GB2395923A - Sieving apparatus - Google Patents

Sieving apparatus Download PDF

Info

Publication number
GB2395923A
GB2395923A GB0228085A GB0228085A GB2395923A GB 2395923 A GB2395923 A GB 2395923A GB 0228085 A GB0228085 A GB 0228085A GB 0228085 A GB0228085 A GB 0228085A GB 2395923 A GB2395923 A GB 2395923A
Authority
GB
United Kingdom
Prior art keywords
sieve
screen
guide member
accordance
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0228085A
Other versions
GB0228085D0 (en
Inventor
David Aubrey Garrett
Miriam Meei Yunn Chong
Nigel John Mainwaring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Russell Finex Ltd
Original Assignee
Russell Finex Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Russell Finex Ltd filed Critical Russell Finex Ltd
Priority to GB0228085A priority Critical patent/GB2395923A/en
Publication of GB0228085D0 publication Critical patent/GB0228085D0/en
Priority to PCT/GB2003/005233 priority patent/WO2004050263A1/en
Priority to CNB2003801048811A priority patent/CN100413603C/en
Priority to AT03780325T priority patent/ATE511416T1/en
Priority to EP03780325A priority patent/EP1581349B1/en
Priority to US10/536,960 priority patent/US7497338B2/en
Priority to GB0511680A priority patent/GB2410708B/en
Priority to JP2004556514A priority patent/JP2006507934A/en
Publication of GB2395923A publication Critical patent/GB2395923A/en
Priority to US12/364,683 priority patent/US7694826B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/14Details or accessories
    • B07B13/16Feed or discharge arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • B07B1/40Resonant vibration screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/42Drive mechanisms, regulating or controlling devices, or balancing devices, specially adapted for screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • B07B1/50Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2230/00Specific aspects relating to the whole B07B subclass
    • B07B2230/04The screen or the screened materials being subjected to ultrasonic vibration

Abstract

An industrial sieving or screening machine has a resonator rod (14) on the separator screen (10). The rod extends between two spaced ends and has a transducer (16) located at one end to excite the rod (14) over its length to assist with deblinding the screen (10). The rod (14) may be spiral in shape or shaped with other smoothly blended complex curves such as an S-shape. A spiral rod resonator (14) fixed to the top of the sieve screen (10) may be used as a guide for material to be screened.

