JPS589946A - Purifying method for molten al and al alloy - Google Patents

Purifying method for molten al and al alloy

Info

Publication number
JPS589946A
JPS589946A JP56066579A JP6657981A JPS589946A JP S589946 A JPS589946 A JP S589946A JP 56066579 A JP56066579 A JP 56066579A JP 6657981 A JP6657981 A JP 6657981A JP S589946 A JPS589946 A JP S589946A
Authority
JP
Japan
Prior art keywords
molten
inclusions
filter
molten metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56066579A
Other languages
Japanese (ja)
Inventor
Kenji Osumi
大隅 研治
Toshimasa Sakamoto
敏正 坂本
Yoshihiro Mitsuta
美蔦 芳宏
Toru Takahashi
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56066579A priority Critical patent/JPS589946A/en
Publication of JPS589946A publication Critical patent/JPS589946A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Filtration Of Liquid (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To purify molten Al or a molten Al alloy by filtering it with >=2 kinds of fire resistant filters having different pore sizes to thoroughly remove inclusions in the molten metal. CONSTITUTION:Molten Al or a molten Al alloy contains inclusions such as refractory fragments mixed in the melting stage, Al oxide and Al nitride. The inclusions are divided roughly into beltlike inclusions (a) having about 1mum width and >=1,000mum length and fine particles (b) having about 1-10mum diameter. The molten metal contg. inclusions is first passed through a ceramic filter or a plurality of ceramic filters >=1 time to remove the inclusions (a) by filtration. After adding a grain refiner such as Ti or a Ti-B compound, the molten metal is further passed through a ceramic filter having a smaller pore size >=1 time to remove the fine particles (b). Thus, the molten Al or the molten Al alloy is purified without clogging the filters and reducing the yield of the grain refiner such as Ti.

Description

【発明の詳細な説明】 この発明は、アルミ+ウム溶解過程において、混入もし
くは生成したアルミニウム及びアルミニウム合金溶湯中
に存在する介在物を除去する清浄化処理法に係シ、異な
る気孔寸法を有する2種類以上の耐火性フィルターを多
段に設け、寸法の異表る介在物から順次濾過を行な゛う
ムを及びムを合金溶湯の清浄化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cleaning treatment method for removing inclusions present in molten aluminum and aluminum alloy mixed or generated during the process of melting aluminum and aluminum. The present invention relates to a method for cleaning a molten alloy, in which multiple types of refractory filters are provided in multiple stages, and inclusions of different sizes are sequentially filtered.

一般に、アルミニウム及びアルミニウム合金溶湯中には
、地金、母合金、スクラップ等、原料に混入したもの、
溶解工1にて化学反応により新たに生成されたもの、或
いは溶解工種以後において生じる耐火物破損片等積々の
原因によプ生成された介在物、及びこれらの酸化物、窒
化物等の介在物が存在している。そこで、これらの介在
物はCts  ガス、フラックス、鎮静処理勢によって
除去されるが、必らずしも完全なも、のではなく、しば
しば製品に混入し、各種表面欠陥、機械的性質の低下勢
、製品の品質に対して悪影響を及ぼし、商品価値を低下
させる欠点があった。
In general, aluminum and molten aluminum alloy contain materials mixed with raw materials such as base metal, master alloy, scrap, etc.
Inclusions newly generated due to chemical reactions in melting process 1, or inclusions generated due to accumulated causes such as broken pieces of refractories that occur after melting process, and inclusions such as oxides and nitrides of these. things exist. Therefore, these inclusions are removed by Cts gas, flux, and sedation treatment, but they are not always completely removed, and they often get mixed into the product, causing various surface defects and deterioration of mechanical properties. However, there were drawbacks that adversely affected the quality of the product and reduced the commercial value.

そ仁で、従来は通常、上述した処理法によシ除去できな
い介在物は、溶解工si、鋳造工程前に、耐火性に優れ
た管状もしくは、板状の多孔質セラミック等で形成され
九多孔質フィルターによシ、これを濾過除去している。
In the past, inclusions that could not be removed by the above-mentioned treatment methods were usually formed from tubular or plate-shaped porous ceramics with excellent fire resistance before the melting process or casting process. This is removed by filtration using a porous filter.

とζろが、この従来の方式は除去せんとする介在−がそ
の発生過程やS類の相違によって、大小様々な形態を有
していることから、安全を第一としフィルター〇セルサ
イズを最小の介在物に合わせて一段で処理してお夛、こ
のため、次のような問題を避けることができなかった。
However, this conventional method puts safety first and minimizes the filter cell size, since the intervention to be removed has various shapes, large and small, depending on the generation process and the difference in type S. However, the following problems could not be avoided.

