA reductase (NADPH) (1.1.1.34)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01088—Hydroxymethylglutaryl-CoA reductase (1.1.1.88)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01021—Squalene synthase (2.5.1.21), i.e. farnesyl-disphosphate farnesyltransferase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01068—(2Z,6E)-Farnesyl diphosphate synthase (2.5.1.68)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y205/00—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
- C12Y205/01—Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
- C12Y205/01092—(2Z,6Z)-Farnesyl diphosphate synthase (2.5.1.92)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y503/00—Intramolecular oxidoreductases (5.3)
- C12Y503/03—Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
- C12Y503/03002—Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The invention discloses a recombinant saccharomyces cerevisiae for producing terpineol, a construction method and application thereof, wherein the construction method of the recombinant saccharomyces cerevisiae for producing the terpineol comprises the following steps: using a method of homologous recombination, the strain of saccharomyces cerevisiae ATCC: 208352, introducing a truncated terpineol synthase coding gene delta Ts to obtain a recombinant bacterium 1; introducing a truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase encoding gene tHMG1 and an isopentenyl pyrophosphate isomerase encoding gene IDI1 into the recombinant bacterium 1 to obtain a recombinant bacterium 2; experiments prove that the recombinant saccharomyces cerevisiae for producing the terpineol is fermented, so that the yield of the terpineol is high. The invention successfully constructs the recombinant saccharomyces cerevisiae for producing the terpineol. Lays a foundation for the synthesis of terpineol by artificial cells.
Description
Technical Field
The invention relates to the technical field of biology, in particular to a recombinant saccharomyces cerevisiae for producing terpineol, a construction method and application thereof.
Background
Terpineol is a monoterpene alcohol compound with 10 carbon atom skeleton, is the main component of many plant essential oils, and has lilac flavor, and its formate and acetate can be used for preparing essence, and can be used in high-grade solvent and deodorizer, also can be used in medicine, pesticide, plastics, soap and ink industry, and also can be used as color solvent on glassware. At present, the preparation method mainly uses plant extraction or turpentine as a raw material, a small amount of peregal is added into sulfuric acid as an emulsifier, hydration reaction is carried out at normal temperature, so that main component pinene in the turpentine generates hydrated terpene diol, crude terpineol is obtained by dehydration, and fractionation is carried out.
Synthetic biology techniques have attracted considerable attention since their advent, and are a cross-discipline involving biology, genetics, chemistry, computer science, and engineering, with a focus on metabolic flux changes, as opposed to genetic engineering, which involves a large range of genetic engineering. Many terpenoids have high application value, some terpenoids have low content in plants and cannot be well developed and utilized, the preparation by a chemical synthesis method is complicated, the synthesis of plant-derived terpenoids with high added value by a microbial platform becomes a research hotspot of scientists in the field by synthesizing arteannuic acid serving as a precursor of the antimalarial drug artemisinin by saccharomyces cerevisiae; synthesizing anticancer drug taxol precursor taxadiene by using escherichia coli; uses saccharomyces cerevisiae to synthesize the precursor of tanshinone and the like of antibacterial and anti-inflammatory drugs.
However, the synthesis of monoterpene terpineol by using saccharomyces cerevisiae as a chassis is not reported.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provide a recombinant saccharomyces cerevisiae for producing terpineol.
The second object of the present invention is to provide a second terpineol-producing recombinant s.cerevisiae.
The third object of the present invention is to provide a third recombinant s.cerevisiae producing terpineol.
The fourth object of the present invention is to provide a fourth recombinant s.cerevisiae producing terpineol.
The fifth object of the present invention is to provide a fifth terpineol-producing recombinant s.cerevisiae.
The sixth purpose of the invention is to provide a construction method of the recombinant saccharomyces cerevisiae for producing terpineol.
The seventh purpose of the invention is to provide the application of the recombinant saccharomyces cerevisiae for producing the terpineol in the preparation of the terpineol by fermentation.
The technical scheme of the invention is summarized as follows:
a construction method of recombinant saccharomyces cerevisiae for producing terpineol comprises the following steps:
using a method of homologous recombination, the strain of saccharomyces cerevisiae ATCC: 208352, introducing a truncated terpineol synthase coding gene delta Ts to obtain a recombinant bacterium 1;
the nucleotide sequence of the truncated terpineol synthase coding gene delta Ts is shown in SEQ ID NO. 1.
The second construction method of the recombinant saccharomyces cerevisiae for producing the terpineol comprises the following steps:
introducing a truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase encoding gene tHMG1 and an isopentenyl pyrophosphate isomerase encoding gene IDI1 into the recombinant bacterium 1 by utilizing a homologous recombination method to obtain a recombinant bacterium 2;
the nucleotide sequence of the truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase coding gene tHMG1 is shown in SEQ ID NO. 5;
the nucleotide sequence of the isopentenyl pyrophosphate isomerase coding gene IDI1 is shown in SEQ ID NO. 6.
The third construction method of the recombinant saccharomyces cerevisiae for producing the terpineol comprises the following steps:
introducing a mutated farnesyl pyrophosphate synthase encoding gene MERg20 into an ERG20 site in the recombinant bacterium 2 by using a homologous recombination method to obtain a recombinant bacterium 3;
the nucleotide sequence of the mutated farnesyl pyrophosphate synthase encoding gene MErg20 is shown in SEQ ID No. 11.
The fourth construction method of the recombinant saccharomyces cerevisiae for producing the terpineol comprises the following steps:
introducing a fusion protein coding gene ERG20FTs of mutated farnesyl pyrophosphate synthase and truncated terpineol synthase into the recombinant bacterium 3 by using a homologous recombination method to obtain a recombinant bacterium 4;
the nucleotide sequence of the coding gene ERG20FTs is shown in SEQ ID NO. 12.
The fifth construction method of the recombinant saccharomyces cerevisiae for producing terpineol comprises the following steps:
by utilizing a homologous recombination method, introducing a squalene synthase coding gene ERG9 into the recombinant strain 4 to obtain a recombinant strain 5;
the nucleotide sequence of the squalene synthase coding gene ERG9 is shown in SEQ ID NO. 13.
The recombinant saccharomyces cerevisiae for producing terpineol constructed by the methods.
The recombinant saccharomyces cerevisiae for producing terpineol is applied to producing terpineol.
Experiments prove that the recombinant saccharomyces cerevisiae for producing the terpineol disclosed by the invention is fermented, so that the yield of the terpineol is high. The invention successfully constructs the recombinant saccharomyces cerevisiae for producing the terpineol. Lays a foundation for the synthesis of terpineol by artificial cells.
Drawings
FIG. 1 shows the results of GC-MS analysis of terpineol. In FIG. 1, a is a gas chromatogram for detection. A in a is a gas chromatography-mass spectrometry detection spectrogram of W303-1 a; b is a gas chromatography-mass spectrometry detection spectrogram of the recombinant bacterium 1; c is a gas chromatography-mass spectrometry detection spectrogram of the terpineol standard substance; 1 is a chromatographic peak of a terpineol standard substance; and 2 is a chromatographic peak of a product produced by the recombinant bacterium 1. In fig. 1, b is a mass spectrum of a product produced by the recombinant bacterium 1, namely a mass spectrum corresponding to peak 2 in a. In fig. 1, c is a mass spectrum of the terpineol standard, i.e., a mass spectrum corresponding to peak 1 in a.
FIG. 2 is a comparison of terpineol production by recombinant Saccharomyces cerevisiae strains.
Detailed Description
The present invention will be further illustrated by the following specific examples.
The experimental procedures used in the following examples are all conventional ones unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
Saccharomyces cerevisiae W303-1a, American ATCC: 208352, time of purchase, 2016.6 website: https:// www.atcc.org
Example 1 preparation of the respective fragment sources
(1) The gene elements △ TS sequence (truncated △ TS, original TS from grape (Vitisinifera)), MERg20 sequence (mutated ERG20, original ERG20 from Saccharomyces cerevisiae), ERG20FTs sequence (mutated ERG20 and △ TS fusion protein coding gene).
The URA3 sequence, ADE2 sequence, TRP1 sequence, L EU2 sequence and HIS3 sequence are all derived from Saccharomyces cerevisiae (Saccharomyces cerevisiae), are synthesized by the company, are connected to an Escherichia coli plasmid pUC57, and are stored in Escherichia coli.
The nucleotide sequence of △ TS is shown as SEQ ID NO.1, the nucleotide sequence of MERg20 is shown as SEQ ID NO.11, the nucleotide sequence of ERG20FTs (artificial sequence of gene for coding fusion protein) is shown as SEQ ID NO.12, the nucleotide sequence of URA3 is shown as SEQ ID NO.16, the nucleotide sequence of ADE2 is shown as SEQ ID NO.4, the nucleotide sequence of TRP1 is shown as SEQ ID NO.17, the nucleotide sequence of L EU2 is shown as SEQ ID NO.15, and the nucleotide sequence of HIS3 is shown as SEQ ID NO. 14.
(2) The saccharomyces cerevisiae endogenous fragment is obtained by extracting a saccharomyces cerevisiae genome, taking the saccharomyces cerevisiae genome as a template and carrying out PCR amplification.
