GB2411902A - Filtering molten metal - Google Patents

Filtering molten metal Download PDF

Info

Publication number
GB2411902A
GB2411902A GB0503325A GB0503325A GB2411902A GB 2411902 A GB2411902 A GB 2411902A GB 0503325 A GB0503325 A GB 0503325A GB 0503325 A GB0503325 A GB 0503325A GB 2411902 A GB2411902 A GB 2411902A
Authority
GB
United Kingdom
Prior art keywords
metal
filter
liquid metal
filter cake
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB0503325A
Other versions
GB2411902B (en
GB0503325D0 (en
Inventor
John Henry Courtenay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MQP Ltd
Original Assignee
MQP Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MQP Ltd filed Critical MQP Ltd
Publication of GB0503325D0 publication Critical patent/GB0503325D0/en
Publication of GB2411902A publication Critical patent/GB2411902A/en
Application granted granted Critical
Publication of GB2411902B publication Critical patent/GB2411902B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • C22B9/023By filtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Molten metal is passed through a porous filter 8, with a filter cake formation agent being added to the metal. A grain refiner R is added to the filtered metal and then mixed either mechanically or by modifying the flow of the of the filtered metal. During filtering filter cake F is formed on the filter 8 without significant change in the metallostatic head above the filter 8. Also apparatus comprising primary and secondary compartments 1 and 2. The primary compartment 1 can receive an inflow of molten metal, includes a porous filter 8 which can support a filter cake F and has means 7 for introducing filter cake controlling agent. The secondary compartment 2 receives filtered liquid metal from the first compartment 2 and has an inlet 11 for grain refiner R. The filtered metal is mixed with the grain refiner R and at least some particulate material is separated from the grain refined and filtered metal by means other than filtration, e.g. by means of baffle plates 9 and 10.

