GB2447171A - Control of a Movable Barrier with Obstacle Detection based upon a Runtime Compensated Force Threshold Value - Google Patents

Control of a Movable Barrier with Obstacle Detection based upon a Runtime Compensated Force Threshold Value Download PDF

Info

Publication number
GB2447171A
GB2447171A GB0810523A GB0810523A GB2447171A GB 2447171 A GB2447171 A GB 2447171A GB 0810523 A GB0810523 A GB 0810523A GB 0810523 A GB0810523 A GB 0810523A GB 2447171 A GB2447171 A GB 2447171A
Authority
GB
United Kingdom
Prior art keywords
force
movable barrier
value
characteristic
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0810523A
Other versions
GB0810523D0 (en
GB2447171B (en
Inventor
Carlos Jurado
Eric Gregori
Matthew C Stephan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chamberlain Group Inc
Original Assignee
Chamberlain Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0805605A external-priority patent/GB2446315B/en
Application filed by Chamberlain Group Inc filed Critical Chamberlain Group Inc
Priority to GB0810523A priority Critical patent/GB2447171B/en
Publication of GB0810523D0 publication Critical patent/GB0810523D0/en
Publication of GB2447171A publication Critical patent/GB2447171A/en
Application granted granted Critical
Publication of GB2447171B publication Critical patent/GB2447171B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • H02H7/0851Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load for motors actuating a movable member between two end positions, e.g. detecting an end position or obstruction by overload signal
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/41Detection by monitoring transmitted force or torque; Safety couplings with activation dependent upon torque or force, e.g. slip couplings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/30Electronic control of motors
    • E05Y2400/31Force or torque control
    • E05Y2400/315Curve setting or adjusting
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements
    • E05Y2400/53Wing impact prevention or reduction
    • E05Y2400/54Obstruction or resistance detection
    • E05Y2400/55Obstruction or resistance detection by using load sensors
    • E05Y2400/554Obstruction or resistance detection by using load sensors sensing motor load
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements
    • E05Y2400/53Wing impact prevention or reduction
    • E05Y2400/54Obstruction or resistance detection
    • E05Y2400/58Sensitivity setting or adjustment
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2800/00Details, accessories and auxiliary operations not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/10Application of doors, windows, wings or fittings thereof for buildings or parts thereof
    • E05Y2900/106Application of doors, windows, wings or fittings thereof for buildings or parts thereof for garages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters

Abstract

A movable barrier operator having a motor controller 10 and motor 11 that control movement of a movable barrier 12, and also has an obstacle detector 14 that utilizes an automatically determined excess force threshold value to permit reliable detection of an obstruction. A wide variety of operational circumstances such as, changing physical circumstances, aging components, temperature variations, and motor runtime may be detected by the obstacle detector. Preferably, a characteristic force value for the system is frequently updated as a function of actual measured force required to move the barrier determined from motor current and compensated with respect to temperature and other conditions such as motor runtime. This characteristic force value is then utilized to determine the excess force threshold value. The duration of motor operation is sensed and either on-time or off-time may be used to determine the motor operation compensation value, particularly at low temperature.

