WO2008077986A1 - Improvement of the aromatic content of wines and other alcoholic beverages by use of microorganisms which, during fermentation, produce monoterpene synthase - Google Patents

Improvement of the aromatic content of wines and other alcoholic beverages by use of microorganisms which, during fermentation, produce monoterpene synthase Download PDF

Info

Publication number
WO2008077986A1
WO2008077986A1 PCT/ES2007/070207 ES2007070207W WO2008077986A1 WO 2008077986 A1 WO2008077986 A1 WO 2008077986A1 ES 2007070207 W ES2007070207 W ES 2007070207W WO 2008077986 A1 WO2008077986 A1 WO 2008077986A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthase
yeast
wines
microorganism according
linalool
Prior art date
Application number
PCT/ES2007/070207
Other languages
Spanish (es)
French (fr)
Inventor
Margarita Lourdes Orejas Suarez
Daniel RAMÓN VIDAL
Oscar Herrero Madrid
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2008077986A1 publication Critical patent/WO2008077986A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C12/00Processes specially adapted for making special kinds of beer
    • C12C12/002Processes specially adapted for making special kinds of beer using special microorganisms
    • C12C12/004Genetically modified microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G1/00Preparation of wine or sparkling wine
    • C12G1/02Preparation of must from grapes; Must treatment and fermentation
    • C12G1/0203Preparation of must from grapes; Must treatment and fermentation by microbiological or enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G3/00Preparation of other alcoholic beverages
    • C12G3/02Preparation of other alcoholic beverages by fermentation
    • C12G3/021Preparation of other alcoholic beverages by fermentation of botanical family Poaceae, e.g. wheat, millet, sorghum, barley, rye, or corn
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G2200/00Special features
    • C12G2200/11Use of genetically modified microorganisms in the preparation of wine

Definitions

  • the aroma of the wines is one of the characteristics that will be important in assessing their quality. It can be divided into three main groups: (i) aromas from the grape variety or primary aromas, produced by volatile substances, transferred by the grape grains to the must, mainly monoterpenes, which are largely lost during the process; (ii) aromas produced during fermentation or secondary aromas, including two types of major aromatic compounds, higher alcohols and esters; and (iii) the "bouquet", also known as tertiary aroma, produced by the final transformation of the former during aging.
  • Monoterpenes will be abundant in some grape varieties, and that greatly contribute to the varietal character of the wines, are linalool, geraniol, nerol ⁇ -terpineol and citronellol (Ribéreau-Gayon et al., 1975; Park et al., 1991).
  • VL134 mutant was able to excrete farnesol (0.220 mg / L) and geraniol (0.450 mg / L), produced from its phosphorylated forms possibly by nonspecific phosphatases (Chambón et al., 1990a; 1990b).
  • the ability to produce terpenes was introduced into the wine strain L116 (Fermivin) by crossings, and mutants descended from the cross were capable of producing large quantities of some terpenes, even higher than the parental strain (up to 6 ppm).
  • KUl (Uruguay) produced ⁇ 5 ⁇ g / L of linalool (amount that borders the detection threshold, which is 4-10 ppb) and undetectable amounts of other monoterpenes, such as geraniol.
  • the linalool produced was below the detection threshold.
  • monoterpenes are present in the essential oils of flowers and fruits and are produced, specifically, by monoterpene synthases, which use geranyl diphosphate (GPP) as a substrate (Bohlmann et al., 1998).
  • GPP geranyl diphosphate
  • This substrate is a common metabolite in microorganisms and higher organisms, which opens up the possibility of applying metabolic engineering techniques to provide a given microorganism with new steps in the isoprenoid pathway, which include the missing genes for the manufacture of a determined monoterpene (Carter et al., 2003 and Reiling et al., 2004 in Escherichia coli; Oswald et al., 2006 in laboratory strains of S. cerevisiae).
  • S. cerevisiae is one of the living organisms with the greatest molecular knowledge. For almost thirty years it has been possible to genetically transform laboratory strains of this species (Beggs 1978). To all this we must add the availability of the complete nucleotide sequence of the genome of this organism (Goffeau et al., 1997) and a plethora of molecular techniques that have allowed and allow progress in its manipulation.
  • the proposed invention consists in the improvement of the fermentation process of alcoholic beverages, preferably wines, by the use of a microorganism that, having been modified to produce heterologous monoterpene synthases, leads to an improvement in the aromatic content of the beverage.
  • the object of the present invention is the use of a microorganism useful for the production of alcoholic beverages made from fruit musts or juices, preferably wines, cereal extracts or other food products of plant origin, genetically manipulated, hereinafter used of the present invention, comprising DNA sequences encoding enzymes with monoterpene synthase activity that allow the production of monoterpenes during fermentation.
  • a particular object of the present invention is the use of the invention where the alcoholic beverage belongs, by way of illustration and without limiting the scope of the invention, to the following group: wines, (including non-sparkling wines, as well as cava, champagne and others sparkling), beer, cider, sake, etc.
  • a particular embodiment of the present invention is the use of the invention where the alcoholic beverage is preferably white, red or rosé wines from grape musts of any variety.
  • Another object of the present invention is the use of the invention where DNA sequences encoding enzymes with monoterpene synthase activity include any gene encoding enzymes that catalyze the formation of monoterpenes: linalool synthase, geraniol synthase, ⁇ -terpineol synthase, etc .; as well as any nucleotide sequence analogous to these that encrypts enzymes with said activity, in isolation or in their possible combinations.
  • DNA sequence encoding an enzyme with monoterpene synthase activity includes the sequence of the C. breweri Lis gene (SEQ ID NO1), which encodes a linalool synthase. 0, as explained above, the protein that encodes, the enzyme with S-linalool synthase activity (SEQ ID N02), as well as any nucleotide or amino acid sequence (aas) analogous to them.
  • Another particular object of the present invention is the use of the invention in which the microorganism is of interest in oenology: yeasts or bacteria.
  • a particular embodiment of the present invention is the use of the invention where the microorganism is a wine yeast of the species S. cerevisiae, preferably strain S. cerevisiae YR64 (pGl-Lis-URA) (CECT 12032), which comprises the DNA sequence of the gene that in C. breweri encodes S-linalol synthase (SEQ ID NO1).
  • a last particular embodiment of the present invention is the use of the present invention in the production of alcoholic beverages together with other microorganisms, recombinant or not, to produce different combinations of aromatic monoterpenes during fermentation.
  • the present invention describes a totally different method from those mentioned above (see status of technique) to maintain, increase and / or modify the terpenic content of an alcoholic beverage and thus achieve a more favorable and / or different aroma.
  • the proposed improvement method focuses on the fermentation of musts, preferably grapes, for the production of wines; being an extensible method to the production of other alcoholic beverages obtained by fermentation from different vegetable raw materials, by way of illustration and without limiting the scope of the invention, for example: fruit juices, cereal extracts, etc.
  • Said method is based on the genetic manipulation of wine yeasts so that they are capable of producing heterologous monoterpene synthases and as a consequence they produce and excrete de novo monoterpenes during alcoholic fermentation.
  • the present invention is based on the observation that the expression of a gene, which in plants encodes an S-linalool synthase, in a wine yeast (derived from the industrial strain S. cerevisiae T 73 , Lallemand), which apparently naturally It does not produce linalool (see figures 2 and 5), it induces the concomitant presence of this aromatic monoterpene in wines produced with said recombinant yeast. More specifically, it is based on the cDNA sequence of the C.
  • breweri Lis gene which encodes an S-linalo synthase. This gene is cloned between the TDH3 gene promoter and the S. cerevisiae PGKl gene terminator, in a yeast expression vector. The transformation of said wine strain with the previous vector yields the corresponding wine yeast of improved characteristics.
  • the object of the present invention is the use of a microorganism useful for the production of alcoholic beverages made from fruit musts or juices, preferably wines, cereal extracts or other food products of plant origin, genetically manipulated
  • a microorganism useful for the production of alcoholic beverages made from fruit musts or juices, preferably wines, cereal extracts or other food products of plant origin, genetically manipulated
  • use of the present invention comprising DNA sequences encoding enzymes with monoterpene synthase activity that allow the production of monoterpenes during fermentation.
  • a particular object of the present invention is the use of the invention where the alcoholic beverage belongs, by way of illustration and without limiting the scope of the invention, to the following group: wines, (including non-sparkling wines, as well as cava, champagne and others sparkling), beer, cider, sake, etc.
  • a particular embodiment of the present invention is the use of the invention where the alcoholic beverage is preferably white, red or rosé wines from grape musts of any variety.
  • DNA sequences encoding enzymes with monoterpene synthase activity include any gene encoding enzymes that catalyze the formation of monoterpenes: linalool synthase, geraniol synthase, ⁇ -terpineol synthase, etc .; as well as any nucleotide sequence analogous to these that encrypts enzymes with said activity, in isolation or in their possible combinations.
  • the term "monoterpene synthase” refers both to the nucleotide sequence of the gene in question, as well as to the protein it encodes, an enzyme with monoterpene synthase activity, as well as to any nucleotide or nucleotide sequence. amino acids (aas) analogous to these of other species.
  • analogous is intended also include any nucleotide or amino acid sequence that can be isolated or constructed based on the nucleotide or aas sequences contemplated herein, for example, by introducing nucelotide or aas substitutions, conservative or non-conservative, including insertion of one or more nucleotides or aas, the addition of one or will be nucleotides or aas in any part of the molecule or the deletion of one or will be nucleotides or aas at any end or within the sequence, and that constitutes a coding sequence or peptide with activity similar to the sequence of the invention, that is, is capable of synthesizing monoterpenes.
  • nucleotide or analogic amino acid sequence is substantially homologous to the amino acid sequence discussed above.
  • substantially homologous means the nucleotide sequences or aas. in question they have a degree of identity of at least 40%, preferably of at least 85%, or you will preferably be at least 95%.
  • Nucleotide sequences encoding enzymes with monoterpene synthase activity are known today in such detail, which can be obtained by an expert by employing techniques widely known in the state of the art (Sambrook and Russel, 2001). Said nucleotide sequences can be in a linear DNA fragment integrated in the genome, or integrated in a vector that allows their expression, under suitable conditions, in different microorganisms in such a way that at the same time they carry out the alcoholic fermentation and other related fermentations can produce linalool or other monoterpenes from any must, juice, or wine, starting.
  • DNA sequence encoding an enzyme with monoterpene synthase activity includes the sequence of the C. breweri Lis gene (SEQ ID NO1), which encodes a linalo synthase. 0, as explained above, the protein that encodes, the enzyme with S-linalool synthase activity (SEQ ID N02), as well as any nucleotide or amino acid sequence (aas) analogous to them.
  • DNA sequences that encode enzymes with monoterpene synthase activity we also include the sequences already known, and available to a person skilled in the art, of the genes that encode geraniol synthase, ⁇ -terpineol synthase, 3R -Linalol synthase (Iijima et al., 2004; Martin and Bohlmann, 2004; Jia et al., 1999), etc .; as well as other monoterpene synthase sequences that can be isolated, characterized, made known and used for the same purpose as the present invention.
  • the proteins that encode, as well as any nucleotide or amino acid sequence (aas) analogous to these of other species can be obtained in public domain databases and can be obtained by an expert by employing techniques widely known in the state of the art.
  • each monoterpene has a peculiar aroma and different sensory threshold, these embodiments could also have a great impact on the sensory properties of the wines, which render it "starters" with different abilities in terms of terpene composition.
  • Another particular object of the present invention is the use of the invention in which the microorganism is of interest in oenology: yeasts or bacteria.
  • microorganism also includes other microorganisms, other than S. cerevisiae, which while not responsible for the winemaking process itself, they take part in certain circumstances in this process (eg other levaduriform species and also bacteria).
  • yeasts refers to yeasts belonging, by way of illustration and without limiting the scope of the present invention, to the following group: Saccharomyces, Hanseniaspora (Kloeckera), Candida, Pichia, Metschnikowia, Kluyveromyces, Zygosaccharomyces, etc.
  • a particular embodiment of the present invention is the use of the invention where the microorganism is a wine yeast of the S. cerevisiae species, preferably S. cerevisiae YR64 strain (pGl-Lis-URA) (CECT 12032), which comprises the DNA sequence of the gene that in C. breweri encodes S-linalol synthase (SEQ ID NO1).
  • the term "bacteria” refers, by way of illustration and without limiting the scope of the present invention, to bacteria belonging to the following group: Lactobacillus, Pediococcus, Oenococcus, etc.
  • the microorganism using the present invention can be used in the production of alcoholic beverages together with other microorganisms, recombinant or not, to produce different combinations of aromatic monoterpenes during alcoholic fermentation.
  • Figure 1 Diagram of the plastic developed in this invention (The enzymes used for its construction as well as other single-cut ones are indicated): pGl-Lis-URA ( Figure IA) and its control pGl-URA ( Figure IB)
  • Figure 2 Evolution of the growth of YR63 (pGl-Lis-URA), YR64 (pGl-Lis-URA; CECT 12032), and YR65 (pGl-URA) transformants in YPD medium (Figure 2A) and their production kinetics of linalool ( Figure 2B).
  • Figure 3 Faithful chromatographic profiles of the culture media of strains YR63 (pGl-Lis-URA) (3A), YR64 (pGl-Lis-URA; CECT 12032) (3B) and YR65 (pGl-URA) (3C), after a 24-hour incubation in YPD medium.
  • FIG. 1 Microvinifications. Growth evolution (5A), sugar consumption (5B), ethanol production (5C) and linalool accumulation kinetics (5D) of strains YR64 (pGl-Lis-URA; CECT 12032) and controls T 73 and YR65 (pGl-URA). The results are the average of three independent experiments.
  • EMBODIMENT Example 1 Construction of a wine yeast strain that synthesizes de novo linalool
  • the coding region of the C. breweri Lis gene (Dudareva et al., 1996) (SEQ ID NO1) was cloned into the pG-1 vector (Schena et al., 1991) between the promoter of the S. cerevisiae TDH3 gene ( encodes glyceraldehyde-3-phosphate dehydrogenase, formerly called GPD P ) and the terminator of the PGK1 gene of S. cerevisiae (encodes 3-phosphoglycerate kinase) from two fragments, one of 650 bp and another of 2080 bp.
  • the first one was obtained in a PCR reaction using the oligonucleotides LisBgl2 (SEQ ID N03) and LisXbal (SEQ ID N04) and the plasmid pR65 (plasmid pBlueScript II SK + containing the Lis gene cDNA) as the template DNA.
  • the Expand High Fidelity (Roche) enzyme was used for the PCR reaction.
  • the amplification consisted of 10 cycles of 1 minute at 94 0 C, 1 minute at 52.5 0 C and 45 seconds at 72 0 C and then another 25 cycles of 1 minute at 94 0 C, 1 minute at 52.5 0 C and 45 seconds at 72 0 C, with increments of 5 seconds in the extension time for each cycle.
  • the PCR product after being purified, was cloned — in the pGEM-T Easy vector (pious smido for the cloning of PCR products, Promega) to yield the pGEM-Lis plasmid.
  • the sequencing of the PCR product revealed the absence of polymerization errors occurred during amplification thereof; although two changes in two amino acids were identified, not occurring during the polymerization reaction, which differ from the sequence of the database (NCBI AAC49395).
  • This plastic was treated with the enzymes BgIII and Xbal and the 650 bp fragment was isolated.
  • Both fragments were ligated into the vector pG-1, previously digested with the enzymes Bam ⁇ l and Sal ⁇ , to construct the plasmid pGl-Lis, which carries the TDH3 P expression cassette:: Lis:: PGK t and the TRPl selection marker .
  • control vector pGl-URA (FiguralB) was constructed from the PG-I plastic.
  • Lis gene was checked, indirectly, by the detection of linalool by gas chromatography (GC) in the culture media (YPD: 2% glucose; 2% peptone; 1% yeast extract) where the YR63 transformants were grown , YR64 and YR65. See below.
  • GC gas chromatography
  • Detection of linalool produced by strains YR63 (pGl-Lis-URA), YR64 (pGl-Lis-URA; CECT 12032) and YR65 (pGl-URA) was carried out using the solid phase, space microextraction technique head, coupled to gas chromatography (HS-SPME-GC). Solid phase microextraction was performed with polydimethylsiloxane (PDMS) fibers. 3 mL aliquots were taken that were introduced into 9 mL vials containing an 8x3 mm magnetic bar and 0.6 g of NaCl (to intensify the response in analyte extraction) (Arthur et al., 1992).
  • PDMS polydimethylsiloxane
  • a fixed amount of the internal 2-octanol standard (15 ⁇ L of a 0.005% w / v solution in ethanol) was added to the samples.
  • the vials were sealed and left for 2 hours, with stirring, at room temperature, to achieve the phase equilibrium (liquid-vapor).
  • PDMS fiber was introduced through the teflon septum of the plugs into the head space of the tube. After an adsorption period of 30 minutes, the fiber was injected into the gas chromatograph (HP 5890 series II), in which the analytes were released for four minutes.
  • Strains YR63 (pGl-Lis-URA), YR64 (pGl-Lis-URA) and YR65 were grown for 18 hours in selective SD medium (2% glucose, 0.5% ammonium sulfate, 0.143% YNB) and then in YPD medium ( 10 6 cells / mL in 0.5 L flasks with 100 mL of medium) and at different times, for 97 hours at 3O 0 C with a stirring of 100 rpm, samples were taken to make counts (Figure 2).
  • GC-MS gas chromatography-mass spectrometry
  • Example 3 Microvinification assays with the recombinant wine strain YR64 (CECT 12032).
  • microvinifications were carried out with strain YR64 (pGl-Lis-URA; CECT 12032) and controls T 73 and YR65 (PGl-URA). Parellada must from the 2003 harvest from Villafranca del Penedés was used. The must was filtered through cartridges
  • Burdock GA (2002). Fenaroli's handbook of flavor ingredients. 4th edition. (Ed .: Burdock GA). CRC Press, pp 972-973.
  • Karst F. Javelot C. J. E., Chambón C, Vladescu B. D. V. Method of alcoholic fermentation to obtain muscat type aromas, Pernod R. and Karst F. WO9216611. 1992-10-01. Karst F., Javelot C. J. E., Chambón C, Vladescu B. D. V.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Food Science & Technology (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention describes a novel procedure for producing alcoholic beverages with increased and/or different terpene content by using microorganisms genetically modified in order to express genes which code monoterpene synthase during fermentation, which enables same to produce de novo aromatic monoterpenes from any starting plant material. Specifically, microorganisms are transformed with the the gene lys, coding for linalol synthase, by increasing the secretion of linalol. Although the microorganisms will preferably be yeasts of the species Saccharomyces cerevisiae, the method would also be applicable to other microorganisms useful in winemaking such as other yeasts and bacterias. One specific use will be to give a more favourable and/or different aroma to fermented alcoholic beverages such as wines, including cava and champagne, beer, cider, sake, etc.