The extraction method of Saccharomyces cerevisiae genome comprises inoculating Saccharomyces cerevisiae (W303-1a) in liquid YPD medium, culturing overnight at 30 deg.C by shaking table, sucking overnight cultured Saccharomyces cerevisiae into 2M L centrifuge tube, centrifuging at 10000rpm for 1min, discarding supernatant, collecting bottom thallus precipitate, adding quartz sand with volume equal to thallus volume into centrifuge tube, adding STES lysate of 400 μ L and phenol/chloroform/isoamylol of 400 μ L, placing the mixture in oscillator, oscillating for 10min, adding TE solution of 400 μ L into the centrifuge tube after oscillation, mixing well, centrifuging to obtain supernatant, transferring supernatant into new 2M L centrifuge tube, adding 3M NaAc of 1/10 volume and anhydrous ethanol of 2 times volume into the collected supernatant, mixing well, placing at-20 deg.C for 1h, centrifuging at 10000rpm for 10min, observing small amount of white precipitate at the bottom of centrifuge tube, namely DNA, removing supernatant, rinsing with 75% ethanol, ventilating once, adding residual ethanol, and volatilizing at L deg.C, measuring residual ethanol concentration in refrigerator, and measuring residual DNA.
The formulation of the solution used was as follows:
Tris-HCl (50 mmol/L) solution 50m L in 0.1 mol/L Tris solution and 29.2m L in 0.1 mol/L HCl solution were mixed uniformly and then made up to 100m L with water.
EDTA (0.5 mol/L) solution 18.16g Na2EDTA·2H2O was dissolved in water and made to volume of 100m L, and the pH was adjusted to 8.0 with solid NaOH.
The formulation of TE solution was 200ml of Tris-HCl (50 mmol/L) solution and 2m of EDTA (0.5 mol/L) solution (L m), mixed and added with water to a constant volume of 1L.
The STES lysate formulation was prepared by mixing 20m L Tris-HCl (50 mmol/L) solution, 2m L Triton X-100 solution, 0.584g NaCl, 200. mu. L EDTA (0.5 mol/L) solution, and adding water to 100m L volume.
5. Phenol in phenol/chloroform/isoamyl alcohol mixture: chloroform: isoamyl alcohol 25:24: 1.
(3) The invention adopts high fidelity polymerase of Vazyme company to amplify DNA fragments, and the reaction system comprises the following components:
the PCR reaction procedure was as follows:
the Tm value is determined according to the annealing temperature of the primer.
(4) The plasmid preserved in the escherichia coli is extracted by using a small Tiangen plasmid extraction kit, and the steps are as follows:
1. inoculating Escherichia coli into L B liquid culture medium containing antibiotic, culturing, collecting 1-5m L bacterial liquid in a centrifuge tube, centrifuging at 12000rpm for 1min, discarding supernatant, and collecting thallus at the bottom of the centrifuge tube (the supernatant is removed as much as possible);
2. the adsorption column is balanced by B L equilibrium liquid of 500 mu L, and centrifuged at 12000rpm, and waste liquid in the collection tube is poured out;
3. adding 250 mu L of P1 solution into a centrifuge tube with the bacterial sediment, and completely suspending the bacterial sediment;
4. adding 250 mu L P2 lysis solution into the centrifuge tube, turning the centrifuge tube gently to make the thalli fully lysed, wherein the bacterial liquid becomes clear at the moment, and the lysis time cannot be too long to avoid plasmid damage;
5. adding 350 mu L P3 solution into the centrifuge tube, turning the centrifuge tube up and down to precipitate the protein;
6. centrifuging the centrifuge tube at 12000rpm for 10min, centrifuging the precipitate to the bottom completely, collecting supernatant, placing in adsorption column balanced with B L solution, adsorbing in refrigerator at-20 deg.C for 5min, centrifuging at 12000rpm for 1min, and removing waste liquid in the collection tube;
7. rinsing the adsorption column with the adsorbed plasmid twice with PW solution containing alcohol to remove impurities, centrifuging at 12000rpm for 2min to remove PW as much as possible, and placing the adsorption column in ventilation position to volatilize alcohol.
8. 50-100 μ L deionized water was added to the adsorption column, and the column was placed at 37 ℃ for 10min to dissolve the plasmid in water, and the column was placed in a centrifuge tube and centrifuged at 12000rpm for 2min to collect the plasmid.
Example 2 construction of recombinant Saccharomyces cerevisiae (recombinant bacterium 1) producing terpineol
(1)URA3-up,PTef1-ΔTs-TCyc1Construction of HIS3-URA3-down
PCR was performed using the PCR templates and primers described in Table 1, respectively, to obtain DNA fragments: m1(URA3-up), M2 (P)Tef1),M3(ΔTs),M4(TCyc1),M5(HIS3),M6(URA3-down)。
TABLE 1 primer sequences
The fragments M2, M3 and M4 were fused into expression cassette P by fusion PCRTef1-ΔTs-TCyc1;
The fragments M5 and M6 were fused into the HIS3-URA3-down fragment by fusion PCR.
The fusion PCR method includes mixing the fused fragments in equimolar ratio and in total amount of over 800ng, adding dNTPs, 2 × Phanta Max Buffer, DNA polymerase and deionized water to compound 50u L PCR system, annealing at 60 deg.c and 11cycles, extending time calculated based on the total module length, using the fused fragments as template, PCR amplifying and purifying to obtain URA3-up module, PTef1-ΔTs-TCyc1,HIS3-URA3-down。
(2) Construction of recombinant bacterium 1
1. Inoculating Saccharomyces cerevisiae W303-1a into a test tube YPD, carrying out shaking table overnight culture at 30 ℃, transferring the overnight cultured Saccharomyces cerevisiae into a new test tube YPD liquid culture medium according to the volume ratio of 1/10, carrying out shaking table culture at 30 ℃ for 4-5h to enable the Saccharomyces cerevisiae to reach a logarithmic growth phase, 3, taking 1m L bacterial liquid in a sterile centrifuge tube, centrifuging at 5000rpm for 3min, removing supernatant, collecting bottom bacterial liquid, washing the bacterial liquid once with 1m L sterile water, 4, resuspending the washed Saccharomyces cerevisiae with 1m L100 mM L iAc, standing for 5min, centrifuging at 5.5000rpm for 3min, removing L iAc solution, reserving bottom Saccharomyces cerevisiae, 6, preparing a transformation system in the centrifuge tube containing the Saccharomyces cerevisiae, and specifically adding reagents and the sequence as follows:
the transformed DNA fragment comprises URA3-up, PTef1-ΔTs-TCyc1HIS3-URA3-down, each fragment being greater than 300 ng;
7. wherein the salmon sperm DNA is boiled in boiling water for 5min to melt, and then is rapidly transferred to ice bath for yeast transformation;
8. blowing and sucking the prepared conversion system by a pipette or placing the conversion system on a vortex oscillator to vibrate for 1min to fully and uniformly mix the system, placing the system in a 42 ℃ water bath kettle, and thermally exciting for 30 min;
9. centrifuging the yeast after heat shock, removing supernatant with a pipette, adding 1m L YPD medium, and recovering in a shaker at 30 deg.C for 2 hr;
10.5000rpm for 3min, removing YPD liquid medium, and washing with sterile water for 2 times;
11. 100 μ L sterile water was added, the yeast cells were resuspended and plated on SC selection medium lacking histidine and incubated in an incubator at 30 ℃ for 2-3 d.
12. After single bacteria grow out, colony PCR is carried out, and crude extraction is needed to be carried out on the genome, the invention adopts a freeze-thaw method to carry out crude extraction on the saccharomyces cerevisiae genome, firstly, the single bacteria colony is picked into 10 mu L NaOH solution with the concentration of 10mM, boiled in boiling water for 10min, then put into a refrigerator with the temperature of minus 20 ℃ for freezing for 10min, and repeated freeze-thaw is carried out for three times, namely, the genome is crude extracted, the crude extract can be directly used as a template, colony verification is carried out, and the correct strain is verified to be the recombinant bacteria 1 (T1).
SC selection medium formulation 6.7 g/L Yeast Nitrogen Base (YNB), 20 g/L glucose or galactose, 2 g/L corresponding default amino acid mixture.
The starting strains Saccharomyces cerevisiae W303-1a of the invention lack genes L eu2, Trp1, Ura3, Ade2 and His3 and are used for screening and marking, so when preparing the SC selective medium, corresponding components are supplemented as required, and the final concentrations are leucine L eu 0.1 g/L, tryptophan Trp 0.02 g/L, histidine His 0.02 g/L, uracil Ura 0.02 g/L and adenine Ade 0.02 g/L.
Example 3 construction of recombinant Saccharomyces cerevisiae (recombinant bacterium 2) producing terpineol
(1)-up,PPgk1-tHMG1-TPgk1,PTdh3-IDI1-TAdh1Construction of L EU2- -down
PCR was performed using the PCR templates and primers described in Table 2, respectively, to obtain DNA fragments: m7(-up), M8 (P)Pgk1),M9(tHMG1),M10(TPgk1),M11(PTdh3),M12(IDI1),M13(TAdh1) M14 (L EU2), the nucleotide sequence of M15(-down) tHMG1 is shown as SEQ ID NO.5, and the nucleotide sequence of IDI1 is shown as SEQ ID NO. 6;
TABLE 2 primer sequences
The fragments M8, M9 and M10 were fused into expression cassette P by fusion PCRPgk1-tHMG1-TPgk1;
The fragments M11, M12 and M13 were fused into expression cassette P by fusion PCRTdh3-IDI1-TAdh1;
The fragments M14 and M15 were fused into L EU 2-down fragment by fusion PCR.
The fusion method is described in example 2 (1).