Description

* 2447171 MOVABLE BARRIER OPERATOR AUTO-FORCE SETTII'G NETHOD AND
APPARATUS
Technical Field
This invention relates generally to movable barrier operators and more partiilarly to auto-force setting.
Background
Many movable barrier operators monitor applied force (typically by monitoring a parameter that varies as a inction of force) as corresponds to movement of a. movable barrier and use such informon to determine wizen the movable bairier has encountered an obstacle (such as a person or item of personal propty). Upon snthng such an obstacle, the operator will typically intite a predetermined action such as reversing the movement of the barrier. In particular, the operator usually compares present applied force gnimt a threshold that represents excessive force to identify such an occurrence.
tJnforlunately, a factory-set static excessive force threshold will typically not provide satisfactory results uner all operating conditions andior for all installations.
The reasons are mlmerous and varied. The physical dimensions of a given installation can vary dramatically (both with respect to bather travel distance and bather weight as well as other manifest conditions) and these physical conditions can and will in tern impact the amount of force required to move the bather. The physical interface between the barrier and its corresponding track or pathway can also vary, sometimes considerably, over the length of bather traveL Such variations can each, in turn, be attended by significantly varying force requirements.
Temperature, too, can have a significant impact on necessary force, as temperature (and especially colder temperatures) can alter the physical relationships noted above and can also significantly impact upon at least the initial operating characteristics of a motor as is used to move the barrier. Force needs, measurements, and/or behaviors can also vary with respect to time, as the physical conditions themselves change, as the motor ages, and even with respect to how long a motor has been recently operating.
To attempt to accommodate such circumstances, many movable barrier operators have a user-adjugtmn interface (usually one or two potentiometer-style knobs) that a user or installer can manipulate to adjust allowed applied force during one or more directions of barrier traveL Unfortunateiy, even when used correctly, force settings established in this way can become outdated. Another solution has been to provide a learning mode during which a movable barrier operator can monitor force conditions during movement of the barrier and use such inforrnajon to automatically establish an excess-force threshold to be used during subsequent normal operations. Unfortunately, again, force setting values established in this way can become outdated (and sometimes within a short period of time).
Brief Description of the Drawings
The above needs are at least partially met through provision of the movable bather operator auto-force setting method and apparatus described in the following detailed description, particularly when studied in conjunction with the drawings, wherein: FIG. 1 comprises a block diagram as configured in accordance with an embodiment of the invention; FIG. 2 comprises a flow diagram as configured in accordance with an enibodinient of the invention; FIG. 3 comprises a graph depicting illustrative force behavior FIG. 4 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 5 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 6 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 7 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 8 comprises a graph illustrathig certain particulars as accord with an embodiment of the invention; FIG. 9 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 10 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 11 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 12 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 13 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 14 comprises a graph illustrating Certain particulars as accord with an embodiment of the invention; FIG. 15 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 16 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 17 comprises a block diagram as configured in accordance with an embodiment of the invention; FIG. 18 comprises a graph illustrating certain particulars in accord with an embodiment of the invention; FIG. 19 comprises a flow diagram illustrating detail in accordance with an enibodjinent of the invention; FIG. 20 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 21 comprises a graph illustrating certain representajve phenomena; FIG. 22 comprises a flow diagram illustrating detail in accord with an embodjmen of the invention; FIG. 23 comprises a block diagram as configured in accordance with an embodiment of the invention; FIG. 24 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 25 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 26 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 27 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 28 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; and FIG. 29 comprises a graph illustrating certain particulars as accord with an embodiment of the invention.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but Well-understd elements that are usethi or necessazy in a commercially feasible embodiment are typically not depicted in order to cilitate a less obstructed view of these various embodimen of the present invention.
Detailed Description
Generally speaIcing pursuant to these various embodiments, an automatic force-setting capability permits regular (or essenliaily constant) updating of one or more force thresholds that are used, fbr example, to detect an excess applicajon of force as ordinarily associated with obstacle encounters. This capability exists compatibly with, or without, concurrent availability of an automatic force-setting learning mode of operation and/or user-1nanipuia,1e force-setting controls.
In generaj, actual exerted force (typically as ascertained via monitoring of a corresponding parameter, such as motor current) informs the automatic S updating changing of the force-setting(s) value(s) (in general, for ease of presentation, only a single force-setting value or threshold will typically be mentioned herein with it being understood that such a reference includes both the singular and plurality of such values or thresholds). As actual exerted force increases or decreases over time and/or with Circumstances (such as changing physical conditions and/or ambient temperature), the force-setting value can be similarly changed to aid in ensuring that the force-setting value remains relevant to present operating circumstances.
Such changes are effected in a variety of ways pursuant to these various embodiments. In one embodiment, no changes are made to a present force-setting value when a present force measurement is not sufficiently different from a present point of comparison. In another ernbodiineijt, the force-setting value is changed in substantiaily identical correlation to a given present force measurement (for example, by causing a characteristic force value that is used to determine an excess force-setting threshold to be rendered substantially equal to a present force measurement) Pursuant to yet another embodiment, such a characteristic force value (and/or a resultant excess force threshold) is altered in a step-fashion when, for example, a relatively significant gap exists between the characteristic force value and the present force measurement. So configured, an automatically determined force-setting value can track actual force changes while avoiding relatively pointless alterations and/or over-reacting to any particular anecdotal actual force measurement.
In various embodiments, a single force threshold can be automatically determined for an entire length of travel, or multiple thresholds can be similarly calculated for corresponding portions of the travel time when significant differing force behaviors are detected. In yet other embodiments, a changing threshold mechanism can be provided through identification of a linear or non-linear curve that substantially fits and accommodates the behavior of the installation itself and/or through detection and corresponding accommodation of a ringing behavior that characterizes a given installation.
In other einbodinients, various other limits and/or thresholds can be utilized to control and/or detect conditions of possible concern. For example, an upper limit can be placed on the extent to which an excess force threshold can be adjusted pursuant to these various embodiments. Thresholds can also be used to detect stall conditions and/or likely component and/or system faults.
In addition to (or supplemental thereto) automatically altering a force threshold or value as a function of actual perceived force readings pursuant to other embodiments, such thresholds/values can be modified as a function of temperature and/or runtime history of the motor(s) that effect movement of the nioveable barrier.
Pursuant to a preferred embodimeni; such alterations are substantiay limited to use during lower temperature conditions, as higher temperatures tend to impact conditions of interest with less severity. Pursuant to another preferred approach, when a significant temperature drop of interest has occurred between a present setting and a previous occurrence of interest, a larger alteration to a force value or threshold may be permitted than under other circumstances to thereby more quickly accommodate likely normal behavior of the overall system.
These various embodiments provide a variety of resultant combinations that readily suit a wide variety of expected operating conditions and design criteria. In general, these embodirnent permit a force threshold value to be automaticaily calculated on a regular (or continuous) basis, in conjunction with or apart from a learning mode of operation, and in a fashion that tends to encourage relatively constant availability of a relevant and suitable threshold value. Various operating conditions can change slightly or significantly, suddenly or slowly, without unduly adversely impacting the availability of relevant and useffil force setting or settings.
Referring now to PIG. 1, a motor controller io couples to and selectively controls a motor 11. The motor 11 in turn couples via an appropriate mechajam (not shown) to one or more movable barriers 12 (such as, but not limited to, garage doors (both single-piece and segmented), sliding and swinging gates, rolling shutters, and so forth). The motor controller io comprises, in this embodiment, a programmable platform (having, for example, a microprocessor or programmable gate array or the like) that can be readily Programmed to serve as described herein (of course an appropriately configured static platform can be utilized as well if desired). Such elements are generally well understryd in the art and hence additinai description will not be presented here for the sake of brevity and the Preservation of focus.
A force sensor 13 couples to monitor one or more parameters -that are indicative of force as exerted by the motor 11 to effect desired movement of the movable barrier 12 çif desired, of course, a plurality of force sensors can be
S
employed to provide either redundant monitoring capability and/or multi-point or multi-parameter monitoring). In this embodiment, the force sensor 13 comprises a mechanism (such as a current-sensing resistor) to detect current flow through the motor 11 (in general, current flow through a motor will correspond to loading and hence will tend to provide a relatively reliable indication of force being exerted by the motor). In alternate embodiments the force can be measured by velocity, a strain gauge, or any other force detection method.
The output of the force sensor 13 couples to an obstacle detector 14 and further serves to inform an automatically determjnetl excess force threshold value indicator 15 (as described below in more detail). So configured, the obstacle detector 14 can compare force as sensed by the force sensor 13 with an excess force threshold as provided by the excess force threshold value indicator 15 to detect when the motor 11 at least appears to be outputting excess force (thereby indicating the possible presence of an obstacle in the path of the movable barrier).
In a prefrred embodiment, the excess force threshold value indicator 15 automatically determines the threshold value in response to actual force as sensed by the force sensor 13. Such determinations can be made on a regular or irregular basis, but in a preferred embodiment are made at least once during each full traversal of the movable barrier. If desired, a typical user-initiable dedicated learning mode 16 can also be provided, such that an initial excess force threshold value can be initially determined via such an approach. Regardless, however, in a preferred embodiment, the excess force threshold value indicator 15 serves to determine initially (when needed) and to continually update thereafter during normal operating modes of operation the excess force threshold value. So configured, these teachings are suitable for use both with and without a platform having such a learning mode.
Similarly, it should be noted that such a system could be provided with a user-accessible excess force threshold value adjustment interface (not shown) as well understood in the art. Though such an interface can be provided, when properly configured, these teachings should, at least in a significant number of instances, mitigate against the need to make any such provision.
In a preferred embodiment, the excess force threshold value indicator 15 automatically determines a Characteristic force value (in response at least in part, to the force sensor) that corresponds to this given installation. The excess force threshold value can then be determined as a function, at least in part, of the characteristic force value. For example, the characteristic force value is summed with a predeterinineci offset in a preferred approach to thereby determine the excess force threshold value. So configured, the motor 11 can apply force in excess of the characteristic force value without the obstacle detector 14 interpreting such an event as an obstacle so long as the force over and above the characteristic force value does not exceed the predetennined offset.
In a preferred embothment it is the characteristic force value that the operator automatically adjusts to reflect changing conditions regarding the application of force during normal operation. The predetennjned measure is then readily combined with the frequently updated characteristic force value to yield a correspondingly updated excess force threshold value.
So configured, and referring now to FIG. 2, during a normal mode of operation (and regardless of whether a user-initiable learning mode of operation has been earlier applied) the operator will monitor 21 a force parameter (as detected by the force sensor.13) and automatically update 22 the excess force threshold value.
(As will be shown below in more detail, the operator may use a single threshold value or, in the alternative, a plurality of thresholds may be used and applied at different times during movement of the movable barrier. In a preferred embodimerit the update will occur at the end of a movement cycle, though another time or times could be utilized when and as appropriate to a given implementation.) As noted above, in a preferred embodiment, the operator will effect such updating by automatically changing a characteristic force value in response to the monitored force parameter and then using the updated characteristic force value as a basis for determining an updated excess force threshold value. The operator then uses 23 the updated excess force threshold value to determine when excess force appears to be applied by the motor Ii. When the operator detects 24 the application of apparent excess force, one or more predetermined actions 25 are initiated (for example, movement of the movable barrier can be halted or reversed, alarms can be activated, an incident log can be updated, and so forth).
With reference to FIG. 3, a not untypical force response 30 for a such a system will typically exhibit a significant peak 31 during an initial period 32 of activation (or, more particularly, the motor will initially spike in a manner as suggested due to inertia and other factors, therefore causing the apparent force to appear to reach a conesponding peak). For many purposes, it may be desired to essentially ignore the force response 30 for a predetermined period of time T1 (such as, for example approximately one second) such that these peaks do not influence the resultant characteristic force value TH and/or the excess force threshold value.
As depicted in PIG. 3, the characteristic force value TH comprises a single value that is used as described earlier to determine a corresponding excess force threshold value during the entire period of movement of the movable barrier (from, for example, an open position to a closed position or from a closed position to an open position). As depicted, the characteristic force value TH. appears to be considerably larger than the bulk of the actual measured force response 30. Pursuant to these teachings, many of the embodime taught herein would tend to reduce the Characteristic force value T.EIC over time to more closely approximate the actual force response 30 (presuming, of course, that the actual force response 30 itself did not change appreciably during this period of change and re-characterization).