Description

TITULOTITLE
MEJORA DEL CONTENIDO AROMÁTICO DE VINOS Y OTRAS BEBIDAS ALCOHÓLICAS MEDIANTE LA UTILIZACIÓN DE MICROORGANISMOS QUE, DURANTE LA FERMENTACIÓN, PRODUCEN MONOTERPENO SINTASASIMPROVEMENT OF THE AROMATIC CONTENT OF WINES AND OTHER ALCOHOLIC BEVERAGES THROUGH THE USE OF MICROORGANISMS THAT, DURING FERMENTATION, PRODUCE SYNTHETIC MONOTERPEN
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
Sector vitivinícola. Se trata de dar solución al problema de los vinos (y eventualmente otras bebidas alcohólicas obtenidas por fermentación) con bajo contenido terpénico.Wine sector It is about solving the problem of wines (and eventually other alcoholic beverages obtained by fermentation) with low terpenic content.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
El aroma de los vinos es una de las características irá s importantes en la valoración de su calidad. Se puede dividir en tres grandes grupos: (i) los aromas procedentes de la variedad de la uva o aromas primarios, producidos por sustancias volátiles, transferidas por los granos de la uva al mosto, fundamentalmente monoterpenos, que se pierden en gran parte durante el proceso; (ii) los aromas producidos durante la fermentación o aromas secundarios, entre los que se incluyen dos tipos de compuestos aromáticos mayoritarios, alcoholes superiores y esteres; y (iii) el "bouquet", también conocido como aroma terciario, producido por la transformación final de los anteriores durante el envejecimiento.The aroma of the wines is one of the characteristics that will be important in assessing their quality. It can be divided into three main groups: (i) aromas from the grape variety or primary aromas, produced by volatile substances, transferred by the grape grains to the must, mainly monoterpenes, which are largely lost during the process; (ii) aromas produced during fermentation or secondary aromas, including two types of major aromatic compounds, higher alcohols and esters; and (iii) the "bouquet", also known as tertiary aroma, produced by the final transformation of the former during aging.
El papel que juegan los monoterpenos - grupo muy variado de compuestos volátiles de bajo peso molecular - en el aroma afrutado y floral está bien definido (Williams et al., 1980) y variaciones cualitativas y cuantitativas en los mismos son responsables de matices varietales característicos (Marais, 1983). Más recientemente se ha establecido que algunos monoterpenos pueden adema s ser considerados como nutracéuticos (Crowell, 1999; Wise y Croteau, 1999; Croteau et al., 2000), por lo que la presencia de éstos podría ocasionar no sólo mejoras en las características organolépticas de los vinos sino también en sus características funcionales.The role played by monoterpenes - a very varied group of volatile compounds of low molecular weight - in the fruity and floral aroma is well defined (Williams et al., 1980) and qualitative and quantitative variations in them are responsible for characteristic varietal nuances ( Marais, 1983). More recently it has been established that some monoterpenes can also be considered nutraceuticals (Crowell, 1999; Wise and Croteau, 1999; Croteau et al., 2000), so their presence could cause not only improvements in the characteristics Organoleptic wines but also in their functional characteristics.
Los monoterpenos irá s abundantes en algunas variedades de uvas, y que en gran medida contribuyen al carácter varietal de los vinos, son linalol, geraniol, nerol α-terpineol y citronelol (Ribéreau-Gayon et al., 1975; Park et al., 1991). Éstos están presentes en dos fracciones distintas: una libre que contribuye al aroma, y otra ligada, formando diglicósidos no aromáticos, fundamentalmente 6-O-α-L-arabinofuranosil-β-D- glucopiranósidos, 6-O-α-L-arabinopiranosil-β-D- glucopiranósidos, 6-O-α-L-ramnopiranosil-β-D- glucopiranósidos, 6-O-β-D-xilopiranosil-β-D-glucopiranósidos, 6-O-α-L-apiofuranosil-β-D-glucopiranósidos y 6-0-β-D- glucopiranosil-β-D-glucopiranósidos, estando el aglicón siempre ligado a la β-D-glucopiranosa (revisado en Günata, 2003). Esta segunda fracción es cuantitativamente superior a la primera (Günata et al., 1985a; 1985b), y apenas sufre cambios durante el proceso de fermentación llevado a cabo por Saccharomyces cerevisiae; por tanto supone una fuente potencialmente aprovechable para incrementar el aroma de los vinos. Se ha demostrado que la hidrólisis enzima tica de estos compuestos precursores ocurre en dos etapas, en la primera la unión entre azúcares se rompe por la acción de una exoglicosidasa : una arabinofuranosidasa, una ramnosidasa, una β-xilosidasa o una apiosidasa y posteriormente, mediante la acción de una β-glucosidasa se libera el aglicón (normalmente un monoterpeno o un alcohol superior en menor medida) con capacidad aromática (Günata et al., 1988; 1990). Má s recientemente se ha mostrado que la acción única de una exoglucanasa, al actuar como una endoglicosidasa, es suficiente para la liberación del monoterpeno (Gil et al., 2005) .Monoterpenes will be abundant in some grape varieties, and that greatly contribute to the varietal character of the wines, are linalool, geraniol, nerol α-terpineol and citronellol (Ribéreau-Gayon et al., 1975; Park et al., 1991). These are present in two distinct fractions: a free one that contributes to the aroma, and another linked, forming non-aromatic diglycosides, fundamentally 6-O-α-L-arabinofuranosyl-β-D-glucopyranoside, 6-O-α-L-arabinopyranosyl -β-D- glucopyranoside, 6-O-α-L-ramnopyranosyl-β-D-glucopyranoside, 6-O-β-D-xylopyranosyl-β-D-glucopyranoside, 6-O-α-L-apiofuranosyl-β -D-glucopyranosides and 6-0-β-D-glucopyranosyl-β-D-glucopyranosides, with aglycone always linked to β-D-glucopyranoside (reviewed in Günata, 2003). This second fraction is quantitatively higher than the first (Günata et al., 1985a; 1985b), and hardly undergoes changes during the fermentation process carried out by Saccharomyces cerevisiae; therefore it is a potentially useful source to increase the aroma of the wines. It has been shown that the enzyme enzyme hydrolysis of these precursor compounds occurs in two stages, in the first the union between sugars is broken by the action of an exoglycosidase: an arabinofuranosidase, a ramnosidase, a β-xylosidase or an apiosidase and subsequently, by The action of a β-glucosidase releases aglycone (usually a monoterpene or a higher alcohol to a lesser extent) with aromatic capacity (Günata et al., 1988; 1990). More recently it has been shown that the unique action of an exoglucanase, acting as an endoglycosidase, is sufficient for the release of monoterpene (Gil et al., 2005).
Hasta ahora el uso enzimas de maceración, que facilitan la liberación de los precursores glicosidicos, y de glicosidasas, que facilitan la liberación del aglicón, tanto adicionadas al vino como producidas por la propia levadura que lleva a cabo la fermentación (revisado por Günata, 2003; Manzanares y Orejas, 2005; Ramón et al., 2005; Schuller y Casal., 2005; Verstrepen et al., 2006; asi como protegido por varias patentes: Günata et al., 1989; Ramón et al., 1994; Rosi y Paolo 1996; Fowler et al., 1999; Vilanova de la Torre et al., 2004) es una de las estrategias ya descritas para incrementar el aroma del vino. No obstante, con esta estrategia sólo seria posible aumentar los componentes aromáticos de aquellos vinos procedentes de variedades de uva que tienen un nivel elevado de terpenos glicosilados, por ejemplo Moscatel; sin embargo la mayor parte de las variedades que se usan en vinificación, por ejemplo Palomino, Xarel.lo, Bobal etc., tienen un perfil aromático más neutro debido a la escasez de terpenos tanto en forma libre como glicosilada (López-Tamames et al., 1997; Gil y Valles 2001; Estévez et al. , 2004) .Until now the use of maceration enzymes, which facilitate the release of glycosidic precursors, and of glycosidases, which facilitate the release of aglycone, both added to wine and produced by the yeast itself that carries out the fermentation (reviewed by Günata, 2003; Manzanares and Orejas, 2005; Ramón et al., 2005; Schuller and Casal., 2005; Verstrepen et al., 2006; as well as protected by several patents: Günata et al., 1989; Ramón et al., 1994; Rosi and Paolo 1996; Fowler et al., 1999; Vilanova de la Torre et al., 2004) is one of the strategies already described to increase the aroma of wine. However, with this strategy it would only be possible to increase the aromatic components of those wines from grape varieties that have a high level of glycosylated terpenes, for example Moscatel; however, most of the varieties used in winemaking, for example Palomino, Xarel.lo, Bobal etc., have a more neutral aromatic profile due to the shortage of terpenes both in free and glycosylated form (López-Tamames et al ., 1997; Gil and Valles 2001; Estévez et al., 2004).
En estos casos, una alternativa a la adición de enzimas o la utilización de levaduras recombinantes que expresan dichas actividades, seria que la propia levadura que lleva a cabo la fermentación fuese capaz de sintetizar de novo monoterpenos como consecuencia de su metabolismo. En este sentido, aunque S. cerevisae normalmente no produce monoterpenos de forma natural, en un intento de obtener levaduras que los produjeran, se aislaron (tras mutagénesis con luz UV de la cepa de laboratorio FLlOO) dos mutantes autotróficos para ergosterol, de genotipo complicado, bloqueados en la enzima farnesil difosfato sintetasa, codificada por ERG20, y que adema s llevan mutaciones adicionales en otros genes de la ruta (erg!2-2 y/o erg9, codifican mevalonato kinasa y escualeno sintasa respectivamente) que les permitían reducir los niveles de geraniol para sobrevivir; el mutante VL134 era capaz de excretar farnesol (0.220 mg/L) y geraniol (0.450 mg/L) , producidos desde sus formas fosforiladas posiblemente por fosfatasas inespecíficas (Chambón et al., 1990a; 1990b). La habilidad de producir terpenos fue introducida en la cepa vínica L116 (Fermivin) por cruzamientos, y los mutantes descendientes del cruce eran capaces de producir grandes cantidades de algunos terpenos, incluso superiores que la cepa parental (hasta 6 ppm) . Sin embargo, la capacidad de consumir glucosa y producir etanol era menor en todos los descendientes aislados, lo que les hacia inviables para determinadas aplicaciones tecnológicas (Javelot et al., 1991) . Al igual que en el caso anterior, este método ha sido protegido por varias patentes (Karst et al., 1989; 1992; 1994, y Watanabe et al., 2002 para su utilización en Sake) .In these cases, an alternative to the addition of enzymes or the use of recombinant yeasts that express these activities, would be that the yeast itself that carries out the fermentation was able to synthesize de novo monoterpenes as a result of its metabolism. In this sense, although S. cerevisae does not normally produce monoterpenes naturally, in an attempt to obtain yeasts that produced them, two autotrophic mutants for ergosterol, of complicated genotype, were isolated (after UV mutagenesis of the laboratory strain FLlOO) , blocked in the farnesyl diphosphate synthetase enzyme, encoded by ERG20, and which also carry additional mutations in other genes of the pathway (erg! 2-2 and / or erg9, encode mevalonate kinase and squalene synthase respectively) that allowed them to reduce geraniol levels to survive; the VL134 mutant was able to excrete farnesol (0.220 mg / L) and geraniol (0.450 mg / L), produced from its phosphorylated forms possibly by nonspecific phosphatases (Chambón et al., 1990a; 1990b). The ability to produce terpenes was introduced into the wine strain L116 (Fermivin) by crossings, and mutants descended from the cross were capable of producing large quantities of some terpenes, even higher than the parental strain (up to 6 ppm). However, the ability to consume glucose and produce ethanol was lower in all isolated offspring, which made them unfeasible for certain technological applications (Javelot et al., 1991). As in the previous case, this method has been protected by several patents (Karst et al., 1989; 1992; 1994, and Watanabe et al., 2002 for use in Sake).
Ms recientemente, Carrau et al. (2005) han descrito que algunas cepas vínicas diferentes a L116 eran capaces de producir monoterpenos en mosto sintético; en concreto la cepaMore recently, Carrau et al. (2005) have described that some wine strains other than L116 were capable of producing monoterpenes in synthetic must; specifically the strain
KUl (Uruguay) producía ~5 μg/L de linalol (cantidad que roza el umbral de detección, que es 4-10 ppb) y cantidades no detectables de otros monoterpenos como, por ejemplo geraniol. Sin embargo, en el mismo estudio, en otras cepas vínicas utilizadas industrialmente, Montrachet 522 (Universidad de California, Davis), CIVC8130 (Francia) y dos cepas uruguayas, el linalol producido estaba por debajo del umbral de detección .KUl (Uruguay) produced ~ 5 μg / L of linalool (amount that borders the detection threshold, which is 4-10 ppb) and undetectable amounts of other monoterpenes, such as geraniol. However, in the same study, in other industrially used wine strains, Montrachet 522 (University of California, Davis), CIVC8130 (France) and two Uruguayan strains, the linalool produced was below the detection threshold.
Por otro lado, en las plantas los monoterpenos están presentes en los aceites esenciales de flores y frutas y son producidos, de manera especifica, por las monoterpeno sintasas, que utilizan como sustrato geranil difosfato (GPP) (Bohlmann et al., 1998). Este sustrato es un metabolito común en microorganismos y en organismos superiores, lo que abre la posibilidad de aplicar técnicas de ingeniería metabólica para proporcionar a un determinado microorganismo nuevos pasos en la ruta de isoprenoides, que incluyan los genes que le faltan para la fabricación de un determinado monoterpeno (Cárter et al., 2003 y Reiling et al., 2004 en Escherichia coli; Oswald et al., 2006 en cepas de laboratorio de S. cerevisiae) . En los últimos diez años, distintos laboratorios han empezado a caracterizar los genes y enzimas responsables de la producción de los componentes específicos del aroma y del sabor de flores, frutas y verduras. Asi, entre los genes cuyos productos determinan el olor de las flores de la especie Clarkia breweri, se ha caracterizado el gen LisOn the other hand, in plants, monoterpenes are present in the essential oils of flowers and fruits and are produced, specifically, by monoterpene synthases, which use geranyl diphosphate (GPP) as a substrate (Bohlmann et al., 1998). This substrate is a common metabolite in microorganisms and higher organisms, which opens up the possibility of applying metabolic engineering techniques to provide a given microorganism with new steps in the isoprenoid pathway, which include the missing genes for the manufacture of a determined monoterpene (Carter et al., 2003 and Reiling et al., 2004 in Escherichia coli; Oswald et al., 2006 in laboratory strains of S. cerevisiae). In the last ten years, different laboratories have begun to characterize the genes and enzymes responsible for the production of the specific components of the aroma and flavor of flowers, fruits and vegetables. Thus, among the genes whose products determine the smell of flowers of the Clarkia breweri species, the Lis gene has been characterized