(2) Construction of recombinant bacterium 2(T2)
Fusion module-up, PPgk1-tHMG1-TPgk1,PTdh3-IDI1-TAdh1L EU2- -Down transformation method referring to example 2(2), wherein the starting strain is recombinant bacterium 1 and the screening medium used is a leucine-deficient SC selection medium, recombinant bacterium 2(T2) was obtained.
Example 4 construction of recombinant Saccharomyces cerevisiae (recombinant Strain 3) producing terpineol
(1)ERG20-up,PPgk1-MErg20-TCyc1Construction of URA3-ERG20-down
PCR was performed using the PCR templates and primers described in Table 3, respectively, to obtain DNA fragments: m16(ERG20-up), M17 (P)Pgk1),M18(MErg20),M19(TCyc1),M20(URA3),M21(ERG20-down)。
TABLE 3 primer sequences
The fragments M17, M18 and M19 were fused into expression cassette P by fusion PCRPgk1-MErg20-TCyc1;
The fragments M20 and M21 were fused into URA3-ERG20-down fragment by fusion PCR.
The fusion method is described in example 2 (1).
(2) Construction of recombinant bacterium 3(T3)
Fusion module ERG20-up, PPgk1-MErg20-TCyc1URA3-ERG20-down transformation method refers to example 2(2), wherein the original strain is recombinant strain 2, and the screening culture medium is SC selective culture medium lacking uracil to obtain recombinant strain 3 (T3).
Example 5 construction of recombinant Saccharomyces cerevisiae (recombinant bacterium 4) producing terpineol
(1)rDNA-up,PPgk1-ERG20FTs-TAdh1Construction of TRP1-rDNA-down
PCR was performed using the PCR templates and primers described in Table 4, respectively, to obtain DNA fragments: m22(rDNA-up), M23 (P)Pgk1),M24(ERG20FTs),M25(TAdh1),M26(TRP1),M27(rDNA-down)。
TABLE 4 primer sequences
The fragments M23, M24 and M25 were fused into expression cassette P by fusion PCRPgk1-ERG20FTs-TAdh1;
The fragments M26 and M27 were fused into TRP1-rDNA-down by fusion PCR.
The fusion method is described in example 2 (1).
(2) Construction of recombinant bacterium 4(T4)
Fusion module rDNA-up, PPgk1-ERG20FTs-TAdh1The TRP1-rDNA-down transformation method refers to example 2(2), wherein the original strain is recombinant bacterium 3, and the screening medium is SC selective medium lacking tryptophan, to obtain recombinant bacterium 4 (T4).
Example 6 construction of recombinant Saccharomyces cerevisiae (recombinant Strain 5) producing terpineol
(1)HO-up,PTdh3-ERG9-TAdh1Construction of ADE2-HO-down
PCR was performed using the PCR templates and primers described in Table 4, respectively, to obtain DNA fragments: m28(HO-up), M29 (P)Tdh3),M30(ERG9),M31(TAdh1),M32(ADE2),M33(HO-down)。
The nucleotide sequence of the squalene synthase coding gene ERG9 is shown in SEQ ID NO. 13.
TABLE 5 primer sequences
The fragments M29, M30 and M31 were fused into expression cassette P by fusion PCRTdh3-ERG9-TAdh1;
The fragments M32 and M33 were fused to ADE2-HO-down by fusion PCR.
The fusion method is described in example 2 (1).
(2) Construction of recombinant bacterium 5(T5)
Fusion module HO-up, PTdh3-ERG9-TAdh1The ADE2-HO-down transformation method refers to example 2(2), wherein the starting strain is recombinant bacterium 4, and the screening medium is SC selective medium lacking adenine to obtain recombinant bacterium 5 (T5).
Example 7 production of terpineol by recombinant bacteria
(1) Recombinant bacterium culture and product extraction
Fermentation, extraction and detection of terpineol:
fermenting in 30m L YPD liquid culture medium, inoculating seed liquid, and making initial OD600Adding 3m L n-dodecane after 0.05 h and 12h for two-phase fermentation, fermenting at 30 ℃, 220rpm for 5d, and measuring the yield of terpineol, wherein the terpineol belongs to a monoterpene compound and is easy to volatilize, and in order to reduce volatilization loss in the fermentation process, the invention adds n-dodecane in the fermentation process, performs two-phase fermentation, can directly take the n-dodecane phase for terpineol measurement, performs detection, and filters a sample with a filter membrane with the pore diameter of 0.22 mu m to remove impurities before performing gas phase and gas chromatography-mass spectrometry detection.
The detection conditions of the gas chromatography of the terpineol comprise a chromatographic column DB-SWAX, a nitrogen flow rate of 1m L/min, a sample injection temperature of 250 ℃, a sample injection split ratio of 1:20, a sample injection amount of 1 mu L, a furnace temperature of 80 ℃ for 1min, a temperature rise of 10 ℃/min to 180 ℃, a temperature rise of 30 ℃/min to 250 ℃, an FID detector of 250 ℃, GC-MS detection conditions of the terpineol, a chromatographic condition and a gas chromatography, an ion source temperature of 230 ℃, and a retention time of the terpineol of 50-600 m/z. in an ion scanning range of 11.01 min.
(2) The result of the detection
A. Terpineol was not detected by Saccharomyces cerevisiae W303-1 a;
B. extracting T1 fermentation product from the recombinant bacterium 1(T1), wherein the production of trace terpineol can be detected, and the yield is 100 ug/L;
C. extracting T2 fermentation product from the recombinant bacterium 2(T1) to detect that the terpineol content is 550 ug/L;
D. extracting T3 fermentation product from the recombinant bacterium 3(T3) to detect that the terpineol content is 832 ug/L;
E. extracting T4 fermentation product from the recombinant bacterium 4(T4), wherein the terpineol content can be detected to be 2.39 mg/L;
F. recombinant bacterium 5(T5) is extracted from a T5 fermentation product, and the terpineol content can be detected to be 3.32 mg/L.
The statistics of the results of the recombinant bacteria are shown in FIG. 2.
Example 8 5L tank fermentation of recombinant strain T5:
firstly, inoculating a T5 single colony into 200m L YPD culture medium, culturing for 24h at a shaking table at 30 ℃ and a rotating speed of 220rpm to prepare seed liquid, initially filling the YPD culture medium with a volume of 2L into a fermentation tank, preparing a feed liquid 1L, inoculating the seed liquid into the culture medium for 24h, then starting to supplement the feed liquid, keeping the dissolved oxygen at 40%, controlling the fermentation pH to be 5.5 by using the feed liquid and ammonia water, and fermenting for 120h to obtain the terpineol with the yield of 21.88 mg/L.
The feed supplement liquid comprises 500 g/L glucose and KH2PO49g/L,K2SO43.5g/L,Na2SO40.28g/L,MgSO4·7H2O0.5 g/L, 10ml of microelement mother liquor and 12ml of vitamin mother liquor.
The formula of the microelement mother liquor is as follows: ZnSO4·7H2O 10.2g/L,EDTANa2·2H2O 15g/L,FeSO4·7H2O5.12 g/L, anhydrous CuSO40.5g/L,MnCl2·4H2O 0.5g/L,CoCl2·6H2O 0.86g/L,CaCl2·2H2O3.84g/L,Na2MoO4·2H2O 0.56g/L。
The formula of the vitamin mother liquor comprises 25 g/L of inositol, 0.05 g/L of biotin, 1 g/L of nicotinic acid, 1 g/L of calcium pantothenate, 1 g/L of thiamine HCl, 1 g/L of pyridoxol HCl and 0.2 g/L of p-aminobenzoic acid.