It is unlikely, of course, that such an actual force response 30 will be uttedy flat; instead, there will usually be peaks and valleys. To the extent that such undulations, and especially the peaks, do not vary significantly from what otherwise amounts to an average value for the force response 30, there is no particular value in reflecting such minor variations in the characteristic force value TEL or the resultant excess force threshold value. A process topernilt such a result appears in FIG. 4. As noted above, the force response 30 will typically begin with a brief large peak Therefore, the process will preferably begin by waiting 41 for a minimum time (such as time T3 as suggested in FIG. 3) before responding to the force response 30.
Subsequent to this optional initial window of time, the process then detects the highest force response peak and measures 42 that peak force F. The process then determines 43 whether that peak force F falls within a predetermined small range.
When true, meaning that only negligible peak excursions have been observed with respect to the characteristic force value THC, the update process can simply conclude 44 without any substantive change being made to the characteristic force value TE and/or the excess force threshold value.
In this embodiment the range is established as a small amount X that is added or subtracted from the characterisjc force value TH0. As shown in P10.5, this resuitsin anupperlimit 51 equal to the characteristic forcevalue TEplus the amount X and a lower limit 52 equal to the characteristic force value fl3 less the amount X So configured, when the highest peak of the actual force response 30 remains within this range, the update process can conclude without resultant change to the values of interest.
With rthrence again to P10.4, when the actual force response 30 has a peak that lls outside the indicated range (being either higher than the upper limit 51 or less than the lower limit 52), the process can again automaticaily change 45 the characteristic force value TH0 as a function, at least in part, of the peak force F1 This updated value can then be used 46 to determine when excess force is seemingly being exerted as related above either for this operation or for future operations.
So configured, a movable barrier operator will effectively yield an updated characterjtic force value TH that is Substantially identical to the original characteristic force value TH when a difference as between the original characteristic force value TH and the force measurement parameter is within a predetermined minimum range. In a preferred embodiment, the value X can be, for example five percent (5 %) of the total typical initial peak force response value as occurs during the initial period 32 of energization. As described, the value X serves to bound both the upper and lower limits 51 and 52 of this range. If desired, differing values can be used to specify the upper and lower limits (this may be appropriate, for example, when seeking to render the operator more or less sensitive to a peak excursion in a given direction away from the Characteristic force value When the actual force response includes a peak that exceeds the minimum range noted above, in a preferred embodizn the operator will use that information to automatically adjust the characteristic force value TH0 (to thereby effect a change of the excess force threshold value). One approach to guiding the adjustment process appears in FIG. 6. Initially, the opatoj determines 60 whether the peak force F exceeds the characteristic force value 1B (in a preferred approach, the operator uses a first determination process 6j when the force peak P, exceeds the characterjstj force value TEl0 and a second determination process 62 when the force peak P is less than the characteristic force value TR).
Pursuant to the first determination process 61, the operator determines 63 whether the force peak F exceeds a first predetermined threshold. In this embodiment and referring momentarily to FIG. 7, the first predetermined threshold equals the characteristic force value TRC summed with a first predetermjeJ amount Y (wherein Y is larger than the value X that establishes the mithmu range described earlier).
Referring again to FIG. 6, when the force response 72 has a force peak 71 that is less than the first predetermined threshold, the operator adjusts 64 the characteristic force value TH0 by setting the adjusted characteristic force value TEl0 to equal the current peak force F 71. So configured, the characteristic force value TH automatically directly tracks and corresponds to smaller force peak excursions.
Therefore, as force requirements may change via small increments with circumstance or time, the characteristic force value TH will similarly change. This, of course, leads to a corresponding change of the excess force threshold value and hence aids in ensuring that obstacle detection remains likely accurate and calibrated to current operating conditions and circumstances.
Referring again to FIG. 6, when the operator detennines 63 that the force peak F exceeds the first predeternned threshold, the operator adjusts 65 the characteristic force value TEC by incrementing the existing characteristic force value TH0 towards the current fbrce measurement without actually reaching the current * force measurement In a preferred embodiment, this increment corresponds to a step of predetermined size or percentage (of either the difference or the absolute value and as either preset or dynamically calcuItecJ as desired). Therefore, and as illustrated inFIG. 8, whenagiven force response 80 hasa forcepeak 81 that exceeds the first predetermined threshold 70, the characteristic force value TH0 is incremented by a predetermined amount K, such that the resultant value 82 will approach, but not necessarily reach the current force peak 81.
So configured, the operator will tend to substantially closely track smaller force peaks and more loosely track larger force peaks when the force peaks exceed the Characteristic force value TE (when coupled with the rnininium range process described earlier, of course, the operator will essentially ignore minimal force peak variations). This approach permits the operator to automatically maintain an excess force threshold value that is substantially current and relevant while also avoiding possibly over-significant adjustments that are possibly only associated with anecdotal incidents that may not again occur in the near term. (Significant tempera variations can represent one potential exception to this approach, and additional embodiments described below are directed to accommodating that circumstance.) S Referring again to iIG. 6, when the operator determines 60 that the force peak F does not exceed the characteristic force value TH, the operator utilizes a second determination process 62 to facilitate adjustment of the excess force threshold value. Pursuant to the second determination process 62, the operator determines 66 whether the force peak F is less than a second predetermfne threshold.
With momentary reference to RIG. 7, in a preferred embodiment, the second predeterinjned threshold 73 comprises the characteristic force value TEO less a predetennjnedo Y (in this embodiment, the same value Y is used to determine both the first and second predetermined thresholds 70 and 73; it would of course be possible to use different values topermnit, for exampl; sensitizing or de-sensitizing the response of the process as desired to force response excursions).
Referring again to FIG. 6, when the operator determines 66 that the present force peak Fp is not less than the second predetermined threshold, the operator sets the present force peak F value as the new characteristic force value TH0. For example, as illustrated in FIG. 7, a force response 74 having a force peak 75 that falls between the present characteristic force value TH and the second predetermined threshold 73 will cause the adjusted Characteristic force value TH to substantially equal the force peak 75.
When the operator determines 66, however, that the force peak F,, is less than the second predetermjn threshold, then as shown in FIG. 6, the operator adjusts 67 the Characteristic force value TH by decrementing or changing the latter towards the current force peak F,, by a predetermined step size L. As illustrated in FIG. 8, a force response 83 having a peak 84 that is less than the second predeternijnecj threshold 73 will cause the characteristic force value TH to be decremented or changed towards the force peak84 by a step size L. In this embodiment, this step size L is smaller than the step size K used when incrementing the characteristic force value TH towards a larger value as described above, and it is at least this difference that distinguishes the second determination process 62 from the first determination process 61. So configured, the operator can track (closely or loosely, depending upon the nature of the force peak excursions) changing force needs and reflect those changes in the excess force threshold value (by, in these embodiments, adjusting a characteristic force value TE,). These processes, however, permit more significant immediate increases in the characteristic force value TH than decreases. This preferred approach aids in ensuring thai the operator doesnot quickly (and possibly inappropriately) reduce the excess force threshold value to a point wiiere the movable barrier cannot be moved without triggering a false obstacle detection event.
As described above, the operator can be configured to essentially automaticajly respond to only a single peak in the force response during movement of a movable barrier from a first position to a second position, such that adjustment of the characteristic force value TE0 (and/or the excess force threshold value) will be essentially based only on that one peak and value. For many situations, this approach
I
will provide satisfactoiy results. In other instances, however, it may be desirable to detect and/or respond to more than just this one peak.
For example, and referring now to FIG. 9, a given operator may detect a force response 90 that is more complex than the simpler responses illustrated above.
As one illustration, in FIG. 9, the force response 90 has a first peak plateau 91 that is followed by a second plateau 92 and then by a third relative plateau 93. With such a force response 90, an excess force threshold value that tracks the force peak represent by the first peak plateau 91 may possibly be too high for one or more of the later plateau areas 92 or 93. Pursuant to one embodimeni, the operator automatically segments or partitions the force response 90 as a function of time and determines Characteristic fbrce value IEI.'s that correspond to each resultant time window. So configured, the resultant characterjtj force values would then correspond to particti1ai times during the time the operator moves the movable barrier and would, in a preferred embodiment be recalled and utilized at such times.
If desired, the number of threshold values (and hence the number of corresponding steps) can be fixed at a predetermjij level.
For example and with continued reference to FIG. 9, during the time window 94 bounded by time T1 and T2, a force response peak that corresponds to the first force plateau 91 can be used as described above to adjust a characteristic force value TH for this first time window 94. In a similar fushion, during the next succeeding time window 95 (as bounded by time T2 and T3), a force response peak that corresponds to the second force plateau 92 can be used as described above to adjust a Characteristic force value ThT for this second time window 95. In a similar fashion, other characteristic force values TH can be determined for other corresponding windows of time.
In a preferred embodiment, the number of resultant characteristic farce values TH and the time windows to which such values correlate are dependent upon the force response itself as detected by the operator. For a simple response as illustrated earlier, a single characteristic force value TE can be automatically utilized as a satisfactory guide. For more complicated responses such as the one illustrated in FIG. 9, a plurality of such values can be automatically determined to more likely ensure ultimate provision of a relevant excess force threshold value. In another approach, the number of characteristic force values TE0 and/or the specific correlation of such values to specic times or bather poaitions/locajon can be previously determined and set by the manufacturer or installer and/or during a user-initiated learning mode of operation.
In the embodiment above, multiple characteristic force values TH are determined with each such value being calculated as a specific function of a corresponding portion of the force response itself Pursuant to another embodiment, a curve can be fit to match, to a greater or lesser extent, the force response. This curve can then be used to permit dynamic determination of a plurality of characteristic force values TH0.
To illustrate this approach, consider first a force response 100 as depicted in FIG. 10 that comprises a representative function of the force exerted by an operator to effect movement of a movable barrier from a first position to a second positioa It can be seen that a first force peak P1 occurs at approximately time T1 and that a second relative peak P2 occurs at approximately time T2. These peaks P1 and P2 are then used to establish corresponding characteristic fbrce values TH as described above. Between the two resultant values, however a curve is fit to substantially connect such values.
For example, with reference to FIG. 11, a curve 110 can be used to connect thetwo peakvahiesp1 and?2. This curve 110 canthenbeused to permit determination of corresponding characteristic force values and/or excess force threshold values. In particular, at any given time between T1 and T the operator can utilize the curve 110 to ascertain a corresponding Characteristic force value lB0 and then use that value as taught above to determine an excess force threshold value that corresponds to that particular time. Various curves can be used as desired, including exponential curves. in one embodiment, the operator may have only a single curve definition to use in this mnner* Pursuant to another embodiment, the operator may have a plurality of curve definitions to choose from. By one preferred approach, the operator can compare these various resultant curves against the actual force response to identify a curve that best approximates the actual force response. The curve that best fits the present operating conditions would then be used as otherwise described above. With reference to FIG. 12, it would also be possible to utilize a line 120 to connect the peak values as otherwise described above. Again, such a line might represent a best fit under some operating conditions.
Undue mechanical resonance (or tinging) can contribute to a resultant corresponding ringing force response that may not be satis&ctorily accommodated by the various embodiments set forth above. Such ringing can occur, for example, when especially heavy barriers are moved. FIG. 13 depicts an illustrative ringing force response 130 characterized by a series of dampening resonant oscillations featuring consecutive peaks and valleys. Upon detecting such a condition (or upon otherwise being instructed to operate as now described), the operator then detects the peaks and valleys of the force response 130 and thereby ascertains a time T when the ringing phenomena has dampened sufficiently to no longer represent a significa concern. For example, when the distance between a consecutive peak and valley (or valley and peak) is less than a predeteniijnetj distance, the operator can conclude that the oscillation has dampened to a sufficient leveL The operator can then select an appropriate curve 140 to represent the force response 130 between an initial time T1 and the time T as illustrated in PIG. 14. Again, various curves can be provided, such that alternative curves 141 can be sampled and compared to permit selection of a most appropriate curve. Once selected, the curve can then again be used as described above to permit adjustment of the characteristic force value TH and/or the excess force threshold value.
As noted earlier, the initial portion of a force response tends to exhibit a significant transient pea1c As already suggested, this initial peak can be essentially ignored when seeking to automatically set an appmpriate threshold to detect an apparent application of excess force. The ordinary occurrence of this phenomena, however, can be used, if desired, to ascertain a likely status of the force monitoring sensor and/or the signal pathways that pertain thereto. During time periods subsequent to the initial peak, it is also possible that force response peaks can provide an indication of operational status other than the likely presence of an obstacle.
With reference to PIG. 15, during a predetermined time period of interest (coniprisin in this example, the initial time period during which the transient
I
force peak ordinarily occurs), the operator determines 151 whether the present force measurement exceeds some threshold TF. As suggested by FIG. 16, this threshold Tp is set, in a preferred embodiment; considerably lower than the expected transient peak 160 (and preferably at a level that is less than the minimum force ordinarily needed to cause selective movement of the movable barrier). When the measured peak exceeds this threshold, the process can conclude 152 as set forth in FIG. 15.
When, however, the initial peak 161 is less than the threshold Tp, and referring again to FIG. 15, the operator can determine 153 a correspondling status and then optionally take a predetermined action 154. For example, the operator can conclude that the force sensor is faulty (such a greatly limited or reduced initial transient response would likely suggest, for example, a problem or fault with the current sensing resistor or other related electrical failure). The predetermined action 154 could include, for example, not automatically updating the characteristic force value THcatthistjnieor as might otherwise be based upon present orimmediately subsequent data.