(Dudareva et al., 1996; patentado por Pichersky, 1997) que codifica la enzima S-linalol sintasa (LIS) y que cataliza la producción del monoterpeno S-linalol, uno de los componentes importantes del aroma de los vinos, en una única reacción desde el GPP. Puesto que en levaduras el GPP es un intermediario de la síntesis de ergosterol, en la presente invención se ha dotado a la cepa vínica S. cerevisiae T73 (CECT 1894; Querol et al., 1992) con el gen Lis de C. breweri y se ha estudiado tanto su capacidad para producir linalol a lo largo de la vinificación como sus características fermentativas .(Dudareva et al., 1996; patented by Pichersky, 1997) that encodes the enzyme S-linalool synthase (LIS) and catalyzes the production of monoterpene S-linalol, one of the important components of the aroma of wines, in a single reaction from the GPP. Since in GPPS yeast is an intermediary of ergosterol synthesis, the present strain S. cerevisiae T 73 (CECT 1894; Querol et al., 1992) has been endowed with the Lis gene of C. breweri and both its ability to produce linalool throughout winemaking and its fermentative characteristics have been studied.
Recientemente, nuevos genes que codifican otras monoterpeno sintasas están siendo caracterizados. Estos genes y otros que se vayan descubriendo podrán también ser expresados en cepas adecuadas de levaduras vínicas, de manera similar al ejemplo que aqui se recoge. El gen GES, que en albahaca codifica la enzima geraniol sintasa (Iijima et al.,Recently, new genes encoding other monoterpene synthases are being characterized. These genes and others that are discovered can also be expressed in suitable strains of wine yeasts, similar to the example here collected. The GES gene, which in basil encodes the enzyme geraniol synthase (Iijima et al.,
2004), el gen que en uva codifica α-terpineol sintasa (Martin y Bohlmann, 2004) y el gen QHl que en Artemisa codifica una 3R-linalol sintasa (Jia et al., 1999) son algunos ejemplos.2004), the gene that encodes α-terpineol synthase in grapes (Martin and Bohlmann, 2004) and the QHl gene that encodes a 3R-linalo synthase in Artemis (Jia et al., 1999) are some examples.
Probablemente S. cerevisiae es uno de los organismos vivos de los que se posee mayor conocimiento molecular. Desde hace casi treinta años es posible transformar genéticamente cepas de laboratorio de esta especie (Beggs 1978). A todo ello hay que sumar la disponibilidad de la secuencia nucleotidica completa del genoma de este organismo (Goffeau et al., 1997) y una plétora de técnicas moleculares que han permitido y permiten avanzar en su manipulación. En la actualidad se dispone de levaduras vínicas transgénicas (YMGs) que sirven para mejorar el propio proceso de vinificación (por ejemplo facilitando la filtrabilidad) y de YMGs que sirven para mejorar las características organolépticas y/o funcionales de los vinos (revisado por: Manzanares y Orejas, 2005; Ramón et al., 2005; Schuller y Casal., 2005; Verstrepen et al., 2006). Recientemente en Japón se ha aprobado la utilización de una levadura recombinante, que allí no necesita ser calificada como YMG, para la elaboración de Sake (Akada, 2002).Probably S. cerevisiae is one of the living organisms with the greatest molecular knowledge. For almost thirty years it has been possible to genetically transform laboratory strains of this species (Beggs 1978). To all this we must add the availability of the complete nucleotide sequence of the genome of this organism (Goffeau et al., 1997) and a plethora of molecular techniques that have allowed and allow progress in its manipulation. Currently, transgenic wine yeasts (YMGs) are available to improve the process of vinification (for example facilitating filterability) and YMGs that serve to improve the organoleptic and / or functional characteristics of the wines (reviewed by: Manzanares and Orejas, 2005; Ramón et al., 2005; Schuller and Casal., 2005; Verstrepen et al., 2006). Recently in Japan the use of a recombinant yeast, which does not need to be qualified as YMG, has been approved for the preparation of Sake (Akada, 2002).
La invención que se propone consiste en la mejora del proceso de fermentación de bebidas alcohólicas, preferentemente vinos, por el uso de un microorganismo que, habiendo sido modificado para producir monoterpeno sintasas heterólogas, conduce a una mejora del contenido aromático de la bebida.The proposed invention consists in the improvement of the fermentation process of alcoholic beverages, preferably wines, by the use of a microorganism that, having been modified to produce heterologous monoterpene synthases, leads to an improvement in the aromatic content of the beverage.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
Descripción brevebrief description
El objeto de la presente invención lo constituye el uso de un microorganismo útil para la producción de bebidas alcohólicas elaboradas a partir de mostos o zumos de frutas, preferentemente vinos, extractos de cereales u otros productos alimenticios de origen vegetal, manipulado genéticamente, en adelante uso de la presente invención, que comprende secuencias de DNA que codifican enzimas con actividad monoterpeno sintasa que permiten la producción de monoterpenos durante la fermentación.The object of the present invention is the use of a microorganism useful for the production of alcoholic beverages made from fruit musts or juices, preferably wines, cereal extracts or other food products of plant origin, genetically manipulated, hereinafter used of the present invention, comprising DNA sequences encoding enzymes with monoterpene synthase activity that allow the production of monoterpenes during fermentation.
Un objeto particular de la presente invención es el uso de la invención donde la bebida alcohólica pertenece, a título ilustrativo y sin que limite el alcance de la invención, al siguiente grupo: vinos, (incluidos no espumosos, así como cava, champagne y otros espumosos), cerveza, sidra, sake, etc.A particular object of the present invention is the use of the invention where the alcoholic beverage belongs, by way of illustration and without limiting the scope of the invention, to the following group: wines, (including non-sparkling wines, as well as cava, champagne and others sparkling), beer, cider, sake, etc.
Una realización particular de la presente invención es el uso de la invención donde la bebida alcohólica es vino, preferentemente, vinos blancos, tintos o rosados a partir de mostos de uva de cualquier variedad. Otro objeto de la presente invención es el uso de la invención donde las secuencias de DNA que codifican enzimas con actividad monoterpeno sintasa incluyen cualquier gen que codifique enzimas que catalicen la formación de monoterpenos : linalol sintasa, geraniol sintasa, α-terpineol sintasa, etc; asi como cualquier secuencia de nucleótidos análoga a éstas que cifre enzimas con dicha actividad, de forma aislada o en sus posibles combinaciones.A particular embodiment of the present invention is the use of the invention where the alcoholic beverage is preferably white, red or rosé wines from grape musts of any variety. Another object of the present invention is the use of the invention where DNA sequences encoding enzymes with monoterpene synthase activity include any gene encoding enzymes that catalyze the formation of monoterpenes: linalool synthase, geraniol synthase, α-terpineol synthase, etc .; as well as any nucleotide sequence analogous to these that encrypts enzymes with said activity, in isolation or in their possible combinations.
Otra realización particular de la presente invención es el uso de la invención donde una secuencia de DNA que codifica una enzima con actividad monoterpeno sintasa incluye la secuencia del gen Lis de C. breweri (SEQ ID NOl), que codifica una linalol sintasa. 0, conforme anteriormente se ha explicado, la proteina que codifica, la enzima con actividad S-linalol sintasa (SEQ ID N02), asi como cualquier secuencia de nucleótidos o de aminoácidos (aas) análoga a éstas.Another particular embodiment of the present invention is the use of the invention where a DNA sequence encoding an enzyme with monoterpene synthase activity includes the sequence of the C. breweri Lis gene (SEQ ID NO1), which encodes a linalool synthase. 0, as explained above, the protein that encodes, the enzyme with S-linalool synthase activity (SEQ ID N02), as well as any nucleotide or amino acid sequence (aas) analogous to them.
Otro objeto particular de la presente invención lo constituye el uso de la invención en el cual el microorganismo es de interés en enología: levaduras o bacterias.Another particular object of the present invention is the use of the invention in which the microorganism is of interest in oenology: yeasts or bacteria.
Una realización particular de la presente invención lo constituye el uso de la invención donde el microorganismo es una levadura vínica de la especie S. cerevisiae, preferentemente la cepa S. cerevisiae YR64 (pGl-Lis-URA) (CECT 12032), que comprende la secuencia de DNA del gen que en C. breweri codifica S-linalol sintasa (SEQ ID NOl).A particular embodiment of the present invention is the use of the invention where the microorganism is a wine yeast of the species S. cerevisiae, preferably strain S. cerevisiae YR64 (pGl-Lis-URA) (CECT 12032), which comprises the DNA sequence of the gene that in C. breweri encodes S-linalol synthase (SEQ ID NO1).
Una última realización particular de la presente invención es el uso de la presente invención en la elaboración de bebidas alcohólicas conjuntamente con otros microorganismos, recombinantes o no, para producir distintas combinaciones de monoterpenos aromáticos durante la fermentación .A last particular embodiment of the present invention is the use of the present invention in the production of alcoholic beverages together with other microorganisms, recombinant or not, to produce different combinations of aromatic monoterpenes during fermentation.
Descripción detallada de la invención En la presente invención se describe un método totalmente diferente a los antes citados (ver estado de la técnica) para mantener, aumentar y/o modificar el contenido terpénico de una bebida alcohólica y conseguir asi que ésta tenga un aroma más favorable y/o diferente. El método de mejora propuesto, se centra en la fermentación de mostos, preferentemente de uva, para la producción de vinos; siendo un método extensible a la producción de otras bebidas alcohólicas obtenidas por fermentación a partir de distintas materias primas vegetales, a titulo ilustrativo y sin que limite el alcance de la invención, por ejemplo: zumos de frutas, extractos de cereales, etc.DETAILED DESCRIPTION OF THE INVENTION The present invention describes a totally different method from those mentioned above (see status of technique) to maintain, increase and / or modify the terpenic content of an alcoholic beverage and thus achieve a more favorable and / or different aroma. The proposed improvement method focuses on the fermentation of musts, preferably grapes, for the production of wines; being an extensible method to the production of other alcoholic beverages obtained by fermentation from different vegetable raw materials, by way of illustration and without limiting the scope of the invention, for example: fruit juices, cereal extracts, etc.
Dicho método se basa en la manipulación genética de levaduras vínicas para que sean capaces de producir monoterpeno sintasas heterólogas y como consecuencia produzcan y excreten de novo monoterpenos durante la fermentación alcohólica. La presente invención se basa en la observación de que la expresión de un gen, que en plantas codifica una S-linalol sintasa, en una levadura vínica (derivada de la cepa industrial S. cerevisiae T73, Lallemand) , que de manera natural aparentemente no produce linalol (ver figuras 2 y 5), induce la concomitante presencia de este monoterpeno aromático en los vinos producidos con dicha levadura recombinante . Má s concretamente, se parte de la secuencia del cDNA del gen Lis de C. breweri, que codifica una S-linalol sintasa. Este gen se clona entre el promotor del gen TDH3 y el terminador del gen PGKl de S. cerevisiae, en un vector de expresión de levaduras. La transformación de dicha cepa vínica con el vector anterior rinde la correspondiente levadura vínica de características mejoradas.Said method is based on the genetic manipulation of wine yeasts so that they are capable of producing heterologous monoterpene synthases and as a consequence they produce and excrete de novo monoterpenes during alcoholic fermentation. The present invention is based on the observation that the expression of a gene, which in plants encodes an S-linalool synthase, in a wine yeast (derived from the industrial strain S. cerevisiae T 73 , Lallemand), which apparently naturally It does not produce linalool (see figures 2 and 5), it induces the concomitant presence of this aromatic monoterpene in wines produced with said recombinant yeast. More specifically, it is based on the cDNA sequence of the C. breweri Lis gene, which encodes an S-linalo synthase. This gene is cloned between the TDH3 gene promoter and the S. cerevisiae PGKl gene terminator, in a yeast expression vector. The transformation of said wine strain with the previous vector yields the corresponding wine yeast of improved characteristics.
La mejora del proceso de vinificación que aqui se propone ha sido realizada en un mutante generado a partir de la levadura vínica S. cerevisiae T73 (el mutante T73-4, auxótrofo de uracilo; Puig et al., 1998) y el gen Lis, que en C. breweri codifica la enzima S-linalol sintasa (Ejemplo 1). Se ha comprobado que la cepa vínica transformada es capaz, sin má s manipulaciones de la ruta y sin el aporte de precursores, de producir y excretar linalol libre a lo largo de la vinificación. Mientras que los vinos resultantes de la fermentación de mostos Parellada con las cepas T73 y T73-4 transformada con un plá smido control que no lleva el cassette de expresión del gen Lis - el llamado pGl-URA - no tienen cantidades detectables de linalol, aquellos fermentados con las levaduras que llevan el plá smido pGl-Lis-URA presentan cantidades de linalol relevantes desde el punto de vista sensorial, ya que sobrepasan el umbral de detección del mismo (Burdock, 2002) (Ejemplo 2). Por lo tanto, en la presente invención se ha demostrado que, a diferencia de lo que ocurre con otras estrategias ya descritas (ver estado de la técnica), (i) la expresión de cDNAs que codifican monoterpeno sintasas en levaduras vínicas es suficiente para la producción de novo de monoterpenos, independientemente de la materia prima; (ii) que es posible cambiar rutas metabólicas en cepas vínicas de Saccharomyces, en concreto la ruta de isoprenoides, para la producción de linalol y eventualmente otros monoterpenos; y (iii) que es posible conseguir una producción continuada de linalol en levaduras sin que esa concentración sea tóxica.Improved vinification process proposed here has been performed in a mutant generated from the wine yeast S. cerevisiae T 73 (T 73 -4 mutant, uracil auxotroph;. Puig et al, 1998) and the gene Lis, which in C. breweri encodes the enzyme S-linalool synthase (Example 1). It has been proven that the transformed wine strain is capable, without further manipulation of the route and without the contribution of precursors, to produce and excrete free linalool throughout of winemaking While the wines resulting from the fermentation of Parellada musts with strains T 73 and T 73 -4 transformed with a control platinum that does not carry the expression cassette of the Lis gene - the so-called pGl-URA - do not have detectable amounts of linalool , those fermented with the yeasts that carry the plastic pGl-Lis-URA present quantities of linalool relevant from the sensory point of view, since they exceed the detection threshold thereof (Burdock, 2002) (Example 2). Therefore, in the present invention it has been shown that, unlike what happens with other strategies already described (see prior art), (i) the expression of cDNAs encoding monoterpene synthases in wine yeasts is sufficient for de novo production of monoterpenes, regardless of the raw material; (ii) that it is possible to change metabolic pathways in wine strains of Saccharomyces, specifically the isoprenoid route, for the production of linalool and possibly other monoterpenes; and (iii) that it is possible to achieve a continuous production of linalool in yeasts without this concentration being toxic.