すなわち、濾過の負荷が大きく短期に目詰〕を起し、又
これに伴なってフィルター寿命が短かく従って、作業性
が悪いと共K、フィルターが高価な九め、経済的に%不
利があった。
In other words, the filtration load is large and clogging occurs in a short period of time, and the service life of the filter is shortened, resulting in poor workability.Furthermore, the filter is expensive, which is economically disadvantageous. there were.

しかも、さらに大きな問題は、この濾過除去に先立って
行なわれる結晶粒微細化処理にて添加された?耘?i−
8化合物等の結晶粒微細化剤をも同時に捕促してしまう
結果を招き、このため、同処理剤の添加量を必要以上に
多くしなければならないことである。      ′j しかるに、上記従来法の問題点をふまえ、これ。
Moreover, an even bigger problem is that the particles were added during the grain refinement process that is carried out prior to filtration and removal.耘? i-
This results in the trapping of grain refining agents such as 8 compounds at the same time, and as a result, the amount of the treatment agent added must be increased more than necessary. ′j However, based on the problems of the conventional method mentioned above, this.

壕で目詰シが原因となって廃却され大多数の耐火フィル
ターを対象としてこれを調査、解析した結果、アルミニ
ウム及びアルミニウム合金溶湯中に存在する゛種々の形
状の介在物のうち、特に粗大なものが、フィルターの溶
湯入口側を櫟ってしまうために濾過効率の低下をI九す
大きな原因であることが判明した。
As a result of investigating and analyzing the majority of fireproof filters discarded due to clogging in trenches, we found that among the various shapes of inclusions present in aluminum and molten aluminum alloys, especially coarse ones It was found that this was a major cause of the decrease in filtration efficiency because it obstructed the molten metal inlet side of the filter.

従って、溶湯入口側を覆った粗大介在物が、フィルター
の網目と同様の効果を生じ、あらかじめ結晶粒微細化剤
として添加されているT1及び!i−B 化合物の一部
がこれに捕捉されてしまい、この結果、捕捉された量に
相当する結晶粒微細化効果が消失してしまうものと推考
される。
Therefore, the coarse inclusions covering the molten metal inlet side produce an effect similar to that of a filter mesh, and the T1 and! It is presumed that a part of the i-B compound is trapped by this, and as a result, the crystal grain refining effect corresponding to the trapped amount disappears.

すなわち、溶湯中に存在する介在物の′s@、形状は多
様であるが、形些により大別すれば、#I1図の模式図
のように巾が約1μで長さが約1000μ以上ある帯状
介在物aと、直径1〜10pi!の微粒子bl(大別さ
れるものであシ、通常フィルター0のセルサイズは、前
述の通)捕捉洩れを防止するため、除去を要する最小の
介在物の寸法に合わせて使用されてセリ、溶湯がフィル
ター〇に入る前に、帯状介在物aがフィルター外周部に
付着して、著しい目詰シが生じるとともに、この帯状介
在物aKよ)、T1及びテi−B化合物が相当量捕捉さ
れ、前述したような悪影畳を及はすことKなるものであ
って、こうしたことからamなセルサイズを持つフィル
ターに入る以前に1上述した介在物中、帯状介在物の如
き粗大介在物の事前除去が極めて重要な意味を持つもの
と考察される。
In other words, the shapes of the inclusions present in the molten metal are diverse, but if you roughly classify them based on their shape, they are about 1μ in width and about 1000μ or more in length, as shown in the schematic diagram in Figure #I1. A band-like inclusion a with a diameter of 1 to 10 pi! In order to capture and prevent leakage, fine particles are used to match the size of the smallest inclusions that need to be removed. Before it enters the filter 〇, a band-like inclusion a adheres to the outer periphery of the filter, causing significant clogging, and a considerable amount of the band-like inclusion aK), T1 and T-i-B compounds are captured, This is due to the fact that the above-mentioned bad shadows are caused, and for this reason, before entering the filter with a large cell size, 1. Removal is considered to be extremely important.