There also are other conditions that such monitoring of force can potentially reveal. To illustrate, FIG. 17 depicts a supportive embodiment. In this embodjme the excess force threshold value is provided by an excess force threshold determination unit 171 as otherwise generally related above. In this embodiment; however, the excess force threshold dete mination unit 171 further utilizes a maximum force-setting limit 172. With momentary reference to FIG. 18, this maximum force-setting limit 172 comprises a limit beyond which the operator can not automatically drive the characteristic force value THU. This maximum adaptation limit is larger than either of the earlier adaptation thresholds 51 or 70 described
I
earlier, but is also smaller than a physical limit 181 that would otherwise limit the characteristic force value TH (the physical limit 181 being such as the maximum force that the motor 11 can conceivably deliver under the most favorable of conditions). As a result, the excess force threshold value provided by the excess force threshold determination unit 171 essentially comprises a maximum force-setting limited excess force threshold value, in that the excess force threshold value itself becomes limited with respect to the maximum force-setting limit 172. The maximum force-setting limit can comprise a non-alterable limit or can be otherwise established, such as during a learning mode of operation as desired and appropriate toagiven application.
If desired, and referring again to EIG. 17, the motor controller 10 can also be made responsive to a fault/stall detector 173. The fault/stall detector 173 utilizes, in a preferred embodiment, one or more other thresholds to identify circumstances that likely indicate at least one of a fault condition and a stall condition. For example, with reference to FIG. 19, the detector 173 can optionally provide 191 a first fault/stall detected force indicia threshold and a second 192 fault/stall detected force indicia threshold. With reference to FIG. 20, the first such threshold 201 can more specifically comprise an F threshold that corresponds to a level of force that likely indicates that the motor 11 is stalled. The second such threshold 202 can more specifically comprise an F threshold that corresponds to a level of apparent force that likely indicates that one or more faults exist in the force-sensing signal path.
Such thresholds can of course be set to correspond empirically to a given movable barrier opener.
Referring again to FIG. 19, a maximum force-setting limit 172 can also be provided 193 as already earlier described. During normal operation, the operator then determines 194 an excess force threshold value (or values as described above) subject to the maximum force-setting limit 172 and provided also that the operator will now further determine 195 whether a fault/stall condition likely exists based, at least in part, on current force measurements. As illustrated in FIG. 20, the excess force threshold value FR can be determined 194 by combining the Characteristic force value THO with a predetermined offset A(the value of A can be selected as appropriate to a given application but in general will serve to provide room for ordinary force peak excursions that are not likely indicative of an obstacle while also being small enough to likely ensure that an obstacle will be detected relatively soon following impact). As also illustrated (and as otherwise described above), the operator will automatically change the characteristic force value TR as a fuinction, at least in part, of the actual force response. For example, the characteristic force value TH may be moved upwardly by an amount B to provide an updated Characteristic force value TR 203 due to such circumstances. When this occurs the predetermined offset A is again applied to establish an updated excess force threshold 204.
So configured, the operator will automatically set an excess force threshold value as a function of the measured force response. When the force response exhibits a peak that exceeds either of the F or thresholds, however, the operator will determine 195 that a corresponding stall or fault has occurred and then take an optional predetermined action 196. For example, and referring again to FIG. 20, when the force response exceeds the F1 threshold 201, the operator can cause
I
the motor 11 to reverse 205 and thereby move the movable barrier in an opposite direction. When the force response exceeds the P threshold 202, the operator can cause the motor 11 to stop 206 and thereby stop movement (or attempted movement) of the moveable barrier.
S It can therefore be seen that a movable barrier operator can monitor force (typically by monitoring a parameter that itself varies in a way that corresponds to the apparent application of force) and use that measurement to automatically and dynamically modify an excess force thresheld during normal operations. In addition, such force monitoring can be further used to detect various fault conditions and or stalled circumstancp As noted earlier, temperature can also significantly impact such processes, at least under some circumstances. For example, current flow requirements of a motor can increase as ambient temperature drops (at least during periods when the motor has not recently operated). Such phenomena is generally suggested in the illustration of FIG. 21. A force response 210 of a given motor at zero degrees Celsius will tend to be considerably lower than a force response 211 for that same motor at minus twenty-five degrees Celsius (note that in these illustrations the force responses 210 and 211 are only shown subsequent to the initial period of time during which the transient peak tends to be manifested). Unfortunatjy, the differences tend to be non-linear. That is, the difference 212 between the two force responses at one time T2 will tend to be different than the difference 213 between the two force responses at a later time T3. These temperature dependent behaviors present yet additional challenges to the provision of a successful automatic force-setting platform.
Therefore, pursuant to another set of embodinients, and referring now to FIG. 22, any of the above embodiments can be modified to further accommodate monitoring 221 both force and temperature (such as ambient temperature proximal to the motor) and, in conjunction with determination 222 of the characteristic force value TH (andlor the excess force threshold value) a determination 223 can also be made of a temperature compensation factor to thereby yield a temperature compensated excess force threshold value. To facilitate this, and referring now to FIG. 23, a temperature sensor 232 can serve to provide current temperature znforxnat ion to an automatic characteristic force value indicator 231. So configured, the autoinmic characteristic force value indicator 231 can utilize the temperature information to appropriately compensate the characteristic force value TH and thereby facilitate the detennination of a temperature compensatetj excess force threshold value. If desired, of course, it would also be possible to provide the temperature in1ormatj to the automatic excess force threshold value indicator 15 and provide for temperature compensation directly to the latter.
There are a number of ways to effect such an approach. With reference to FIG. 24, pursuant to one embodiment, current temperature is measured 241 and then compared 242 against a first condition. In this embodiment, the first condition prompts a determination as to whether the current temperature is less than a predetermined value, such as zero degrees Celsius. When true, the characteristic force value lB0 is immediately set 243 to the current peak force (regardless of whether smaller movements would have otherwise been utilized pursuant to any of the above embodiments). (The characteristic force value THC can be set in this fashion on either a temporary basis (such as only for the present operation) or until otherwise changed pursuant to the other teachings set forth herein as appropriate to a given application.) When the current temperature does not meet the first condition, the process next determines 244 whether the current temperature is substantially different than a previously measured temperature as corresponds to a previous force S peak that was previously utilized to facilitate adjustment of the excess force threshold value. When true, thereby indicating that a substantial difference in temperature exists as between the present setting and a most recent prior setting, the process again sets the characteristic force value TH to equal the current force peak (as before, this change can be temporazy, such as for only a single operation, or of a potentially more lasting nature). Otherwise, when the present temperature and prior tniperaure are not significantly different from one another, the characteristic force value TH is set to a different value, albeit one that may still be temperature compensated.
In general, as the temperature drops, the temperature compensation will tend to comprise an ever-increasing additive value that the process combines with the characteristic force value TEl0 (and/or the excess force threshold value) to thereby increase the resultant excess force threshold value. Pursuant to a preferred embodiment, the following equation can be utilized to determine the magnitude of this additive value when the characteristic force value TH0 is not otherwise simply set to equal the current force peak.
vf1T -IB Temp(difi) Temperature compensation value = -8 K where: MIT = a maximum upper threshold boundary; TH = current characteristic force value; Temp(diff) = the current temperature less the previous temperature; and K = a constant that corresponds to the temperature sensor 232 itself (such as when the sensor comprises a thermistor).
This equation will tend to produce a higher value as the ambient temperature drops quickly by a significant amount. Referring now to FIG. 25, in an alternative approach using temperature compensation, the operator rst determines 251 whether the current temperature is less than a predetermined amount X (such as, in a preferred embodiment, zero degrees Celsius). If not, temperature differences often lend considerably less impact upon force and/or force sensing and hence normal 252 processing sans temperature compensation as described earlier will proceed. When the current temperature falls below the desired threshold, however, the operator measures 253 force. For purposes of this particular activity, the force need only be measured subsequent to the initial time period during which the characteristic transient peak ordinarily occurs. The operator then determines 254 whether the current measured force exceeds the current characteristic force value TH as combined with a current temperature compensation value (wherein the current temperature compensation value can be calculated or otherwise obtained as described above). When true, the process continues in normal fashion (wherein the characteristic force value TH is combined with the temperature compensation value and the excess force threshold value is determined accordingly). When the current peak force is less than the characteristic force value TH as combined with the temperature compensation value, however, this process then sets 255 the characteristic force value TH to equal the current force peak. So configured, the process will permit ordinary temperature compensation when significant differences are not present but will prompt rapid significant alteration when significant force differences are present under these conditions.
With reference to FIG. 26, yet another temperature compensation approach has the operator again measure 261 the current temperature and determine 262 whether it is cold enough to warrant temperature compensation. If not cold enough, the temperature compensation process can simply conclude 263. When it is cold enough, however, the operator then determines 264 a temperature differential TEMP(delta) by determining a difference between a previous temperature T.EMP(ref) (as ordinarily corresponds to a previously utilized force measurement) and the current temperatuie. The operator then determines 265 whether this difference exceeds a predetermined amount Y (such as, in a preferred approach, 2.5 degrees Celsius). If not, then ordinary temperature compensation via use of a temperature compensation adder value can continue as described above. When the difference exceeds this predetermined amount, the operator facilitates rapid force-setting compensation by adopting 266 the current force peak as the updated characteristic force value TH (while also establishing the current temperature as the reference temperature for use in a subsequent iteration of this same process). So configured, ordinary incremental temperature compensation can be utilized at colder temperatures with an immediate significant alteration to the characteristic force value when a significant shift in temperature during a colder interval occurs. In a preferred embodiment, such an immediate significant alteration will comprise the only force-setting alteration made during this corresponding cycle.
As mentioned earlier, runtime for the motor 11 can also impact accurate assessment of force, and particularly so during colder temperatures. Pursuant to yet another embodiment the operator can compensate for such phenomena. With reference to FIG. 27, the operator can optionally determine 271 whether the current temperature is less than a predetermined threshold X c a preferred embodiment, X equals zero degrees Celsius). With warmer temperatures, the operator can typically dispense with any need for running motor compensation and simply proceed with normal 272 automatic force-setting procedures as related herein. At colder temperatures, however, the operator then determines 273 whether the motor 11 has had a predetermined operational state for more than a predetermined period of time Y. In a preferred approach, the operator determines 274 whether the motor 11 has been off for more than the time Y (Y can be selected as appropriate to a given application and generally should be no less than a period of time, such as thirty to sixty minutes, during which a motor will reach a quiescent state with respect to these phenomena).
When the motor 11 has been off for more than the time Y, the operator determines 274 an appropriate runtime adder value (or values as appropriate to the application). With momentary reference to FIG. 28, these adder values can be dynamically determined if desired or by access to an appropriate look-up table or similar mechanism. In general, these adder values comprise force values that are suitable to add to the characteristic force value to yield a suitably motor runtime compensated characteristic force value. Such adder values will vary with the current temperature and further vary over time (the length of time that the motor has been running). Two exemplary adder value curves are shown in this figure, comprising a first curve 281 for minus 40 degrees Celsius conditions and a second curve 282 for minus 20 degrees Celsius conditions. It can be seen that, in general, the adder value is larger at lower temperatures and at lower durations of runtime for the motor.
When a motor has been off for the predetermined period of time, the adder value will begin at time zero and with a curve that most closely corresponds to the current temperature (a large number of such curves can be determined and stored or, in the alternative a few such curves can be stored and interpolation utilized to detennine speci& adder values for a given current temperature). So configured, an appropriate adder value is determined for a specific point in time (for example, at minus forty degrees Celsius and at time T, a specific corresponding point 283 on the corresponding curve 281 will comprise the motor runtime adder value).
Referring agaia to FIG. 27, when the motor has not been off for the predetermined period of time (meaning usually that the motor was just recently used), the operator determines 275 an appropriate offlime correction value. In particular, and referring now to FIG. 29, a similar set of curves are provided for various ambient temperature conrlitinns (with one such curve 291 for minus forty degrees Celsius being shown in this illustration). So configured, an appropriate time location is determined (as corresponds to how long the motor has been off since having just recently been on), such as time T0, and the corresponding point 292 on the appropriate curve 291 again utilized to determine an appropriate motor oflthne correction value.
Referring again to FIG. 27, the operator then uses the runthne adder value or the omime correction value to determine 276 a characteristic force value that comprises a motor compensated characteristic force value. The latter can then be utilized as otherwise described above to permit eventual provision of a motor runtime compensated excess force threshold value.
I
Pursuant to these various embodiments, a movable barrier operator can effect automatic force-setting with or without a user-initiated learning mode and./or a user manipulable force-setting interface. Such automatic force-setting can loosely or closely follow force peak excursions that do not otherwise appear to evince a problem. The force-setting process can be compensated to account for variations that are ordinarily associated with environmental conditions such as temperature as well as with operational status such as motor runtime. In addition, the operator can utilize such force measurements to ascertain other potential conditions of concern, including faulty components and stalling Such benefits accrue with only a modest addition of corresponding sensor(s) and/or other components or pmgramming and tend to assure that an auto-force setting movable barrier operator can reilably detect and respond to an obstacle under a variety of changing operational circumstances.
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.