Description

TREATMENT OF METAL MELTS
It Is known to remove both solid and gaseous Inclusions from metal melts before they are cast in order to improve the quality of the casting. Several techniques are available for this purpose and one involves passing the liquid metal through the pores of a porous filter and then adding a grain refining agent.
US-A-4872908 discloses a means of improving filtration by predisposing a pre wetted additive on the surface of a ceramic foam filter with the objective of promoting the formation of a stable filter cake leading to improved filtration. This patent does not, however, take account of the role of grain refiners in destroying the development of filter cakes and characteristics of the filter aperture required in the promotion of filter cake formation.
US-A-2002/005667 describes a three chamber filter assembly allowing addition of grain refiner rod into an Intermediate chamber between the two filter chambers, the first being a ceramic foam filter whilst the second consists of a small filter bed containing spheres of alumina. Whilst the arrangement disclosed theoretically permits re-use of the first ceramic foam filter, it does not address the issue of how the rate of build up of the filter cake is to be controlled. If the filter cake build up is not controlled, this can lead to premature blocking of the filter. Moreover, bed filters of the type forming the secondary filter bed, are known to be complicated and expensive to maintain and in addition may encounter operational difficulties arising from the release of agglomerated grain refiner particles.
The invention is concerned with this latter technique and especially seeks to improve filtration efficiency and to prolong the life of the filter by controlling the filtration characteristics of the filter cake that forms on the filter, such as filter cake accumulation.
In one aspect the invention provides a method of maintaining the life of a porous filter when refining a metal melt by controlling the formation of a filter cake thereon, the method comprising passing liquid metal through a porous filter and adding a filter cake formation agent to the metal; contacting the filtered metal with a grain refining agent followed by mechanical mixing to promote intimate mixing of the metal and the grain refining agent to produce refined metal, whereby a filter cake is formed on the porous filter without significant change in the metallostatic head above the filter.
The metal to be treated may typically be a light metal such as aluminium or its alloys or any other metal from which inclusions need to be reduced or removed before grain refinement.
The porous filter may conveniently comprise a ceramic plate or block which has been formed by impregnating a sponge such as a polyurethane sponge and then burning away the organic material to leave a foraminferous structure. The pore dimensions will preferably be within the range of about 300 to about 2500 micron, and more preferably about 400 to about 600 micron.
The agent to promote the formation of a suitable filter cake may conveniently consist of particles preferably coated with substances which are wetted by the liquid metal and/or contain a fluxing agent such as a fluoride. The agent can be provided in briquette form which breaks down into particles when in contact with the liquid metal. The particles are most preferably selected and introduced so that the cake becomes deposited in layers which are non-compressible as a result of which the cake is itself inherently porous and the pores of the ceramic filter remain sufficiently open that metal can flow through without significant change in metallostatic head. (Ah).
Preferably the ceramic porous filter is located in one chamber which is separated by a partition defining an under weir in liquid communication with a second chamber into which grain refining agent is introduced, which will preferably be in a wire form. Preferably the wire is fed into the second chamber countercurrent to the direction of flow of the metal to promote good mixing and dissolution, i.e. so that the grain refining agent becomes substantially uniformly distributed in the metal within a mixing chamber adjacent or spaced from the filtration chamber without any adverse reactions taking place.
The mixing is effected to disperse the grain refining agent within the liquid melt in such a way as to prevent agglomeration of particles of the grain refining agent and to encourage a uniform distribution of the agent through the liquid melt, and to separate out any non-metallic inclusions emanating from the grain refiner or any other source. We have surprisingly found that good metal mixing effected in this 'mechanical' manner (and without supplementary mixing means) is more effective than a secondary stage filter.
The invention extends to filter apparatus comprising two or three chambers, such as for example filter apparatus including communicating chambers, a first chamber having an inlet and the second chamber having an outlet, a porous filter, preferably a ceramic filter, being present in the first chamber, and a grain refining agent being present in the second chamber which can be arranged with a series of baffles or other means of controlling flow, e.g. a cyclone, to mix the grain refining agent whilst simultaneously and/or sequentially separating out any undesirable particles such as said non-metallic inclusions from the liquid metal. A cyclone component is one example of a part of the apparatus specifically designed to induce swirl flow in the flowing, filtered and grain refined liquid metal, while simultaneously separating out unwanted particulate matter.