Description

SIEVING APPARATUS
Field of the Invention
_. 5 The present invention relates to sieves both for dry particulate solids and for liquids and particularly sieves in which an excitation source provides deblinding excitation of the sieve screen.
lO Background of the Invention
Most industrial sieving machines include some means of applying a primary vibratory movement to the sieving screen in order to facilitate product movement through the screen and also l5 to create a flow of material over the screen surface. This ensures maximum utilization of the active screening area and that oversized product can be transported to an outlet to be removed.
The primary vibratory movement is often a combination of horizontal and vertical reciprocating motion which may typically 20 be applied to the frame carrying the sieve mesh or screen in a variety of ways, such as by rotating out-of-balance weights, or a direct drive by a rigid crank or cam system.
A problem with sieving machines is blinding of the screen, particularly when sieving damp or sticky materials. Blinding is 25 a significant problem in the industrial sieving of certain powders and also in the straining of liquids. To overcome the blinding problem secondary vibrations, preferably flexural, have been applied to the screen, for example by impacts from deblinding discs or the application of high and ultrasonic 30 frequencies (see for example EP-A-0369572).
Typical ultrasonic frequencies are above 20kHz, and typical amplitudes of the ultrasonic vibration supplied to the mesh are a few (1-10) microns. However, ultrasonic energy is quickly dissipated in the screen, making it difficult to excite a large 35 screen area ultrasonically. Extended resonators to increase the distribution of ultrasonic energy over the screen are disclosed in EP 0652810. However, for large sieve areas, multiple transducers are still normally required.
It is also known to use guide members located above the 40 screen to improve the flow of material to be sieved over the
surface of the screen. For example, scroll-shaped guide members are used with circular sieves to ensure material to be sieved moves progressively from the centre of the screen, where it is first delivered, outwards in a generally spiral path, covering 5 nearly all regions of the screen surface before reaching the outlet for oversize particles at or near the screen periphery.
This increases the residence time over the screen, to maximise the opportunity for fines to pass through the screen. Other guide member shapes and arrangements are used for different sieve 10 designs, in each case to improve material flow over the screen to increase the time for undersize to separate from oversize.
Summary of the Invention
15 According to a first aspect of the present invention there is provided a sieve comprising: a base, a sieve screen frame mounted on the base, a sieve screen mounted in the frame, a vibrator arranged to vibrate the frame relative to the base, a guide member above the sieve screen for controlling flow of 20 material to be sieved over the sieve screen; and an excitation source arranged to vibrate the guide member so as to induce a deblinding excitation of the sieve screen.
The guide member typically comprises a bar-like member secured to the top surface of the sieve screen, and shaped to 25 control the flow of material over the sieve screen as desired.
Such an arrangement provides the advantage that the sieve screen can be excited over an extended area to provide a deblinding effect, whilst at the same time controlling the flow of material over the screen surface. Generally, the level of deblinding 30 excitation of the sieve screen decreases with increasing distance from the source of the excitation. In the above described aspect of the invention, the highest level of excitation is near the guide member, which is also where the majority of the material to be sieved tends to flow. As a result the effectiveness of the 35 sieve can be increased.
The material to be sieved may be a dry particulate solid or a liquid containing solid (or at least non-flowable) parts. In the case of a liquid the guide member can allow an increased head of the liquid to be retained over the sieve screen, which 40 improves throughput rate.
- 3 - Instead of being secured to the sieve screen, the guide member may be only in contact with the screen, e.g. pressing against the screen with sufficient pressure to enable vibrations in the guide member to be transmitted to the screen to provide 5 the debllnding excitation.
According to a second aspect of the present invention there is provided a sieve comprising: a base, a circular sieve screen frame mounted on the base, a circular sieve screen mounted in the frame and having a centre, 10 a vibrator arranged to vibrate the frame relative to the base, a resonator secured to or contacting the sieve screen, wherein the resonator takes the form of a spiral-like curve starting near the centre of the sieve screen, the curve having a progressively increasing radius of curvature and extending through at least 15 270 about said centre; and an excitation source arranged to excite the resonator, to induce a deblinding excitation of the sieve screen.
The progressive increase in curvature may be continuous or in one or more steps. This provides the advantage that the 20 excitation is spread more effectively over the surface of the screen than with prior art sieves, especially for large diameter
sieves. Although ultrasonic excitation of the sieve screen has been discussed previously, the invention is not so limited. For 25 example, the sieve screen may be excited at lower frequencies, or even by hitting or tapping the guide member.
Brief Description of the Drawings
_ 30 Embodiments of the present invention will now be described with reference to the accompanying drawings, in which: Figure l is a schematic diagram of a sieve embodying the present invention; Figure 2 is a plan view of the embodiment of figure l; 35 Figure 3 is a plan view of a further embodiment, showing the flow pattern of material over the sieve screen surface; Figure is a plan view of a still further embodiment, showing the flow pattern of material over the sieve screen surface; 40 Figure 'S is a plan view of a still further embodiment;
- 4 Figure 6 is a plan view of a still further embodiment, showing partial flow patterns over the surface of the sieve screen; Figure 7 is an enlarged view of a portion of figure 6i S Figure 8 is a plan view of a still further embodiment; Figure 9 is a plan view of a still further embodiment, which also shows the flow pattern of material over the screen surface; Figure 10 is a plan view of a still further embodiment; lo Flqures lla-d are detailed views of the guide member arrangement of figure 10; Figure 12 is a plan view of a still further embodiment; Figure 13 is a scrap cross-sectional view through figure 12 showing an enlarged view of the nodal decoupler; 15 Figure 14 is a plan view of a still further embodiment; Figure 15 shows a cross-sectional view along line A-A of figure]4; and Figure 16 is a cross-sectional view taken along line B-B in figure 14.
Detailed Description of the Preferred Embodiments
Referring now to Figure 1, this shows a sieve 2 embodying the present invention. The sieve 2 comprises a sieve screen 10 25 in the form of a mesh, which is held in a sieve screen frame 6, for example by clamping. The frame 6 and sieve screen 10 may be rectangular but a popular circular shape is shown in this example.
The sieve screen frame 6 includes an inner support frame 8, 30 which may take the form of an 'X' frame, although it may take other forms. The sieve screen frame 6 is attached to a lower cylindrical container 7, for example by clamping. An upper cylindrical container 9 is secured, e.g. also by clamping, on top of the screen frame 6 to act as a containment wall for the 35 product to be sieved when it is on the sieve screen surface 10.
The lower container has a domed floor 22. The lower container is secured on a skirt 18, e.g. by clamping.
The sieve also has a fixed base 4 which is attached to the floor 36, in this embodiment by using sieve stands 38. However, 40 in alternative embodiments the base may simply stand on a
suitable surface, may be fixed to a suitable surface or may be arranged on wheeled or other mounts.
The skirt is supported on the fixed base using a suspension support 20. In this particular embodiment the S suspension support 20 comprises a rod 19 attached to the skirt 18 and base 4 using elastomeric bushings 21. This arrangement permits both horizontal and vertical movement of the skirt 18 and therefore of the sieve frame 6 and sieve screen 10. Other methods may be used for supporting the sieve screen frame on the 10 fixed base, for example spring mounts.