Claims (128)

  1. CLMMS: 1. A movable barrier operator for use with a movable barrier,
    which movable barrier is selectively moved through selective application of force by at least one motor via the movable barrier operator, the movable barrier operator comprising: -at least one force sensor; -a motor on-time sensor; -an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output; -an automatic excess force threshold value indicator responsive to the characteristic force value output and to the motor on-time sensor and having a motor on-time compensated excess force threshold value output; -a movable barrier obstacle detector that is at least partially responsive to at least one force sensor and to the motor on-time-compensated excess force threshold value output; and -a motor controller operably coupled and responsive to the movable barrier obstacle detector.
  2. 2. A method for use with a movable barrier operator, comprising: -monitoring at least one parameter that corresponds to force as applied via a motor to a movable barrier to selectively cause the movable barrier to move; -monitoring operation of the motor; -automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value; -using an updated characteristic force value and a motor operation compensation value to determine a corresponding motor operation compensated excess force threshold value; -determining when force in excess of the motor operation
    I
    compensated excess force threshold value is seemingly being applied to the movable barrier; and -taking a predetermined action when excess force is seemingly being applied to the movable barrier.
  3. 3. The method of claim 2 wherein monitoring operation of the motor includes monitoring a time duration when the motor is in at least one predetermined operational state.
  4. 4. The method of claim 3 wherein monitoring a time duration when the motor is in at least one predetermined operational state includes monitoring a time duration when the motor is in at least one of an on-state and an off-state.
  5. 5. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: -at least one force sensor; -at least one temperature sensor; -an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output; an automatic excess force threshold value indicator responsive to the characteristic force value output and to the at least one temperature sensor and having a temperature compensated excess force threshold value output; -a movable barrier obstacle detector that is at least partially responsive to at least one force sensor and to the temperature compensated excess force threshold value output; and -a motor controller operably coupled and responsive to the movable barrier obstacle detector.
  6. 6. The movable barrier operator of claim 5 wherein the automatic characteristic force value indicator is further responsive to the at least one temperature sensor and wherein the automatic characteristic force value indicator has a
    S
    temperature compensated characteristic force value output.
  7. 7. The movable barrier operator of claim 6 wherein the temperature compensated characteristic force value output comprises a characteristic force value having a predetermined temperature-dependent compensation amount combined therewith when a monitored temperature is less than a predetermined value.
  8. 8. The movable barrier operator of claim 7 wherein the predetermined value is approximately zero degrees Celsius.
  9. 9. The movable barrier operator of any one of claims 5 to 8, wherein the characteristic force value output is substantially dependent on a difference between at least one previous characteristic force value output and a substantially present force value that is based, at least in part, on the at least one force sensor.
  10. 10. The movable barrier operator of claim 9 wherein the characteristic force value output remains substantially unchanged when the difference does not exceed a minimum predetermined range.
  11. 11. The movable barrier operator of either of claims 5 and 6, wherein the characteristic force value output is set to substantially comprise the substantially present force value when the difference is within a first predetermined range, and is set to substantially comprise a previous characteristic force value output combined with a predetermined amount when the difference is outside the first predetermined range.
  12. 12. The movable barrier operator of any one of claims 5 to 11, further comprising a motor on-time sensor and wherein the automatic excess force threshold value indicator is further responsive to the motor on- time sensor and wherein the automatic excess force threshold value indicator has a motor on-time and temperature compensated excess force threshold
    S
    value output.
  13. 13. A method for use with a movable barrier operator, comprising: -monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move; -monitoring a temperature; -automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value; -using an updated characteristic force value and a temperature compensation value to determine a corresponding temperature compensated excess force threshold value; -determining when force in excess of the temperature compensated excess force threshold value is seemingly being applied to the movable barrier; and -taking a predetermined action when excess force is seemingly being applied to the movable barrier.
  14. 14. The method of claim 13 wherein using an updated characteristic force value and a temperature compensation value to determine a corresponding temperature compensated excess force threshold value includes adding a temperature-dependent compensation amount to the updated characteristic force value.
  15. 15. The method of claim 14 wherein adding a temperature-dependent compensation amount to the updated characteristic force value includes adding the temperature-dependent compensation amount when the temperature is less than a predetermined value.
  16. 16. The method of claim 15 wherein adding the temperature-dependent compensation amount when the temperature is less than a predetermined value includes adding the temperature-dependent compensation amount when the temperature is less than approximately zero degrees Celsius.
    S
  17. 17. The method of any one of claims 13 to 16, wherein automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value includes automatically changing the characteristic force value, at least in part, as a function of a difference between the characteristic force value and the at least one parameter.
  18. 18. The method of claim 17 wherein when the difference is within a minimum range the updated characteristic force value is substantially identical to the characteristic force value.
  19. 19. The method of claim 18 wherein when the difference is within a first range the updated characteristic force value is set to equate to the at least one parameter, and when the difference exceeds the first range the updated characteristic force value comprises the characteristic force value combined with an amount to thereby move the characteristic force value towards a value that equates with the at least one parameter.
  20. 20. The method of any one of claims 17 to 19, wherein automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter includes automatically changing the characteristic force value pursuant to a first alteration function when the difference has a first sign and pursuant to a second alteration function, which second alteration function is different from the first alteration function, when the difference has a sign that is opposite to the first sign.
  21. 21. The method of any one of claims 13 to 20, further comprising monitoring operation of a motor and wherein using an updated characteristic force value and a temperature compensation value to determine a corresponding temperature compensated excess force threshold value further includes using a motor operation compensation value to determine a corresponding motor and temperature compensated excess force threshold value.
  22. 22. The method of any one of claims 13 to 21, further comprising determining that a predetermined status likely exists when the at least one parameter that corresponds to force as measured during a predetermined time period that corresponds to initial energization of a motor meets at least one predetermined criteria.
  23. 23. The method of claim 22 wherein determining that a predetermined status likely exists includes determining that a fault condition likely exists.
  24. 24. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: -at least one force sensor; -a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to at least one automatically determined excess force threshold value; and -a motor controller operably coupled and responsive to the movable barrier obstacle detector; wherein the movable barrier operator has no user-initiable dedicated learning mode of operation.
  25. 25. The movable barrier operator of claim 24 wherein the movable barrier operator further has no user-accessible excess force value adjustment interface.
  26. 26. The movable barrier operator of either of claims 24 and 25, further comprising an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output that is substantially dependent on a difference between at least one previous characteristic force value output and a substantially present force value that is based, at least in part, on the at least one force sensor, and wherein the at least one automatically determined excess force threshold value is based, at least in part, on the characteristic force value output.
  27. 27. The movable barrier operator of any one of claims 24 to 26, further comprising a motor on-time sensor and wherein the at least one automatically determined excess force threshold value comprises an automatically determined motor on-time-compensated excess force threshold value.
  28. 28. A method for use with a movable barrier operator that has no user-initiable dedicated learning mode of operation, comprising: -monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move between at least a first position and a second position; -automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value; -using the updated excess force threshold value and the monitored at least one parameter to determine when excess force is seemingly being applied to the movable barrier via the movable barrier operator; -taking a predetermined action when excess force is seemingly being applied to the movable barrier via the movable barrier operator.
  29. 29. The method of claim 28 wherein the method does not comprise receiving user input that corresponds to an adjustment of the excess force threshold value.
  30. 30. The method of either of claims 28 and 29, wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value includes: -automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter; -using an updated characteristic force value to determine a corresponding excess force threshold value.
  31. 31. The method of any one of claims 28 to 30, further comprising monitoring operation of a motor and wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value further includes using a motor operation compensation value to automatically change the excess force threshold value.
  32. 32. The method of claim 31 wherein monitoring operation of the motor includes monitoring a time duration when the motor is in at least one predetermined operational state.
  33. 33. The method of claim 32 wherein monitoring a time duration when the motor is in at least one predetermined operational state includes monitoring a time duration when the motor is in at least one of an on-state and an off-state.
  34. 34. A movable barrier operator having a user-selectable learning mode of operation and a normal mode of operation for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: -at least one force sensor; -an automatically determined excess force threshold value that is determined during the normal mode of operation; -a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to the automatically determined excess force threshold value; and -a motor controller operably coupled and responsive to the
    S
    movable barrier obstacle detector.
  35. 35. The movable barrier operator of claim 34, further comprising an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output that is substantially dependent on a difference between at least one previous characteristic force value output and a substantially present force value that is based, at least in part, on the at least one force sensor, and wherein the at least one automatically determined excess force threshold value is based, at least in part, on the characteristic force value output.
  36. 36. The movable barrier operator of either of claims 34 and 35, further comprising a motor on-time sensor and wherein the automatically determined excess force threshold value further comprises an automatically determined motor on-time-compensated excess force threshold value.
  37. 37. A method for use with a movable barrier operator having a normal mode of operation and a user-initiable learning mode of operation, comprising: in the normal mode of operation and regardless of whether the user-initiable learning mode of operation has been previously initiated: -monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move; -automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value; -using the updated excess force threshold value and the monitored at least one parameter to determine when excess force is seemingly being applied to the movable barrier via the movable barrier operator; -taking a predetermined action when excess force is seemingly being applied to the movable barrier via the movable barrier operator.
    S
  38. 38. The method of claim 37, further comprising: -determining only a single excess force threshold value for the movable barrier operator when the monitored at least one parameter meets a first predetermined criteria; -determining a plurality of excess force threshold values for the movable barrier operator when the monitored at least one parameter does not meet the first predetermined criteria.
  39. 39. The method of claim 38 wherein monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move includes providing a representative function of the at least one parameter.
  40. 40. The method of claim 39 wherein determining a plurality of excess force threshold values for the movable barrier operator when the monitored at least one parameter does not meet the first predetermined criteria includes determining the plurality of excess force threshold values as a function, at least in part, of the representative function of the at least one parameter.
  41. 41. The method of any one of claims 37 to 40, wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value includes: -automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter; and -using an updated characteristic force value to determine a corresponding excess force threshold value.
  42. 42. A movable barrier operator having both a user-initiable dedicated learning mode of operation and a normal mode of operation for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: -at least one force sensor; -a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to at least one automatically determined excess force threshold value that is at least partially determined during the normal mode of operation; and -a motor controller operably coupled and responsive to the movable barrier obstacle detector.
  43. 43. The movable barrier operator of claim 42, further comprising an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output that is substantially dependent on a difference between at least one previous characteristic force value output as provided during a previous normal mode of operation and a substantially present force value that is based, at least in part, on the at least one force sensor, and wherein the at least one automatically determined excess force threshold value is based, at least in part, on the characteristic force value output.
  44. 44. The movable barrier operator of either of claims 42 and 43, further comprising a motor on-time sensor and wherein the at least one automatically determined excess force threshold value comprises an automatically determined motor on-time-compensated excess force threshold value.
  45. 45. A method for use with a movable barrier operator having both a user-initiable dedicated learning mode of operation and a normal mode of operation, comprising: during the normal mode of operation: -monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move between at least a first position and
    I
    a second position; -automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value; -using the updated excess force threshold value and the monitored at least one parameter to determine when excess force is seemingly being applied to the movable barrier via the movable barrier operator; -taking a predetermined action when excess force is seemingly being applied to the movable barrier via the movable barrier operator.
  46. 46. The method of claim 45 wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value includes: -automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter; -using an updated characteristic force value to provide the updated excess force threshold value.
  47. 47. The method of either of claims 45 and 46, further comprising monitoring operation of a motor and wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value further includes using a motor operation compensation value to automatically change the excess force threshold value.
