GB2441339A - A two-axis flexure mount for a mirror - Google Patents

A two-axis flexure mount for a mirror Download PDF

Info

Publication number
GB2441339A
GB2441339A GB0615727A GB0615727A GB2441339A GB 2441339 A GB2441339 A GB 2441339A GB 0615727 A GB0615727 A GB 0615727A GB 0615727 A GB0615727 A GB 0615727A GB 2441339 A GB2441339 A GB 2441339A
Authority
GB
United Kingdom
Prior art keywords
mirror
support
base portions
axis
integrally formed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0615727A
Other versions
GB0615727D0 (en
Inventor
Ian Muir Craig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leonardo MW Ltd
Original Assignee
Selex Sensors and Airborne Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Selex Sensors and Airborne Systems Ltd filed Critical Selex Sensors and Airborne Systems Ltd
Priority to GB0615727A priority Critical patent/GB2441339A/en
Publication of GB0615727D0 publication Critical patent/GB0615727D0/en
Priority to US11/882,182 priority patent/US7832880B2/en
Priority to IL184992A priority patent/IL184992A/en
Publication of GB2441339A publication Critical patent/GB2441339A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/073Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/12Pivotal connections incorporating flexible connections, e.g. leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0052Physically guiding or influencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/34Flexural hinges

Abstract

A two-axis mirror flexure mount with increased stiffness in all but the desired degrees of freedom comprises an integrally formed support 10 for a mirror comprising; a non-flexible rigid portion 40; a plurality of base portions 30 suitable for mounting the mirror thereto; and a plurality of substantially linear flexure elements 20 provided substantially perpendicular to one another and disposed between the rigid portion 40 and the base portions 30 to connect the rigid portion 40 and the base portions 30 together; wherein the flexure elements 20 each define an axis of rotation and are operable to allow the rigid portion 40 to rotate relative to the base portions 30 along either said axis of rotation.