Además, se ha constatado que tanto la producción de alcohol como la tasa fermentativa de estas levaduras recombinantes son comparables a las de una levadura comercial, resultado de suma importancia de cara a su aplicabilidad, indicando que la expresión del gen Lis en la levadura vínica modificada no cambia sus características fermentativas (Ejemplo 3).In addition, it has been found that both the production of alcohol and the fermentation rate of these recombinant yeasts are comparable to those of a commercial yeast, a result of great importance for their applicability, indicating that the expression of the Lis gene in the modified wine yeast does not change its fermentative characteristics (Example 3).
Hay que destacar que con las mencionadas levaduras modificadas genéticamente tampoco se tienen los problemas técnicos, antes mencionados, que surgen cuando se vinifica con levaduras portadoras de mutaciones en los genes ERG. En cuanto a su comparación con las levaduras que de forma natural producen monoterpenos, no todas las levaduras vínicas son capaces de producirlos en cantidades detectables, y además con esta invención se consiguen mejores rendimientos y se abre las puertas a la modificación dirigida de la composición de volátiles.It should be noted that with the aforementioned genetically modified yeasts, there are also no technical problems, mentioned above, that arise when vinified with yeasts carrying mutations in the ERG genes. As for its comparison with yeasts that naturally produce monoterpenes, not all wine yeasts are capable of producing them in detectable quantities, and also with this invention better yields are achieved and Doors open to the directed modification of volatile composition.
Por lo tanto, el objeto de la presente invención lo constituye el uso de un microorganismo útil para la producción de bebidas alcohólicas elaboradas a partir de mostos o zumos de frutas, preferentemente vinos, extractos de cereales u otros productos alimenticios de origen vegetal, manipulado genéticamente, en adelante uso de la presente invención, que comprende secuencias de DNA que codifican enzimas con actividad monoterpeno sintasa que permiten la producción de monoterpenos durante la fermentación.Therefore, the object of the present invention is the use of a microorganism useful for the production of alcoholic beverages made from fruit musts or juices, preferably wines, cereal extracts or other food products of plant origin, genetically manipulated Hereinafter, use of the present invention, comprising DNA sequences encoding enzymes with monoterpene synthase activity that allow the production of monoterpenes during fermentation.
Un objeto particular de la presente invención es el uso de la invención donde la bebida alcohólica pertenece, a titulo ilustrativo y sin que limite el alcance de la invención, al siguiente grupo: vinos, (incluidos no espumosos, asi como cava, champagne y otros espumosos), cerveza, sidra, sake, etc.A particular object of the present invention is the use of the invention where the alcoholic beverage belongs, by way of illustration and without limiting the scope of the invention, to the following group: wines, (including non-sparkling wines, as well as cava, champagne and others sparkling), beer, cider, sake, etc.
Una realización particular de la presente invención es el uso de la invención donde la bebida alcohólica es vino, preferentemente, vinos blancos, tintos o rosados a partir de mostos de uva de cualquier variedad.A particular embodiment of the present invention is the use of the invention where the alcoholic beverage is preferably white, red or rosé wines from grape musts of any variety.
Otro objeto de la presente invención es el uso de la invención donde las secuencias de DNA que codifican enzimas con actividad monoterpeno sintasa incluyen cualquier gen que codifique enzimas que catalicen la formación de monoterpenos: linalol sintasa, geraniol sintasa, α-terpineol sintasa, etc; asi como cualquier secuencia de nucleótidos análoga a éstas que cifre enzimas con dicha actividad, de forma aislada o en sus posibles combinaciones. Tal como se utiliza en la presente invención el término "monoterpeno sintasa" se refiere tanto a la secuencia de nucleótidos del gen en cuestión, como a la proteina que codifica, una enzima con actividad monoterpeno sintasa, asi como a cualquier secuencia de nucleótidos o de aminoácidos (aas) análoga a éstas de otras especies. En el sentido utilizado en esta descripción, el término "análoga" pretende incluir también cualquier secuencia de nucleótidos o aminoácidos que pueda ser aislada o construida en base a las secuencias de nucleótidos o aas contempladas en la presente memoria, por ejemplo, mediante la introducción de sustituciones de nucelótidos o aas, conservativas o no conservativas, incluyendo la inserción de uno o más nucleótidos o aas, la adición de uno o irá s nucleótidos o aas en cualquier parte de la molécula o la deleción de uno o irá s nucleótidos o aas en cualquier extremo o en el interior de la secuencia, y que constituya una secuencia codificante o péptido con actividad similar a la secuencia de la invención, es decir, sea capaz de sintetizar monoterpenos .Another object of the present invention is the use of the invention where DNA sequences encoding enzymes with monoterpene synthase activity include any gene encoding enzymes that catalyze the formation of monoterpenes: linalool synthase, geraniol synthase, α-terpineol synthase, etc .; as well as any nucleotide sequence analogous to these that encrypts enzymes with said activity, in isolation or in their possible combinations. As used in the present invention, the term "monoterpene synthase" refers both to the nucleotide sequence of the gene in question, as well as to the protein it encodes, an enzyme with monoterpene synthase activity, as well as to any nucleotide or nucleotide sequence. amino acids (aas) analogous to these of other species. In the sense used in this description, the term "analogous" is intended also include any nucleotide or amino acid sequence that can be isolated or constructed based on the nucleotide or aas sequences contemplated herein, for example, by introducing nucelotide or aas substitutions, conservative or non-conservative, including insertion of one or more nucleotides or aas, the addition of one or will be nucleotides or aas in any part of the molecule or the deletion of one or will be nucleotides or aas at any end or within the sequence, and that constitutes a coding sequence or peptide with activity similar to the sequence of the invention, that is, is capable of synthesizing monoterpenes.
En general, una secuencia de nucleótidos o de amincá cidos ana loga es sustancialmente homologa a la secuencia de aminoácidos comentada anteriormente. En el sentido utilizado en esta descripción, la expresión "sustancialmente homologa" significa que las secuencias de nucleótidos o aas. en cuestión tienen un grado de identidad de, al menos, un 40%, preferentemente de, al menos, un 85%, o irás preferentemente de, al menos, un 95%.In general, a nucleotide or analogic amino acid sequence is substantially homologous to the amino acid sequence discussed above. In the sense used in this description, the expression "substantially homologous" means the nucleotide sequences or aas. in question they have a degree of identity of at least 40%, preferably of at least 85%, or you will preferably be at least 95%.
Secuencias de nucleótidos codificantes de enzimas con actividad monoterpeno sintasa se conocen hoy en dia con tal detalle, que pueden obtenerse por un experto mediante el empleo de técnicas ampliamente conocidas en el estado de la técnica (Sambrook y Russel, 2001). Dichas secuencias de nucleótidos pueden estar en un fragmento lineal de DNA integradas en el genoma, o bien integradas en un vector que permita la expresión de las mismas, en condiciones adecuadas, en distintos microorganismos de tal forma que a la vez que realizan la fermentación alcohólica y otras fermentaciones relacionadas puedan producir linalol u otros monoterpenos a partir de cualquier mosto, zumo, o vino, de partida.Nucleotide sequences encoding enzymes with monoterpene synthase activity are known today in such detail, which can be obtained by an expert by employing techniques widely known in the state of the art (Sambrook and Russel, 2001). Said nucleotide sequences can be in a linear DNA fragment integrated in the genome, or integrated in a vector that allows their expression, under suitable conditions, in different microorganisms in such a way that at the same time they carry out the alcoholic fermentation and other related fermentations can produce linalool or other monoterpenes from any must, juice, or wine, starting.
Otra realización particular de la presente invención es el uso de la invención donde una secuencia de DNA que codifica una enzima con actividad monoterpeno sintasa incluye la secuencia del gen Lis de C. breweri (SEQ ID NOl), que codifica una linalol sintasa. 0, conforme anteriormente se ha explicado, la proteina que codifica, la enzima con actividad S-linalol sintasa (SEQ ID N02), asi como cualquier secuencia de nucleótidos o de aminoácidos (aas) análoga a éstas. Asimismo, al hablar de "secuencias de DNA que codifican enzimas con actividad monoterpeno sintasa" se incluyen también las secuencias ya conocidas, y al alcance de un experto medio en la materia, de los genes que codifican geraniol sintasa, α-terpineol sintasa, 3R-linalol sintasa (Iijima et al., 2004; Martin y Bohlmann, 2004; Jia et al., 1999), etc.; asi como otras secuencias de monoterpeno sintasas que puedan llegar a aislarse, caracterizarse, darse a conocer y ser utilizadas con el mismo objetivo que la presente invención. 0, conforme anteriormente se ha explicado, las proteínas que codifican, asi como cualquier secuencia de nucleótidos o de aminoácidos (aas) análogas a éstas de otras especies. Éstas y otras secuencias pueden conseguirse en bases de datos de dominio público y pueden obtenerse por un experto mediante el empleo de técnicas ampliamente conocidas en el estado de la técnica.Another particular embodiment of the present invention is the use of the invention where a DNA sequence encoding an enzyme with monoterpene synthase activity includes the sequence of the C. breweri Lis gene (SEQ ID NO1), which encodes a linalo synthase. 0, as explained above, the protein that encodes, the enzyme with S-linalool synthase activity (SEQ ID N02), as well as any nucleotide or amino acid sequence (aas) analogous to them. Likewise, when talking about "DNA sequences that encode enzymes with monoterpene synthase activity", we also include the sequences already known, and available to a person skilled in the art, of the genes that encode geraniol synthase, α-terpineol synthase, 3R -Linalol synthase (Iijima et al., 2004; Martin and Bohlmann, 2004; Jia et al., 1999), etc .; as well as other monoterpene synthase sequences that can be isolated, characterized, made known and used for the same purpose as the present invention. 0, as explained above, the proteins that encode, as well as any nucleotide or amino acid sequence (aas) analogous to these of other species. These and other sequences can be obtained in public domain databases and can be obtained by an expert by employing techniques widely known in the state of the art.
Puesto que cada monoterpeno tiene un aroma peculiar y diferente umbral sensorial, estas realizaciones también podrían tener un gran impacto en las propiedades sensoriales de los vinos, lo que rendirla "starters" con distintas habilidades en cuanto a la composición de terpenos. En este sentido, como alternativa a las fermentaciones con uno o distintos microorganismos, también cabe la posibilidad de co- transformar el microorganismo para el uso de la presente invención con varios de los genes anteriores. Otro objeto particular de la presente invención lo constituye el uso de la invención en el cual el microorganismo es de interés en enología: levaduras o bacterias .Since each monoterpene has a peculiar aroma and different sensory threshold, these embodiments could also have a great impact on the sensory properties of the wines, which render it "starters" with different abilities in terms of terpene composition. In this sense, as an alternative to fermentations with one or different microorganisms, it is also possible to co-transform the microorganism for the use of the present invention with several of the above genes. Another particular object of the present invention is the use of the invention in which the microorganism is of interest in oenology: yeasts or bacteria.
En esta definición de microorganismo se incluyen también otros microorganismos, distintos a S. cerevisiae, que si bien no son responsables del propio proceso de vinificación, intervienen en determinadas circunstancias en dicho proceso (p.e. otras especies levaduriformes y también bacterias).This definition of microorganism also includes other microorganisms, other than S. cerevisiae, which while not responsible for the winemaking process itself, they take part in certain circumstances in this process (eg other levaduriform species and also bacteria).
Tal como se utiliza en la presente invención el término levaduras se refiere a levaduras pertenecientes, a titulo ilustrativo y sin que limite el alcance de la presente invención, al siguiente grupo: Saccharomyces, Hanseniaspora (Kloeckera) , Candida, Pichia, Metschnikowia, Kluyveromyces, Zygosaccharomyces, etc.As used in the present invention, the term yeasts refers to yeasts belonging, by way of illustration and without limiting the scope of the present invention, to the following group: Saccharomyces, Hanseniaspora (Kloeckera), Candida, Pichia, Metschnikowia, Kluyveromyces, Zygosaccharomyces, etc.