  48. 48. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising:
    I
    -at least one force sensor; -an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output; -a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to the characteristic force value output; and -a motor controller operably coupled and responsive to the movable barrier obstacle detector; wherein the characteristic force value output is substantially dependent on a difference between at least one previous characteristic force value output and a more current force value that is based, at least in part, on the at least one force sensor.
  49. 49. The movable barrier operator of claim 48 wherein the characteristic force value output remains substantially unchanged when the difference does not exceed a minimum predetermined range.
  50. 50. The movable barrier operator of either of claims 48 and 49, wherein the characteristic force value output substantially comprises the more current force value when the difference is within a first predetermined range, and substantially comprises a previous characteristic force value output as combined with a predetermined amount when the difference is outside the first predetermined range.
  51. 51. The movable barrier operator of any one of claims 48 to 50, wherein the characteristic force value output is substantially dependent on a difference between at least one previous characteristic force value output and a more current force value pursuant to a first function when the difference has a first sign and is substantially dependent on a difference between at least one previous characteristic force value output and a more current force value pursuant to a second function, which second function is different than the first function, when the difference has a sign that is
    I
    opposite of the first sign.
  52. 52. The movable barrier operator of any one of claims 48 to 51, further comprising a motor on-time sensor and wherein the automatic characteristic force value indicator is further responsive to the motor on-time sensor and wherein the characteristic force value output comprises a motor on-time-compensated characteristic force value output.
  53. 53. A method for use with a movable barrier operator, comprising: -monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move; -automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter; -using an updated characteristic force value to determine a corresponding excess force threshold value; -determining when force in excess of the excess force threshold value is seemingly being applied to the movable barrier; -taking a predetermined action when excess force is seemingly being applied to the movable barrier.
  54. 54. The method of claim 53 wherein when the difference is within a minimum range the updated characteristic force value is substantially identical to the characteristic force value.
  55. 55. The method of either of claims 53 and 54, wherein when the difference is within a first range the updated characteristic force value is set to equate to the at least one parameter, and when the difference falls outside the first range the updated characteristic force value comprises the characteristic force value combined with an amount to thereby move the characteristic force value towards, but not attaining, a value that equates with the at least one parameter.
  56. 56. The method of any one of claims 53 to 55, wherein automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter includes automatically changing the characteristic force value pursuant to a first alteration function when the difference has a first sign and pursuant to a second alteration function, which second alteration function is different from the first alteration function, when the difference has a sign that is different from the first sign.
  57. 57. The method of any one of claims 53 to 56, further comprising monitoring operation of a motor and wherein using an updated characteristic force value to determine a corresponding excess force threshold value includes using an updated characteristic force value and a motor operation compensation value to determine a corresponding motor operation-compensated excess force threshold value.
  58. 58. The method of claim 57 wherein monitoring operation of the motor includes monitoring a time duration when the motor is in at least one predetermined operational state.
  59. 59. The method of claim 58 wherein monitoring a time duration when the motor is in at least one predetermined operational state includes monitoring a time duration when the motor is in at least one of an on-state and an off-state.
  60. 60. The method of any one of claims 53 to 59, further comprising determining that a predetermined operational status likely exists when the at least one parameter that corresponds to force as measured during a predetermined time period that corresponds to initial energization of a motor meets at least one predetermined criteria.
  61. 61. The method of claim 60 wherein determining that a predetermined operational status likely exists includes determining that a fault condition likely exists.
  62. 62. The method of any one of claims 53 to 61, further comprising: -determining only a single force value to serve as a characteristic force value for the movable barrier operator when the at least one parameter meets a first predetermined criteria; -determining a plurality of force values to serve as a plurality of characteristic force values for the movable barrier operator when the at least one parameter does not meet the first predetermined criteria.
  63. 63. The method of claim 62 wherein monitoring at least one parameter that corresponds to force includes providing a representative function of the at least one parameter.
  64. 64. The method of claim 63 wherein determining a plurality of force values to serve as a plurality of characteristic force values for the movable barrier operator when the at least one parameter does not meet the first predetermined criteria includes determining the plurality of force values as a function of the representative function of the at least one parameter.
  65. 65. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: -at least one force sensor; -an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output, wherein the automatic characteristicforce value indicator includes a characteristic force value updater responsive to a substantially current force measurement and to a substantially current characteristic force value, with the characteristic force value updater having an updated characteristic force value output substantially comprising one of -the substantially current force measurement when a first condition is met; and -a value that is different than the substantially current force measurement and different than the substantially current characteristic force value when a second condition is met; -an automatic excess force threshold value indicator responsive to the characteristic force value output and having an excess force threshold value output; -a movable barrier obstacle detector that is at least partially responsive to at least one force sensor and to the excess force threshold value output; and -a motor controller operably coupled and responsive to the movable barrier obstacle detector.
  66. 66. The movable barrier operator of claim 65 wherein the first condition comprises a substantially current force measurement that exceeds a first predetermined threshold.
  67. 67. The movable barrier operator of claim 66 wherein the second condition comprises a substantially current force measurement that is less than the first predetermined threshold.
  68. 68. The movable barrier operator of any one of claims 65 to 67, wherein the value that is different than the substantially current force measurement and different than the substantially current characteristic force value at least partially comprises the substantially current force measurement as combined with a predetermined value.
  69. 69. The movable barrier operator of any one of claims 65 to 68, further comprising at least one temperature sensor, wherein the characteristic force value updater is response to the at least one temperature sensor, and wherein the characteristic force value updater has an updated characteristic force value output substantially comprising one of: -the substantially current force measurement when the first condition is met; and -a value that is different than the substantially current force measurement and different than the substantially current characteristic force value when a second condition is met, except when a present temperature is substantially different in a predetermined way than a previously measured temperature, in which case the updated characteristic force value output substantially comprises the substantially current force measurement.
  70. 70. The movable barrier operator of claim 69 wherein the predetermined way comprises a present temperature being substantially less than the previously measured temperature.
  71. 71. A method for use with a movable barrier operator, comprising: -monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move; -automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value that substantially equals a first force measurement when a first condition is met; -automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing the characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met; -using the updated characteristic force value to determine a corresponding excess force threshold value; -determining when force in excess of the excess force threshold value is seemingly being applied to the movable barrier; and -taking a predetermined action when excess force is seemingly being applied to the movable barrier.
  72. 72. The method of claim 71 wherein the first condition is met when the first force measurement exceeds a first threshold.
  73. 73. The method of claim 72 wherein the second condition is met when the first force measurement is less than the first threshold.
  74. 74. The method of any one of claims 71 to 73, wherein incrementing the characteristic force value towards the first force measurement includes incrementing the characteristic force value by a predetermined step size.
  75. 75. The method of any one of claims 71 to 74, wherein incrementing the characteristic force value towards the first force measurement includes incrementing the characteristic force value by a dynamically calculated step size.
  76. 76. The method of any one of claims 71 to 75, further comprising monitoring a temperature and wherein automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing the characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met further includes automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing a characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met, except when a present temperature is substantially different in a predetermined way from a previous temperature, in which case the characteristic force value is changed to provide an updated characteristic force value that substantially equals
    S
    the first force measurement.
  77. 77. The method of claim 76 wherein automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing the characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met, except when a present temperature is substantially different in a predetermined way from a previous temperature, in which case the characteristic force value is changed to provide an updated characteristic force value that substantially equals the first force measurement includes automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing the characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met, except when a present temperature is substantially less than a previous temperature, in which case the characteristic force value is changed to provide an updated characteristic force value that substantially equals the first force measurement.
  78. 78. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: -at least one force sensor; -an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output, wherein the automatic characteristic force value indicator includes a characteristic force value updater responsive to a current force measurement and to a current characteristic force value, with the characteristic force value updater having an updated characteristic force value output substantially comprising one of: -an increased value determined pursuant to a first determination process when the current force measurement
    S
    is greater than the current characteristic force value; and -a decreased value determined pursuant to a second determination process, which second determination process is different from the first determination process, when the current force measurement is less than the current characteristic force value; -an automatic excess force threshold value indicator responsive to the characteristic force value output and having an excess force threshold value output; -a movable barrier obstacle detector that is at least partially responsive to at least one force sensor and to the excess force threshold output; and -a motor controller operably coupled and responsive to the movable barrier obstacle detector.
  79. 79. The movable barrier operator of claim 78, further comprising a first threshold and a second threshold, and wherein the characteristic force value updater is further responsive to the first threshold and the second threshold.
  80. 80. The movable barrier operator of claim 79 wherein the first determination process comprises: -using the current force measurement as an updated characteristic force value when the current force measurement exceeds the first threshold; and -using a value that results from increasing the current characteristic force value by a first predetermined step value when the current force measurement exceeds the current characteristic force value but is less than the first threshold.
  81. 81. The movable barrier operator of claim 80 wherein the second determination process comprises: -using a value that results from decreasing the current characteristic force value by a second predetermined step value, which second predetermined step value is less than the first predetermined step value, when the current force
    S
    measurement is less than the second threshold.
  82. 82. A method for use with a movable barrier operator, comprising: -monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move; -automatically increasing a characteristic force value pursuant to a first determination process in response to the monitored at least one parameter to provide an updated characteristic force value when a first condition is met; -automatically decreasing the characteristic force value pursuant to a second determination process, which second determination process is different from the first determination process, in response to the monitored at least one parameter to provide an updated characteristic force value when a second condition is met; -using the updated characteristic force value to determine a corresponding excess force threshold value; -determining when force in excess of the excess force threshold value is seemingly being applied to the movable barrier; and -taking a predetermined action when excess force is seemingly being applied to the movable barrier.
  83. 83. The method of claim 82, further comprising: -providing a first threshold; and -providing a second threshold; and wherein automatically increasing a characteristic force value pursuant to a first determination process in response to the monitored at least one parameter to provide an updated characteristic force value when a first condition is met includes: -automatically providing an updated characteristic force value that substantially equals a current force measurement when the current force measurement exceeds the first threshold; and -automatically providing an updated characteristic force value by incrementing by a first amount the characteristic force value when the current force measurement exceeds the current characteristic force value but does not exceed the first threshold.
  84. 84. The method of claim 83 wherein automatically decreasing the characteristic force value pursuant to a second determination process, which second determination process is different from the first determination process, in response to the monitored at least one parameter to provide an updated characteristic force value when a second condition is met includes automatically providing an updated characteristic force value by decrementing by a second amount, which second amount is different than the first amount, the characteristic force value when the current force measurement is less than the current characteristic force value and less than the second threshold.
  85. 85. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force by a motor via the movable barrier operator, wherein the motor has a corresponding range of output forces, the movable barrier operator comprising: -at least one force sensor; -a maximum force-setting limit that is not at an extremity of the corresponding range of output forces; -an excess force threshold determination unit that is responsive to the maximum force-setting limit and having a maximum force-setting limited excess force threshold value output; -a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to the maximum force-setting limited excess force threshold value output; and -a motor controller operably coupled and responsive to the movable barrier obstacle detector.