Sequence listing
<110> Tianjin university
<120> recombinant saccharomyces cerevisiae for producing terpineol, construction method and application
<160>77
<170>SIPOSequenceListing 1.0
<210>1
<211>1692
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>1
atggcttcac caagaggtat taaagttaag atcggtaatt ctaactgtga agaaatcatc 60
gttagaagaa ctgcaaacta ccatccaaca atctgggatt acgattacgt tcaatcattg 120
agatctgatt acgttggtga aacttacaca agaagattag ataaattgaa gagagatgtt 180
aagccaatgt tgggtaaagt taagaaacca ttggatcaat tggaattaat cgatgttttg 240
caaagattgg gtatctatta ccatttcaag gatgaaatta aaagaatttt aaattctatc 300
tataatcaat acaatagaca tgaagaatgg caaaaagatg atttgtatgc tactgctttg 360
gagtttagat tgttaagaca acatggttac gatgttccacaagatgtttt tagtagattc 420
aaagatgata caggttcttt taaagcttgt ttgtgtgaag atatgaaggg catgttgtgt 480
ttgtacgaag catcatactt gtgtgttcag ggtgaatcta ctatggaaca agctagagat 540
tttgcacata gacatttggg taaaggtttg gaacaaaaca tcgatcaaaa tttggctatc 600
gaagttaagc atgcattgga attaccattg cattggagaa tgccaagatt ggaagctaga 660
tggttcatcg atgtttacga aaagagacaa gatatgaacc caatcttgtt agaatttgct 720
aagttggatt ttaatatggt tcaagcaact catcaagaag atttgagaca tatgtcatct 780
tggtggtcat ctacaagatt gggtgaaaag ttgaacttcg ctagagatag attgatggaa 840
aatttcttgt ggactgttgg tgttattttc gaaccacaat acggttactg tagaagaatg 900
tctacaaagg ttaacacttt gatcacaatc attgatgatg tttatgatgt ttacggtact 960
atggatgaat tagaattgtt tacagatgtt gttgatagat gggatattaa tgctatggac 1020
ccattgccag aatacatgaa gttgtgtttc ttggcattgt acaactcaac aaacgaaatg 1080
gcttacgatg cattgaagga acatggtttg catatcgttt cttatttgag aaaggcttgg 1140
tcagatttgt gtaagtctta cttgttagaa gcaaagtggt actactcaag atacactcca 1200
tctttgcaag aatacatctc aaattcttgg atctcaatct ctggtccagt tattttggtt 1260
catgcttact ttttggttgc aaacccaatc acaaaggaag ctttgcaatc attggaaaga 1320
taccataaca tcatcagatg gtcatctatg atcttgagat tgtcagatga tttgggtact 1380
tctttagatg aattgaagag aggtgacgtt ccaaagtcta tccaatgtta catgtacgaa 1440
acaggtgctt cagaagaaga tgcaagaaag catacttctt atttgatcgg tgaaacatgg 1500
aagaaattga atgaagatgg tgctgttgaa tcaccattcc cagaaacttt tattggtatc 1560
gcaatgaatt tggctagaat ggcacaatgt atgtatcaac atggtgacgg tcatggtatt 1620
gaatacggtg aaacagaaga tagagttttg tctttgttgg ttgaaccaat cccatcattg 1680
tcttttgaat aa 1692
<210>2
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>2
cacataaaca aacaaaatgg gaaagctatt acaattggc 39
<210>3
<211>43
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>3
cataaatcat aagaaattcg ctcacgctct gtgtaaagtg tat 43
<210>4
<211>2668
<212>DNA
<213> Saccharomyces cerevisiae
<400>4
attaacgtat tacataagtt acaggattca tgcttatggg ttagctattt cgcccaatgt 60
gtccatctga cattactatt ttgcatttta atttaattag aacttgacta gcgcactacc 120
agtatatcat ctcatttccg taaataccaa atgtattata tattgaaagc ttttgaccag 180
gttattataa aagaaacttc atgctcgaaa aagatcattt cgaaaagttg cctagtttca 240
tgaaatttta aagcagtttatataaatttt accttttgat gcggaattga ctttttcttg 300
aataatacat aacttttctt aaaagaatca aagacagata aaatttaaga gatattaaat 360
attagtgaga agccgagaat tttgtaacac caacataaca ctgacatctt taacaacttt 420
taattatgat acatttctta cgtcatgatt gattattaca gctatgctga caaatgactc 480
ttgttgcatg gctacgaacc gggtaatact aagtgattga ctcttgctga ccttttatta 540
agaactaaat ggacaatatt atggagcatt tcatgtataa attggtgcgt aaaatcgttg 600
gatctctctt ctaagtacat cctactataa caatcaagaa aaacaagaaa atcggacaaa 660
acaatcaagt atggattcta gaacagttgg tatattagga gggggacaat tgggacgtat 720
gattgttgag gcagcaaaca ggctcaacat taagacggta atactagatg ctgaaaattc 780
tcctgccaaa caaataagca actccaatga ccacgttaat ggctcctttt ccaatcctct 840
tgatatcgaa aaactagctg aaaaatgtga tgtgctaacg attgagattg agcatgttga 900
tgttcctaca ctaaagaatc ttcaagtaaa acatcccaaa ttaaaaattt acccttctcc 960
agaaacaatc agattgatac aagacaaata tattcaaaaa gagcatttaa tcaaaaatgg 1020
tatagcagtt acccaaagtg ttcctgtgga acaagccagt gagacgtccc tattgaatgt 1080
tggaagagat ttgggttttc cattcgtctt gaagtcgagg actttggcat acgatggaag 1140
aggtaacttc gttgtaaaga ataaggaaat gattccggaa gctttggaag tactgaagga 1200
tcgtcctttg tacgccgaaa aatgggcacc atttactaaa gaattagcag tcatgattgt 1260
gagatctgtt aacggtttag tgttttctta cccaattgta gagactatcc acaaggacaa 1320
tatttgtgac ttatgttatg cgcctgctag agttccggac tccgttcaac ttaaggcgaa 1380
gttgttggca gaaaatgcaa tcaaatcttt tcccggttgt ggtatatttg gtgtggaaat 1440
gttctattta gaaacagggg aattgcttat taacgaaatt gccccaaggc ctcacaactc 1500
tggacattat accattgatg cttgcgtcac ttctcaattt gaagctcatt tgagatcaat 1560
attggatttg ccaatgccaa agaatttcac atctttctcc accattacaa cgaacgccat 1620
tatgctaaat gttcttggag acaaacatac aaaagataaa gagctagaaa cttgcgaaag 1680
agcattggcg actccaggtt cctcagtgta cttatatgga aaagagtcta gacctaacag 1740
aaaagtaggt cacataaata ttattgcctc cagtatggcg gaatgtgaac aaaggctgaa 1800
ctacattaca ggtagaactg atattccaat caaaatctct gtcgctcaaa agttggactt 1860
ggaagcaatg gtcaaaccat tggttggaat catcatggga tcagactctg acttgccggt 1920
aatgtctgcc gcatgtgcgg ttttaaaaga ttttggcgtt ccatttgaag tgacaatagt 1980
ctctgctcat agaactccac ataggatgtc agcatatgct atttccgcaa gcaagcgtgg 2040
aattaaaaca attatcgctg gagctggtgg ggctgctcac ttgccaggta tggtggctgc 2100
aatgacacca cttcctgtca tcggtgtgcc cgtaaaaggt tcttgtctag atggagtaga 2160
ttctttacat tcaattgtgc aaatgcctag aggtgttcca gtagctaccg tcgctattaa 2220
taatagtacg aacgctgcgc tgttggctgt cagactgctt ggcgcttatg attcaagtta 2280
tacaacgaaa atggaacagt ttttattaaa gcaagaagaa gaagttcttg tcaaagcaca 2340
aaagttagaa actgtcggtt acgaagctta tctagaaaac aagtaatata taagtttatt 2400
gatatacttg tacagcaaat aattataaaa tgatatacct attttttagg ctttgttatg 2460
attacatcaa atgtggactt catacataga aatcaacgct tacaggtgtc cttttttaag 2520
aatttcatac ataagatcac ttattataca tacatacata tccagtaaca agaagcaagg 2580
aataattacc tgcttaagtc tgcgattaaa aaaataacgt ttcgatacag ttcatataag 2640
gcggctcaat gcagaaccga ggatagcg 2668
<210>5
<211>1512
<212>DNA
<213> Saccharomyces cerevisiae
<400>5
atgccagttt taaccaataa aacagtcatt tctggatcga aagtcaaaag tttatcatct 60
gcgcaatcga gctcatcagg accttcatca tctagtgagg aagatgattc ccgcgatatt 120
gaaagcttgg ataagaaaat acgtccttta gaagaattag aagcattatt aagtagtgga 180
aatacaaaac aattgaagaa caaagaggtc gctgccttgg ttattcacgg taagttacct 240
ttgtacgctt tggagaaaaa attaggtgat actacgagag cggttgcggt acgtaggaag 300
gctctttcaa ttttggcaga agctcctgta ttagcatctg atcgtttacc atataaaaat 360
tatgactacg accgcgtatt tggcgcttgt tgtgaaaatg ttataggtta catgcctttg 420
cccgttggtg ttataggccc cttggttatc gatggtacat cttatcatat accaatggca 480
actacagagg gttgtttggt agcttctgcc atgcgtggct gtaaggcaat caatgctggc 540
ggtggtgcaa caactgtttt aactaaggat ggtatgacaa gaggcccagt agtccgtttc 600
ccaactttga aaagatctgg tgcctgtaag atatggttag actcagaaga gggacaaaac 660
gcaattaaaa aagcttttaa ctctacatca agatttgcac gtctgcaaca tattcaaact 720
tgtctagcag gagatttact cttcatgaga tttagaacaa ctactggtga cgcaatgggt 780
atgaatatga tttctaaagg tgtcgaatac tcattaaagc aaatggtaga agagtatggc 840
tgggaagata tggaggttgt ctccgtttct ggtaactact gtaccgacaa aaaaccagct 900
gccatcaact ggatcgaagg tcgtggtaag agtgtcgtcg cagaagctac tattcctggt 960
gatgttgtca gaaaagtgtt aaaaagtgat gtttccgcat tggttgagtt gaacattgct 1020
aagaatttgg ttggatctgc aatggctggg tctgttggtg gatttaacgc acatgcagct 1080
aatttagtga cagctgtttt cttggcatta ggacaagatc ctgcacaaaa tgttgaaagt 1140
tccaactgta taacattgat gaaagaagtg gacggtgatt tgagaatttc cgtatccatg 1200
ccatccatcg aagtaggtac catcggtggt ggtactgttc tagaaccaca aggtgccatg 1260
ttggacttat taggtgtaag aggcccgcat gctaccgctc ctggtaccaa cgcacgtcaa 1320