A motor 23 is mounted on the fixed base 4 and flexibly attached, for example using a rubber coupling 25, to a vibrator 12. The vibrator 12 comprises a bearing housing 29 secured in the centre of the skirt 18, a motor shaft 24 which when the motor 15 is at rest is generally vertical, and upper and lower eccentric weights 26, 28. The upper eccentric weight 26 is attached to the upper end of the motor shaft 24. The lower eccentric weight 28 is attached to the lower end of the motor shaft 24. In this example the mass of the lower weight is greater than that of the 20 upper weight. However, the effective eccentricity of the mass of one or both of the upper and lower weights may be adjustable and the relative angular positions of the two weights on the motor shaft 24 can also be altered. By altering the effective eccentricity and the positions of the masses the vibration 25 transmitted using vibrator 12 may be varied to give optimum sieve performance for particular applications.
In use, vibrator 12 in combination with the suspension mounting of the skirt 18 will result in vibratory motion being imparted to the sieve screen frame 6 and thereby the sieve screen 30 10, such a motion having both horizontal and vertical components.
A guide member 14 is located on the sieve screen surface 10 and the guide member is used to control the flow of the material to be sieved over the sieve screen surface. An excitation source 16 is attached to the guide member 14 and excites the guide 35 member, preferably so that it moves in a vertical direction. The guide rmembor 14 thereby preferably drives a vertical vibration of the sieve screen 10. The excitation source 16 of this particular embodiment is additionally attached to the X-frame 8 for support.
The various methods of excitation and fixation will be described 40 in more detail subsequently.
For simplicity, how the material to be sieved is supplied to the sieve 12 is not shown. However, this may be at any point on the sieve screen surface, but is typically at or near the centre of a circular sieve or at one end of a rectangular sieve.
5 An outlet 32 for removal of oversized particles is shown and this will remove particles which remain on the sieve screen surface. Once particles with a size smaller than the apertures in the sieve screen frame have fallen through these apertures they are directed by the dome 22 towards an outlet 30 for fines.
l0 The dome 22 serves an additional purpose of preventing material which has fallen through the sieve screen from fouling the vibrator 12, and in particular the upper eccentric weight 26.
Although a dome is depicted in this particular embodiment, this feature may take other forms, for example a cone or a continuous 15 slope across the width of the sieve.
Also shown in this embodiment is a support device 34 which is attached to the guide member and is supported on the X-frame 8. The forms which may be taken by the support device 34 will be discussed subsequently.
20 Figure 2 shows a plan view of the sieving apparatus 2 of figure 1. The sieve 2 has a circular sieve screen frame 6 in which is secured a circular sieve screen 10 and in addition an X frame 8. On the surface of sieve screen 10 is located the guide member 14. The guide member 14 is secured to the sieve screen, 25 for example using an adhesive. The guide member 14 in this embodiment takes the form of a spiral-like shape having an inner end approximately at the centre of the sieve screen 10 and extending outwards with a steadily increasing radius of curvature through approximately 540 . The guide member 14 is secured to an 30 excitation source 16 which is located substantially at the centre of the sieve screen 10 and is supported on the X-frame 8. A support device 34 is located at the opposing end of the guide member 14 to support the guide member on the sieve screen 10.
There may also be other supports of the same or different type.
35 In use the vibrator 12 produces a substantially gyratory motion of the sieve screen 10. This movement encourages the flow of the material to be sieved outwards from the centre over the sieve screen surface. However, the material may be moved too quickly over the sieve screen surface to the outside of the 40 screen so that fines can be carried with the oversized particles
to the outlet 32, reducing efficiency. The guide member 14 controls the flow of material over the sieve screen surface and thereby increases the residence time of material on the sieve screen surface. This increases the efficiency of the sieve, 5 since there is a greater opportunity for fines to fall through the sieve screen apertures. Although it is known to optimise performance for different materials by adjusting the out-ofbalance weights 26 and 28 as mentioned above, this is a time consuming adjustment. The guide member 14 can ensure good 10 sieving performance over a wide range of materials. The guide member 14 is a bar-like member, typically having an L-shaped or rectangular section presenting sufficient height above the screen surface to restrict or substantially prevent material from crossing over the guide member during sieving.
15 As mentioned above, the guide member 14 is excited by excitation source 16 to impart deblinding excitation to the sieve screen 10. In a preferred example, which will be described in more detail later, the excitation source 16 is a source of ultrasonic vibration, and is adapted to excite the guide member 20 14 resonantly. In order to be a good transmitter of ultrasonic energy, the guide member should be preferably of metal, such as aluminium or stainless steel. The guide member 14 ensures the excitation energy from source 16 is distributed over the screen 10, to increase the area of the screen 10 which is sufficiently 25 excited to provide effective deblinding.
Figures 3 and 4 show alternative configurations of the guide member 14. In these embodiments the excitation source 16 is located towards the oversize outlet 32. In Figure 3, the guide member 14 has a circular part extending over about 300 of 30 arc, which is secured to be generally concentric in the sieve frame 6. One end of the arc bends outwards towards the frame 6 to the excitation source 16. In Figure 4, the circular part extends over only about 150 of arc. The flow patterns 39 for the material being sieved are also shown, from which it can be 35 seen that the material enters substantially at the centre of the sieve 2 and moves radially outwards from the point of entry in all directions. The guide member 14 alters the flow of the material so that it is directed in a spiral-like manner over the sieve screen surface 10. This increases exposure of the material 40 to the sieve screen and also the time the material is resident on
- 8 - the sieve screen surface. Although no support device 34 is shown in either Figure 3 or 4, if required this may be attached similarly to the guide member 14 as shown in Figure 2.
Figure 5 shows a further alternative for the shape of the 5 guide member 14. Again, the guide member 14 has one end substantially at the centre of the sieve screen 10. However, in this embodiment the guide member is made up of inter-connected sections, each section having a constant radius of curvature.
The points of interconnection of the sections provide cusp-like JO formations, which tend to deflect material inwards on the sieve screen as the material flows around inside the guide member 14.
This results in the material being exposed to more of the sieve screen surface and gives a greater opportunity for the fines to pass through the sieve screen aperture.
15 Figure 6 shows a further embodiment of the present invention. To assist in movement of the material across the sieve screen surface cusps 40 are attached to a spiral shaped guide member 14 and also the inner edge of the sieve screen frame 6. As shown in more detail in Figure 7 the cusps 40 act in a 20 manner similar to that described in respect of Figure 5 by deflecting material inwards as it flows past against the guide member 14 or the frame edge. The cusps 40 may be incorporated into the guide member 14 and sieve screen frame 6 during manufacture, or by the addition of separate pieces attached by 25 welding, or any other form of mechanical attachment subsequent to manufacture. Figure 8 shows a plan view of an embodiment of the present invention which is particularly suited for use in wet applications as well as dry applications. A plurality of 30 separate guide members 14 each have a respective excitation source 16. The guide members have minimal gaps between the end of one and the start of the next and together form a spiral shape so that the flow of material is directed over the sieve screen surface as for the single spire] shaped guide member. The 35 multiple guide members may take other forms as required to control material flows over the sieve screen. For example, the sections could be straight sections, particularly for a rectangular sieve. The use of additional excitation sources is advantageous, particularly though not exclusively for wet 40 applications, whenever a greater amount of energy is required for
- 9 - deblinding excitation of the sieve screen 10, e.g. to counter increased damping.
