GB2341866A - Water-absorbing granular compositions - Google Patents

Water-absorbing granular compositions Download PDF

Info

Publication number
GB2341866A
GB2341866A GB9922379A GB9922379A GB2341866A GB 2341866 A GB2341866 A GB 2341866A GB 9922379 A GB9922379 A GB 9922379A GB 9922379 A GB9922379 A GB 9922379A GB 2341866 A GB2341866 A GB 2341866A
Authority
GB
United Kingdom
Prior art keywords
water
compositions
polymeric material
insoluble
processes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9922379A
Other versions
GB9922379D0 (en
GB2341866B (en
Inventor
Peter Ralph Skidmore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IND ZEOLITE
Original Assignee
IND ZEOLITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IND ZEOLITE filed Critical IND ZEOLITE
Publication of GB9922379D0 publication Critical patent/GB9922379D0/en
Publication of GB2341866A publication Critical patent/GB2341866A/en
Application granted granted Critical
Publication of GB2341866B publication Critical patent/GB2341866B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/12Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing soil minerals
    • A01G24/13Zeolites
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/12Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing soil minerals
    • A01G24/15Calcined rock, e.g. perlite, vermiculite or clay aggregates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/30Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
    • A01G24/35Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds containing water-absorbing polymers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • A01G24/42Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure of granular or aggregated structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/18Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Soil Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Water-absorbing compositions in granular form, useful in personal hygiene products such as cateminials and diapers and personal care products such as incontinence padding, as well as also in horticultural or agricultural contexts, comprise both super-absorbent water-insoluble polymeric material capable of absorbing water to form a gel without dissolving therein and at least one other water-insoluble but non-polymeric material, the granular composition substantially consisting of a co-granulate between all the water-insoluble materials present wherein each granule contains all said materials in substantially the same relative proportions as those wherein they are present in the composition as a whole. The polymeric material typically includes a part-neuralised cross-linked polyacrylic acid, whilst the non-polymeric material may be an aluminosilicate, a silicate, carbon, an absorbent earth, an expanded clay mineral, or an organic fibre. Processes for preparing the compositions are also described.

Description

2341866 - 1 WATER-ABSORBING COMPOSITIONS AND PROCESSES FOR THEIR
MANUFACTURE The present invention is concerned with water-absorbing compositions (particularly those based on hydrogel -form i ng super-absorbers) and processes for their manufacture. Such compositions may find diverse uses, but most commonly in the preparation of items for personal hygiene, such as cateminials and diapers, and for personal care, such as incontinence padding - and this invention will be described below primarily in that context. Economics permitting, the compositions are however also highly effective for various horticultural and agricultural purposes, as will be mentioned hereinafter.
Water-insoluble, hydrogel-forming polymers are already well known for personal hygiene, and perhaps to a more limited extent [because of economic considerations] for horticultural and agricultural use, in view of their ability to take-up, and subsequently retain water swelling with the water-uptake but without dissolving therein. They are commonly known as "super-absorbers", or "super-absorbent polymers' (sometimes SAPs) and those terms will be used herein as a convenient abbreviation for such water-insoluble polymeric materials.
Super-absorbers are usually employed in the form of granules, the optimum size of the granule depending on the intended use. Often, though not necessarily always, the super-absorbers used are based on part neutralised polyacrylate polymers. Such polymers can be made by methods -2 such as that disclosed in EP 0,530,438, and before use they are conventionally blended into intimate mixtures with other materials, for instance so as to modify their surface properties, as described in for example GB 2,162,525.
It is however by no means easy to obtain a suitable granular material that incorporates a variety of desirable but different components and yet has sufficient homogeneity overall. Apart from anything else, each of the intended components must be brought into the right physical form before blending, otherwise the mixture cannot be expected to-be-homqgeneous.
Thus, for example, the super-absorber polymer must be made, ground, sieved, cross-linked as necessary and granulated. And other components, such as zeolites and colloidal silica, while normally available in finely powdered form, will usually need to be agglomerated to a suitable size prior to incorporation in the blend. Preliminary processing steps of this kind all add to the cost of preparing the desired final product. Even so, unless highly efficient blending methods are used, there is always a risk of some non homogeneity in the resulting product when first made - and subsequently there is a danger of segregation of the various components leading to non homogeneity especially if some of the granules are rather frangible and therefore liable to break up again into finer particles.