ttagcaagaa tagttgcctg tgccgtcttg gcaggtgaat tatccttatg tgctgcccta 1380
gcagccggcc atttggttca aagtcatatg acccacaaca ggaaacctgc tgaaccaaca 1440
aaacctaaca atttggacgc cactgatata aatcgtttga aagatgggtc cgtcacctgc 1500
attaaatcct aa 1512
<210>6
<211>867
<212>DNA
<213> Saccharomyces cerevisiae
<400>6
atgactgccg acaacaatag tatgccccat ggtgcagtat ctagttacgc caaattagtg 60
caaaaccaaa cacctgaaga cattttggaa gagtttcctg aaattattcc attacaacaa 120
agacctaata cccgatctag tgagacgtca aatgacgaaa gcggagaaac atgtttttct 180
ggtcatgatg aggagcaaat taagttaatg aatgaaaatt gtattgtttt ggattgggac 240
gataatgcta ttggtgccgg taccaagaaa gtttgtcatt taatggaaaa tattgaaaag 300
ggtttactac atcgtgcatt ctccgtcttt attttcaatg aacaaggtga attactttta 360
caacaaagag ccactgaaaa aataactttc cctgatcttt ggactaacac atgctgctct 420
catccactat gtattgatga cgaattaggt ttgaagggta agctagacga taagattaag 480
ggcgctatta ctgcggcggt gagaaaacta gatcatgaat taggtattcc agaagatgaa 540
actaagacaa ggggtaagtt tcacttttta aacagaatcc attacatggc accaagcaat 600
gaaccatggg gtgaacatga aattgattac atcctatttt ataagatcaa cgctaaagaa 660
aacttgactg tcaacccaaa cgtcaatgaa gttagagact tcaaatgggt ttcaccaaat 720
gatttgaaaa ctatgtttgc tgacccaagt tacaagttta cgccttggtt taagattatt 780
tgcgagaatt acttattcaa ctggtgggag caattagatg acctttctga agtggaaaat 840
gacaggcaaa ttcatagaat gctataa 867
<210>7
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>7
acgatacggc gttaagatca tgatacataa aagc 34
<210>8
<211>33
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>8
gtatcatgat cttaacgccg tatcgtgatt aac 33
<210>9
<211>36
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>9
ctgacatacc aagacgctat cctcggttct gcattg 36
<210>10
<211>33
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>10
accgaggata gcgtcttggt atgtcagcta ctg 33
<210>11
<211>1059
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>11
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaatag 1059
<210>12
<211>2778
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>12
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaaggtt ctggttctgg ttctggttct 1080
ggttctatgg cttcaccaag aggtattaaa gttaagatcg gtaattctaa ctgtgaagaa 1140
atcatcgtta gaagaactgc aaactaccat ccaacaatct gggattacga ttacgttcaa 1200
tcattgagat ctgattacgt tggtgaaact tacacaagaa gattagataa attgaagaga 1260
gatgttaagc caatgttggg taaagttaag aaaccattgg atcaattgga attaatcgat 1320
gttttgcaaa gattgggtat ctattaccat ttcaaggatg aaattaaaag aattttaaat 1380
tctatctata atcaatacaa tagacatgaa gaatggcaaa aagatgattt gtatgctact 1440
gctttggagt ttagattgtt aagacaacat ggttacgatg ttccacaaga tgtttttagt 1500
agattcaaag atgatacagg ttcttttaaa gcttgtttgt gtgaagatat gaagggcatg 1560
ttgtgtttgt acgaagcatc atacttgtgt gttcagggtg aatctactat ggaacaagct 1620
agagattttg cacatagaca tttgggtaaa ggtttggaac aaaacatcga tcaaaatttg 1680
gctatcgaag ttaagcatgc attggaatta ccattgcatt ggagaatgcc aagattggaa 1740
gctagatggt tcatcgatgt ttacgaaaag agacaagata tgaacccaat cttgttagaa 1800
tttgctaagt tggattttaa tatggttcaa gcaactcatc aagaagattt gagacatatg 1860
tcatcttggt ggtcatctac aagattgggt gaaaagttga acttcgctag agatagattg 1920
atggaaaatt tcttgtggac tgttggtgtt attttcgaac cacaatacgg ttactgtaga 1980
agaatgtcta caaaggttaa cactttgatc acaatcattg atgatgttta tgatgtttac 2040
ggtactatgg atgaattaga attgtttaca gatgttgttg atagatggga tattaatgct 2100
atggacccat tgccagaata catgaagttg tgtttcttgg cattgtacaa ctcaacaaac 2160
gaaatggctt acgatgcatt gaaggaacat ggtttgcata tcgtttctta tttgagaaag 2220
gcttggtcag atttgtgtaa gtcttacttg ttagaagcaa agtggtacta ctcaagatac 2280
actccatctt tgcaagaata catctcaaat tcttggatct caatctctgg tccagttatt 2340
ttggttcatg cttacttttt ggttgcaaac ccaatcacaa aggaagcttt gcaatcattg 2400
gaaagatacc ataacatcat cagatggtca tctatgatct tgagattgtc agatgatttg 2460
ggtacttctt tagatgaatt gaagagaggt gacgttccaa agtctatcca atgttacatg 2520
tacgaaacag gtgcttcaga agaagatgca agaaagcata cttcttattt gatcggtgaa 2580
acatggaaga aattgaatga agatggtgct gttgaatcac cattcccaga aacttttatt 2640
ggtatcgcaa tgaatttggc tagaatggca caatgtatgt atcaacatgg tgacggtcat 2700
ggtattgaat acggtgaaac agaagataga gttttgtctt tgttggttga accaatccca 2760
tcattgtctt ttgaataa 2778
<210>13
<211>1335
<212>DNA
<213> Saccharomyces cerevisiae
<400>13
atgggaaagc tattacaatt ggcattgcat ccggtcgaga tgaaggcagc tttgaagctg 60
aagttttgca gaacaccgct attctccatc tatgatcagt ccacgtctcc atatctcttg 120
cactgtttcg aactgttgaa cttgacctcc agatcgtttg ctgctgtgat cagagagctg 180
catccagaat tgagaaactg tgttactctc ttttatttga ttttaagggc tttggatacc 240
atcgaagacg atatgtccat cgaacacgat ttgaaaattg acttgttgcg tcacttccac 300
gagaaattgt tgttaactaa atggagtttc gacggaaatg cccccgatgt gaaggacaga 360
gccgttttga cagatttcga atcgattctt attgaattcc acaaattgaa accagaatat 420
caagaagtca tcaaggagat caccgagaaa atgggtaatg gtatggccga ctacatctta 480
gatgaaaatt acaacttgaa tgggttgcaa accgtccacg actacgacgt gtactgtcac540
tacgtagctg gtttggtcgg tgatggtttg acccgtttga ttgtcattgc caagtttgcc 600
aacgaatctt tgtattctaa tgagcaattg tatgaaagca tgggtctttt cctacaaaaa 660
accaacatca tcagagatta caatgaagat ttggtcgatg gtagatcctt ctggcccaag 720
gaaatctggt cacaatacgc tcctcagttg aaggacttca tgaaacctga aaacgaacaa 780
ctggggttgg actgtataaa ccacctcgtc ttaaacgcat tgagtcatgt tatcgatgtg 840
ttgacttatt tggccggtat ccacgagcaa tccactttcc aattttgtgc cattccccaa 900
gttatggcca ttgcaacctt ggctttggta ttcaacaacc gtgaagtgct acatggcaat 960
gtaaagattc gtaagggtac tacctgctat ttaattttga aatcaaggac tttgcgtggc 1020
tgtgtcgaga tttttgacta ttacttacgt gatatcaaat ctaaattggc tgtgcaagat 1080
ccaaatttct taaaattgaa cattcaaatc tccaagatcg aacagtttat ggaagaaatg 1140
taccaggata aattacctcc taacgtgaag ccaaatgaaa ctccaatttt cttgaaagtt 1200
aaagaaagat ccagatacga tgatgaattg gttccaaccc aacaagaaga agagtacaag 1260
ttcaatatgg ttttatctat catcttgtcc gttcttcttg ggttttatta tatatacact 1320
ttacacagag cgtga 1335
<210>14
<211>1277
<212>DNA
<213> Saccharomyces cerevisiae
<400>14
ctctagagga tccccgggat aacttcgtat agcatacatt atacgaagtt atcgttttaa 60
gagcttggtg agcgctagga gtcactgcca ggtatcgttt gaacacggca ttagtcaggg 120
aagtcataac acagtccttt cccgcaattt tctttttcta ttactcttgg cctcctctgt 180
acactctata tttttttatg cctcggtaat gattttcatt tttttttttc cacctagcgg 240
atgactcttt ttttttctta gcgattggca ttatcacata atgaattata cattatataa 300
agtaatgtga tttcttcgaa gaatatacta aaaaatgagc aggcaagata aacgaaggca 360
aagatgacag agcagaaagc cctagtaaag cgtattacaa atgaaaccaa gattcagatt 420
gcgatctctt taaagggtgg tcccctagcg atagagcact cgatcttccc agaaaaagag 480
gcagaagcag tagcagaaca ggccacacaa tcgcaagtga ttaacgtcca cacaggtata 540
gggtttctgg accatatgat acatgctctg gccaagcatt ccggctggtc gctaatcgtt 600
gagtgcattg gtgacttaca catagacgac catcacacca ctgaagactg cgggattgct 660
ctcggtcaag cttttaaaga ggccctaggg gccgtgcgtg gagtaaaaag gtttggatca 720
ggatttgcgc ctttggatga ggcactttcc agagcggtgg tagatctttc gaacaggccg 780
tacgcagttg tcgaacttgg tttgcaaagg gagaaagtag gagatctctc ttgcgagatg 840
atcccgcatt ttcttgaaag ctttgcagag gctagcagaa ttaccctcca cgttgattgt 900
ctgcgaggca agaatgatca tcaccgtagt gagagtgcgt tcaaggctct tgcggttgcc 960
ataagagaag ccacctcgcc caatggtacc aacgatgttc cctccaccaa aggtgttctt 1020
atgtagtgac accgattatt taaagctgca gcatacgata tatatacatg tgtatatatg 1080
tatacctatg aatgtcagta agtatgtata cgaacagtat gatactgaag atgacaaggt 1140
aatgcatcat tctatacgtg tcattctgaa cgaggcgcgc tttccttttt tctttttgct 1200
ttttcttttt ttttctcttg aactcgaata acttcgtata gcatacatta tacgaagtta 1260
tcccgggtac cgagctc 1277
<210>15
<211>2053