In order that the invention may be illustrated, more easily appreciated and readily carried into effect by those skilled in the art, embodiments of it will now be described by way of non- limited example only with reference to the accompanying diagrammatic drawings in which: Figure 1 shows a vertical section through one form of apparatus according to the invention; and Figure 2 shows an enlarged vertical section of a non-compressible filter cake, formed in use of apparatus depicted in Figure 1.
Referring to the drawings and firstly to Figure 1 thereof, the apparatus comprises a filter box comprising a first chamber 1 and a second chamber 2 separated by a partition 3 dimensioned to define an underweir 4 in collaboration with the floor 5. The chambers have a roof 6 with an inlet 7 for the introduction of an agent for forming the filter cake F. (Figure 2).
The first chamber 1 contains a porous ceramic filter plate or block 8. The inlet 7 in the roof 6 is vertically above the filter 8. The agent for forming the nature of the filter cake preferably provides relatively large particles which settle on the top of the filter (and on successive layers of material thereto) and tend to hold the layers apart, i.e. prevent being compressed.
As a result, the filter cake tends to have a more open, i.e. porous structure, and there is less likelihood of the pores of the filter itself becoming blocked. As a result the life of the filter is prolonged and the nature of the filter cake is improved.
The second chamber 2 contains baffles 9 and 10, standing up from the floor 5 or depending from the roof 6, respectively. An inlet 11 in the roof 6 above the second chamber 2 has a guide tube 14 which receives a grain refining agent R in wire form. The inlet 11 is inclined to the vertical so that the wire enters the second chamber 2 in a direction countercurrent to the flow of the metal melt.
In use, the liquid metal flows under gravity from the inlet 12 of the first chamber 1 to an outlet 13 of the second chamber 2 in the direction shown by the arrow A. As the molten metal flows over the filter plate 8 the filter cake agent is caused to fall via the roof inlet 7 to join the flowing liquid metal. The particles settle on the plate 8 to form the filter cake F in layers which are uncompressed so that they do not form a solid impenetrable barrier. As a result the filter continues to function and there is little change in the metallostatic head above the filter 8. The filtered metal flows from the filter 8 via the underweir 4 into the second chamber 2, where the adjacent end of the wire R is melted to release the grain refining agent. The filtered metal entraining the grain refining agent is subjected to flow modification by being passed between the baffles 9 and 10 where there is good 'mechanical' mixing in the absence of further mixing means as a result of which the grain refining agent becomes well dispersed throughout the liquid metal. The metal leaves via the outlet 13 to be cast.
Example 1
An apparatus as described above in relation to Figure 1 was constructed and operated using M1050 aluminium alloy prepared from potline metal and wire form grain refiner of the type 5:1 titanium boron composition such that the ceramic filter was operated in 'flter-cake' mode in which the filtrate, i.e. the exit metal flow was significantly improved. A casting trial was carried out on an experimental casting unit with a casting rate of 8 tonnes/hr and a drop size of 11 tonnes. Measurements of inclusion content were made by using two LiMCA particulate counting devices, one placed before the apparatus and the other located after the apparatus.
Table 1 below provides the LiMCA particulate evaluations for the casting trial demonstrating improvements of the order tenfold in terms of the outlet particle count compared to standard performance expected from a ceramic filter used according to current industry practice.
Incoming Exit N15 12,000 500- 1,000 counts N20 8,000 200 - 500 counts
STANDARD
N20 10,000 5,000
Example 2
The apparatus and procedure of Example 1 was repeated several times each using different alloy compositions. By corresponding control of filter cake accumulation, it was found that the ceramic filter was re-usable for a minimum of three times for the different alloy types including M1000 series, M3000 series and M 5000 series alloys whilst maintaining the same high levels of filtration efficiency.
The porous filter is long lasting because the nature of the filter cake allows its continued use over a prolonged period. Our investigations have shown that by control of the nature of the filter cake the reliability and efficiency of the filter is improved with filter life being increased at least threefold whilst achieving and sustaining remarkably high levels of filtration efficiency in excess of 90% for a wide range of different types of alloy. The metal produced is well refined, containing a very low level of particulates (in the range of 200 to 500 counts/kg) and importantly containing no particulates greater than 40 micron in size, particles greater than this size having been substantially removed by modification of the metal flow.