Description

<p>MIRROR MOUNT</p>
<p>The present invention relates to a mirror mount. In particular, the present invention relates to a two-axis mirror flexure mount with increased stiffness in all but the desired degrees of freedom.</p>
<p>Rigid body motion can be described by 3 orthogonal displacements (z,y,z) and 3 orthogonal possible rotations (Rx, Ry, Rz) relative to a Cartesian coordination system. Each of these motions can be called a degree of freedom.</p>
<p>It is known to provide supports for mirrors that allow, for example, rotation in two orthogonal axes (e.g. the Rx and Ry degrees of freedom) but that restrict rotation in the remaining orthogonal axis (i.e. the Rz degree of freedom) and movement in all three axes (i.e. the x-, y-and z-degrees of freedom). This stabilises the mirror mounted on the support, reducing jitter. It follows that an ideal support would thus have infinite stiffness in the x-, y-, z-and Rz degrees of freedom. It is important to have high stiffnesses in the 4 restrained directions in order to achieve precision and very quick responses of the mirror to control demands.</p>
<p>Various attempts have been made to achieve this design goal. One such common example is the continuous rotation bearing. This, however, trades off friction for bearing radial stiffness and, as a result, is far from ideal.</p>
<p>Another known support is the flexure bearing. Flexure bearings have the advantage over most other bearings that they are simple and thus inexpensive.</p>
<p>They are also often compact, lightweight and are free from the "stick-slip" effect as experienced by the continuous rotation bearing. However, known designs of flexure bearing, such as the Wheeler (US PAT. 2793028) or Lewis (US PAT 4637596) flexural pivots are complex as they are fabricated from a number of piece parts and fall considerably short of the design goal to have infinite stiffness in the 3 linear directions. Additionally, they are not easily scaled down to miniature components as the piece parts become too small.</p>
<p>These known designs have fabrication material and method constraints and thus prevent the selection of an "ideal" material and monolithic fabrication process.</p>
<p>The present invention seeks to mitigate the problems associated with the known designs described above through its monolithic manufacturing process that has high flexibility to choice of ideal material. An example of such an ideal material is forging grade Titanium alloy.</p>
<p>The present invention provides an integrally formed support for a mirror comprising; a rigid portion; a plurality of base portions suitable for mounting the mirror thereto; and a plurality of substantially linear flexure elements provided substantially perpendicular to one another and disposed between the mount portion and the base portion to connect the mount portion and the base portion together; wherein the flexure elements each define an axis of rotation and are operable to allow the mount portion to rotate relative to the base portion along either said axis of rotation.</p>
<p>The advantages of the present invention recited above are: the mount requires a smaller volume to provide the same stiffness; the mount's ability to withstand stresses produced by relatively large angular motions ( lOOmR typical) in the free axes of rotation; a reduced cost of manufacture; an improved geometrical accuracy; and potentially better reliability.</p>
<p>Specific embodiments of the invention will now be described, by way of example only and with reference to the accompanying drawings that have like reference numerals, wherein:-Figure 1 is a perspective view of a support according to an embodiment of the invention; Figure 2A is a plan view of the support shown in Figure 1; Figure 2B is a side view of the support shown in Figure 1; Figure 2C is an alternative side view of the support shown in Figure 1; Figure 2D is an enlarged view of detail A of Figure 2B; and Figure 2E is a section view of the support of Figure 1 through line A-A shown in Figure 2B.</p>
<p>A first embodiment of the present invention will now be described with reference to Figures 1 to 2E.</p>
<p>Referring to Figures 1 to 2E, a support 10 according to the first embodiment of the present invention is shown. The support 10 is manufactured from a single homogeneous high fatigue strength material, using precision wire erosion techniques.</p>
<p>The support 10 comprises a non-flexible rigid portion 40, arranged in a substantially "cross-shaped" configuration having four arm portions 80. The support 10 further comprises four integrally formed base portions 30, each formed integrally with each arm portion 80 of the cross-shaped non-flexible rigid portion 40. Each integrally formed base portion 30 comprises an integrally formed flange portion 90, each integrally formed flange portion 90 having located therethrough at least one bolt hole 50, 60.</p>
<p>The integrally formed base portions 30 are connected to the non-flexible rigid portion 40 with integrally formed flexure elements 20. The integrally formed base portions 30 are able to move relative to the non-flexible rigid portion 40 due to these flexure etements 20. This arrangement allows each integrally formed base portion 30 to rotate relative to the respective axis of each arm portion 80 of the nonflexible rigid portion 40.</p>
<p>To manufacture the above described support 10, among other techniques, a wire erosion process is utilised to integrally form the flexure elements 20 and thus integrally form the support member 10. This part of the manufacturing process will now be described.</p>
<p>Initially, wire erosion start holes 70 are created through the opposing arm portions 80 of the non-flexible rigid portion 40 and the opposing arm portions 80 of the integrally formed base portions 30. Through this, a wire is placed and then used to erode a "V-shaped" portion of the support 10 to form the top and bottom outer portions of the flexure elements 20.</p>
<p>Further, wire erosion is used to remove the side segments 72 of the support 10 between the non-flexible rigid portion 40 and the integrally formed base portions 30 and to erode a "V-shaped" portion of the support 10, forming the left and right outer portions of the flexure elements 20, leaving only the flexure elements 20 connecting the non-flexible rigid portion 40 and the integrally formed base portions 30.</p>
<p>The resulting flexure elements 20 form a "x-shaped" cross-section along the axis of each arm 80 of the support 10, formed integrally with the non-flexible rigid portion 40 and the integrally formed base portions 30.</p>
<p>In use, the support 10 is fastened to a mirror using some of the bolt holes formed in the integrally formed flange portions 90 of the integrally formed base portion 30. The mirror can then be moved using actuators connected to the mirror through the remaining bolt holes 60 formed in the integrally formed flange portions 90 of the integrally formed base portion 30.</p>
<p>In the above described embodiment of the present invention, the flexure elements 20 are configured in a "x-shaped" cross section, where each flexural element 20 is of constant thickness. In an alternative embodiment, the flexural elements can be tapered such that their thickness is greatest at the centre of the "x-shaped" cross-section and least at the extremities of the "x-shaped" cross-section. The advantage of this alternative configuration is that the configuration of flexural elements 20 has more structural rigidity.</p>
<p>It is to be understood that any feature described in relation to any one embodiment may be used alone, or in combination with other features described, and may also be used in combination with one or more features of any other of the embodiments, or any combination of any other of the embodiments. Furthermore, equivalents and modifications not described above may also be employed without departing from the scope of the invention, which is defined in the accompanying claims.</p>

Claims (1)

  1. <p>Claims 1. A integrally formed support for a mirror comprising; a rigid
    portion; a plurality of base portions suitable for mounting the mirror thereto; and a plurality of substantially linear flexure elements provided substantially perpendicular to one another and disposed between the mount portion and the base portion to connect the mount portion and the base portion together; wherein the flexure elements each define an axis of rotation and are operable to allow the mount portion to rotate relative to the base portion along either said axis of rotation.</p>
    <p>2. A support according to claim 1, wherein the flexure elements are tapered in thickness.</p>
    <p>3. A support according to any previous claim, wherein there are two base portions.</p>
    <p>4. A support according to any of claims 1 or 2, wherein there are four base portions.</p>
    <p>5. A support as hereinbefore described with reference to the accompanying d räwings.</p>
GB0615727A 2006-08-08 2006-08-08 A two-axis flexure mount for a mirror Withdrawn GB2441339A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB0615727A GB2441339A (en) 2006-08-08 2006-08-08 A two-axis flexure mount for a mirror
US11/882,182 US7832880B2 (en) 2006-08-08 2007-07-31 Mirror mount having plural flexure elements
IL184992A IL184992A (en) 2006-08-08 2007-08-01 Integrally formed support for a mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0615727A GB2441339A (en) 2006-08-08 2006-08-08 A two-axis flexure mount for a mirror