<212>DNA
<213> Saccharomyces cerevisiae
<400>15
gtcctgtact tccttgttca tgtgtgttca aaaacgttat atttatagga taattatact 60
ctatttctca acaagtaatt ggttgtttgg ccgagcggtc taaggcgcct gattcaagaa 120
atatcttgac cgcagttaac tgtgggaata ctcaggtatc gtaagatgca agagttcgaa 180
tctcttagca accattattt ttttcctcaa cataacgaga acacacaggg gcgctatcgc 240
acagaatcaa attcgatgac tggaaatttt ttgttaattt cagaggtcgc ctgacgcata 300
tacctttttc aactgaaaaa ttgggagaaa aaggaaaggt gagagcgccg gaaccggctt 360
ttcatataga atagagaagc gttcatgact aaatgcttgc atcacaatac ttgaagttga 420
caatattatt taaggaccta ttgttttttc caataggtgg ttagcaatcg tcttactttc 480
taacttttct taccttttac atttcagcaa tatatatata tatatttcaa ggatatacca 540
ttctaatgtc tgcccctaag aagatcgtcg ttttgccagg tgaccacgtt ggtcaagaaa 600
tcacagccga agccattaag gttcttaaag ctatttctga tgttcgttcc aatgtcaagt 660
tcgatttcga aaatcattta attggtggtg ctgctatcga tgctacaggt gttccacttc 720
cagatgaggc gctggaagcc tccaagaagg ctgatgccgt tttgttaggt gctgtgggtg 780
gtcctaaatg gggtaccggt agtgttagac ctgaacaagg tttactaaaa atccgtaaag 840
aacttcaatt gtacgccaac ttaagaccat gtaactttgc atccgactct cttttagact 900
tatctccaat caagccacaa tttgctaaag gtactgactt cgttgttgtc agagaattag 960
tgggaggtat ttactttggt aagagaaagg aagacgatgg tgatggtgtc gcttgggata 1020
gtgaacaata caccgttcca gaagtgcaaa gaatcacaag aatggccgct ttcatggccc 1080
tacaacatga gccaccattg cctatttggt ccttggataa agctaatgtt ttggcctctt 1140
caagattatg gagaaaaact gtggaggaaa ccatcaagaa cgaattccct acattgaagg 1200
ttcaacatca attgattgat tctgccgcca tgatcctagt taagaaccca acccacctaa 1260
atggtattat aatcaccagc aacatgtttg gtgatatcat ctccgatgaa gcctccgtta 1320
tcccaggttc cttgggtttg ttgccatctg cgtccttggc ctctttgcca gacaagaaca 1380
ccgcatttgg tttgtacgaa ccatgccacg gttctgctcc agatttgcca aagaataagg 1440
tcaaccctat cgccactatc ttgtctgctg caatgatgtt gaaattgtca ttgaacttgc 1500
ctgaagaagg taaggccatt gaagatgcag ttaaaaaggt tttggatgca ggtatcagaa 1560
ctggtgattt aggtggttcc aacagtacca ccgaagtcgg tgatgctgtc gccgaagaag 1620
ttaagaaaat ccttgcttaa aaagattctc tttttttatg atatttgtac ataaacttta 1680
taaatgaaat tcataataga aacgacacga aattacaaaa tggaatatgt tcatagggta 1740
gacgaaacta tatacgcaat ctacatacat ttatcaagaa ggagaaaaag gaggatgtaa 1800
aggaatacag gtaagcaaat tgatactaat ggctcaacgt gataaggaaa aagaattgca 1860
ctttaacatt aatattgaca aggaggaggg caccacacaa aaagttaggt gtaacagaaa 1920
atcatgaaac tatgattcct aatttatata ttggaggatt ttctctaaaa aaaaaaaaat 1980
acaacaaata aaaaacactc aatgacctga ccatttgatg gagtttaagt caataccttc 2040
ttgaaccatt tcc 2053
<210>16
<211>1245
<212>DNA
<213> Saccharomyces cerevisiae
<400>16
gcttgcatgc ctgcaggtcg actctagagg atccccggga taacttcgta taatgtatgc 60
tatacgaagt tatgggtaat aactgatata attaaattga agctctaatt tgtgagttta 120
gtatacatgc atttacttat aatacagttt tttagttttg ctggccgcat cttctcaaat 180
atgcttccca gcctgctttt ctgtaacgtt caccctctac cttagcatcc cttccctttg 240
caaatagtcc tcttccaaca ataataatgt cagatcctgt agagaccaca tcatccacgg 300
ttctatactg ttgacccaat gcgtctccct tgtcatctaa acccacaccg ggtgtcataa 360
tcaaccaatc gtaaccttca tctcttccac ccatgtctct ttgagcaata aagccgataa 420
caaaatcttt gtcgctcttc gcaatgtcaa cagtaccctt agtatattct ccagtagcta 480
gggagccctt gcatgacaat tctgctaaca tcaaaaggcc tctaggttcc tttgttactt 540
cttccgccgc ctgcttcaaa ccgctaacaa tacctgggcc caccacaccg tgtgcattcg 600
taatgtctgc ccattctgct attctgtata cacccgcaga gtactgcaat ttgactgtat 660
taccaatgtc agcaaatttt ctgtcttcga agagtaaaaa attgtacttg gcggataatg 720
cctttagcgg cttaactgtg ccctccatgg aaaaatcagtcaagatatcc acatgtgttt 780
ttagtaaaca aattttggga cctaatgctt caactaactc cagtaattcc ttggtggtac 840
gaacatccaa tgaagcacac aagtttgttt gcttttcgtg catgatatta aatagcttgg 900
cagcaacagg actaggatga gtagcagcac gttccttata tgtagctttc gacatgattt 960
atcttcgttt cctgcaggtt tttgttctgt gcagttgggt taagaatact gggcaatttc 1020
atgtttcttc aacaccacat atgcgtatat ataccaatct aagtctgtgc tccttccttc 1080
gttcttcctt ctgctcggag attaccgaat caaaaaaatt tcaaagaaac cggaatcaaa 1140
aaaaagaaca aaaaaaaaaa agatgaattg aaaagcttta tggaccctga taacttcgta 1200
taatgtatgc tatacgaagt tatcccgggt accgagctcg aattc 1245
<210>17
<211>1007
<212>DNA
<213> Saccharomyces cerevisiae
<400>17
aacgacatta ctatatatat aatataggaa gcatttaata gaacagcatc gtaatatatg 60
tgtactttgc agttatgacg ccagatggca gtagtggaag atattcttta ttgaaaaata 120
gcttgtcacc ttacgtacaa tcttgatccg gagcttttct ttttttgccg attaagaatt 180
cggtcgaaaa aagaaaagga gagggccaag agggagggca ttggtgacta ttgagcacgt 240
gagtatacgt gattaagcac acaaaggcag cttggagtat gtctgttatt aatttcacag 300
gtagttctgg tccattggtg aaagtttgcg gcttgcagag cacagaggcc gcagaatgtg 360
ctctagattc cgatgctgac ttgctgggta ttatatgtgt gcccaataga aagagaacaa 420
ttgacccggt tattgcaagg aaaatttcaa gtcttgtaaa agcatataaa aatagttcag 480
gcactccgaa atacttggtt ggcgtgtttc gtaatcaacc taaggaggat gttttggctc 540
tggtcaatga ttacggcatt gatatcgtcc aactgcatgg agatgagtcg tggcaagaat 600
accaagagtt cctcggtttg ccagttatta aaagactcgt atttccaaaa gactgcaaca 660
tactactcag tgcagcttca cagaaacctc attcgtttat tcccttgttt gattcagaag 720
caggtgggac aggtgaactt ttggattgga actcgatttc tgactgggtt ggaaggcaag 780
agagccccga aagcttacat tttatgttag ctggtggact gacgccagaa aatgttggtg 840
atgcgcttag attaaatggc gttattggtg ttgatgtaag cggaggtgtg gagacaaatg 900
gtgtaaaaga ctctaacaaa atagcaaatt tcgtcaaaaa tgctaagaaa taggttatta 960
ctgagtagta tttatttaag tattgtttgt gcacttgcct gcaggcc 1007
<210>18
<211>24
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>18
gacgttgaaa ttgaggctac tgcg 24
<210>19
<211>32
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>19
tgggggatca ctgacctaat gcttcaacta ac 32
<210>20
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>20
tgaagcatta ggtcagtgat cccccacaca ccat 34
<210>21
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>21
cttggtgaag ccattttgta attaaaactt agat 34
<210>22
<211>36
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>22
aagttttaat tacaaaatgg cttcaccaag aggtat 36
<210>23
<211>35
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>23
cgtgacataa ctaatttatt caaaagacaa tgatg 35
<210>24
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>24
tgtcttttga ataaattagt tatgtcacgc ttac 34
<210>25
<211>33
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>25
ggatcctcta gagcaaatta aagccttcga gcg 33
<210>26
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>26
aaggctttaa tttgctctag aggatccccg ggat 34
<210>27
<211>32
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>27
gtagagacca catcgagctc ggtacccggg at 32
<210>28
<211>31
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>28
gtaccgagct cgatgtggtc tctacaggat c 31
<210>29
<211>22
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>29
caagccttgt cccaaggcag cg 22
<210>30
<211>46
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>30
gcttcggtta cttctaagga agtccacaca aatcaagatc cgttag 46
<210>31
<211>69
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>31
gttataatat ctgtgcgtct tgagttgaag tcaggaatct aaaatattgg aaagtcatta 60
ggtgaggtt 69
<210>32
<211>69
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>32
tatgtcagac caccaccaat gttaacctca cctaatgact ttccaatatt ttagattcct 60
gacttcaac 69
<210>33
<211>44
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>33
attggttaaa actggcattg ttttatattt gttgtaaaaa gtag 44
<210>34
<211>43
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>34
caacaaatat aaaacaatgc cagttttaac caataaaaca gtc 43
<210>35
<211>45
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>35