  86. 86. The movable barrier operator of claim 85 wherein the excess force threshold determination unit comprises an automatic excess force threshold determination unit that is responsive to the maximum force-setting limit and having an automatically determined maximum force-setting limited excess force threshold value output.
  87. 87. The movable barrier operator of either of claims 85 and 86, further comprising a fault-detected force indicia threshold, which fault-detected force indicia threshold exceeds the maximum force-setting limit.
  88. 88. The movable barrier operator of any one of claims 85 to 87, further comprising a fault-detected force indicia threshold, which fault-detected force indicia threshold is less than a minimum force needed to cause selective movement of the movable barrier.
  89. 89. The movable barrier operator of any one of claims 85 to 88, further comprising: -a first fault-detected force indicia threshold, which first fault-detected force indicia threshold exceeds the maximum force-setting limit; and -a second fault-detected force indicia threshold, which second fault-detected force indicia threshold is less than a minimum force needed to cause selective movement of the movable barrier.
  90. 90. The movable barrier operator of any one of claims 85 to 89, wherein the maximum force-setting limit comprises a non-alterable limit.
  91. 91. The movable barrier operator of any one of claims 85 to 90, wherein the maximum force-setting limit is set during a movable barrier operator learning mode of operation.
  92. 92. The movable barrier operator of any one of claims 85 to 91, wherein the maximum force-setting limit comprises one of: -a default preset value; and -a dynamically set value.
  93. 93. A method for use with a movable barrier operator that controls a motor having a corresponding range of force values, comprising: -providing a maximum force-setting limit that is not at an extremity of the corresponding range of output forces of the motor; -monitoring at least one parameter that corresponds to force as applied by the motor to selectively cause a movable barrier to move; -limiting an excess force threshold value such that an updated excess force threshold does not exceed the maximum force-setting limit; -using the updated excess force threshold value and the at least one parameter to determine when excess force is seemingly being applied to the movable barrier via the movable barrier operator; -taking a predetermined action when excess force is seemingly being applied to the movable barrier via the movable barrier operator.
  94. 94. The method of claim 93 wherein limiting an excess force threshold value includes automatically changing an excess force threshold value in response to the monitored at least one parameter to provide the updated excess force threshold value, wherein the updated excess force threshold does not exceed the maximum force-setting limit.
  95. 95. The method of either of claims 93 and 94, further comprising providing a fault-detected force indicia threshold, which fault-detected force indicia threshold exceeds the maximum force-setting limit.
  96. 96. The method of any one of claims 93 to 95, further comprising providing a fault-detected force indicia threshold, which fault-detected force indicia threshold is less than a minimum force needed to cause selective movement of the movable barrier.
  97. 97. The method of any one of claims 93 to 96, further comprising providing: -a first fault-detected force indicia threshold, which first fault-detected force indicia threshold exceeds the maximum force-setting limit; and -a second fault-detected force indicia threshold, which second fault-detected force indicia threshold is less than a minimum force needed to cause selective movement of the movable barrier.
  98. 98. The method of any one of claims 93 to 97, wherein providing a maximum force-setting limit includes providing a non-alterable maximum force-setting limit.
  99. 99. The method of any one of claims 93 to 98, wherein providing a maximum force-setting limit includes determining the maximum force-setting limit during a learning mode of operation.
  100. 100. The method of any one of claims 93 to 99, wherein providing a maximum force-setting limit includes using one of: -a default preset value; and -a dynamically set value.
  101. 101. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force by a motor via the movable barrier operator, the movable barrier operator comprising: -at least one force sensor; -an automatically determined obstacle-detected force indicia threshold; -a stall-detected force indicia threshold; -a fault-detected force indicia threshold; -a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to the automatically determined obstacle-detected force indicia threshold; and -a motor controller operably coupled and responsive to the movable barrier obstacle detector and to the at least one force sensor, wherein the motor controller causes the motor to take a specific predetermined action whenever a current measured force exceeds any of the automatically determined obstacle-detected force indicia threshold, the stall-detected force indicia threshold, and the fault-detected force indicia threshold.
  102. 102. The movable barrier operator of claim 101 wherein the specific predetermined action includes: -reversing operation of the motor when the current measured force exceeds the automatically determined obstacle-detected force indicia threshold; -reversing operation of the motor when the current measured force exceeds the stall-detected force indicia threshold; and -stopping operation of the motor when the current measured force exceeds the fault-detected force indicia threshold.
  103. 103. A method for use with a movable barrier operator, comprising: -monitoring at least one parameter that corresponds to force as applied by a motor to a movable barrier to selectively cause the movable barrier to move; -providing an automatically determined obstacle-detected force indicia threshold; -providing a stall-detected force indicia threshold; -providing a fault-detected force indicia threshold; -taking a predetermined corresponding action when the parameter that corresponds to force exceeds any of the automatically determined obstacle-detected force indicia threshold, the stall-detected force indicia threshold, and the fault-detected force indicia threshold.
  104. 104. The method of claim 103 wherein taking a predetermined corresponding action when the parameter that corresponds to force exceeds any of the automatically determined obstacle-detected force indicia threshold, the stall-detected force indicia threshold, and the fault-detected force indicia threshold includes: -reversing operation of the motor when the parameter exceeds the automatically determined obstacle-detected force indicia threshold; -reversing operation of the motor when the parameter exceeds the stall-detected force indicia threshold; and -stopping operation of the motor when the parameter exceeds the fault-detected force indicia threshold.
  105. 105. A method for use with a movable barrier operator, comprising: -monitoring at least one parameter that corresponds to force as applied to a movable barrier by a motor to selectively cause the movable barrier to move; -automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value; -using the updated excess force threshold value and the monitored at least one parameter to determine when excess force is seemingly being applied to the movable barrier via the movable barrier operator; -taking a predetermined action when excess force is seemingly being applied to the movable barrier via the movable barrier operator; -determining that a predetermined status likely exists when the at least one parameter that corresponds to force as measured during a predetermined time period that corresponds to initial energization of the motor meets at least one predetermined criteria.
  106. 106. The method of claim 105 wherein determining that a predetermined status likely exists includes determining that a fault condition likely exists.
  107. 107. The method of either of claims 105 and 106, wherein determining that a predetermined status likely exists includes determining that at least a particular level of operational force has been sensed during the predetermined time period.
  108. 108. The method of claim 107 wherein determining that at least a particular level of operational force has been sensed during the predetermined time period includes only using such determination when a monitored temperature is within a predetermined range.
  109. 109. The method of claim 108 wherein only using such determination when a monitored temperature is within a predetermined range includes only using such determination when a monitored temperature is less than zero degrees Celsius.
  110. 110. A method for use with a movable barrier operator, comprising: -monitoring at least one parameter that corresponds to force as applied to a movable barrier by a motor to selectively cause the movable barrier to move; -automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value; -using the updated excess force threshold value and the monitored at least one parameter to determine when excess force is seemingly being applied to the movable barrier via the movable barrier operator; -taking a predetermined action when excess force is seemingly being applied to the movable barrier via the movable barrier operator; -determining that a fault condition exists when the at least one parameter that corresponds to force fails to attain at least a first threshold during a predetermined time period.
  111. 111. The method of claim 110 wherein the predetermined time period includes a period of time when the motor first becomes energized.
  112. 112. The method of claim 111 wherein the predetermined time period is at least one second in duration.
  113. 113. The method of any one of claims 110 to 112, wherein determining that a fault condition exists when the at least one parameter that corresponds to force fails to attain at least a first threshold during a predetermined time period includes determining that a fault condition exists when the at feast one parameter that corresponds to force fails to attain a peak value that exceeds the first threshold during the predetermined time period.
  114. 114. A method for use with a movable barrier operator, comprising: -monitoring force as the movable barrier operator causes a movable barrier to move from a first position to a second position; -determining only a single force value to serve as a characteristic force value for the movable barrier operator when the monitored force meets a first predetermined criteria; -determining a plurality of force values to serve as a plurality of characteristic force values for the movable barrier operator when the monitored force does not meet the first predetermined criteria.
  115. 115. The method of claim 114 and further comprising using whichever one of the characteristic force value and the plurality of characteristic force values has been determined to facilitate detection of excess force as applied to the movable barrier.
  116. 116. The method of either of claims 114 and 115, wherein monitoring force as the movable barrier operator causes a movable barrier to move from a first position to a second position includes providing a representative function of the force.
  117. 117. The method of claim 116 wherein determining a plurality of force values to serve as a plurality of characteristic force values for the movable barrier operator when the force does not meet the first predetermined criteria includes determining the plurality of force values as a function of the representative function of the force.
  118. 118. The method of any one of claims 114 to 117, wherein determining a plurality of force values to serve as a plurality of characteristic force values includes representing at least one of the plurality of characteristic force values as a combination of an incremental value and another of the characteristic force values.
  119. 119. A movable barrier operator for use with a movable barrier, comprising: -at least one sensor to sense a parameter that corresponds to force as is apparently applied to at least attempt to move the movable barrier; -a first characteristic force value that has been determined as a function of sensed force as is apparently applied to move the movable barrier from a first position to a second position; -at least a second characteristic force value that has been determined as a function of sensed force as is apparently applied to move the movable barrier from a first position to a second position; -an obstacle detector responsive to the at least one sensor and, with respect to at least one of time and position of the movable barrier, to the first and second characteristic force values, and having an obstacle detected output that corresponds to an apparent application of excess force to the movable barrier.
  120. 120. The method of claim 119 wherein using the first and second characteristic force values includes representing at least one of the first and second characteristic force values as a combination of an incremental value and another characteristic force value.
  121. 121. A method for use with a movable barrier operator, comprising: -monitoring a parameter that corresponds to force as the movable barrier operator causes a movable barrier to move from a first position to a second position; -determining at least two values for the parameter as correspond to at least one of: -two different times; -two different positions of the movable barrier; and -a time and a position of the movable barrier; -determining at least one of a curve fit and a line fit as between the at least two values to provide a parameter curve; and -using the parameter curve to detect when excess force is likely being used.
  122. 122. The method of claim 121 wherein determining at least one of a curve fit and a line fit includes selecting a particular curve fit from amongst a plurality of candidate curve fits.
  123. 123. A movable barrier operator for use with a movable barrier, comprising: -at least one sensor to sense a parameter that corresponds to force as is apparently applied to at least attempt to move the movable barrier; -a plurality of characteristic force values that have been at least partially determined as a function of a calculated curve fit between at least two sensed values of the parameter; -an obstacle detector responsive to the at least one sensor and, with respect to at least one of time and position of the movable barrier, to the plurality of characteristic force values, and having an obstacle detected output that corresponds to an apparent application of excess force to the movable barrier.
  124. 124. The movable barrier operator of claim 123 wherein the at least two sensed values of the parameter comprise relative peak values of the parameter.
  125. 125. The movable barrier operator of either of claims 123 and 124, wherein the calculated curve fit is selected from amongst a plurality of candidate curve fits.
  126. 126. A method for use with a movable barrier operator, comprising: -monitoring a parameter that corresponds to force as the movable barrieroperator causes a movable barrier to move from a first position to a second position; -determining a resonant characteristic of the parameter; -determining a first and second value for the parameter as located proximal to opposing ends of the resonant characteristic; -determining at least one curve fit as between the first and second values to provide a parameter curve; and -using the parameter curve to detect when excess force is likely being used.
  127. 127. The method of claim 126 wherein determining the resonant characteristic of the parameter includes determining a ring time for the parameter.
  128. 128. A movable barrier operator for use with a movable barrier, comprising: -at least one sensor to sense a parameter that corresponds to force as is apparently applied to at least attempt to move the movable barrier; -a plurality of characteristic force values that have been at least partially determined as a function of a calculated curve fit between a first and second parameter value, wherein the first and second parameter values represent parameter values on either side of when the parameter tends to exhibit substantial resonance; -an obstacle detector responsive to the at least one sensor and, with respect to at least one of time and position of the movable barrier, to the plurality of characteristic force values, and having an obstacle detected output that corresponds to an apparent application of excess force to the movable barrier.
GB0810523A 2004-01-06 2008-06-09 Movable barrier operator auto-force setting method and appartus Expired - Fee Related GB2447171B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0810523A GB2447171B (en) 2004-01-06 2008-06-09 Movable barrier operator auto-force setting method and appartus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0805605A GB2446315B (en) 2004-01-06 2004-01-06 Movable barrier operator auto force setting method and apparatus
GB0810523A GB2447171B (en) 2004-01-06 2008-06-09 Movable barrier operator auto-force setting method and appartus