Una realización particular de la presente invención lo constituye el uso de la invención donde el microorganismo es una levadura vínica de la especie S. cerevisiae, preferentemente a cepa S. cerevisiae YR64 (pGl-Lis-URA) (CECT 12032), que comprende la secuencia de DNA del gen que en C. breweri codifica S-linalol sintasa (SEQ ID NOl) . Tal como se utiliza en la presente invención el término bacterias se refiere, a titulo ilustrativo y sin que limite el alcance de la presente invención, a bacterias pertenecientes al siguiente grupo: Lactobacillus, Pediococcus, Oenococcus, etc. Por otro lado, el microorganismo uso de la presente invención puede ser utilizado en la elaboración de bebidas alcohólicas conjuntamente con otros microorganismos, recombinantes o no, para producir distintas combinaciones de monoterpenos aromáticos durante la fermentación alcohólica.A particular embodiment of the present invention is the use of the invention where the microorganism is a wine yeast of the S. cerevisiae species, preferably S. cerevisiae YR64 strain (pGl-Lis-URA) (CECT 12032), which comprises the DNA sequence of the gene that in C. breweri encodes S-linalol synthase (SEQ ID NO1). As used herein, the term "bacteria" refers, by way of illustration and without limiting the scope of the present invention, to bacteria belonging to the following group: Lactobacillus, Pediococcus, Oenococcus, etc. On the other hand, the microorganism using the present invention can be used in the production of alcoholic beverages together with other microorganisms, recombinant or not, to produce different combinations of aromatic monoterpenes during alcoholic fermentation.
DESCRIPCIÓN DEL CONTENIDO DE LAS FIGURASDESCRIPTION OF THE CONTENT OF THE FIGURES
Figura 1. Diagrama del plá smido desarrollado en esta invención (Se indican las enzimas utilizadas para su construcción asi como otras de corte único) : pGl-Lis-URA (Figura IA) y su control pGl-URA (Figura IB)Figure 1. Diagram of the plastic developed in this invention (The enzymes used for its construction as well as other single-cut ones are indicated): pGl-Lis-URA (Figure IA) and its control pGl-URA (Figure IB)
Figura 2. Evolución del crecimiento de los transformantes YR63 (pGl-Lis-URA) , YR64 (pGl-Lis-URA; CECT 12032), e YR65 (pGl-URA) en medio YPD (Figura 2A) y su cinética de producción de linalol (Figura 2B) . Figura 3. Perfiles cromatográ fieos de los medios de cultivo de las cepas YR63 (pGl-Lis-URA) (3A), YR64 (pGl-Lis-URA; CECT 12032) (3B) e YR65 (pGl-URA) (3C), tras una incubación de 24 horas en medio YPD. La flecha indica el tiempo de elución del linalol establecido por comparación con un patrón comercial. Figura 4. Comparación de los perfiles iónicos del monoterpeno producido por la cepa YR64 (pGl-Lis-URA) y del linalol obtenidos por GC-MS.Figure 2. Evolution of the growth of YR63 (pGl-Lis-URA), YR64 (pGl-Lis-URA; CECT 12032), and YR65 (pGl-URA) transformants in YPD medium (Figure 2A) and their production kinetics of linalool (Figure 2B). Figure 3. Faithful chromatographic profiles of the culture media of strains YR63 (pGl-Lis-URA) (3A), YR64 (pGl-Lis-URA; CECT 12032) (3B) and YR65 (pGl-URA) (3C), after a 24-hour incubation in YPD medium. The arrow indicates the elution time of linalool established by comparison with a commercial pattern. Figure 4. Comparison of the ionic profiles of monoterpene produced by strain YR64 (pGl-Lis-URA) and linalool obtained by GC-MS.
Figura 5. Microvinificaciones . Evolución del crecimiento (5A), consumo de azúcares (5B), producción de etanol (5C) y cinética de acumulación de linalol (5D) de las cepas YR64 (pGl-Lis-URA; CECT 12032) y los controles T73 e YR65 (pGl- URA) . Los resultados son la media de tres experimentos independientes .Figure 5. Microvinifications. Growth evolution (5A), sugar consumption (5B), ethanol production (5C) and linalool accumulation kinetics (5D) of strains YR64 (pGl-Lis-URA; CECT 12032) and controls T 73 and YR65 (pGl-URA). The results are the average of three independent experiments.
EJEMPLOS DE REALIZACIÓN Ejemplo 1.- Construcción de una cepa de levadura vínica que sintetiza de novo linalolEXAMPLES OF EMBODIMENT Example 1.- Construction of a wine yeast strain that synthesizes de novo linalool
1.1.- Clonación del gen Lis de Clarkia breweri en un vector de expresión de levaduras1.1.- Cloning of the Clarkia breweri Lis gene in a yeast expression vector
La región codificante del gen Lis de C. breweri (Dudareva et al., 1996) (SEQ ID NOl) se clonó en el vector pG-1 (Schena et al., 1991) entre el promotor del gen TDH3 de S. cerevisiae (codifica gliceraldehido-3-fosfato deshidrogenasa, antes llamado GPDP) y el terminador del gen PGKl de S. cerevisiae (codifica 3-fosfoglicerato kinasa) a partir de dos fragmentos, uno de 650 pb y otro de 2080 pb. El primero de ellos se obtuvo en una reacción de PCR utilizando los oligonucleótidos LisBgl2 (SEQ ID N03) y LisXbal (SEQ ID N04) y el plá smido pR65 (plá smido pBlueScript II SK+ que contiene el cDNA del gen Lis) como DNA molde. Para la reacción de PCR se usó la enzima Expand High Fidelity (Roche) . La amplificación consistió en 10 ciclos de 1 minuto a 940C, 1 minuto a 52.5 0C y 45 segundos a 72 0C y a continuación de otros 25 ciclos de 1 minuto a 940C, 1 minuto a 52.5 0C y 45 segundos a 72 0C, con incrementos de 5 segundos en el tiempo de extensión por cada ciclo.The coding region of the C. breweri Lis gene (Dudareva et al., 1996) (SEQ ID NO1) was cloned into the pG-1 vector (Schena et al., 1991) between the promoter of the S. cerevisiae TDH3 gene ( encodes glyceraldehyde-3-phosphate dehydrogenase, formerly called GPD P ) and the terminator of the PGK1 gene of S. cerevisiae (encodes 3-phosphoglycerate kinase) from two fragments, one of 650 bp and another of 2080 bp. The first one was obtained in a PCR reaction using the oligonucleotides LisBgl2 (SEQ ID N03) and LisXbal (SEQ ID N04) and the plasmid pR65 (plasmid pBlueScript II SK + containing the Lis gene cDNA) as the template DNA. The Expand High Fidelity (Roche) enzyme was used for the PCR reaction. The amplification consisted of 10 cycles of 1 minute at 94 0 C, 1 minute at 52.5 0 C and 45 seconds at 72 0 C and then another 25 cycles of 1 minute at 94 0 C, 1 minute at 52.5 0 C and 45 seconds at 72 0 C, with increments of 5 seconds in the extension time for each cycle.
El producto de PCR, tras ser purificado, se clonó—en el vector pGEM-T Easy (pía smido para la clonación de productos de PCR, Promega) para rendir el plá smido pGEM-Lis. La secuenciación del producto de PCR reveló la ausencia de errores de polimerización ocurridos durante la amplificación del mismo; si bien se identificaron dos cambios en dos aminoácidos, no ocurridos durante la reacción de polimerización, que difieren de la secuencia de la base de datos (NCBI AAC49395). Se trató este plá smido con las enzimas BgIII y Xbal y se aisló el fragmento de 650 pb. El segundo fragmento (2080 pb) , necesario para completar la ORF del gen Lis, se obtuvo por restricción del plá smido pR65 con las enzimas Xbal y Salí. Ambos fragmentos fueron ligados en el vector pG-1, previamente digerido con las enzimas Bamñl y Salí, para construir el plá smido pGl-Lis, que lleva el cassette de expresión TDH3P: :Lis : :PGKt y el marcador de selección TRPl.The PCR product, after being purified, was cloned — in the pGEM-T Easy vector (pious smido for the cloning of PCR products, Promega) to yield the pGEM-Lis plasmid. The sequencing of the PCR product revealed the absence of polymerization errors occurred during amplification thereof; although two changes in two amino acids were identified, not occurring during the polymerization reaction, which differ from the sequence of the database (NCBI AAC49395). This plastic was treated with the enzymes BgIII and Xbal and the 650 bp fragment was isolated. The second fragment (2080 bp), necessary to complete the ORF of the Lis gene, was obtained by restriction of the plastic pR65 with the enzymes Xbal and Salí. Both fragments were ligated into the vector pG-1, previously digested with the enzymes Bamñl and Salí, to construct the plasmid pGl-Lis, which carries the TDH3 P expression cassette:: Lis:: PGK t and the TRPl selection marker .
Para la construcción del plá smido pGl-Lis-URA (Figura IA) , que lleva adema s el marcador de selección URA3, en el sitio Smal del plá smido pGl-Lis se subclonó un fragmento de aproximadamente 1500 pb que contiene el gen URA3 de S. cerevisiae generado por PCR usando como molde DNA genómico de la cepa T73 y los oligonucleótidos URAl (SEQ ID NO5) y URA4 (SEQ ID NO6) . Las condiciones de PCR sólo difirieron de las anteriores en la temperatura de anillamiento, que fue de 550C. El fragmento anterior fue digerido con la enzima Hindlll y los extremos protuberantes se rellenaron con la enzima Klenow; el fragmento resultante se clonó en el sitio Smal del plá smido pGl-Lis-URA.For the construction of the plasmid pGl-Lis-URA (Figure IA), which also bears the URA3 selection marker, a fragment of approximately 1500 bp containing the URA3 gene of the URA3 gene was subcloned into the Smal site of the plasmid pGl-Lis S. cerevisiae generated by PCR using genomic DNA from strain T 73 and oligonucleotides URAl (SEQ ID NO5) and URA4 (SEQ ID NO6) as template. The PCR conditions differed only from the previous ones in the banding temperature, which was 55 0 C. The above fragment was digested with the Hindlll enzyme and the protruding ends were filled with the Klenow enzyme; The resulting fragment was cloned into the Smal site of the plastic pGl-Lis-URA.
De manera similar, a partir del plá smido PG-I se construyó el vector control pGl-URA (FiguralB) .Similarly, the control vector pGl-URA (FiguralB) was constructed from the PG-I plastic.
1.2.- Construcción de una cepa de levadura vínica que sintetiza de novo linalol1.2.- Construction of a wine yeast strain that synthesizes de novo linalool
A continuación, se transformó la cepa vínica S. cerevisiae T13-A (ura3 : : 470/ura3 : : 470 ) (Puig et al., 1998), derivada de la cepa industrial T73, por el método del acetato de litio (Gietz et al., 1995) mejorado, (Puig et al., 1998) con el plá smido pGl-Lis-URA y los transformantes se seleccionaron en medio sin uracilo. Se analizaron varios transformantes distintos y todos se comportaron de manera similar en cuanto a la producción de linalol; los transformantes YR63 (pGl-Lis-URA) e YR64 (pGl-Lis-URA; CECT 12032) fueron aislados para posteriores estudios. Se transformó adema s la cepa T73-4 con el plá smido pGl-URA para obtener una cepa control de las levaduras recombinantes generadas, denominándola YR65. La expresión del gen Lis se comprobó, indirectamente, por la detección de linalol mediante cromatografía de gases (GC) en los medios de cultivo (YPD: 2% glucosa; 2% peptona; 1% extracto de levadura) donde se crecieron los transformantes YR63, YR64 e YR65. Ver a continuación.Next, the S. cerevisiae T 13 -A (ura3:: 470 / ura3:: 470) wine strain (Puig et al., 1998), derived from the industrial strain T 73 , was transformed by the lithium acetate method (Gietz et al., 1995) improved, (Puig et al., 1998) with the plastic pGl-Lis-URA and the transformants were selected in medium without uracil. Several different transformants were analyzed and all behaved in a similar way regarding the production of linalool; YR63 (pGl-Lis-URA) and YR64 (pGl-Lis-URA; CECT 12032) transformants were isolated for further studies. Strain T 73 -4 s adema transformed with plá smido pGl-URA for a control strain generated recombinant yeast, denominating YR65. The expression of the Lis gene was checked, indirectly, by the detection of linalool by gas chromatography (GC) in the culture media (YPD: 2% glucose; 2% peptone; 1% yeast extract) where the YR63 transformants were grown , YR64 and YR65. See below.
Ejemplo 2. Fisiología de las levaduras recombinantes.Example 2. Physiology of recombinant yeasts.
Análisis de metabolitos en las S. cerevisae que expresan Lis.Analysis of metabolites in S. cerevisae expressing Lis.
Se llevó a cabo la detección del linalol producido por las cepas YR63 (pGl-Lis-URA) , YR64 (pGl-Lis-URA; CECT 12032) e YR65 (pGl-URA) mediante la técnica de microextracción en fase sólida, en espacio de cabeza, acoplada a cromatografía de gases (HS-SPME-GC) . La microextración en fase sólida se realizó con fibras de poli- dimetilsiloxano (PDMS). Se tomaron alicuotas de 3 mL que se introdujeron en viales de 9 mL que contenían una barra magnética de 8x3 mm y 0.6 gr de NaCl (para intensificar la respuesta en la extracción del analito) (Arthur et al., 1992). Asimismo, para su cuantificación posterior, a las muestras se les añadió una cantidad fija del patrón interno 2-octanol (15 μL de una solución al 0.005% p/v en etanol). Los viales se cerraron herméticamente y se dejaron 2 horas, con agitación, a temperatura ambiente, para conseguir el equilibrio de fases (liquido-vapor). La fibra de PDMS se introdujo a través del septum de teflón de los tapones en el espacio de cabeza del tubo. Tras un periodo de adsorción de 30 minutos, la fibra se inyectó en el cromatógrafo de gases (HP 5890 series II), en el que se liberaron los analitos durante cuatro minutos.Detection of linalool produced by strains YR63 (pGl-Lis-URA), YR64 (pGl-Lis-URA; CECT 12032) and YR65 (pGl-URA) was carried out using the solid phase, space microextraction technique head, coupled to gas chromatography (HS-SPME-GC). Solid phase microextraction was performed with polydimethylsiloxane (PDMS) fibers. 3 mL aliquots were taken that were introduced into 9 mL vials containing an 8x3 mm magnetic bar and 0.6 g of NaCl (to intensify the response in analyte extraction) (Arthur et al., 1992). Also, for subsequent quantification, a fixed amount of the internal 2-octanol standard (15 μL of a 0.005% w / v solution in ethanol) was added to the samples. The vials were sealed and left for 2 hours, with stirring, at room temperature, to achieve the phase equilibrium (liquid-vapor). PDMS fiber was introduced through the teflon septum of the plugs into the head space of the tube. After an adsorption period of 30 minutes, the fiber was injected into the gas chromatograph (HP 5890 series II), in which the analytes were released for four minutes.
Para la cromatografía se utilizó una columna capilar HP innowax (Hewlett-Packard) de 15 m de longitud, 0.25 mm de diámetro interno y 0.25 mieras de espesor de fase. La temperatura del inyector fue de 22O0C y la del detector de 28O0C. La temperatura del horno fue inicialmente de 6O0C durante 5 minutos y después se incrementó a razón de 5°C/min hasta 19O0C, y a razón de 20°C/min hasta 25O0C, temperatura a la que se mantuvo durante 2 minutos. La identificación de linalol y otros componentes volátiles se llevó a cabo mediante comparación de sus tiempos de retención con el del patrón comercial. Para obtener su concentración inicialmente se construyó una curva de calibración con distintas concentraciones de linalol (Fluka) y posteriormente se relacionó el área de los cromatogramas con aquella.For chromatography an HP innowax capillary column (Hewlett-Packard) of 15 m length, 0.25 mm internal diameter and 0.25 microns of phase thickness was used. The temperature of the injector was 22O 0 C and that of the detector of 28O 0 C. The oven temperature was initially 6O 0 C for 5 minutes and then increased at a rate of 5 ° C / min to 19O 0 C, and at a rate 20 ° C / min to 25O 0 C, temperature at which it was held for 2 minutes. The identification of linalool and other volatile components was carried out by comparing their retention times with that of the commercial standard. To obtain its concentration, a calibration curve was initially constructed with different concentrations of linalool (Fluka) and subsequently the chromatogram area was related to that.