The previously described embodiments of the present invention have been circular sieves. However, the present 5 invention is also applicable to rectangular sieves, and examples are shown in Figures 9 and 10. In these examples, the action of the sieve tends to transport material over the sieve screen from one end to the other, e.g. top to bottom in the drawings. Guide members 14 directs the flow in a path traversing the sieve from lO one side to the other, maximlslng the sieve screen surface covered and residence time on the sieve screen. As before, the guide member 14 may be multiple with respective excitation sources 16, as shown in Figure 9, or there may be a single zig-zag guide member with a single excitation source 16 as shown IS in Figure 10. In the latter case the flow path must pass through the guide member and Figures lla to d illustrate two methods in which this may be achieved. Figure lla shows a bridge 41 formed in the guide member where a portion of the guide member 14 is raised to form an opening for the material to flow through.
20 Figures llb and c show a guide member 14 which has a T-cross section, and from which a portion 43 is removed to provide an opening for the product to flow through. In another embodiment, shown in Figure lid, the guide member 14 has multiple openings 45 along its length.
25 Figure 12 shows an embodiment similar to that of Figures 1 and 2 in which the spiral shaped guide member 14 is driven ultrasonically by a centrally mounted excitation source 16. The guide member 14 is supported part way along its length and at its outer end by respective supporting devices 34a and 34b. The 30 device 34a is further illustrated in scrap section in Figure 13 and will be described in detail below with reference to Flqure 16. As has been previously mentioned, the guide member may be ultrasonically excited, commonly at frequencies above 20 KHz.
35 Figure 16 provides a detailed illustration of an excitation source 16 configured to provide ultrasonic excitation and a support device 34 which is suitable for use with ultrasonic frequencies. The excitation source comprises a transducer 42 for 40 converting electrical energy to ultrasonic wave energy, for
- 10 example by using the piezoelectric effect. The transducer may be a half wave stack-type transducer of a kind which will be familiar to those experienced in ultrasonics. A circular resonator boss 44 is attached to the active end of the transducer 5 42. The resonator g4 converts the longitudinal vibration of the transducer to a transverse diaphragm mode. The excitation source 16 is supported on the X-frame 8 by the use of a central support 48. The dimensions of the central support 48 are chosen such that it is one half wavelength in length so that a node is formed 10 at a point about half way along the length of the central support 48. A cylindrical sleeve 50 is attached to the support 48 at the node point, and the sleeve 50 is secured to the X-frame 8, for example by welding. Because the connection to the central support is at a node, the mounting arrangement decouples the transducer 15 42 from the X-frame 8, minimising loss of ultrasonic energy to the frame.
The resonator 44 is attached at its outer periphery to the guide member 14 to transmit ultrasonic energy to the guide member. The dimensions of the guide member 14 are preferably 20 chosen so that the length is approximately a whole number of half wavelengths, so that the guide member 14 can be driven in resonance to maximise the transfer of ultrasonic energy from the transducer 42 into the guide member 14. However, the guide member 14 would normally be a substantial number of half 25 wavelengths long. Therefore, it is not necessary to make the guide member to have a length precisely equal to a whole number of half wavelengths, as it can readily be brought into resonance by a small change in the drive frequency of the transducer 42, without great loss of efficiency. Also, in some applications, 30 vibration of the guide member 14 may be damped, e.g. by the loading of the sieve screen and material to be sieved, to such a degree that little vibration energy is reflected at the far end of the member. Then, the guide member functions as a non- resonant transmission member rather than as a resonator.
35 Although resonator boss 44 is illustrated interconnecting the transducer 42 and the guide member 14, in some applications it may be satisfactory to connect the transducer 42 directly to the guide member 14 or through a different coupling system.
Also shown in Figure 16 is a support device 34 40 (corresponding to device 34b in Eigure 12) designed to support
the guide member 14 on the sieve screen 10. At ultrasonic frequencies it is preferable to provide a support device 34 which ultrasonically decouples the guide member 14 from the support frame, to which it is attached.
5 Accordingly, the support device 34 comprises a cylindrical resonator boss 52, that may be similar to boss 44, which is attached to the guide member]4, so that a diaphragm mode of vibration is excited in boss 52. At least one diaphragm mode node is therefore formed at a predictable position on the 10 resonator boss 52. Decoupling washers 54a, 54b have skirts which are located against the upper and lower surfaces 52a, 52b, of the resonator boss 52, at the diaphragm mode node. These decoupling washers 54a and 54b therefore experience minimal excitation. A support bracket 58 welded to the X-frame 8 engages the lower 15 decoupling washer 54b. A bolt 60 is used to clamp the resonator boss 52 between the washers 54a and 54b and the support flange 58 to secure the boss to the X-frame 8. The bolt 60 extends through an oversize hole in the resonator boss 52, so as not to contact the body of the resonator boss 52. This configuration 20 effectively decouples the guide member 14 from the X- frame 8, since the only point of contact with the resonator boss 52 is at the diaphragm mode node, i.e. a point of minimum vibration. This nodal decoupling boss is also described in GB-A-2343392. A similar construction is used for the support device 34a of 25 Figures 12 and 13.
The boss 52 may be excited to resonate in other modes, provided the point or points of contact with the boss are made at appropriate nodal points of the resonant mode to ensure decoupling. 30 Figures 14 and 15 show an alternative supporting arrangement for the guide member 14. Figure 15 shows flange 62 in the form of an inverted J. which is attached to the Xframe 8 and to the guide member 14. Although this construction of support provides less effective ultrasonic decoupling of the 35 guide member 14 from the X-frame 8, this may be sufficient for many purposes, provided the area of contact with the guide member 14 is small compared to a quarter wavelength of the resonant vibration of the member 14.
As has been previously mentioned, the excitation may be at 40 various different frequencies and the excitation source may
- 12 comprise a number of alternatives. For example, instead of using an ultrasonic transducer the excitation source 16 may comprise a pneumatic actuator vibrating the guide member 14 at lower frequencies, e.g. several tens or hundreds of hertz. This is 5 particularly advantageous in applications where the use of an electrically powered actuator may pose a fire or explosion risk.
A suitable pneumatic actuator is described in co-pending GB 0122852.7. The pneumatic vibrator may provide an impulse-type excitation of the guide member, e.g. by means of a reciprocating 10 mass in the pneumatic actuator, to cause high frequency resonant vibrations (or ringing) of the guide member.
Alternatively, electrically powered actuators may be used to provide lower frequency excitation.
Therefore in summary, mechanical, electro-mechanical,
15 pneumatic and other forms of actuators may be used in the excitation source of embodiments of the present invention.
Particularly at lower excitation frequencies it may not be necessary to excite the guide member at resonance, and the above described arrangements for decoupling excitation energy at the 20 supports for the guide member and/or the transducer may also not be required.
Although in the previously described embodiments the excitation source is directly coupled to the guide member, in other embodiments the excitation source may not be permanently 25 connected to the guide member, but may instead have a striking surface arranged to strike the guide member when the excitation source is energised. Also, the excitation source may be parasitic, that is dependent on the primary sieving action of the sieve frame. For example, the excitation source may comprise one 30 or more free or resiliently mounted parasitic bodies which are caused to move by the primary sieving action and to strike the guide member to produce the required deblinding excitation.
Striking of the guide member, either by a separately energised actuator or by a parasitic body, may induce resonant high 35 frequency ringing of the guide member.