Claims (23)

1. A method of maintaining the life of a porous filter when refining a metal metal by controlling the formation of a filter cake thereon, the method comprising passing liquid metal through a porous filter and adding a filter cake formation agent to the metal; contacting the filtered metal with a grain refining agent followed by mechanical mixing to promote intimate mixing of the metal and the grain refining agent to produce refined metal, whereby a filter cake is formed on the porous filter without significant change in the metallostatic head above the filter.
2. A method of maintaining the life of a porous filter when refining a metal melt by controlling the formation of a filter cake thereon, the method comprising passing liquid metal through a porous filter and adding a filter cake formation agent to the metal; contacting the filtered metal with a grain refining agent followed by flow modification to promote intimate mixing of the metal and the grain refining agent to produce refined metal, whereby a filter cake is formed on the porous filter without significant change in the metallostatic head above the filter.
3. A method of refining a metal melt comprising passing liquid metal through a porous filter whilst adding filter cake forming agent to a flow of liquid metal, subjecting the filtered metal to grain refinement by addition of grain refining agent with simultaneous admixing of liquid metal with said grain refining agent followed by separation of at least some particulate matter from the flow of liquid metal characterized in that the liquid metal flow is subjected to only one filtration stage.
4. A method as claimed in Claim 3 in which the admixing of liquid metal and/or separation of particulate matter is effected through liquid metal flow modification.
5. A method as claimed in any preceding Claim, wherein the metal to be refined is a light metal such as aluminum or an alloy comprising aluminium.
6. A method as claimed in any preceding Claim in which the porous filter comprises a ceramic block or plate.
7. A method as claimed in any preceding Claim in which the pore dimensions of the porous filter are in the range of about 300 to about 2, 500 micron.
8. A method as claimed in any preceding Claim in which the filter cake formation agent consists of particles coated with substances wetted by the liquid metal and/or containing a fluxing agent such as a fluoride.
9. A method as claimed in any preceding Claim in which the filter cake becomes formed in layers which are non-compressible.
10. A method as claimed in any preceding Claim in which the porous filter is located in one chamber separated from another chamber into which the grain refining agent is introduced.
11. A method as claimed in Claim 10, in which the said chambers are adjacent.
12. A method as claimed in Claim 10 or 11, in which the grain refining agent is fed into the said another chamber countercurrent to the direction of flow of the liquid metal.
13. A method as claimed in any one of Claims 3 to 12, in which separation of said particulate matter is achieved by the presence of baffle plates modifying the path of flow of the liquid metal.
14. A method as claimed in any one of Claims 3 to 12, in which separation of said particulate matter is achieved in means generating swirl flow in the liquid metal, such as within a cyclone.
15. A method as claimed in any preceding Claim, wherein particulates greater than 40 micron in size are substantially removed from the grain refined metal.
16. Apparatus constructed and arranged to carry into effect a method as claimed in any one of Claims 1 to 13 comprising a primary compartment to receive an inlet flow of liquid metal and including filtration means in the form of a porous filter adapted to support, in use, a build-up of filter cake, means for introducing into the said primary compartment filter cake controlling agent and a secondary compartment adjacent to or spaced from the primary compartment to receive a flow of filtered liquid metal and including an inlet for grain refining agent, the apparatus being constructed or incorporating means to cause admixing of the flowing filtered liquid metal with introduced grain refining agent, and further constructed to or incorporating means to separate at least some particulate matter from the filtered and grain refined liquid metal flow after admixture with the grain refining agent, the apparatus being characterized by a single filtration means.
17. Apparatus as claimed in Claim 16, in which the porous filter is located at and defines the base of the metal feed inlet compartment within the primary chamber.
18. Apparatus as claimed in Claim 16 or 17, in which the grain refining agent inlet is angled at an acute angle with respect to the secondary compartment to cause intimate admixture of the grain refining agent with flowing filtered liquid metal.
19. Apparatus as claimed in any one of Claims 16 to 17, including a plurality of baffle plates situated to effect modification to the flow of liquid metal towards an exit of the apparatus.
20. Apparatus as claimed in any one of Claims 16 to 18, including a means for generating swirl flow to induce separation of at least some particulate matter, in use, from flowing filtered and grain refined liquid metal.
21. A method of maintaining the life of a porous filter as claimed in Claim 1 or 2 or 5 to 15 substantially as herein described, exemplified or illustrated.
22. A method of refining a metal melt as claimed in any one of Claims 3 to 15 substantially as herein described, exemplified or illustrated.
23. Apparatus as claimed in any one of Claims 16 to 120 substantially as herein described, exemplified or illustrated.
GB0503325A 2004-02-17 2005-02-17 Treatment of metal melts Expired - Fee Related GB2411902B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0403466.6A GB0403466D0 (en) 2004-02-17 2004-02-17 Treatment of metal melts

Publications (3)

Publication Number Publication Date
GB0503325D0 GB0503325D0 (en) 2005-03-23
GB2411902A true GB2411902A (en) 2005-09-14
GB2411902B GB2411902B (en) 2008-07-16

Family

ID=32039858

Family Applications (2)

Application Number Title Priority Date Filing Date
GBGB0403466.6A Ceased GB0403466D0 (en) 2004-02-17 2004-02-17 Treatment of metal melts
GB0503325A Expired - Fee Related GB2411902B (en) 2004-02-17 2005-02-17 Treatment of metal melts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GBGB0403466.6A Ceased GB0403466D0 (en) 2004-02-17 2004-02-17 Treatment of metal melts