Las cepas YR63 (pGl-Lis-URA) , YR64 (pGl-Lis-URA) e YR65 fueron crecidas durante 18 horas en medio SD selectivo (2% glucosa, 0.5% sulfato amónico, 0.143% YNB) y entonces en medio YPD (106 células/mL en matraces de 0.5 L con 100 mL de medio) y a distintos tiempos, durante 97 horas a 3O0C con una agitación de 100 rpm, se tomaron muestras para hacer recuentos (Figura 2) . No se observaron diferencias significativas en las cinéticas de crecimiento de las dos cepas que producen linalol, YR63 (pGl-Lis-URA) e YR64 (pGl- Lis-URA) , y la levadura control, YR65 (Figura 2A). Tanto en la cepa T73-4 sin transformar (datos no mostrados) como en los transformantes de ésta con el plá smido pGl-URA (YR65) no se detectó linalol; tan sólo las levaduras transformadas con pGl-Lis-URA, YR63 e YR64 produjeron linalol (Figura 2B) . La producción máxima de linalol (80 μg/L) se alcanza hacia la mitad de la fase exponencial de crecimiento.Strains YR63 (pGl-Lis-URA), YR64 (pGl-Lis-URA) and YR65 were grown for 18 hours in selective SD medium (2% glucose, 0.5% ammonium sulfate, 0.143% YNB) and then in YPD medium ( 10 6 cells / mL in 0.5 L flasks with 100 mL of medium) and at different times, for 97 hours at 3O 0 C with a stirring of 100 rpm, samples were taken to make counts (Figure 2). No significant differences were observed in the growth kinetics of the two strains that produce linalool, YR63 (pGl-Lis-URA) and YR64 (pGl-Lis-URA), and the control yeast, YR65 (Figure 2A). Both strain T 73 -4 untransformed (data not shown) and transformants thereof with smido plá pGl-URA (YR65) linalool not detected; only yeasts transformed with pGl-Lis-URA, YR63 and YR64 produced linalool (Figure 2B). The maximum production of linalool (80 μg / L) is reached towards the middle of the exponential phase of growth.
No se observan diferencias, salvo el pico del linalol, entre los cromatogramas de las cepas YR63 (pGl-Lis-URA)No differences are observed, except for the linalool peak, between the chromatograms of the YR63 strains (pGl-Lis-URA)
(Figura 3A) e YR64 (pGl-Lis-URA) (Figura 3B) y la cepa control YR65 (Figura 3C) , lo que sugiere la ausencia de bioconversiones a partir del linalol producido en las condiciones experimentales del estudio.(Figure 3A) and YR64 (pGl-Lis-URA) (Figure 3B) and strain YR65 control (Figure 3C), which suggests the absence of bioconversions from linalool produced in the experimental conditions of the study.
Además, se confirmó mediante cromatografía de gases- espectrometría de masas (GC-MS) que el volátil que se habla identificado por el tiempo de retención en CG es linalol. Para ello las cepas YR63 e YR64 (pGl-Lis-URA) fueron crecidas en medio YPD y se recogieron muestras a las 20 horas (máximo de producción de linalol). Las muestras se analizaron mediante la técnica de microextración en fase sólida, en espacio de cabeza, acoplada a cromatografía de gases con detector de masas. La GC-MS fue llevada a cabo en un cromatógrafo Agilent 6890 acoplado a un espectrómetro de masas Agilent 5973N (Agilent Technologies, Waldbronn, Alemania) . El espectro de iones del compuesto que eluye en el tiempo esperado al linalol fue el mismo que el espectro del linalol (Figura 4). De este modo se comprobó inequívocamente que el volátil que producían las cepas recombinantes YR63 e YR64, (pGl-Lis-URA) era linalol.In addition, it was confirmed by gas chromatography-mass spectrometry (GC-MS) that the volatile that has been identified by the retention time in GC is linalool. For this, the YR63 and YR64 strains (pGl-Lis-URA) were grown in YPD medium and samples were collected at 20 hours (maximum linalool production). The samples were analyzed by the solid phase microextraction technique, in headspace, coupled to gas chromatography with mass detector. GC-MS was carried out on an Agilent 6890 chromatograph coupled to an Agilent 5973N mass spectrometer (Agilent Technologies, Waldbronn, Germany). The ion spectrum of the compound eluting in the expected time to linalool was the same as the linalool spectrum (Figure 4). In this way it was unequivocally verified that the volatile produced by the recombinant strains YR63 and YR64, (pGl-Lis-URA) was linalool.
Ejemplo 3. Ensayos de microvinificación con la cepa vínica recombinante YR64 (CECT 12032) .Example 3. Microvinification assays with the recombinant wine strain YR64 (CECT 12032).
Para averiguar si las levaduras recombinantes antes construidas eran capaces de llevar a cabo la vinificación hasta el final, si los parámetros fisico-quimicos del vino son similares a los del vino realizado con una levadura de uso industrial y si las manipulaciones genéticas antes realizadas llevan consigo cambios en el perfil de volátiles que se pudieran detectar en catas, se llevaron a cabo microvinificaciones con la cepa YR64 (pGl-Lis-URA; CECT 12032) y los controles T73 e YR65 (PGl-URA) . Se utilizó mosto Parellada de la cosecha del 2003 procedente de Villafranca del Penedés. El mosto se filtró a través de cartuchosTo find out if the recombinant yeasts previously constructed were able to carry out the vinification until the end, if the physical-chemical parameters of the wine are similar to those of the wine made with a yeast for industrial use and if the genetic manipulations previously carried out carry changes in the volatile profile that could be detected in tastings, microvinifications were carried out with strain YR64 (pGl-Lis-URA; CECT 12032) and controls T 73 and YR65 (PGl-URA). Parellada must from the 2003 harvest from Villafranca del Penedés was used. The must was filtered through cartridges
Sartopure PP2 de 1.2 μm de poro (Sartorius) y posteriormente se esterilizó añadiendo Velcorin (dimetil dicarbonato) al 0,2Sartopure PP2 1.2 μm pore (Sartorius) and subsequently sterilized by adding 0.2 Velcorin (dimethyl dicarbonate)
% v/v, y se incubó a temperatura ambiente toda la noche. Finalmente, fue suplementado con 0,3 g/L de activador de la fermentación (LALVIN NUTRIENT VIT, Lallemand) . Las microvinificaciones se llevaron a cabo por triplicado, a 180C y en condiciones estándar (Querol et al., 1992). Las tres cepas anteriores se crecieron durante 18 horas en medio selectivo SD (2% glucosa, 0.5% sulfato amónico, 0.143% YNB). Tras este crecimiento las células se recogieron por centrifugación, se resuspendieron en mosto y se inocularon 106 células/mL en botellas de 250 mL con 225 mL de mosto estéril cerradas con tapón de rosca. A lo largo del experimento se tomaron muestras a distintos tiempos y en cada una de ellas se determinó el número de células, el consumo de azúcares, y la producción de etanol y linalol. El seguimiento de la evolución de la fermentación se realizó midiendo la D. O. a 600 nm en un espectrofotómetro Ultrospecc 2000 (Pharmacia, Biotech, England) . El consumo de azúcares se siguió midiendo los grados BRIX con un refractómetro (Cari Zeiss, Germany) . En los últimos dias de la vinificación se empleó el multianalizador automático ECHO/ENOSYS (Tecnova S. A.) con el fin de determinar el final de la fermentación, esto es, cuando el contenido de azúcares fue menor de 2 g/L. El etanol se midió empleando un espectrofotómetro de infrarrojo (Enfrascan, Alliance Instruments, France) . En los vinos finales se llevó a cabo el estudio de volátiles utilizando la técnica antes descrita (ejemplo 2).% v / v, and incubated at room temperature overnight. Finally, it was supplemented with 0.3 g / L of fermentation activator (LALVIN NUTRIENT VIT, Lallemand). The microvinifications were carried out in triplicate, at 18 0 C and under standard conditions (Querol et al., 1992). The three previous strains were grown for 18 hours in selective SD medium (2% glucose, 0.5% ammonium sulfate, 0.143% YNB). After this growth, the cells were collected by centrifugation, resuspended in must and 10 6 cells / mL were inoculated in 250 mL bottles with 225 mL of sterile must closed with screw cap. Throughout the experiment, samples were taken at different times and in each of them the number of cells, the consumption of sugars, and the production of ethanol and linalool were determined. The fermentation evolution was monitored by measuring the OD at 600 nm on an Ultrospecc 2000 spectrophotometer (Pharmacia, Biotech, England). Sugar consumption was continued by measuring the BRIX grades with a refractometer (Cari Zeiss, Germany). In the last days of winemaking, the ECHO / ENOSYS automatic multianalyzer (Tecnova SA) was used to determine the end of the fermentation, that is, when the sugar content was less than 2 g / L. Ethanol was measured using an infrared spectrophotometer (Enfrascan, Alliance Instruments, France). In the final wines, the study of volatiles was carried out using the technique described above (example 2).
Como se observa en la Figura 5A, la evolución del crecimiento de las tres cepas fue similar, aunque la portadora del plá smido pGl-Lis-URA, YR64 (CECT 12032), tiene una cinética de crecimiento ligeramente desplazada con respecto a la cepa comercial. El consumo de azúcares (Figura 5B) fue también similar en todas las cepas, llegando en todos los casos a un nivel inferior a los 2 g/L tras 6 dias de fermentación. Del mismo modo, la cinética de producción de etanol (Figura 5C) fue similar en las tres vinificaciones alcanzando en todas ellas un grado alcohólico próximo al 8%. Este valor es ligeramente inferior al de los vinos comerciales a causa de la baja concentración de azúcares de partida del mosto, que no superaba los 130 g/L. Estos resultados indicaron que la expresión del gen Lis en la levadura vínica modificada aparentemente no modificaba sus características fermentativas.As seen in Figure 5A, the evolution of the growth of the three strains was similar, although the carrier of the plastic pGl-Lis-URA, YR64 (CECT 12032), has a slightly displaced growth kinetics with respect to the commercial strain . The consumption of sugars (Figure 5B) was also similar in all strains, reaching in all cases a level lower than 2 g / L after 6 days of fermentation. Similarly, the kinetics of ethanol production (Figure 5C) was similar in the three vinifications, reaching in all of them an alcoholic degree close to 8%. This value is slightly lower than that of wines commercial because of the low concentration of starting sugars in the must, which did not exceed 130 g / L. These results indicated that the expression of the Lis gene in the modified wine yeast apparently did not modify its fermentative characteristics.
En cuanto a la cinética de acumulación de linalol (Figura 5D), se observó que la cepa YR64 (CECT 12032), portadora del pía smido PGl-Lis-URA, era capaz de producir este monoterpeno durante la vinificación. Las otras dos cepas control no acumularon linalol durante el ensayo. La máxima concentración de linalol se alcanzó en el segundo dia de fermentación (26,01 μg/L) , punto a partir del cual fue bajando paulatinamente (hasta 18,60 μg/L en el vino acabado). Puesto que el umbral de detección olfativa de este compuesto se ha fijado en 4-10 μg/L, estos resultados validan la invención propuesta.Regarding the accumulation kinetics of linalool (Figure 5D), it was observed that strain YR64 (CECT 12032), carrier of the smoldering pio PGl-Lis-URA, was capable of producing this monoterpene during vinification. The other two control strains did not accumulate linalool during the trial. The maximum concentration of linalool was reached on the second day of fermentation (26.01 μg / L), at which point it was gradually decreasing (up to 18.60 μg / L in the finished wine). Since the olfactory detection threshold of this compound has been set at 4-10 μg / L, these results validate the proposed invention.
REFERENCIASREFERENCES
Akada R. (2002). Genetically modified industrial yeast ready for application. J. Biosci. Bioeng. _9_4: 536-544.Akada R. (2002). Genetically modified industrial yeast ready for application. J. Biosci. Bioeng _9_4: 536-544.
Arthur CL. , Killan L. M., Buchhold K. D. y Pawliszyn J. (1992). Automation an optimization of solid-phase microextraction . Anal. Chem. 64: 1960-1966.Arthur CL. , Killan L. M., Buchhold K. D. and Pawliszyn J. (1992). Automation an optimization of solid-phase microextraction. Anal. Chem. 64: 1960-1966.
Beggs J. D. (1978). Transíormation of yeasts by replicating hybrid plasmid. Nature 275 : 184-189.Beggs J. D. (1978). Transíormation of yeasts by replicating hybrid plasmid. Nature 275: 184-189.
Bohlmann J., Meyer-Gauen G. y Croteau R. (1998). Plant terpenoid synthases: Molecular biology and phylogenetic análisis. Proc. Nati. Acad. Sci. USA _9_5: 4126-4133.Bohlmann J., Meyer-Gauen G. and Croteau R. (1998). Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc. Nati Acad. Sci. USA _9_5: 4126-4133.
Burdock G. A. (2002). Fenaroli's handbook of flavor ingredients. 4a edición. (Ed.: Burdock G.A.). CRC Press, pp 972-973.Burdock GA (2002). Fenaroli's handbook of flavor ingredients. 4th edition. (Ed .: Burdock GA). CRC Press, pp 972-973.
Carrau F. M., Medina K., Boido E., Fariña L., Gagero C, Dellacassa E., Versini G. y Henschke P. A. (2005) . De novo síntesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters 243 : 107-115. Cárter O. A., Peters R. J., y Croteau R. (2003). Monoterpene biosynthesis pathway construction in Escherichia coli.Carrau FM, Medina K., Boido E., Fariña L., Gagero C, Dellacassa E., Versini G. and Henschke PA (2005). De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters 243: 107-115. Carter OA, Peters RJ, and Croteau R. (2003). Monoterpene biosynthesis pathway construction in Escherichia coli.
Phytochemistry 64_: 425-433.Phytochemistry 64_: 425-433.
Chambón C, Ladeveze V., Oulmouden A., Servouse M. y Karst F. (1990a). Isolation and properties of yeast mutants affected in farnesyl dophosphate synthetase. CurrentChambón C, Ladeveze V., Oulmouden A., Servouse M. and Karst F. (1990a). Isolation and properties of yeast mutants affected in farnesyl dophosphate synthetase. Current
Genetics JU3: 41-46. Chambón C, Ladeveze V., Servouse M., Blanchard L., JavelotGenetics JU3: 41-46. Chambón C, Ladeveze V., Servouse M., Blanchard L., Javelot
C, Bladescu B. y Karst F. (1990b). Sterol pathway in yeast. Identification and properties of mutant strains deffective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase. Lipids 2_6_: 633-636. Croteau R. B., Kutchan T. M. y Lewis N. G. (2000). Natural products (secondary metabolites) . En: Biochemistry and molecular biology of plants. (Ed.: Buchanan B. B. et al.).C, Bladescu B. and Karst F. (1990b). Sterol pathway in yeast. Identification and properties of mutant strains deffective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase. Lipids 2_6_: 633-636. Croteau R. B., Kutchan T. M. and Lewis N. G. (2000). Natural products (secondary metabolites). In: Biochemistry and molecular biology of plants. (Ed .: Buchanan B. B. et al.).
American society of plant physiologists, Rockville MD, ppAmerican society of plant physiologists, Rockville MD, pp
1250-1318. Crowell P. (1999) . Prevention and therapy of cáncer by dietary monoterpenes . J. Nutr. 129 : 775S-778S. Dudareva N., Cseke L., Blanc V. M. y Pichersky E. (1996).1250-1318. Crowell P. (1999). Prevention and therapy of cancer by dietary monoterpenes. J. Nutr. 129: 775S-778S. Dudareva N., Cseke L., Blanc V. M. and Pichersky E. (1996).
Evolution of floral scent in Clarkia: Novel paterns of S- linalool synthase gene expression in the C. breweri flower. The Plant CeIl 8_: 1137-1148.Evolution of floral scent in Clarkia: Novel paterns of Sinalool synthase gene expression in the C. breweri flower. The Plant CeIl 8_: 1137-1148.
Estévez P., Gil M. L. y Falqué E. (2004). Effects of seven yeast strains on the volatile composition of Palomino wines. Int. J. Food Sci. Technol. 3_9_: 61-69. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. (1995).Estévez P., Gil M. L. and Falqué E. (2004). Effects of seven yeast strains on the volatile composition of Palomino wines. Int. J. Food Sci. Technol. 3_9_: 61-69. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. (1995).