この発明は、上述した事情にもとづいてなされたもので
あシ、アルミニウム及びアルミニウム合金溶湯中に存在
する介在物を除去する際に、1枚もしくは、それ以上の
枚数の耐火性フィルターを使用して、1回もしくはそれ
以上の回数濾過操作を実施稜、このフィルターと一体も
しくは別個に設妙られた1枚もしくは、それ以上の枚数
によシ気孔寸法(ゼル゛サイズ)の小さい耐火フィルタ
ーにて、改めて1回もしくはそれ以上の回数濾過操作含
むなう事によシ、濾過効率、フィルター寿命の向上、お
よび第1R目フイルター通過後に結晶粒微細化剤を添加
することによシ、上述−フイ゛ルター溶湯入口部にて捕
捉され九結晶粒微細化剤の有効利用を目的としたムを及
びムを合金溶湯の清浄゛北方法を提供するものである。
This invention was made based on the above-mentioned circumstances, and uses one or more fire-resistant filters when removing inclusions present in molten aluminum and aluminum alloys. , carry out the filtration operation one or more times, using one or more fire-resistant filters with small pore size (cell size) installed either integrally with this filter or separately. By repeating the filtration operation once or more times, the filtration efficiency and filter life can be improved, and by adding a grain refining agent after passing through the first R filter, the above-mentioned filter can be improved. The present invention provides a method for cleaning molten alloy metal with particles and particles that are trapped at the inlet of the Luther molten metal and aimed at making effective use of grain refining agents.

以■、この発明による方法を実施例を参照して具体的に
説明する。以下、アルミニウム及びアルミニウム合金溶
湯を、単に溶湯と称す。
Hereinafter, the method according to the present invention will be specifically explained with reference to Examples. Hereinafter, aluminum and aluminum alloy molten metal will be simply referred to as molten metal.

まず、実験において、T1、B等の無添加材を用いた溶
湯濾過過程において、フィルター外周部に溶湯とともに
付着残留した、帯状介在物を集め、再溶解を行ない、フ
ィルター気孔寸法と、帯状介在物単独での濾過状況との
関係を求める。
First, in an experiment, during the molten metal filtration process using additive-free materials such as T1 and B, band-shaped inclusions that remained attached to the outer periphery of the filter along with the molten metal were collected and redissolved, and the filter pore size and band-shaped inclusions were measured. Find the relationship with the filtration status alone.

第2図は各種篭ルサイズのフィルターを用いて、濾過試
験を行なった後の、溶湯中に存在するフィルターを通過
した、帯状介在物の密度を示したセルサイズと通過介在
物との関係である。ここで、密度とは、光学顕微鏡を用
いて200倍にて、100視野検鏡した場合の帯状介在
物の確iIセれ良視野数とする。上記結果よシ、帯状介
在物単独に関しては、フィルターセルサイズ6個150
−以上で十分であることが判明した。
Figure 2 shows the relationship between the cell size and the passing inclusions, which shows the density of band-like inclusions present in the molten metal that passed through the filters after conducting filtration tests using filters of various cage sizes. . Here, the density is defined as the number of clear fields of band-like inclusions when 100 fields of view are examined using an optical microscope at 200 times magnification. According to the above results, for band-like inclusions alone, the filter cell size is 6 pieces, 150
- The above was found to be sufficient.

つぎに1これら各11フイルターのセルサイズと、濾過
所要時間との関係は、餌3図に示すとうりであシ、セル
サイズ100個150箇以上にて、著しい目詰シが生じ
、濾過効率が低下する仁とを示している。
Next, 1. The relationship between the cell size of each of these 11 filters and the time required for filtration is as shown in Figure 3. Significant clogging occurs when the cell size is 100 and 150 or more, and the filtration efficiency is It shows that the value decreases.

以上の実験により、帯状介在物除去用フィルターとして
は、そのセルサイズが6〜100150■(セル14s
当シ約8−〜0.5■)が最適であることが4111明
した。
As a result of the above experiments, the cell size of the filter for removing band-like inclusions is 6 to 100,150 square meters (cell size: 14 seconds).
It has been found that a value of approximately 8 to 0.5 mm is optimal.

従って、この発−における溶湯濾過を実施する場合、具
体的には、まず、セルサイズが100個150■〜6個
150箇の相いフィルターヲ通過させ、帯状介在物を除
去した後、T1、又はTi−B化合物からなる結晶粒微
細化剤を添加し、その後、通常使用されている、例えば
、セルサイズ5o。
Therefore, when carrying out the molten metal filtration in this process, first, the T1, T1, Alternatively, a grain refining agent consisting of a Ti-B compound is added, and then a commonly used cell size, for example, 5o.

個150■の黴細な寸法を有するフィルターを通過させ
、微細介在物の除去を行なうことが特に好オしいといえ
る。
It is particularly preferable to remove fine inclusions by passing through a filter having a fine size of 150 mm.