ctatcgattt caattcaatt caatttagga tttaatgcag gtgac 45
<210>36
<211>45
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>36
gtcacctgca ttaaatccta aattgaattg aattgaaatc gatag 45
<210>37
<211>48
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>37
taacattcaa cgctagtatc actatactgg atctaaagag tacaatag 48
<210>38
<211>43
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>38
ctctttagat ccagtatagt gatactagcg ttgaatgtta gcg 43
<210>39
<211>38
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>39
ctattgttgt cggcagtcat tttgtttgtt tatgtgtg 38
<210>40
<211>38
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>40
cacacataaa caaacaaaat gactgccgac aacaatag 38
<210>41
<211>46
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>41
atcataaatc ataagaaatt cgcttatagc attctatgaa tttgcc 46
<210>42
<211>46
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>42
ggcaaattca tagaatgcta taagcgaatt tcttatgatt tatgat 46
<210>43
<211>50
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>43
catgaacaag gaagtacagg acagatcatg atacataaaa gcgatataac 50
<210>44
<211>52
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>44
gttatatcgc ttttatgtat catgatctgt cctgtacttc cttgttcatg tg 52
<210>45
<211>48
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>45
gatagttgat ttctattcca acaggaaatg gttcaagaag gtattgac 48
<210>46
<211>48
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>46
gtcaatacct tcttgaacca tttcctgttg gaatagaaat caactatc 48
<210>47
<211>23
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>47
cacaggcgct accatgagaa ttg 23
<210>48
<211>21
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>48
ttggttcttc gacatgatca c 21
<210>49
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>49
aggaatctaa aatacgtttc gtttagaacc gacg 34
<210>50
<211>35
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>50
gttctaaacg aaacgtattt tagattcctg acttc 35
<210>51
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>51
ctttttctga agccattgtt tttatatttg ttgt 34
<210>52
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>52
caaatataaa aacaatggct tcagaaaaag aaat 34
<210>53
<211>36
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>53
cgtgacataa ctaatctatt tgcttctctt gtaaac 36
<210>54
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>54
agagaagcaa atagattagt tatgtcacgc ttac 34
<210>55
<211>33
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>55
caggcatgca agccaaatta aagccttcga gcg 33
<210>56
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>56
gaaggcttta atttggcttg catgcctgca ggtc 34
<210>57
<211>30
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>57
catggtcctt atcgaattcg agctcggtac 30
<210>58
<211>31
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>58
gagctcgaat tcgataagga ccatgtataa g 31
<210>59
<211>17
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>59
atcgatgtaa tgtagag 17
<210>60
<211>21
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>60
ccggggcacc tgtcactttg g 21
<210>61
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>61
caggaatcta aaatatttcc tctaatcagg ttcc 34
<210>62
<211>36
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>62
acctgattag aggaaatatt ttagattcct gacttc 36
<210>63
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>63
ctttttctga agccattgtt tttatatttg ttgt 34
<210>64
<211>35
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>64
aatataaaaa caatggcttc agaaaaagaa attag 35
<210>65
<211>35
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>65
tcataagaaa ttcgcttatt caaaagacaa tgatg 35
<210>66
<211>36
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>66
ttgtcttttg aataagcgaa tttcttatga tttatg 36
<210>67
<211>37
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>67
tatatagtaa tgtcgttaga tcatgataca taaaagc 37
<210>68
<211>42
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>68
tatgtatcat gatctaacga cattactata tatataatat ag 42
<210>69
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>69
tcataagaaa ttcgcggcct gcaggcaagt gcac 34
<210>70
<211>33
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>70
ttgcctgcag gccgcgaatt tcttatgatt tat 33
<210>71
<211>23
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>71
agatcatgat acataaaagc gat 23
<210>72
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>72
tcccaggcgt agaacagttt atcag 25
<210>73
<211>33
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>73
tcaacgctag tatgatccaa gctatctact gag 33
<210>74
<211>34
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>74
agatagcttg gatcatacta gcgttgaatg ttag 34
<210>75
<211>39
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>75
atagctttcc cattttgttt gtttatgtgt gtttattcg 39
<210>76
<211>43
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>76
atacacttta cacagagcgt gagcgaattt cttatgattt atg 43
<210>77
<211>28
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>77
cacttcacgt gcttctggta catacttg 28
Claims (7)
1. A construction method of recombinant saccharomyces cerevisiae for producing terpineol is characterized by comprising the following steps:
using a method of homologous recombination, the strain of saccharomyces cerevisiae ATCC: 208352, introducing a truncated terpineol synthase coding gene delta Ts to obtain a recombinant bacterium 1;
the nucleotide sequence of the truncated terpineol synthase coding gene delta Ts is shown in SEQ ID NO. 1.
2. A construction method of recombinant saccharomyces cerevisiae for producing terpineol is characterized by comprising the following steps:
introducing a truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase encoding gene tHMG1 and an isopentenyl pyrophosphate isomerase encoding gene IDI1 into the recombinant bacterium 1 by utilizing a homologous recombination method to obtain a recombinant bacterium 2;
the nucleotide sequence of the truncated 3-hydroxy-3-methylglutaryl coenzyme A reductase coding gene tHMG1 is shown as SEQ ID NO. 5;
the nucleotide sequence of the isopentenyl pyrophosphate isomerase coding gene IDI1 is shown in SEQ ID NO. 6.
3. A construction method of recombinant saccharomyces cerevisiae for producing terpineol is characterized by comprising the following steps:
introducing a mutated farnesyl pyrophosphate synthase encoding gene MERg20 into an ERG20 site in the recombinant bacterium 2 by using a homologous recombination method to obtain a recombinant bacterium 3;
the nucleotide sequence of the mutated farnesyl pyrophosphate synthase encoding gene MErg20 is shown in SEQ ID No. 11.
4. A construction method of recombinant saccharomyces cerevisiae for producing terpineol is characterized by comprising the following steps:
introducing a fusion protein coding gene ERG20FTs of mutated farnesyl pyrophosphate synthase and truncated terpineol synthase into the recombinant bacterium 3 by using a homologous recombination method to obtain a recombinant bacterium 4;
the nucleotide sequence of the coding gene ERG20FTs is shown in SEQ ID NO. 12.
5. A construction method of recombinant saccharomyces cerevisiae for producing terpineol is characterized by comprising the following steps:
by utilizing a homologous recombination method, introducing a squalene synthase coding gene ERG9 into the recombinant strain 4 to obtain a recombinant strain 5;
the nucleotide sequence of the squalene synthase coding gene ERG9 is shown in SEQ ID NO. 13.