Country Status (6)

Country Link
US (1) US20080116148A1 (en)
EP (1) EP1721020B1 (en)
AT (1) ATE442463T1 (en)
DE (1) DE602005016529D1 (en)
GB (2) GB0403466D0 (en)
WO (1) WO2005080615A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458228A (en) * 2015-12-24 2016-04-06 天津立中合金集团有限公司 Method for aluminum alloy online casting under nitrogen protection
CN110218875A (en) * 2019-07-23 2019-09-10 重庆角鹿机械制造有限公司 A kind of online argon gas depassing unit of aluminum solutions
US20220355232A1 (en) * 2021-05-04 2022-11-10 GM Global Technology Operations LLC Process to make a ceramic filter for metal casting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1148344A (en) * 1967-01-24 1969-04-10 Foseco Int Method for the removal of inclusions from molten metals by filtration
US4872908A (en) * 1986-12-31 1989-10-10 Alcan International Limited Metal treatment
WO1992002649A1 (en) * 1990-08-03 1992-02-20 Alcan International Limited Liquid metal filter
JPH1052740A (en) * 1996-08-06 1998-02-24 Fuji Photo Film Co Ltd Manufacture of supporting body for planographic printing and manufacturing device thereof
US20020056677A1 (en) * 2000-11-09 2002-05-16 Wolfgang Schneider Device for filtering and adding grain refining agent to metal melts