Studies on the transíormation of intact yeast cells by theStudies on the transíormation of intact yeast cells by the
LiAc/SS-DNA/PEG procedure . Yeast 11:355-60 Gil J. V. and Valles S. (2001) . Efect of macerating enzymes on red wine aroma at laboratory scale: exogenous addition or expression by transgenic wine yeast. J. Agrie. Food Chem.LiAc / SS-DNA / PEG procedure. Yeast 11: 355-60 Gil J. V. and Valles S. (2001). Effect of macerating enzymes on red wine aroma at laboratory scale: exogenous addition or expression by transgenic wine yeast. J. Agrie. Food Chem
A9_: 5515-5523.A9_: 5515-5523.
Gil J. V., Manzanares P., Genovés S., Valles S. y Gonzá lez- Candelas L. (2005). Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. Int. J. Fod Microbiol. 15 : 57-68. Gofeau A. et al. (1997). The yeast genome directory. NatureGil JV, Manzanares P., Genovés S., Valles S. and Gonzá lez- Candelas L. (2005). Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. Int. J. Fod Microbiol. 15: 57-68. Gofeau A. et al. (1997). The yeast genome directory. Nature
387: 1-105. Günata Y. Z., Bayanove CL. , Baumes R. L. y Codonnier R. E. (1985a) . Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J. Chrom. 331 : 83-90.387: 1-105. Günata Y. Z., Bayanove CL. , Baumes R. L. and Codonnier R. E. (1985a). Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J. Chrom. 331: 83-90.
Günata Y. Z., Bayonove CL. , Baumes R. L. y Cordonnier R. (1985b) . The aroma of grapes. Localisation and evolution of free and bound fractions of some grape aroma components c.v. Muscat during first development and maduration. J.Günata Y. Z., Bayonove CL. , Baumes R. L. and Cordonnier R. (1985b). The aroma of grapes. Localisation and evolution of free and bound fractions of some grape aroma components c.v. Muscat during first development and mature. J.
Sci. Fod. Agrie. 3_6: 857-862.Sci. Fod. Agrie 3_6: 857-862.
Günata Y. Z. , Bitteur J. M., Brillouet J. M., Bayonove CL. y Cordonnier R. (1988). Sequential enzymatic hydrolysis of potentially aromatic glycosides from grape. Carbohyd. Res. 184: 139-149.Günata Y. Z., Bitteur J. M., Brillouet J. M., Bayonove CL. and Cordonnier R. (1988). Sequential enzymatic hydrolysis of potentially aromatic glycosides from grape. Carbohyd Res. 184: 139-149.
Günata Y. Z., Bayonove CL:, Tapiero C y Cordonier R. (1990).Günata Y. Z., Bayonove CL :, Tapiero C and Cordonier R. (1990).
Hydrolysis of grape monoterpenyl beta-D-glucosides by various beta glucosidases . J. Agrie. Food. Chem 3_8_: 1232-Hydrolysis of grape monoterpenyl beta-D-glucosides by various beta glucosidases. J. Agrie. Food. Chem 3_8_: 1232-
1236.1236.
Günata Z. (2003) . Flavor enhancement in fruit juices and derived beverages by exogenous glycosidases and consequences of the use of enzyme preparations . Handbook of food enzimology. (Eds.: Whitaker J. R., Voragen A. G. J. yGünata Z. (2003). Flavor enhancement in fruit juices and derived beverages by exogenous glycosidases and consequences of the use of enzyme preparations. Handbook of food enzymology. (Eds .: Whitaker J. R., Voragen A. G. J. and
Wong D. W. S.). Marcel Dekker, Inc. NY. Basel. pp 303-329. Iijima Y., Gang D. R., Fridman E., Lewinsohn E. y Pichersky E. (2004) . Characterization of geraniol synthase from the peltate gland of sweet basil. Plant Physiol. 134: 370-379. Javelot C, Girard P., Colonna-Ceccaldi B. y Vladescu B. (1991). Introduction a terpene-producing ability in a wine strain of Saccharomyces cerevisiae . Journal of Biotechnol. 2Λ: 239-252.Wong D. W. S.). Marcel Dekker, Inc. NY. Basel pp 303-329. Iijima Y., Gang D. R., Fridman E., Lewinsohn E. and Pichersky E. (2004). Characterization of geraniol synthase from the peltate gland of sweet basil. Plant Physiol 134: 370-379. Javelot C, Girard P., Colonna-Ceccaldi B. and Vladescu B. (1991). Introduction a terpene-producing ability in a wine strain of Saccharomyces cerevisiae. Journal of Biotechnol. 2Λ: 239-252.
Jia J. W., Crock J., Lu S., Croteau R. y Chen X. Y. (1999). (3R) -Linalool synthase from Artemisa annua L.: cDNA isolation, characterization, and wound induction. Arch. Biochem. Biophys. 372 : 143-149. King A. J. y Dickinson J. R. (2000) . Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae,Jia JW, Crock J., Lu S., Croteau R. and Chen XY (1999). (3R) -Linalool synthase from Artemisa annua L .: cDNA isolation, characterization, and wound induction. Arch. Biochem Biophys 372: 143-149. King AJ and Dickinson JR (2000). Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae,
Torulaspora delbrueckii and Kluyveromyces lactis. Yeast JL6_: 499-506.Torulaspora delbrueckii and Kluyveromyces lactis. Yeast JL6_: 499-506.
López Tamames E., Carro-Marino N., Günata Y. Z., Sapis C,López Tamames E., Carro-Marino N., Günata Y. Z., Sapis C,
Baumes R. y Bayonove C. (1997). Potencial aroma in several varieties of spanish grapes. J. Agrie. Food. Chem. 45 :Baumes R. and Bayonove C. (1997). Potential aroma in several varieties of spanish grapes. J. Agrie. Food. Chem. 45:
1729-1735. Manzanares P. y Orejas M. (2005) . La nueva biotecnología apuesta por la vinificación. CTC Alimentación. 2_6_: 49-54. Marais J. (1983). Terpenes in the aroma of grapes and wines:1729-1735. Manzanares P. and Orejas M. (2005). The new biotechnology is committed to winemaking. CTC Power. 2_6_: 49-54. Marais J. (1983). Terpenes in the aroma of grapes and wines:
A review. S. Afr . J. Enol. Vitic. 4_: 49-60. Martin D. M. y Bohlmann J. (2004) . Identification of Vitis vinifera (α) -terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry 65: 1223- 1229.A review S. Afr. J. Enol. Vitic 4_: 49-60. Martin D. M. and Bohlmann J. (2004). Identification of Vitis vinifera (α) -terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry 65: 1223-1229.
Oswald M., Fischer M., Dirninger N. y Karst F. (2006). Monoterpenoid biosynthesis in Saccharomyces cerevisiae .Oswald M., Fischer M., Dirninger N. and Karst F. (2006). Monoterpenoid biosynthesis in Saccharomyces cerevisiae.
FEMS Yeast Res. (en prensa).FEMS Yeast Res. (In press).
Park S. K., Morrison J. C, Adams D. O. y Noble A. C. (1991). Distribution of free and glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria during development. J. Agrie. Fod. Chem. 3_9: 514-518.Park S. K., Morrison J. C, Adams D. O. and Noble A. C. (1991). Distribution of free and glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria during development. J. Agrie. Fod. Chem. 3_9: 514-518.
Puig S., Ramón D. y Pérez-Ortin J. E. (1998). Optimized method to obtain stable food-safe recombinant wine yeast strains . J. Agrie. Food Chem. A6_: 1689-1693.Puig S., Ramón D. and Pérez-Ortin J. E. (1998). Optimized method to obtain stable food-safe recombinant wine yeast strains. J. Agrie. Food Chem. A6_: 1689-1693.
Querol A., Huerta T., Barrio E. y Ramón D. (1992). Dry yeast strain for the use in fermentation of Alicante wines: selection and DNA patterns . J. Food Sci. 5_7: 183-185. Ramón D., Genovés S. Gil J. V., Herrero O., MacCabe A. P. M., Manzanares P., Matallana E., Orejas M., Úber G. y Valles S. (2005). Milestones in wine biotechnology . Minerva Biotec. 11_: 33-45.Querol A., Huerta T., Barrio E. and Ramón D. (1992). Dry yeast strain for the use in fermentation of Alicante wines: selection and DNA patterns. J. Food Sci. 5_7: 183-185. Ramón D., Genovés S. Gil J. V., Herrero O., MacCabe A. P. M., Manzanares P., Matallana E., Orejas M., Úber G. and Valles S. (2005). Milestones in wine biotechnology. Minerva Biotec. 11_: 33-45.
Reiling K. K., Yoshikuni Y., Martin V. J. J., Newman J., Bohlmann J. Y Keasling J. D. (2004). Mono and diterpene production in Escherichia coli. Biotechnol. Bioeng. 87:Reiling KK, Yoshikuni Y., Martin VJJ, Newman J., Bohlmann J. and Keasling JD (2004). Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87:
200-212.200-212.
Ribéreau-Gayon P., Boidron J. N. y Terier A. (1975) . Aroma in muscat grape varieties. J. Agrie. Food Chem. 2_3_: 1042-Ribéreau-Gayon P., Boidron J. N. and Terier A. (1975). Aroma in muscat grape varieties. J. Agrie. Food Chem. 2_3_: 1042-
1047. Sambrook y Russel, "Molecular cloning, a Laboratory Manual1047. Sambrook and Russel, "Molecular cloning, a Laboratory Manual
3rd ed., CoId Sping Harbor Laboratory Press, N. Y., 2001 vol3 rd ed., CoId Sping Harbor Laboratory Press, NY, 2001 vol
1-3. Schena M., Picard D. y Yamamoto K. R. (1991). Vectors for constitutive and inducible gene expression in yeast . En:1-3. Schena M., Picard D. and Yamamoto K. R. (1991). Vectors for constitutive and inducible gene expression in yeast. In:
Guide to yeast genetics and Molecular Biology. Methods in enzymology vol 194. (Eds: Gutrie C. y Fink G.R.). AcademicGuide to yeast genetics and Molecular Biology. Methods in enzymology vol 194. (Eds: Gutrie C. and Fink G.R.). Academic
Press, INC. pp 389-398. Schuller D. y Casal M. (2005) . The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl . Microbiol. Biotechnol. 6_8: 292-304. Verstrepen K. J., Chambers P. J. y Pretorius I. S. (2006). The development of superior yeast strains for the food and beverage industries: challenges, opportunities and potential benefits. En: The Yeast Handbook vol. 2. Yeast in food and beverages (Eds: Querol A. y Fleet G. H.).Press, INC. pp 389-398. Schuller D. and Casal M. (2005). The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl. Microbiol Biotechnol 6_8: 292-304. Verstrepen K. J., Chambers P. J. and Pretorius I. S. (2006). The development of superior yeast strains for the food and beverage industries: challenges, opportunities and potential benefits. In: The Yeast Handbook vol. 2. Yeast in food and beverages (Eds: Querol A. and Fleet G. H.).
Springer-Verlag, pp 399-444.Springer-Verlag, pp 399-444.
Williams P. J., Strauss CR. y Wilson B. (1980). New linalool derivatives in Muscat Alexandria grapes and wines.Williams P. J., Strauss CR. and Wilson B. (1980). New linalool derivatives in Muscat Alexandria grapes and wines.
Phytochemistry 1_9: 1137-1139. Wise M. L. y Croteau R. (1999). Monoterpene biosynthesis . InPhytochemistry 1_9: 1137-1139. Wise M. L. and Croteau R. (1999). Monoterpene biosynthesis. In
Comprehensive natural produets chemistry: Isoprenoids including carotenoids and steroids (vol. 2). (Ed. Cañe D.E.). Elsevier Science. pp 97-153.Comprehensive natural produets chemistry: Isoprenoids including carotenoids and steroids (vol. 2). (Ed. Cañe D.E.). Elsevier Science. pp 97-153.
Patentes :Patents:
Fowler T., Barnett CC, Shoemaker S. Method enhancing flavor and aroma in foods by overexpression of beta-glucosidase . Genencor Int. US Patent : US5997913. 1999-12-07.Fowler T., Barnett CC, Shoemaker S. Method enhancing flavor and aroma in foods by overexpression of beta-glucosidase. Genencor Int. US Patent: US5997913. 1999-12-07.
Günata Z., Bitteur S., Baumes R., Brillouet J. M., Tapiero C, Bayonove C, y Cordonnier R. Process for obtaining aroma components and aromas from their precursors of a glycosidic nature, and aroma components and aromas thereby obtained. INRA-Gist Brocades. WO1989EP00250. 1989-09-21. Karst F. y Vladescu B. D. V. Process for obtaining terpenic aromas by a microbiological process. Pernord R.. Patente Europea: EP 0313465. 1989-04-26. "La presente invención se refiere a un procedimiento para obtener aromas terpénicos, en particular para la aromatización de bebidas, por medio de un procedimiento microbiológico que emplea mutantes deGünata Z., Bitteur S., Baumes R., Brillouet JM, Tapiero C, Bayonove C, and Cordonnier R. Process for obtaining aroma components and aromas from their precursors of a glycosidic nature, and aroma components and aromas consequently obtained. INRA-Gist Brocades. WO1989EP00250. 1989-09-21. Karst F. and Vladescu BDV Process for obtaining terpenic aromas by a microbiological process. Pernord R .. European Patent: EP 0313465. 1989-04-26. "The present invention relates to a process for obtaining terpenic aromas, in particular for the aromatization of beverages, by means of a microbiological process that employs mutants of
S. cerevisiae".S. cerevisiae ".
Karst F., Javelot C. J. E., Chambón C, Vladescu B. D. V. Method of alcoholic fermentation to obtain muscat type aromas, Pernod R. y Karst F. WO9216611. 1992-10-01. Karst F., Javelot C. J. E., Chambón C, Vladescu B. D. V.Karst F., Javelot C. J. E., Chambón C, Vladescu B. D. V. Method of alcoholic fermentation to obtain muscat type aromas, Pernod R. and Karst F. WO9216611. 1992-10-01. Karst F., Javelot C. J. E., Chambón C, Vladescu B. D. V.
Alcoholic fermentation of plant-derived materials using modified industrial yeast to produce Muscat flavouring; yeast therefor. Pernord R. NZ241909. 1994-06-27.Alcoholic fermentation of plant-derived materials using modified industrial yeast to produce Muscat flavoring; yeast therefor. Pernord R. NZ241909. 1994-06-27.
Pichersky E. Use of linalool synthase in genetic engineering of scent production. Universidad de Michigan. WO9715584. 1997-05-01. "The present invention relates generally to the fields of the floral emission of monoterpenes and the production of monoterpenes by plants, and also the production of enhanced scent and taste in plants". Ramón D., González R., Pérez-González J.A. y Querol A. Levadura vínica CECTPichersky E. Use of linalool synthase in genetic engineering of scent production. University of Michigan WO9715584. 1997-05-01. "The present invention relates generally to the fields of the floral emission of monoterpenes and the production of monoterpenes by plants, and also the production of enhanced scent and taste in plants." Ramón D., González R., Pérez-González J.A. and Querol A. CECT wine yeast
1973, su método de obtención por técnicas de DNA recombinante y su aplicación como levadura vínica de uso industrial, útil para mejorar el aroma de los vinos. CSIC. Patente1973, its method of obtaining by recombinant DNA techniques and its application as wine yeast for industrial use, useful to improve the aroma of wines. CSIC Patent
Española: ES2059280. 1994-11-01.Spanish: ES2059280. 1994-11-01.
Rosi I. y Paolo R. Procedimiento di immobilizzazione di una frazione enzimatica extracellulare per il trattamento di mosti, vini, altre bevande . Consiglio Nazionale Richerche. ITRM950256. 1996-10-21.Rosi I. and Paolo R. Procedure of immobilizzazione di an extracellular enzymatic frazione per il trattamento di mosti, vini, altre bevande. Consiglio Nazionale Richerche. ITRM950256. 1996-10-21.
Vilanova de la Torre M., González Villa T. y Sieiro VázquezVilanova de la Torre M., González Villa T. and Sieiro Vázquez
C. Construction of a recombinant Saccharomyces cerevisiae oenological yeast strain that overexpress and endololygalacturonase, which is intended for use in wine production. Universidad de Santiago de Compostela. WO2004005519. 2004-01-15.C. Construction of a recombinant Saccharomyces cerevisiae oenological yeast strain that overexpress and endololygalacturonase, which is intended for use in wine production University of Santiago de Compostela. WO2004005519. 2004-01-15.
Watanabe M., Ueda M., Asai T. y Nishimura A. Monoterpene alcohol-producing yeast and refined sake. Hakutsuru Sake Brewing. Número de Patente: JP2002238572. 2002-08-27. Watanabe M., Ueda M., Asai T. and Nishimura A. Monoterpene alcohol-producing yeast and refined sake. Hakutsuru Sake Brewing. Patent Number: JP2002238572. 2002-08-27.