6. A recombinant s.cerevisiae producing terpineol constructed by the method of any one of claims 1-5.
7. Use of the terpineol-producing recombinant saccharomyces cerevisiae of claim 6 in the production of terpineol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010083019.2A CN111440733A (en) | 2020-02-07 | 2020-02-07 | Recombinant saccharomyces cerevisiae for producing terpineol, construction method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010083019.2A CN111440733A (en) | 2020-02-07 | 2020-02-07 | Recombinant saccharomyces cerevisiae for producing terpineol, construction method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111440733A true CN111440733A (en) | 2020-07-24 |
Family
ID=71655739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010083019.2A Pending CN111440733A (en) | 2020-02-07 | 2020-02-07 | Recombinant saccharomyces cerevisiae for producing terpineol, construction method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111440733A (en) |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007024718A2 (en) * | 2005-08-19 | 2007-03-01 | The Regents Of The University Of California | Genetically modified host cells and use of same for producing isoprenoid compounds |
CN101001947A (en) * | 2004-07-27 | 2007-07-18 | 加利福尼亚大学董事会 | Genetically modified host cells and use of same for producing isoprenoid compounds |
WO2008077986A1 (en) * | 2006-12-27 | 2008-07-03 | Consejo Superior De Investigaciones Científicas | Improvement of the aromatic content of wines and other alcoholic beverages by use of microorganisms which, during fermentation, produce monoterpene synthase |
GB0818253D0 (en) * | 2008-10-06 | 2008-11-12 | Sapphire Energy | Systems and methods with chloroplast replicating sequences |
WO2009036087A1 (en) * | 2007-09-11 | 2009-03-19 | Sapphire Energy, Inc. | Methods of producing organic products with photosynthetic organisms and products and compositions thereof |
WO2009036067A2 (en) * | 2007-09-11 | 2009-03-19 | Sapphire Energy | Molecule production by photosynthetic organisms |
WO2009045550A2 (en) * | 2007-10-05 | 2009-04-09 | Sapphire Energy | System for capturing and modifying large pieces of genomic dna and constructing organisms with synthetic chloroplasts |
GB201100928D0 (en) * | 2007-10-05 | 2011-03-02 | Sapphire Energy Inc | System for capturing and modifying large pieces of genomic DNA and constructing organisms with synthetic chloroplasts |
CN102826846A (en) * | 2012-09-18 | 2012-12-19 | 天津大学 | Preparation method of high-performance aluminum oxide substrate lead niobate nickelate-lead zirconate titanate piezoelectric film |
CN103571763A (en) * | 2013-11-20 | 2014-02-12 | 江南大学 | Saccharomyces cerevisiae capable of auto-synthesizing terpenoid substances and applications thereof |
CN105200071A (en) * | 2015-07-12 | 2015-12-30 | 东北师范大学 | Alpha-terpilenol synthase gene cDNA for synthesis of multiple products under control |
CN107746815A (en) * | 2017-09-11 | 2018-03-02 | 天津大学 | Produce recombinant Saccharomyces cerevisiae bacterium and its construction method of 13R manoyl oxides |
CN108949601A (en) * | 2018-07-17 | 2018-12-07 | 天津大学 | Utilize the recombinant Saccharomyces cerevisiae bacterium and construction method of xylose production dammarendiol and protopanoxadiol |
CN109266565A (en) * | 2018-09-14 | 2019-01-25 | 中国科学技术大学 | The building and application of the heat-resistant yeast engineered strain of Pfansteihl production |
CN111041040A (en) * | 2019-12-17 | 2020-04-21 | 天津大学 | Recombinant saccharomyces cerevisiae for producing levopimaric diene and levopimaric acid and construction method |
CN111041041A (en) * | 2019-12-28 | 2020-04-21 | 天津大学 | Saccharomyces cerevisiae recombinant strain for producing α -lupinene, 8-hydroxy- α -lupinene and zingerone and construction method thereof |
CN111205993A (en) * | 2020-01-22 | 2020-05-29 | 天津大学 | Recombinant yeast for producing ursolic acid and oleanolic acid as well as construction method and application thereof |
CN111304104A (en) * | 2020-02-10 | 2020-06-19 | 天津大学 | Recombinant yarrowia lipolytica for heterologous synthesis of betulinic acid and construction method thereof |
CN111334522A (en) * | 2020-02-24 | 2020-06-26 | 天津大学 | Recombinant saccharomyces cerevisiae for producing ambergris alcohol and construction method thereof |
-
2020
- 2020-02-07 CN CN202010083019.2A patent/CN111440733A/en active Pending
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101001947A (en) * | 2004-07-27 | 2007-07-18 | 加利福尼亚大学董事会 | Genetically modified host cells and use of same for producing isoprenoid compounds |
EP2298859A2 (en) * | 2004-07-27 | 2011-03-23 | The Regents of the University of California | Genetically modified host cells and use of same for producing isoprenoid compounds |
WO2007024718A2 (en) * | 2005-08-19 | 2007-03-01 | The Regents Of The University Of California | Genetically modified host cells and use of same for producing isoprenoid compounds |
WO2008077986A1 (en) * | 2006-12-27 | 2008-07-03 | Consejo Superior De Investigaciones Científicas | Improvement of the aromatic content of wines and other alcoholic beverages by use of microorganisms which, during fermentation, produce monoterpene synthase |
WO2009036087A1 (en) * | 2007-09-11 | 2009-03-19 | Sapphire Energy, Inc. | Methods of producing organic products with photosynthetic organisms and products and compositions thereof |
WO2009036067A2 (en) * | 2007-09-11 | 2009-03-19 | Sapphire Energy | Molecule production by photosynthetic organisms |
CN101889068A (en) * | 2007-09-11 | 2010-11-17 | 蓝宝石能源公司 | Methods of producing organic products with photosynthetic organisms and products and compositions thereof |
WO2009045550A2 (en) * | 2007-10-05 | 2009-04-09 | Sapphire Energy | System for capturing and modifying large pieces of genomic dna and constructing organisms with synthetic chloroplasts |
GB201100928D0 (en) * | 2007-10-05 | 2011-03-02 | Sapphire Energy Inc | System for capturing and modifying large pieces of genomic DNA and constructing organisms with synthetic chloroplasts |
GB0818253D0 (en) * | 2008-10-06 | 2008-11-12 | Sapphire Energy | Systems and methods with chloroplast replicating sequences |
CN102826846A (en) * | 2012-09-18 | 2012-12-19 | 天津大学 | Preparation method of high-performance aluminum oxide substrate lead niobate nickelate-lead zirconate titanate piezoelectric film |
CN103571763A (en) * | 2013-11-20 | 2014-02-12 | 江南大学 | Saccharomyces cerevisiae capable of auto-synthesizing terpenoid substances and applications thereof |
CN105200071A (en) * | 2015-07-12 | 2015-12-30 | 东北师范大学 | Alpha-terpilenol synthase gene cDNA for synthesis of multiple products under control |
CN107746815A (en) * | 2017-09-11 | 2018-03-02 | 天津大学 | Produce recombinant Saccharomyces cerevisiae bacterium and its construction method of 13R manoyl oxides |
CN108949601A (en) * | 2018-07-17 | 2018-12-07 | 天津大学 | Utilize the recombinant Saccharomyces cerevisiae bacterium and construction method of xylose production dammarendiol and protopanoxadiol |
CN109266565A (en) * | 2018-09-14 | 2019-01-25 | 中国科学技术大学 | The building and application of the heat-resistant yeast engineered strain of Pfansteihl production |
CN111041040A (en) * | 2019-12-17 | 2020-04-21 | 天津大学 | Recombinant saccharomyces cerevisiae for producing levopimaric diene and levopimaric acid and construction method |
CN111041041A (en) * | 2019-12-28 | 2020-04-21 | 天津大学 | Saccharomyces cerevisiae recombinant strain for producing α -lupinene, 8-hydroxy- α -lupinene and zingerone and construction method thereof |
CN111205993A (en) * | 2020-01-22 | 2020-05-29 | 天津大学 | Recombinant yeast for producing ursolic acid and oleanolic acid as well as construction method and application thereof |
CN111304104A (en) * | 2020-02-10 | 2020-06-19 | 天津大学 | Recombinant yarrowia lipolytica for heterologous synthesis of betulinic acid and construction method thereof |
CN111334522A (en) * | 2020-02-24 | 2020-06-26 | 天津大学 | Recombinant saccharomyces cerevisiae for producing ambergris alcohol and construction method thereof |
Non-Patent Citations (11)
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108949601B (en) | Recombinant saccharomyces cerevisiae for producing dammarenediol and protopanoxadiol by using xylose and construction method | |
CN111363759B (en) | Construction method of recombinant yarrowia lipolytica for synthesizing erythritol and bacterial strain thereof | |
CN111205993B (en) | Recombinant yeast for producing ursolic acid and oleanolic acid as well as construction method and application thereof | |
CN108085262B (en) | Recombinant host cell with increased tolerance to terpenes or terpene-containing essential oils or increased terpene production, method for its production and use thereof | |
CN106367361B (en) | A kind of saccharomyces cerevisiae engineered yeast strain and its construction method, application | |
CN107815424B (en) | Yarrowia lipolytica gene engineering bacterium for producing limonene and application thereof | |
CN111041041A (en) | Saccharomyces cerevisiae recombinant strain for producing α -lupinene, 8-hydroxy- α -lupinene and zingerone and construction method thereof | |
CN108060092A (en) | A kind of recombinant bacterium and application thereof | |
CN109136254B (en) | Efficient saccharomyces cerevisiae traceless gene knockout method and application thereof | |
CN101983240B (en) | Flocculent yeast and method for production thereof | |
CN114150012B (en) | Recombinant saccharomyces cerevisiae for heterogeneously synthesizing ginsenoside F2 and construction method thereof | |
CN113604374B (en) | Genetically engineered bacterium for efficiently producing carotenoid, construction method and application thereof | |
CN106929439B (en) | Recombinant saccharomyces cerevisiae and construction method and application thereof | |
CN111690690A (en) | Saccharomyces cerevisiae for producing farnesene | |
CN110382684A (en) | Generate the plum surprise yeast kind of xylitol | |
CN107164254A (en) | Microorganism and application thereof | |
CN110804561B (en) | Saccharomyces cerevisiae with high yield of C6-C10 ethyl ester and construction method and application thereof | |
CN114369613A (en) | Yeast strain for constructing high-yield CBGA synthesis by modifying galactose promoter and construction method and application thereof | |
CN108485996B (en) | Novel ethyl acetate-producing saccharomyces cerevisiae strain and construction method thereof | |
CN109913380B (en) | Recombinant yarrowia lipolytica for producing (-) -alpha-bisabolol and construction method and application thereof | |
CN107574190A (en) | A kind of preparation method for improving volume branch Mucor oil production | |
CN109136119B (en) | Microorganisms and uses thereof | |
CN104611303B (en) | A kind of fused protein that can improve dammarendiol transformation efficiency and construction method and application | |
CN111334522B (en) | Recombinant saccharomyces cerevisiae for producing ambergris alcohol and construction method | |
CN105647958B (en) | Saccharomyces cerevisiae engineering bacterium for producing 2-phenylethyl alcohol and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200724 |
|
WD01 | Invention patent application deemed withdrawn after publication |