The present invention seeks to provide improved water-absorbing compositions and processes for their preparation. We have found that the homogeneity of the end-product can be ensured and retained by forming a co-granulate between the super-absorbent water-insoluble polymer(s) and other water-insoluble but non-polymeric materials, and furthermore that contrary to expectation their incorporation into such a co-granulate does not noticeably impair the ability of the super-absorbers to take up water. We have moreover also found that such co-granulates, at least those of the preferred nature and proportions hereinafter disclosed, also display a whollyunexpected and highly-useful reduction in frangibility.
According to one aspect of this invention there are provided waterabsorbing compositions in granular form comprising both superabsorbent water-insoluble polymeric material capable of absorbing water to form a gel without dissolving therein and at least one other water-insoluble but nonpolymeric material, said granular composition substantially consisting of a cogranulate between all the water-insoluble materials present wherein each granule contains all said materials in substantially the same relative proportions as those wherein they are present in the composition as a whole.
The super-absorbent polymeric material employed may be any such material that will absorb water without dissolving therein. The term is used by experts in this field, and therefore understood by them, so it should need no further definition. Merely in case there could be a need to distinguish them from ordinarily absorbent material, that could be done on the basis that super-absorbent materials will absorb and retain more than their own weight of water - but those habitually employed for this purpose should in fact be capable of absorbing and retaining several times as much as that.
The already-used such water-absorbing resins employed in personal hygiene products include the hydrolyzate of a starch-acrylonitrile graft polymer, the neutralisation product of a starch-acrylic acid graft polymer, the saponification product of a vinyl acetate-acrylic ester copolymer, the hydrolysate of an acrylonitrile copolymer and the hydrolysate of an acrylamide copolymer.
The currently-preferred super-absorbent polymeric material for use in personal hygiene products is a part-neutralised watprAnsoluble hydrogelforming resin derived from cross-linked polyacrylic acid.
Such super-absorbent polymeric materials may be pre pared by bulk or precipitation polymerisation, for example by the method desceibed in EP 0, 530,438. For example, cross-linked polyacrylates may be prepared by mixing acrylic acid, or a derivative, such as acrylamide, methacrylic acid or methyl methacrylate, singly or in admixture, with cross-linkers and other desired additives, such as water-soluble modified cellulose, and polymerising the mixture in bulk, in film form (for example up to about 5cm depth) or dispersed as droplets in a non-polar solvent such as hexane.
The water-insoluble non-polymeric material(s) selected in any particular case will depend primarily on the intended use for the water- absorbing composition. Subject to circumstances, including availability and cost, a wide range of such materials may find employment.
When the end-product is intended for horticultural or agricultural use, the water-insoluble non-polymeric material(s) may include absorbent earths (preferably a diatomaceous earth) or expanded clay minerals (e.g. bentonite, dicalite, kaolin and most advantageously perlite) as well as organic fibres (preferably cellulose-based fibres such as wood pulp and cotton-wool).
When the end-product is intended for use in personal care products (e.g. incontinence pads) where aesthetic considerations are not of paramount importance, the water-insoluble non-polymeric material(s) may include those suggested for other purposes, but also carbon (for example activated carbon or carbon black) which is highly effective but can. impart..an' Unsightly Iggreyness" to the end-product.
When the end-product is intended for use in personal hygiene products, we currently prefer that the other water-insoluble non- polymeric material employed should consist of or include an aluminosilicate, which may be amorphous or crystalline, for example a zeolite such as zeolite A, P, X or Y.
These forms of zeolite differ in their crystal structure and AIS ratios.
The aluminosilicates may be in sodium or potassium form, or ion-exchanged with other cations such as barium, calcium, magnesium and zinc. Although all these forms of zeolite are about equally effective, for reasons of availability and cost we prefer to use zeolite A.
Alternatively or in addition, the water-insoluble non-polymeric material may also advantageously consist of or include a silicate, for example colloidal silica or silica gel. If silicate is used, it is preferably incorporated in the form of silica gel, suitably obtained from sodium silicate by treatment with acid, e.g.
sulphuric acid. We have found that there is no need to remove the residual sodium salt thus produced (e.g. Na2S04)which would normally be filtered off to provide a commercial ly-acceptable grade of silica gel. It has been found that the residual sodium sulphate or other salt does little or no harm even if serving merely as a filler (while it may arguably serve an useful purpose in combating bodily odours of aminic nature) and even if it were marginally unwanted any such disadvantage would be outweighed by the reduction in processing costs achieved by its non-removal.