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172757A (en) * 1965-03-09 Treatment of molten light metals
US2464610A (en) * 1940-07-08 1949-03-15 Spolek Method for producing aluminumsilicon alloys
US2362147A (en) * 1944-02-09 1944-11-07 Lucio F Mondolfo Removal of silicon from aluminum and aluminum alloys
US2715063A (en) * 1951-09-21 1955-08-09 Ver Aluminiumwerke Ag Bonn Am Method for the recovery of pure aluminum
US2863558A (en) * 1957-04-29 1958-12-09 Aluminum Co Of America Filtering molten aluminous metal
US3006473A (en) * 1958-11-03 1961-10-31 Aluminum Co Of America Filtering of molten aluminum
US3039864A (en) * 1958-11-21 1962-06-19 Aluminum Co Of America Treatment of molten light metals
US3198625A (en) * 1961-02-08 1965-08-03 Aluminum Co Of America Purification of aluminum
US3189491A (en) * 1962-07-02 1965-06-15 Dow Chemical Co Aluminum flux
US3281238A (en) * 1963-11-13 1966-10-25 Aluminum Co Of America Treatment of molten aluminous metal
US3305351A (en) * 1964-02-24 1967-02-21 Reynolds Metals Co Treatment of aluminum with aluminum fluoride particles
US3524548A (en) * 1968-09-16 1970-08-18 Kaiser Aluminium Chem Corp Filter medium for molten metal
BE754558A (en) * 1969-08-08 1971-02-08 Alcan Res & Dev METHOD AND APPARATUS FOR FILTERING FUSION METALS
US3537987A (en) * 1969-08-28 1970-11-03 Intalco Aluminum Corp Method of filtering molten light metals
BE756091A (en) * 1969-09-12 1971-02-15 Britsh Aluminium Cy Ltd METHOD AND DEVICE FOR THE TREATMENT OF METAL
US3737304A (en) * 1970-12-02 1973-06-05 Aluminum Co Of America Process for treating molten aluminum
US3747765A (en) * 1971-06-09 1973-07-24 Kaiser Aluminium Chem Corp Rigid filter assembly
US3900313A (en) * 1972-09-18 1975-08-19 Hubert Martin Process for producing die-casting alloys from aluminum scrap
US3904180A (en) * 1973-05-18 1975-09-09 Southwire Co Apparatus for fluxing and filtering of molten metal
US3917242A (en) * 1973-05-18 1975-11-04 Southwire Co Apparatus for fluxing and filtering of molten metal
US3893917A (en) * 1974-01-02 1975-07-08 Alusuisse Molten metal filter
US4024056A (en) * 1975-07-21 1977-05-17 Swiss Aluminium Ltd. Filtering of molten metal
US4032124A (en) * 1975-03-28 1977-06-28 Swiss Aluminium Ltd. Apparatus and method for in-line degassing and filtration of molten metal
CH595452A5 (en) * 1975-04-29 1978-02-15 Alusuisse
US4007923A (en) * 1975-07-18 1977-02-15 Southwire Company Molten metal filter
US4052198A (en) * 1976-02-02 1977-10-04 Swiss Aluminium Limited Method for in-line degassing and filtration of molten metal
CH623849A5 (en) * 1976-03-26 1981-06-30 Alusuisse
CH599978A5 (en) * 1976-12-21 1978-06-15 Alusuisse
CH599979A5 (en) * 1976-12-21 1978-06-15 Alusuisse
US4113241A (en) * 1977-09-22 1978-09-12 Swiss Aluminium Ltd. Apparatus for the filtration of molten metal in a crucible type furnace
US4124506A (en) * 1977-09-22 1978-11-07 Swiss Aluminium Ltd. Method for the filtration of molten metal in a crucible type furnace
US4165235A (en) * 1978-04-26 1979-08-21 Swiss Aluminium Ltd. Method for inline degassing and filtration of molten metal
US4158632A (en) * 1978-04-26 1979-06-19 Swiss Aluminium Ltd. Filter for use in filtration of molten metal
US4298187A (en) * 1978-04-26 1981-11-03 Swiss Aluminium Ltd. Apparatus for inline degassing and filtration of molten metal
FR2463816A1 (en) * 1979-08-24 1981-02-27 Servimetal CARTRIDGE FOR ACTIVE FILTRATION AND PROCESSING OF METALS AND LIQUID ALLOYS
JPS6138911Y2 (en) * 1980-12-27 1986-11-08
JPS589946A (en) * 1981-05-01 1983-01-20 Kobe Steel Ltd Purifying method for molten al and al alloy
JPS581025A (en) * 1981-05-27 1983-01-06 Sumitomo Light Metal Ind Ltd Treating device of molten metal
DE3472973D1 (en) * 1983-08-16 1988-09-01 Alcan Int Ltd Method of filtering molten metal
GB8325438D0 (en) * 1983-09-22 1983-10-26 Foseco Int Fluxes for casting metals
US4964993A (en) * 1984-10-16 1990-10-23 Stemcor Corporation Multiple-use molten metal filters
US4640497A (en) * 1985-10-25 1987-02-03 Swiss Aluminium Ltd. Filtration apparatus
US5061660A (en) * 1986-09-16 1991-10-29 Lanxide Technology Company, Lp Ceramic foams
US4808558A (en) * 1987-08-26 1989-02-28 Lanxide Technology Company, Lp Ceramic foams
US5185297A (en) * 1986-09-16 1993-02-09 Lanxide Technology Company, Lp Ceramic foams
GB8710200D0 (en) * 1987-04-29 1987-06-03 Alcan Int Ltd Light metal alloy treatment
US4990059A (en) * 1988-12-19 1991-02-05 Aluminum Company Of America Method for filtering liquid-phase metals
US5076344A (en) * 1989-03-07 1991-12-31 Aluminum Company Of America Die-casting process and equipment
US4940489A (en) * 1989-03-30 1990-07-10 Alusuisse-Lonza Services Ltd. Molten metal filtration system and process
US5126047A (en) * 1990-05-07 1992-06-30 The Carborundum Company Molten metal filter
US5104540A (en) * 1990-06-22 1992-04-14 Corning Incorporated Coated molten metal filters
US5114472A (en) * 1990-12-13 1992-05-19 Aluminum Company Of America Multistage rigid media filter for molten metal and method of filtering
US5122184A (en) * 1990-12-28 1992-06-16 Aluminum Company Of America Molten salt coalescence in molten aluminum
US5322546A (en) * 1992-11-23 1994-06-21 Alcan International Limited Filtration of molten material
US5336295A (en) * 1993-02-08 1994-08-09 Aluminum Company Of America Method for separation and removal of suspended liquid particles from molten metal and associated apparatus
US5427602A (en) * 1994-08-08 1995-06-27 Aluminum Company Of America Removal of suspended particles from molten metal
US5741422A (en) * 1995-09-05 1998-04-21 Metaullics Systems Co., L.P. Molten metal filter cartridge
US5673902A (en) * 1996-02-01 1997-10-07 Selee Corporation Dual stage ceramic foam filtration system and method
US6231639B1 (en) * 1997-03-07 2001-05-15 Metaullics Systems Co., L.P. Modular filter for molten metal
AU2005215071B2 (en) * 2004-02-24 2010-02-11 Alcan International Limited Method of priming filter for molten metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1148344A (en) * 1967-01-24 1969-04-10 Foseco Int Method for the removal of inclusions from molten metals by filtration
US4872908A (en) * 1986-12-31 1989-10-10 Alcan International Limited Metal treatment
WO1992002649A1 (en) * 1990-08-03 1992-02-20 Alcan International Limited Liquid metal filter
JPH1052740A (en) * 1996-08-06 1998-02-24 Fuji Photo Film Co Ltd Manufacture of supporting body for planographic printing and manufacturing device thereof
US20020056677A1 (en) * 2000-11-09 2002-05-16 Wolfgang Schneider Device for filtering and adding grain refining agent to metal melts