すなわち、溶湯中の帯状介在物のみが、T1及び’I’
i−B化合物の添加前に1予め除去されれに良いもので
あ)、この発明における第1段目の太きいセルサイズを
有するフィルター及び第2&目の小さなセルサイズを有
するフィルターの枚数は、1枚に@定するものでiなく
、必要に応じて2枚以上とすることも可能である。
That is, only the band-like inclusions in the molten metal are T1 and 'I'.
The number of filters having a large cell size in the first stage and the number of filters having a small cell size in the second stage in this invention is as follows: It is not limited to one sheet, but it is also possible to have two or more sheets as necessary.

第4図は、との発明による実施例を示す清浄化処理装置
の説明図であ)、溶解炉1を出た溶湯は、樋2を通り、
粗大フィルター3を通過後、通常用いられている微細フ
ィルター4を通過し、溶湯留め5を通り、鋳造機6の方
向へ流れていく。
FIG. 4 is an explanatory diagram of a cleaning treatment apparatus showing an embodiment according to the invention of (2008). Molten metal exiting the melting furnace 1 passes through the gutter 2,
After passing through a coarse filter 3, it passes through a normally used fine filter 4, passes through a molten metal retainer 5, and flows toward a casting machine 6.

以下、ムt−Mg系品番5182の溶湯温f760℃、
重量30tを、この発明による清浄化処理法と、従来の
処理法によって実施した結果を比較して第1表に示す。
Below, the molten metal temperature f760℃ of Mut-Mg series product number 5182,
Table 1 shows a comparison of the results of cleaning a sample of 30 tons using the cleaning treatment method according to the present invention and the conventional treatment method.

なお、この発明による清浄化処理に使用するフィルター
は、粗大気孔フィルターのセルサイズ20個/ 50 
m (セル1個当シ2.5■)、微細気孔フィルターの
、セルサイズ200個150■(0,25■)、厚み両
者とも50■、濾過面積は両者とも5000−とじて、
従来の処理法に使用するフィルターは、上述した微細気
孔フィルター単独とした。
The filter used in the cleaning process according to the present invention is a coarse pore filter with a cell size of 20/50 cells.
m (2.5 cm per cell), the cell size of the microporous filter is 200 cells 150 cm (0.25 cm), the thickness of both is 50 cm, the filtration area is 5000 cm for both,
The filter used in the conventional treatment method was the above-mentioned microporous filter alone.

以上詳細に説明したように、゛この発明によるム゛を及
びムを合金溶湯の清浄化方法は、興なる気孔寸法を有す
る少なくとも2種類以上の耐火性フィルターを多段に使
用し、寸法の大なる介在物よシ順次、濾過操作を行なう
ものであシ、溶湯濾過所要時間の短#ができ、濾過効率
向上ちフィルター寿命の延長が図れる。また、第1段目
フィルターで、帯状介在物を濾過した後に、結晶粒微細
化剤を添加したので、結晶粒微細化剤の歩留りを向上さ
せることができる郷、工業的な利得が顕著である。
As explained in detail above, the method for cleaning molten metal of a metal alloy according to the present invention uses at least two or more types of refractory filters having different pore sizes in multiple stages. Since the filtration operation is performed sequentially, removing the inclusions, the time required for filtration of the molten metal can be shortened, the filtration efficiency can be improved, and the life of the filter can be extended. In addition, since the grain refining agent is added after filtering out the band-like inclusions in the first stage filter, the yield of the grain refining agent can be improved, resulting in significant industrial gains. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アルミニウムfII#I!IO濾過法の模式
図、第2図社、フィルターのセルサイズと通過介在物”
 ・との関係図、第3図は、フィルターセルサイズと濾
過時間との関係図、第4図は、この発V!AKよる清浄
化処理装置の説明図である。 l・・・・・・溶解炉、3・・・・・・粗大フィルター
、4・・・・・・微細気孔フィルター〇
Figure 1 shows aluminum fII#I! Schematic diagram of IO filtration method, Figure 2, filter cell size and passing inclusions.
Figure 3 is a diagram showing the relationship between filter cell size and filtration time, and Figure 4 is a diagram showing the relationship between filter cell size and filtration time. It is an explanatory view of a cleaning processing device by AK. l...Melting furnace, 3...Coarse filter, 4...Fine pore filter〇