Claims

REIVINDICACIONES
1.- Uso de un microorganismo útil para la producción de bebidas alcohólicas elaboradas a partir de mostos o zumos de frutas, preferentemente uva, extractos de cereales u otros productos alimenticios de origen vegetal, manipulado genéticamente y caracterizado porque comprende secuencias de DNA que codifican monoterpeno sintasas, que permiten además la producción de novo de monoterpenos durante la fermentación . 1.- Use of a microorganism useful for the production of alcoholic beverages made from fruit musts or juices, preferably grapes, cereal extracts or other food products of plant origin, genetically manipulated and characterized because it comprises DNA sequences that encode monoterpene synthases, which also allow de novo production of monoterpenes during fermentation.
2.- Uso del microorganismo según la reivindicación 1 caracterizado porque la bebida fermentada pertenece al siguiente grupo: vinos (incluidos tanto no espumosos como cava, champagne y otros espumosos), cerveza, sidra, sake, etc . 2. Use of the microorganism according to claim 1 characterized in that the fermented beverage belongs to the following group: wines (including non-sparkling wines such as cava, champagne and other sparkling wines), beer, cider, sake, etc.
3.- Uso del microorganismo según la reivindicación 2, caracterizado porque la bebida fermentada es vino: vino blanco, tinto o rosado obtenido a partir de mostos de uva de cualquier variedad.3. Use of the microorganism according to claim 2, characterized in that the fermented beverage is wine: white, red or rosé wine obtained from grape musts of any variety.
4.- Uso del microorganismo según la reivindicación 1 caracterizado porque las secuencias, 1 ó varias, de DNA que codifican enzimas con actividad monoterpeno sintasa incluyen cualquier gen que codifique enzimas que catalicen la formación de monoterpenos: linalol sintasa, geraniol sintasa, α-terpineol sintasa, etc; asi como cualquier secuencia de nucleótidos análoga a éstas que cifre enzimas con dicha actividad, de forma aislada o en sus posibles combinaciones. 4. Use of the microorganism according to claim 1 characterized in that the sequences, 1 or several, of DNA encoding enzymes with monoterpene synthase activity include any gene encoding enzymes that catalyze the formation of monoterpenes: linalool synthase, geraniol synthase, α-terpineol synthase, etc; as well as any nucleotide sequence analogous to these that encrypts enzymes with said activity, in isolation or in their possible combinations.
5.- Uso del microorganismo según la reivindicación 4 caracterizado porque una secuencia de DNA que codifica una enzima con actividad monoterpeno sintasa incluye la secuencia del gen Lis de C. breweri (SEQ ID NOl, que codifica una linalol sintasa.5. Use of the microorganism according to claim 4 characterized in that a DNA sequence encoding an enzyme with monoterpene synthase activity includes the sequence of the Lis bre gene of C. breweri (SEQ ID NO1, which encodes a linalool synthase).
6.- Uso del microorganismo según la reivindicación 1 caracterizado porque el microorganismo es una levadura o bacteria de interés en enología. 6. Use of the microorganism according to claim 1 characterized in that the microorganism is a yeast or bacterium of interest in oenology.
7.- Uso del microorganismo según la reivindicación 6 caracterizado porque la levadura pertenece al siguiente grupo: Saccharomyces, Hanseniaspora (Kloeckera) , Candida, Pichia, Metschnikowia, Kluyveromyces, Zygosaccharomyces, etc. 7. Use of the microorganism according to claim 6 characterized in that the yeast belongs to the following Group: Saccharomyces, Hanseniaspora (Kloeckera), Candida, Pichia, Metschnikowia, Kluyveromyces, Zygosaccharomyces, etc.
8. Uso del microorganismo según la reivindicación 7 caracterizado porque la levadura es la especie Saccharomyces cerevisiae .8. Use of the microorganism according to claim 7 characterized in that the yeast is the species Saccharomyces cerevisiae.
9.- Uso del microorganismo según la reivindicación 8 caracterizado porque la levadura es la cepa S. cerevisiae YR64, (CECT 12032), es decir, la cepa vínica T73-4 transformada con el plá smido pGl-Lis-URA. 9. Use of the microorganism according to claim 8 wherein the yeast is S. cerevisiae strain YR64, (CECT 12032), ie, the vinous strain T 73 -4 transformed with plá smido pGl-Lys-URA.
10.- Uso del microorganismo según la reivindicación 6 caracterizado porque la bacteria pertenece al siguiente grupo: Lactobacillus, Pediococcus, Oenococcus, etc. 10. Use of the microorganism according to claim 6, characterized in that the bacterium belongs to the following group: Lactobacillus, Pediococcus, Oenococcus, etc.
11.- Uso del microorganismo según la reivindicación 1 caracterizado porque se utiliza en la elaboración de bebidas alcohólicas fermentadas conjuntamente con otros microorganismos recombinantes o no. 11. Use of the microorganism according to claim 1 characterized in that it is used in the production of fermented alcoholic beverages together with other recombinant microorganisms or not.
PCT/ES2007/070207 2006-12-27 2007-12-07 Improvement of the aromatic content of wines and other alcoholic beverages by use of microorganisms which, during fermentation, produce monoterpene synthase WO2008077986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200603283A ES2324508B1 (en) 2006-12-27 2006-12-27 IMPROVEMENT OF THE AROMATIC CONTENT OF WINES AND OTHER ALCOHOLIC BEVERAGES THROUGH THE USE OF MICROORGANISMS THAT, DURING FERMENTATION, PRODUCE SYNTHETIC MONOTERPEN.
ESP200603283 2006-12-27

Publications (1)

Publication Number Publication Date
WO2008077986A1 true WO2008077986A1 (en) 2008-07-03

Family

ID=39562131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070207 WO2008077986A1 (en) 2006-12-27 2007-12-07 Improvement of the aromatic content of wines and other alcoholic beverages by use of microorganisms which, during fermentation, produce monoterpene synthase

Country Status (2)

Country Link
ES (1) ES2324508B1 (en)
WO (1) WO2008077986A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030398A1 (en) 2011-09-02 2013-03-07 Chr. Hansen A/S Enhancement of beer flavor by a combination of pichia yeast and different hop varieties
CN111440733A (en) * 2020-02-07 2020-07-24 天津大学 Recombinant saccharomyces cerevisiae for producing terpineol, construction method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016611A1 (en) * 1991-03-12 1992-10-01 Pernod-Ricard Method of alcoholic fermentation to obtain muscat type aromas
WO1997015584A2 (en) * 1995-10-12 1997-05-01 The Regents Of The University Of Michigan Use of linalool synthase in genetic engineering of scent production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016611A1 (en) * 1991-03-12 1992-10-01 Pernod-Ricard Method of alcoholic fermentation to obtain muscat type aromas
WO1997015584A2 (en) * 1995-10-12 1997-05-01 The Regents Of The University Of Michigan Use of linalool synthase in genetic engineering of scent production

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CARRAU F.M. ET AL.: "De novo synthesis of monoterpenes by Sacchyaromyces cerevisiae wine yeast", FEMS MICROBIOLOGY LETTERS, vol. 243, no. 1, February 2005 (2005-02-01), pages 107 - 115 *
DUDAREVA C. ET AL.: "Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower", THE PLANT CELL, vol. 8, no. 7, July 1996 (1996-07-01), pages 1137 - 1148, XP002036387, DOI: doi:10.1105/tpc.8.7.1137 *
HERNANDEZ L. ET AL.: "Expression of plant flavor genes in lactococcus lactis", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 73, no. 5, March 2007 (2007-03-01), pages 1544 - 1552 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030398A1 (en) 2011-09-02 2013-03-07 Chr. Hansen A/S Enhancement of beer flavor by a combination of pichia yeast and different hop varieties
US10544385B2 (en) 2011-09-02 2020-01-28 Chr. Hansen A/S Enhancement of beer flavor by a combination of Pichia yeast and different hop varieties
CN111440733A (en) * 2020-02-07 2020-07-24 天津大学 Recombinant saccharomyces cerevisiae for producing terpineol, construction method and application

Also Published As

Publication number Publication date
ES2324508B1 (en) 2010-05-31
ES2324508A1 (en) 2009-08-07

Similar Documents

Publication Publication Date Title
Wang et al. Evaluation of aroma enhancement for “Ecolly” dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae
Varela et al. Strategies for reducing alcohol concentration in wine
Cordente et al. Flavour-active wine yeasts
Herrero et al. Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine
de Ovalle et al. Production and characterization of a β-glucosidase from Issatchenkia terricola and its use for hydrolysis of aromatic precursors in Cabernet Sauvignon wine
Styger et al. Wine flavor and aroma
Maicas et al. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review
Pardo et al. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain
Darriet et al. Aroma and aroma precursors in grape berry
Gamero et al. Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids
Mele et al. Grape terpenoids: Flavor importance, genetic regulation, and future potential
Zhu et al. Aroma compounds in wine
KR101788295B1 (en) Fermentation method of wine by sequential inoculation of Lactobacillus plantarum JH287 followed by Saccharomyces cereivisiae cells
Arrizon et al. Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations
Kanter et al. The impact of hybrid yeasts on the aroma profile of cool climate Riesling wines
Slaghenaufi et al. Fate of grape-derived terpenoids in model systems containing active yeast cells
Svedlund et al. Fruits of their labour: Biotransformation reactions of yeasts during brewery fermentation
Zoecklein et al. Effect of fermentation, storage sur lie or post-fermentation thermal processing on White Riesling (Vitis vinifera L.) glycoconjugates
Meng et al. Characterization of two Vitis vinifera carotenoid cleavage dioxygenases by heterologous expression in Saccharomyces cerevisiae
Reddy et al. Production, optimization and characterization of wine from mango (Mangifera indica Linn.)
ES2324508B1 (en) IMPROVEMENT OF THE AROMATIC CONTENT OF WINES AND OTHER ALCOHOLIC BEVERAGES THROUGH THE USE OF MICROORGANISMS THAT, DURING FERMENTATION, PRODUCE SYNTHETIC MONOTERPEN.
Xynas et al. Yeast or water: Producing wine with lower alcohol levels in a warming climate: A review
KR20220076925A (en) Novel Pichia kudriavzevii N373 and use thereof
JP2022553039A (en) Genetically modified yeast cells and methods of use thereof
Dimitrov et al. INFLUENCE OF DIFFERENT VINE ROOTSTOCKS ON THE VOLATILE COMPOSITION OF RED WINES FROM KAYLASHKI RUBIN GRAPEVINE VARIETY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07858291

Country of ref document: EP

Kind code of ref document: A1