It is in fact a preferred feature of the compositions of this invention, especially when they are intended for a personal hygiene end-use, that the other water-insoluble non-polymeric materials should include both zeolite and silicate. This is thought to enhance the ability of the compositions to combat bodily odours. Zeolite is basic in nature, and therefore can be expected to react with and neutralize acidic odour- producing substances such as phenols and thiols, whereas silica is acidic in nature and therefore can be expected to react with and neutralize basic odour-producing substances such as amines.
When both zeolite and silica are present, since both are advantageous the benefits of their incorporation can be secured over a wide range of relative proportions. There is however some evidence that currently persuades us that in this case the optimum relative proportions of the basic ingredients is about SAP - Zeolite.. Silica = 1 - 0.5: 0.7 where "SAF is used as an abbreviation for super-absorber polymer.
Besides the basic ingredients specified above, the compositions of this invention may and often will additionally include one or more performanceenhancer(s) and/or filler(s).
In the case of compositions especially intended for end-use in personal hygiene or personal care products, the performance-enhancer can advantageously be a deodorizer, notably one or more source(s) of sulphurreactive metal cations and/or insoluble compounds of such metals. There are a number of such metals capable of performing this function, but at the practical level of availability and cost the choice falls on soluble zinc salt(s) and/or zinc carbonate and/or zinc oxide.
In the case of compositions especially intended for end-use in an horticultural or agricultural context, the performance-enhancer can advantageously include one or more of the following, viz. plant-nutrients and/or trace elements and/or slow-release and/or systemic insecticide(s) and/or hormonal rooting stimulants and/or degradation retardant(s).
For horticultural or agricultural use a preferred composition comprises, in parts by weight, from 90% to 99.5% of the super-absorbent polymeric material and from 10% to 0.5% of the water-insoluble non-polymeric material.
The water-absorbing composition for use in personal hygiene products will preferably contain, in parts by weight, from 20% to 80% of the superabsorbent polymeric material, and from 80% to 20% of the other waterinsoluble but non-polymeric material, the balance (if any) of the composition being water and/or binder(s) and/or enhancer(s).
It may also be useful in certain circumstances to apply a surface coating of an inert powder such as talc or zeolite (where the zeolite is not otherwise a component of the agglomerate), the surface coating acting as a flow aid, reducing the tendency to become sticky on storage.
According to another aspect of this invention there are also provided processes for preparing water-absorbing compositions in which a super absorbent water-insoluble polymeric material in particulate form is intimately mixed with at least one other water-insoluble but non-polymeric material also in particulate form and the resulting mixture is granulated, Jogether with a liquid granulating agent, so as to form a co-granulate wherein each granule contains all said materials in substantially the same relative proportions as those wherein they are present in the composition as a.whole, and-"the resultant co-granulate is dried.
The granulating agent may most conveniently and economically be water, which however can if desired include a suitable binding agent.
Suitable binding agents include, but are not restricted to, modified starches and celluloses, gums and vinyl polymers.
Preferably, the super-absorbent water-insoluble polymeric material and the other water-insoluble but non-polymeric material may be supplied in finely divided form (thus without preliminary agglomeration) prior to co granulation.
In the preparation of the composition:
- the super absorber polymeric material is preferably incorporated in -9 ground form, and may be cross-linked; - if it employs zeolite, this is preferably incorporated either as a powder or still more advantageously as a slurry in water; and:
- if it employs silicate, this is preferably incorporated as undried silica gel, which moreover can be premixed with metal compounds and complexes such as oxides, hydroxides, carbonates, molybdates and phosphates, which in the case of sources of sulphur-reactive metal cations (such as zinc ions and/or insoluble compounds of such metals, e.g. zinc carbonate and/or zinc oxide) will serve as deodorizers in personal hygiene products, and in other cases will serve as plant nutrients and/or trace elements (such as molybdenum and/or copper) in horticultural -type products.