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウム及びアルミニウム合金溶湯中に存在
する酸化物、窒化物等の介在物を耐火フィルターによっ
て濾過除去する方法において、まず、セルサイズの大き
い耐火性フィルターを用いて1回もしくはそれ以上溶湯
の濾過操作を行なった後、上記耐火フィルターと一体も
しくは別体に設置したよシ小さなセルサイズの耐火フィ
ルターによ#)1回もしくはそれ以上の濾過操作を行な
う多段濾過法としたことを41黴とするムを及びムを合
金溶湯の清浄化処理方法。
(1) In the method of filtering and removing inclusions such as oxides and nitrides present in molten aluminum and aluminum alloys using a fire-resistant filter, first, the molten metal is filtered one or more times using a fire-resistant filter with a large cell size. After the filtration operation, a multi-stage filtration method in which the filtration operation is performed one or more times using a refractory filter with a smaller cell size installed either integrally with the above refractory filter or separately is classified as 41. A cleaning treatment method for molten alloys.
JP56066579A 1981-05-01 1981-05-01 Purifying method for molten al and al alloy Pending JPS589946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56066579A JPS589946A (en) 1981-05-01 1981-05-01 Purifying method for molten al and al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56066579A JPS589946A (en) 1981-05-01 1981-05-01 Purifying method for molten al and al alloy

Publications (1)

Publication Number Publication Date
JPS589946A true JPS589946A (en) 1983-01-20

Family

ID=13319997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56066579A Pending JPS589946A (en) 1981-05-01 1981-05-01 Purifying method for molten al and al alloy

Country Status (1)

Country Link
JP (1) JPS589946A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106000A (en) * 1983-11-14 1985-06-11 株式会社神戸製鋼所 Method of melting and decontaminating metal aluminum
EP0666329A1 (en) * 1994-02-08 1995-08-09 VAW Aluminium AG Aluminium strip for offset printing plates
WO2005080615A1 (en) * 2004-02-17 2005-09-01 Mqp Ltd Treatment of metal melts
WO2010005716A3 (en) * 2008-06-16 2010-03-18 Aubrey Leonard S Improved method for filtering molten aluminum and molten aluminum alloys
RU187182U1 (en) * 2018-06-29 2019-02-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого" Device for refining aluminum alloys

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106000A (en) * 1983-11-14 1985-06-11 株式会社神戸製鋼所 Method of melting and decontaminating metal aluminum
EP0666329A1 (en) * 1994-02-08 1995-08-09 VAW Aluminium AG Aluminium strip for offset printing plates
WO2005080615A1 (en) * 2004-02-17 2005-09-01 Mqp Ltd Treatment of metal melts
WO2010005716A3 (en) * 2008-06-16 2010-03-18 Aubrey Leonard S Improved method for filtering molten aluminum and molten aluminum alloys
RU187182U1 (en) * 2018-06-29 2019-02-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого" Device for refining aluminum alloys

Similar Documents

Publication Publication Date Title
US4067731A (en) Method of treating molten metal
EP2439296B1 (en) Copper alloy having high strength and superior bending workability, and method for manufacturing copper alloy plates
US4007923A (en) Molten metal filter
EP0490371A2 (en) Multistage rigid media filter for molten metal
JPS589946A (en) Purifying method for molten al and al alloy
EP2544999B1 (en) Method for producing high purity silicon
EP2595724B1 (en) Method for cleaning a gas flow loaded with dust
JP2007039793A (en) Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
KR101151563B1 (en) Method for producing aluminum alloy thick plate and aluminum alloy thick plate
CN200988089Y (en) Purifying filter for shape variable magnesium alloy smelting and casting
TWI579441B (en) Method for producing briquettes and briquettes produced using the same
DE10055523C1 (en) Unit for filtration of, and finings addition to molten metal, includes filter, fining material addition station and second filter
KR102647640B1 (en) Method for purifying and recovering high purity silicon powder from silicon sludge
JP2011144433A (en) Continuous annealing furnace
TW524855B (en) Method and arrangement to regenerate a contaminated metal-fusion
EP1721020B1 (en) Treatment of metal melts
JP2007308769A (en) Method for manufacturing aluminum alloy thick plate, and aluminum alloy thick plate
JPH06346162A (en) Method for melting scrap metal and device therefor
JP4236555B2 (en) Exhaust gas treatment method for radioactive waste melting furnace
JP3348502B2 (en) Filtration method of molten Al or Al alloy
JP2007308767A (en) Method for producing aluminum alloy thick plate, and aluminum alloy thick plate
JPS61130430A (en) Cleaning method of molten al or al alloy refined by gaseous chlorine
CN116159363A (en) Iron filtering device and method for indirect air cooling circulating water system
JPH01162563A (en) Sprue part filter for light alloy casting
JPH07207357A (en) Filtration method of molten al or al alloy