Publications (2)

Publication Number Publication Date
GB0615727D0 GB0615727D0 (en) 2006-09-20
GB2441339A true GB2441339A (en) 2008-03-05

Family

ID=37056005

Family Applications (1)

Application Number Title Priority Date Filing Date
GB0615727A Withdrawn GB2441339A (en) 2006-08-08 2006-08-08 A two-axis flexure mount for a mirror

Country Status (1)

Country Link
GB (1) GB2441339A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911582B2 (en) 2011-09-16 2014-12-16 3M Innovative Properties Company Method and apparatus for applying a stamp for micro-contact printing to a stamping roll
US20160036293A1 (en) * 2014-07-29 2016-02-04 Hamilton Sundstrand Corporation Actuator device and method of converting rotational input to axial output with rotary flexure mechanism
US20170030513A1 (en) * 2015-07-30 2017-02-02 Nec Corporation Linkage rod including limited-displacement flexible mechanism
US10161561B2 (en) 2015-07-30 2018-12-25 Nec Corporation Linkage rod including limited-displacement flexible mechanism
WO2020219154A1 (en) * 2019-04-22 2020-10-29 Raytheon Company Flexured suspension system for mounted structures or assemblies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060315A (en) * 1975-07-07 1977-11-29 Rockwell International Corporation Precision mirror mount
US4802784A (en) * 1988-03-11 1989-02-07 Santa Barbara Research Center Bi-flex pivot
US5620169A (en) * 1994-11-02 1997-04-15 Ball Corporation Rotary mount integral flexural pivot with blades which are integrally interconnected at the blade intersection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060315A (en) * 1975-07-07 1977-11-29 Rockwell International Corporation Precision mirror mount
US4802784A (en) * 1988-03-11 1989-02-07 Santa Barbara Research Center Bi-flex pivot
US5620169A (en) * 1994-11-02 1997-04-15 Ball Corporation Rotary mount integral flexural pivot with blades which are integrally interconnected at the blade intersection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911582B2 (en) 2011-09-16 2014-12-16 3M Innovative Properties Company Method and apparatus for applying a stamp for micro-contact printing to a stamping roll
US20160036293A1 (en) * 2014-07-29 2016-02-04 Hamilton Sundstrand Corporation Actuator device and method of converting rotational input to axial output with rotary flexure mechanism
US9787157B2 (en) * 2014-07-29 2017-10-10 Hamilton Sundstrand Corporation Actuator device and method of converting rotational input to axial output with rotary flexure mechanism
US20170030513A1 (en) * 2015-07-30 2017-02-02 Nec Corporation Linkage rod including limited-displacement flexible mechanism
US9920874B2 (en) * 2015-07-30 2018-03-20 Nec Corporation Linkage rod including limited-displacement flexible mechanism
US10161561B2 (en) 2015-07-30 2018-12-25 Nec Corporation Linkage rod including limited-displacement flexible mechanism
WO2020219154A1 (en) * 2019-04-22 2020-10-29 Raytheon Company Flexured suspension system for mounted structures or assemblies
US10942328B2 (en) 2019-04-22 2021-03-09 Raytheon Company Flexured suspension system for mounted structures or assemblies

Also Published As

Publication number Publication date
GB0615727D0 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
US7832880B2 (en) Mirror mount having plural flexure elements
EP1887398A1 (en) Mirror mount
EP1225351B1 (en) A free spherical ball bearing
GB2441339A (en) A two-axis flexure mount for a mirror
JP5547261B2 (en) Optical module
US7793564B2 (en) Parallel mechanism having two rotational and one translational degrees of freedom
US5986827A (en) Precision tip-tilt-piston actuator that provides exact constraint
JP5676756B2 (en) Parallel motion device with gimbal holder
US6283666B1 (en) Planar flexible pivot monolithic unitary modules
US5833202A (en) Mechanical fastening system for modular micro-optical elements
US6193226B1 (en) Positioning mechanism
US10391641B2 (en) Combination type link actuation device
JP5862484B2 (en) Mirror support structure
JP2017026150A (en) Planar flexure member and actuator using the same
US11073193B2 (en) Planetary carrier having flexible bolts
US20200200211A1 (en) Dual-Axis Flexure Gimbal Device
JP7028330B2 (en) robot
JPH032810A (en) High range and resolution defining mount and positioning device
JP3141994B2 (en) Spherical bearing
US6666611B2 (en) Three degree of freedom joint
CN219733933U (en) Multifunctional flexible hinge
CN117382918A (en) Bearing structure based on heterogeneous materials and manufacturing method
EP1810066B1 (en) A gimbal mount device for supporting a functional element
JP2020112516A (en) Compliant mechanism
KR102512821B1 (en) A flexible mechanism for realizing out-of-plane 3 degrees of freedom precision motion

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)