Although the excitation source or transducer is shown in the previously discussed embodiments as being supported on an 'X' frame, the excitation source may in fact be wholly supported by the screen, or may be supported at least partially by a flexible 40 or rigid coupling to the frame or the fixed base.
- 13 The "sieve screen" may comprise a number of layers, for example it may comprise a first screen and second screen arranged above and supported by the first. In such multi-screen sieves, one or more of the guide members arranged on the screen may be 5 directly excited by the excitation source.
In all the embodiments described above, a guide member is fastened to the top of the sieve screen in order to control the flow of material to be sieved over the screen surface, as well as to provide for an effective deblinding excitation of the screen JO itself. In a further embodiment, a spiral shaped resonator is fastened beneath the screen. Figure 2 of thedrawings is also a schematic representation of this embodiment, except that the spiral resonator 14 illustrated in the drawing is secured beneath the sieve screen rather than on top. The spiral shape may have a 15 continuously increasing radius of curvature (as in Figure 2) or the radius may increase in one or more steps. Further the resonator 14 need not have a profile designed to provide a good deflecting action as is necessary when acting as a guide member on top of the screen. Instead, the resonator 14 may be a simple 20 rectangular section tube or solid bar, or else may have a strap shape having a larger dimension secured to the screen. In each case, the resonator 14 should preferably be made of metal or of another material which is an excellent propagator of acoustic energy. 25 The resonator 14 is excited by an ultrasonic transducer connected to the resonator 14 at the centre of the spiral as shown as 16 in Figure 2. Again the transducer and the spiral may be supported on an X- frame 8 beneath the sieve screen by decoupling arrangements as illustrated in Figure 16, except that 30 the resonant bosses 44 and 52 shown in 16 would be also located beneath the sieve screen.
The spiral resonator 14 is driven to resonance so that deblinding excitation is distributed over the sieve screen to increase the area of the sieve screen which is effectively 35 excited so that deblinding can be minimised. In order to provide effective distribution of the ultrasonic energy over the sieve screen area, the spiral should extend through at least 270 of arc, and preferably more than 360 of arc, as illustrated in Figure 2.
40 Importantly, the spiral design can allow deblinding
excitation to be distributed to a screen of larger sizes by increasing the number of turns of the spiral. In this way almost any practical screen size can be excited using a single length of resonator driven by a single transducer. This avoids the 5 problems of tuning the different lengths of a multiple rod resonator to the same driving frequency, and the additional complication of using multiple single rod resonators with respective separate transducers.
Preferably, the transducer is located at either end of the l0 resonator, but it may be at a location between the ends such that each part of the resonator has the same resonant frequency.
Other possible excitation sources for the resonator 14 include striking sources, both active (driven) and passive (parasitic), which apply impulses producing resonant ringing 15 vibration of the resonator 14.
Although the term resonator is used for the resonator 14 in this embodiment, the member may function more as a transmission member for the vibration energy transmitted to the member from a driven excitation source.
20 Embodiments of the invention may be applied also to sieves with multiple screens, for example multi layer screens with lower screens of increasing fineness for classifying materials into more than two particle sizes. Then one or more of the screens of the sieve may be fitted with the excited guide member, or the 25 spiral resonator, as described above.
It should also be understood that the generally spiral shaped guide members or resonators in various of the examples described above need not have an inner end at the centre of a circular sieve screen.
30 In a further example, a so-called cascade sieve has upper and lower screens of the same mesh, with oversize from the upper screen being fed on to the lower screen to retrieve remaining fines which may not have had an opportunity to pass through the upper screen. Fines which do pass through the upper screen are 35 collected and tunnellcd through an aperture in the centre of the lower screen. In such a cascade sieve design, the lower screen can be fitted with an excited guide member or a spiral resonator having an inner end terminating outside the central aperture of the lower screen.
40 The excitation induced in the guide member in the
embodiments of the invention described above has been referred to as one which produces a deblinding excitation in the sieve screen. Generally, secondary excitation of the sieve screen, e.g. at ultrasonic frequencies, is known to speed up the flow of 5 fines through the screen during sieving so that the productivity of the sieve is improved. This enhanced flow through the screen may be the result of other processes than the removal of blind areas on the screen, such as the fluidisation of the material at the screen interface. It should be understood that the term 10 deblinding used herein to describe the excitation applied to the screen is intended to encompass other processes by which the excitation enhances product flow rate through the screen compared to the rate achieved with only the basic vibratory sieve action.
In the above described examples of the invention, the guide 15 member or the resonator is described as being secured to the sieve screen. In other embodiments, the guide member may be only in contact with the screen, e.g. pressing against the screen with sufficient pressure to enable vibrations in the guide member to be transmitted to the screen to provide the deblinding 20 excitation. Where the embodiment provides only a resonator which does not necessarily act as a guide member, i.e. one which may be located beneath the sieve screen, the resonator again may be only in contact with the screen and not specifically secured to it.
Further, in examples of the invention which are intended 25 primarily for sieving (or straining) liquid materials, the guide member may be spaced above the sieve screen so as to make no direct contact with the screen over at least a part of the length of the guide member. Then, provided there is sufficient depth above the sieve screen of liquid to be sieved so as to fill the 30 gap between the guide member and the sieve screen itself, vibrations in the guide member are transmitted to the screen to provide the deblinding excitation through the liquid material.
Similar transmissions may also be possible through some dry materials. In practical arrangements, the spacing between the 35 guide member and the liquid material should not be so great or so extensive as to provide no effective control over the flow of the liquid material over the sieve screen. When the space between the guide member and the sieve screen is only a fraction of the head of liquid to be sieved which may be retained over the sieve 40 screen, the guide member still provides effective control of the
flow of the material to be sieved over the top of the sieve screen and simultaneously enables deblinding excitation (as defined above) to be transmitted to the sieve screen. When the guide member is not in contact with or secured to the sieve 5 screen over its entire length, the guide member may be mounted directly to the sieve screen frame or sieve deck, preferably by appropriate acoustic decoupling mounts, to minimise loss to the sieve screen frame of vibration energy supplied to the guide member for use in inducing deblinding excitation of the sieve 10 screen. In a yet further example of the invention using a guide member on top of the sieve screen, the guide member may form a substantially closed loop, for example a circle, which may be located concentrically in a circular sieve frame for example.
15 Then, the guide member may have multiple apertures through the guide member, for example in the manner illustrated in Figure lid, to permit material being sieved to flow outwards from within the closed loop guide member. The presence of the guide member, together with the apertures through it, have the effect of 20 controlling the outwards flow of material to be sieved under the main vibratory action of the sieve frame and screen. In this way, the residence time of material to be sieved over the sieve screen can be increased, to improve the chances of fines reaching the sieve screen and falling through. In this way, sieving 25 efficiency can be increased whilst at the same time ensuring good deblinding excitation of the screen.