Publications (3)

Publication Number Publication Date
GB0810523D0 GB0810523D0 (en) 2008-07-09
GB2447171A true GB2447171A (en) 2008-09-03
GB2447171B GB2447171B (en) 2008-10-15

Family

ID=39638415

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0810523A Expired - Fee Related GB2447171B (en) 2004-01-06 2008-06-09 Movable barrier operator auto-force setting method and appartus

Country Status (1)

Country Link
GB (1) GB2447171B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044706A1 (en) * 2009-10-16 2011-04-21 Tecpharma Licensing Ag Occlusion recognition in an administering apparatus
EP3971380A1 (en) * 2020-09-16 2022-03-23 Nabtesco Corporation Door pinch detection device, railway door device and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030137265A1 (en) * 2002-01-21 2003-07-24 International Rectifier Corp. Anti-pinch window drive circuit
US20030171866A1 (en) * 2000-08-15 2003-09-11 Peter Heinrich Method for controlling and adjusting a motor-driven adjusting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030171866A1 (en) * 2000-08-15 2003-09-11 Peter Heinrich Method for controlling and adjusting a motor-driven adjusting device
US20030137265A1 (en) * 2002-01-21 2003-07-24 International Rectifier Corp. Anti-pinch window drive circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044706A1 (en) * 2009-10-16 2011-04-21 Tecpharma Licensing Ag Occlusion recognition in an administering apparatus
CH702075A1 (en) * 2009-10-16 2011-04-29 Tecpharma Licensing Ag Occlusion in an administration unit.
CN102573952A (en) * 2009-10-16 2012-07-11 特克法马许可公司 Occlusion recognition in an administering apparatus
CN102573952B (en) * 2009-10-16 2014-11-19 特克法马许可公司 Occlusion recognition in an administering apparatus
EP3971380A1 (en) * 2020-09-16 2022-03-23 Nabtesco Corporation Door pinch detection device, railway door device and program

Also Published As

Publication number Publication date
GB0810523D0 (en) 2008-07-09
GB2447171B (en) 2008-10-15

Similar Documents

Publication Publication Date Title
CA2812098C (en) Movable barrier operator auto-force setting method and apparatus
CA2416912C (en) Vehicle closure anti-pinch assembly having a non-contact sensor
US6555982B2 (en) Method and system for detecting an object in the path of an automotive window utilizing a system equation
US5521474A (en) Method for monitoring movable elements
KR100377533B1 (en) Elevator door control unit
US6657409B1 (en) Control system and method for an automatic door or gate
GB2312971A (en) Anti-trapping device
US6696806B2 (en) Method and apparatus for facilitating control of a movable barrier operator
US6646399B2 (en) Controller for shutting apparatus
US20090039814A1 (en) Trapping Prevention Guard and Method for Controlling a Motor-Driven Adjusting Device
GB2447171A (en) Control of a Movable Barrier with Obstacle Detection based upon a Runtime Compensated Force Threshold Value
US6633148B1 (en) Drive device and method for moving a vehicle part
EP1457632B1 (en) Power window apparatus having mechanism for detecting object being caught
US8355845B2 (en) Method for controlling an actuator
GB2409911A (en) Control of a moveable barrier
GB2446315A (en) Control of a movable barrier with obstacle detection based upon a temperature compensated force value
US10968676B2 (en) Movable barrier apparatus and methods for responding to barrier travel obstructions and abnormalities
JP5153148B2 (en) Switchgear
JP5192203B2 (en) Switchgear
JP5031382B2 (en) Switchgear
US20220154512A1 (en) Pinch Detection During Motor Restart
KR20000024849A (en) Device for controlling door of elevator
AU4526700A (en) Control system and method for an automatic door or gate

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20100106