Also Published As

Publication number Publication date
US20080116148A1 (en) 2008-05-22
ATE442463T1 (en) 2009-09-15
EP1721020B1 (en) 2009-09-09
EP1721020A1 (en) 2006-11-15
GB2411902B (en) 2008-07-16
GB0403466D0 (en) 2004-03-24
DE602005016529D1 (en) 2009-10-22
GB0503325D0 (en) 2005-03-23
WO2005080615A1 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
US4401295A (en) Apparatus for treating molten metal
EP0291580B1 (en) Apparatus for in-line degassing and filtering of aluminium and its alloys
US5427602A (en) Removal of suspended particles from molten metal
US4067731A (en) Method of treating molten metal
EP0134705A1 (en) Method of filtering molten metal
EP1721020B1 (en) Treatment of metal melts
EP0396388A2 (en) Production of aluminum grain refiner
CH645133A5 (en) METHOD AND DEVICE FOR REMOVING ALKALI METAL AND EARTH ALKALI METAL FROM MOLTEN ALUMINUM.
RU2237733C2 (en) Apparatus and method for filtering of metal melts and introducing admixture of refiner into melts
US4330327A (en) Disposable bed filter process and apparatus
AU687035B2 (en) Method and apparatus for separating and removing liquid particles from molten metal
AU611121B2 (en) Method of forming a filter cake on a permeable substrate
EP0668804B1 (en) Filtration of molten material
AU593204B2 (en) Process for separating the inclusions contained in a bath of molten metal, by filtration
JPS6059027A (en) Removal of foreign matters from molten metal
RU2090639C1 (en) Apparatus for refining aluminium and its alloys
NL8220318A (en) METHOD FOR TREATING MELTED ALUMINUM
DE2050659A1 (en) Method and device for degassing and cleaning molten metal
JPS61130430A (en) Cleaning method of molten al or al alloy refined by gaseous chlorine
GB2047106A (en) Removal of particulate matter from liquid metals
SU857272A1 (en) Method of casting nonferrous metals and alloys
SU1018996A1 (en) Apparatus for refining molten metals
SU1039976A1 (en) Method for refining molten metals
JPS644832Y2 (en)
JPH0660373B2 (en) Method for removing inclusions in molten metal plating bath

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20210217