Claims (22)

  1. - 17 CLAIMS:
    A sieve comprising: a based 5 a sieve screen frame mounted on the base; a sieve screen mounted in the frame; a vibrator arranged to vibrate the frame relative to the base; a guide member above the sieve screen for controlling flow 10 of material to be sieved over the sieve screen; and an excitation source arranged to vibrate the guide member so as to induce a deblinding excitation of the sieve screen.
  2. 2. A sieve in accordance with claim l, wherein the excitation 15 source is attached to the guide member.
  3. 3. A sieve in accordance with either of claim l or claim 2, wherein the sieve screen frame and sieve screen are circular.
    20
  4. 4. A sieve in accordance with claim 2, wherein the guide member takes the form of a spiral-like curve having a progressively increasing radius of curvature and extending through at least 270 .
    25
  5. 5. A sieve in accordance with either claim l or claim 2, wherein the sieve screen frame and sieve screen are rectangular.
  6. 6. A sieve in accordance with claim 5, wherein the guide member is a single zig-zag-shaped rod having at least one 30 aperture above the sieve screen through which material to be sieved can flow.
  7. 7. A sieve in accordance with any of claims l to 5, having a plurality of said guide members, each having a respective said 35 excitation source.
  8. 8. A sieve in accordance with any preceding claim, wherein the guide member is secured to the top surface of the sieve screen.
    40
  9. 9. A sieve in accordance with any of claims l to 7, wherein
    - 18 the guide member is in contact with the top surface of the sieve screen.
  10. 10. A sieve in accordance with any of claims 1 to 7 5 particularly for sieving a liquid material, wherein the guide member is spaced from the top surface of the sieve screen and the deblinding excitation is transmitted to the sieve screen through said liquid material.
    lO
  11. 11. A sieve comprising: a base; a circular sieve screen frame mounted on the base; a circular sieve screen mounted in the frame and having a centre; l5 a vibrator arranged to vibrate the frame relative to the base; a resonator secured to or contacting the sieve screen, wherein the resonator takes the form of a spiral-like curve starting near the centre of the sieve screen, the curve having a 20 progressively increasing radius of curvature and extending through at least 270 about said centre; and an excitation source arranged to excite the resonator, to induce a deblinding excitation of the sieve screen.
    25
  12. 12. A sieve in accordance with any preceding claim, wherein the excitation source comprises a pneumatic actuator.
  13. 13. A sieve in accordance with any preceding claim, wherein the excitation source comprises an electrically powered actuator.
  14. 14. A sieve in accordance with any preceding claim, wherein the excitation source provides ultrasonic excitation.
  15. 15. A sieve in accordance with any preceding claim, wherein the 35 sieve further comprises a support frame beneath the sieve screen.
  16. 16. A sieve in accordance with claim 15, wherein said excitation source comprises a transducer, resonator, and a support device, which supports the excitation source on the 40 support frame and also acts to minimise the excitation of said
    - 19 support frame.
  17. 17. A sieve in accordance with claim 16, wherein an additional support device for the guide member is provided at a node and is 5 attached to the guide member such that excitation of the support frame is minimized.
  18. 18. A sieve in accordance with any of claims 1 to 14, wherein the excitation source is not attached to the guide member and has 10 a striking surface arranged to strike the guide member when the excitation source is energised.
  19. 19. A sieve in accordance with any of claims 1 to 14, wherein the excitation source is not attached to the guide member and has 15 a contact surface arranged to apply pressure to the guide member to communicate vibrations to the guide member when the excitation source is energized.
  20. 20. A sieve in accordance with any preceding claim, wherein the 20 sieve screen comprises a first screen and second screen arranged above and supported by the first screen, the excitation source being operative to vibrate at least one of the guide members located on the first and second screens.
    25
  21. 21. A sieve in accordance with any preceding claim, wherein the excitation source is parasitic, depending on the vibration of the frame produced by said vibrator.
  22. 22. A sieve substantially as herein described with reference to 30 the accompanying drawings.
GB0228085A 2002-12-02 2002-12-02 Sieving apparatus Withdrawn GB2395923A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
GB0228085A GB2395923A (en) 2002-12-02 2002-12-02 Sieving apparatus
JP2004556514A JP2006507934A (en) 2002-12-02 2003-12-01 Sieve
EP03780325A EP1581349B1 (en) 2002-12-02 2003-12-01 Sieving apparatus
CNB2003801048811A CN100413603C (en) 2002-12-02 2003-12-01 Sieving apparatus
AT03780325T ATE511416T1 (en) 2002-12-02 2003-12-01 SCREENING DEVICE
PCT/GB2003/005233 WO2004050263A1 (en) 2002-12-02 2003-12-01 Sieving apparatus
US10/536,960 US7497338B2 (en) 2002-12-02 2003-12-01 Sieving apparatus
GB0511680A GB2410708B (en) 2002-12-02 2003-12-01 Sieving apparatus
US12/364,683 US7694826B2 (en) 2002-12-02 2009-02-03 Sieving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0228085A GB2395923A (en) 2002-12-02 2002-12-02 Sieving apparatus

Publications (2)

Publication Number Publication Date
GB0228085D0 GB0228085D0 (en) 2003-01-08
GB2395923A true GB2395923A (en) 2004-06-09

Family

ID=9948926

Family Applications (2)

Application Number Title Priority Date Filing Date
GB0228085A Withdrawn GB2395923A (en) 2002-12-02 2002-12-02 Sieving apparatus
GB0511680A Expired - Lifetime GB2410708B (en) 2002-12-02 2003-12-01 Sieving apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
GB0511680A Expired - Lifetime GB2410708B (en) 2002-12-02 2003-12-01 Sieving apparatus

Country Status (7)

Country Link
US (2) US7497338B2 (en)
EP (1) EP1581349B1 (en)
JP (1) JP2006507934A (en)
CN (1) CN100413603C (en)
AT (1) ATE511416T1 (en)
GB (2) GB2395923A (en)
WO (1) WO2004050263A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708492B (en) * 2009-12-18 2012-06-20 唐志 Novel vibrating screen

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1777339B1 (en) * 2005-10-19 2010-10-06 Voith Patent GmbH Screening device for paper pulp
JP4729385B2 (en) * 2005-11-08 2011-07-20 株式会社村上精機工作所 Vibrating sieve device
US20070108106A1 (en) * 2005-11-16 2007-05-17 Burnett George A Shakers with primary and auxiliary vibrators
US20090261023A1 (en) 2006-09-25 2009-10-22 Basf Se Method for the Classification of Water Absorbent Polymer Particles
US7726871B2 (en) * 2006-12-20 2010-06-01 Exxonmobil Research & Engineering Company Vibration actuation system with independent control of frequency and amplitude
EP2067534A1 (en) * 2007-12-05 2009-06-10 Artech Systems AG Screaning system with tube-like screan and method for operating a screaning system with tube-like screan
CN101837345B (en) * 2010-04-13 2012-07-04 郑州大学 Device and method for automatically removing blocked materials in screen meshes of vibrating screen
US9339859B2 (en) * 2010-06-11 2016-05-17 Thermal Structures, Inc. Reciprocating devices for forming, folding, and/or hemming and methods therefor
ITMO20100264A1 (en) * 2010-09-23 2012-03-24 In Te Sa S P A ULTRASONIC SANDING MACHINE.
GB201113007D0 (en) 2011-07-28 2011-09-14 Q Chip Ltd Bead collection device and method
FR2979262B1 (en) 2011-08-30 2013-09-13 Meur Jean-Pierre Le DEVICE AND METHOD FOR SEPARATING PRODUCTS
JP6037202B2 (en) 2012-06-07 2016-12-07 株式会社リコー Vibrating sieve device
CN102836812A (en) * 2012-09-04 2012-12-26 深圳市金瑞中核电子有限公司 Full-automatic chamfering separator for magnet ring blank
DE102012108529A1 (en) * 2012-09-12 2014-03-13 Artech Systems Ag Apparatus and method for ultrasonic sieving
CN103990594A (en) * 2014-05-13 2014-08-20 南通市建筑科学研究院有限公司 Vibrating screening machine for gravel
WO2016052166A1 (en) * 2014-09-30 2016-04-07 東レ株式会社 Cylindrical sieve device and granular material-sorting method using same
WO2016057805A1 (en) * 2014-10-08 2016-04-14 M-I L.L.C. Drill cuttings circular separator
WO2016142454A2 (en) * 2015-03-10 2016-09-15 Telsonic Holding Ag Screening system, eddy-current screening machine, and use of a screening system or of an eddy-current screening machine
DE102015114076B3 (en) * 2015-06-18 2016-05-25 assonic Mechatronics GmbH screening system
CN105964535A (en) * 2016-06-28 2016-09-28 郭坚 Vibrating type screening machine capable of distributing material flexibly and uniformly
DE102017106930B4 (en) * 2017-03-30 2020-10-08 Haver & Boecker Ohg Sieve device
CN107597588A (en) * 2017-10-12 2018-01-19 浙江凯晨工贸有限公司 A kind of multiple field vibratory sieve for grain sorting
CN108212765A (en) * 2018-03-19 2018-06-29 浙江恒烨新材料科技有限公司 A kind of Masterbatch vibration screening system improved structure
DE102018115831A1 (en) 2018-06-29 2020-01-02 IB Verfahrens- und Anlagentechnik GmbH & Co KG Screening machine and method for screening powdered material
US10456711B1 (en) * 2018-11-29 2019-10-29 Merichem Company Liquid-liquid mass transfer process and apparatus
JP2022547094A (en) * 2019-09-06 2022-11-10 ノヴォ ノルディスク アー/エス Method and apparatus for fractionation of granules for use in pharmaceutical compositions
CN110560356B (en) * 2019-09-17 2021-08-10 安徽隆跃农业发展有限公司 Agricultural seed multi-stage screening device
DE102020120296B3 (en) 2020-07-31 2021-03-04 Wegen Gmbh Sieve device
CN112474287A (en) * 2020-11-19 2021-03-12 安徽子延科技有限公司 Screening system for paint production
EP4000752A1 (en) * 2020-11-20 2022-05-25 A O Ideas GmbH Screening tool and screening device
FR3121850A1 (en) * 2021-04-19 2022-10-21 Sodeva Tds ULTRASOUND DEVICE AND ULTRASOUND-ASSISTED SIEVE INTENDED TO BE OPERATED IN AN ATMOSPHERE CONTAINING EXPLOSIVE DUST

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU570414A1 (en) * 1975-06-05 1977-08-30 Предприятие П/Я А-1928 Spiral sieve
SU757212A1 (en) * 1977-01-12 1980-08-23 Vni Gorno Metall I Tsvet Met Vibration sieve
US5213216A (en) * 1989-12-28 1993-05-25 Osaka Gas Company Limited Vibratory sieve with screen and annular ring member thereon
JP2002205015A (en) * 2001-01-15 2002-07-23 Koei Sangyo Kk Vibrating screening machine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1193346B (en) * 1961-11-07 1965-05-20 Allgaier Werke G M B H Sieving machine with non-rotating round sieves
JPS5731986Y2 (en) * 1979-03-16 1982-07-14
JPS6243684U (en) * 1985-09-06 1987-03-16
GB2221406B (en) * 1988-08-12 1992-05-27 Vni Pi Mekh Obrabotki Vibratory screening machine
JPH0815587B2 (en) * 1992-05-01 1996-02-21 東亜工業株式会社 Vibrating sieve
EP0652810B2 (en) * 1993-05-26 2002-07-03 Telsonic Ag Process and device for sifting, sorting, screening, filtering or sizing substances
US5799799A (en) * 1996-05-06 1998-09-01 Kason Corporation Ultrasonic screening system
FR2768948B1 (en) * 1997-09-30 1999-12-24 Sinaptec SCREENING AND CLEANING SUPPORT DEVICE WITH ULTRA-SOUND VIBRATING STRUCTURE AND SCREENING INSTALLATION EQUIPPED WITH SUCH A DEVICE
GB9822880D0 (en) * 1998-10-21 1998-12-16 Russel Finex Improved efficiency ultrasonic sieving apparatus
UA74544C2 (en) * 1999-03-28 2006-01-16 Vibtec Engineering Ltd Multifrequency vibratory system, vibratory separator and method for vibratory separation
JP2001104884A (en) * 1999-10-04 2001-04-17 Fuji Xerox Co Ltd Ultrasonic vibration sieving machine and method for manufacturing electrophotographic toner
US7182206B2 (en) * 2002-05-03 2007-02-27 M-I L.L.C. Screen energizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU570414A1 (en) * 1975-06-05 1977-08-30 Предприятие П/Я А-1928 Spiral sieve
SU757212A1 (en) * 1977-01-12 1980-08-23 Vni Gorno Metall I Tsvet Met Vibration sieve
US5213216A (en) * 1989-12-28 1993-05-25 Osaka Gas Company Limited Vibratory sieve with screen and annular ring member thereon
JP2002205015A (en) * 2001-01-15 2002-07-23 Koei Sangyo Kk Vibrating screening machine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WPI A.A.N:1978-F3207A [25] & SU 570414 *
WPI A.A.N:1981-31968D [18] & SU 757212 *
WPI A.A.N:2002-604308 [65] & JP 2002-205015 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708492B (en) * 2009-12-18 2012-06-20 唐志 Novel vibrating screen

Also Published As

Publication number Publication date
JP2006507934A (en) 2006-03-09
CN1720109A (en) 2006-01-11
GB0511680D0 (en) 2005-07-13
GB0228085D0 (en) 2003-01-08
US7497338B2 (en) 2009-03-03
US20090194467A1 (en) 2009-08-06
US7694826B2 (en) 2010-04-13
ATE511416T1 (en) 2011-06-15
GB2410708A (en) 2005-08-10
CN100413603C (en) 2008-08-27
EP1581349A1 (en) 2005-10-05
EP1581349B1 (en) 2011-06-01
GB2410708B (en) 2006-01-11
WO2004050263A1 (en) 2004-06-17
US20060043006A1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
US7694826B2 (en) Sieving apparatus
AU773885B2 (en) A multifrequency vibratory separator system, a vibratory separator including same, and a method of vibratory separation of solids
US20050072717A1 (en) Sieving apparatus
JP3509863B2 (en) Apparatus and method for sieving, sorting, filtering, filtering or sizing substances
US8485364B2 (en) Multifrequency sieve assembly for circular vibratory separator
US5386169A (en) Device for causing an untuned structure to vibrate ultrasonically
US6003679A (en) Sieving device with duel independent frequency input
CA2086951A1 (en) Ultrasonic wave generator and floating or suspended particle collecting apparatus using the same
US6679386B2 (en) Low-density particle sizing apparatus and method
US3330411A (en) Screen with spring supported vibratory drive
RU2478445C1 (en) Multifrequent screen assembly for ciecle vibrating separatos
US5397002A (en) Variable control screen apparatus
RU2256515C2 (en) Multifrequency vibration separation system, vibration separator on the base of the system and method of vibration separation of solid particles
US5456364A (en) Powered screening apparatus
RU210586U1 (en) VIBRO IMPACT SCREEN
US3478406A (en) Screening separator
JP2003001193A (en) Vibration screening machine
JPH04180873A (en) Vibrating sieve apparatus
CN2754742Y (en) Circular hollow ultrasonic vibrator of rotary screening machine and rotary vibratina screenina machine
SU1061336A1 (en) Vibratory sieve
SU716633A1 (en) Jigging sieve
SU939133A1 (en) Vibration sieve
IL129209A (en) Multifrequency vibratory separator system, a vibratory separator including same, and a method of vibratory separation of solids
SU1708438A1 (en) Grain separators
SU1692680A1 (en) Separator for seeds

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)