It will be appreciated that the water present in the aqueous zeolite slurry and/or in the silica gel will serve as the granulating liquid or part of it.
The granulation procedures to be adopted will be chosen dependent on the size of granules to be obtained. Methods and procedures for size enlargement, such as granulation and agglomeration, are well known in the art and are described in standard text books such as the Chemical Engineers' Handbook (Perry R. H. & Chilton C. H., McGraw-Hill) as well as the literature available from manufacturers.
The drying conditions are standard, and the temperatures employed will normally be in the range of from 500 to 650C, preferably between 1000 and 1500C.
The granulation is suitably effected to give a granule particle size _10believed to be appropriate to the intended use. For the cases currently envisaged, the granule particle size will generally be within the broad range of from 45pm to 5mm.
Within that broad range, there are however narrower ranges usually adopted for particular purposes. Thus for example in horticulture or agriculture the range of from 45 to 150pm is usually adopted when the enduse of the product is to be in seed-beds, while the range of from 500 to 850pm may be preferable when the end-use envisaged is to be in plantcontainers such as pots or flower-baskets, and the range of from 2mm to 5mm is probably best, when the end-use contemplated is for packing round the root-ball of transplanted shrubs or small trees.
On the other hand, for end-use in personal care products and especially in personal-hygiene products a granule particle size in the range of from 100 to 500pm will generally be preferred.
We have found that the process in accordance with the invention enables one to employ readily available starting materials of moderate cost without the need for elaborate processing steps prior to formulation of the composition. Thus, for example there is a considerable saving on processing cost if one can use silica gel without the requirement first to filter off sodium sulphate therefrom and/or if one can employ zeolite still in its slurry form.
The resulting product has been found to exhibit excellent homogeneity and to present a comparatively large surface area of super-absorbent for use in taking-up water. In addition, material segregation problems are reduced, - 11 because of the homogeneity of the product. Material handling properties are also improved because of the higher mechanical strength (low frangibility) of the co-granulates as compared with the granulated materials, such as Zeolite A normally used in the blended mixtures. Unwanted granule particle size 5 reduction and dust formation are thus reduced.
The invention of course also extends to water-absorbing compositions when prepared by the processes as herein described.
In order that the invention shall be well understood it will now be further described, though only by way of illustration, in the following examples 10 and with reference (where indicated) to the accompanying drawings.
Example 1: Water-Absorbinq Composition containin-q Zeolite 5kg of finely divided cross-linked polyacrylate super-absorbent polymer (predominantly of particle size below about 150pm) and 5 kg of Zeolite 4A were blended in a ploughshare mixer fitted with internal chopper 15 blades and mixed until a visually homogeneous dry mix was produced. Mixing was continued and water sprayed onto the mix until a friable crumb was produced. The damp mix was then dried to produce hard granules which were then milled and graded through standard mesh sieves and the fine (<l 50pm) and coarse (>850pm) fractions removed for reprocessing.
Example 2: Water-Absorbing Composition containing Silica Gel 10kg of a 3.3A ratio (Si02:Na20) silicate solution containing 40% total solids was reacted with dilute (25%) sulphuric acid and the resultant gel -12 chopped in the mixer of Example 1. 3kg of super-absorbent polymer were then blended into the mass, after which the mass was extruded, dried, milled and graded as in Example 1.
Example 3: Comparative Frannibility Tests For the purposes of this Example, frangibility is defined as the percentage reduction in median particle size (d5O, log-probability) of a powder when milled in a standardised way. This means that the smaller the frangibility of a material the more resistant the material is to "work damage" and the smaller the amount of dust produced during processing.
For this Example there was used a stainless steel ball mill of 1.05 litre capacity with a polished interior surface, internal diameter 11 5mm, containing 8 polished stainless steel balls each weighing 28.0g.
The median particle size of a 50.Og sample of each material was determined, the sample was then milled for 5.00 minutes at 100 rpm, the median size particle size of the milled sample was again determined, and the frangibility of the granulate was calculated by comparing the "before" and It after" median particle sizes. The results thus obtained are set out in tabular form below:
TABLE 1
Sample Fran-qibilitv Example 1 4.5% Example 2 9.2% Proprietary Agglomerated Zeolite 34.5% (granule size given as substantially 100-800p with up to 5% greater than 800p and up to 5% less than 1 00p) Example 4: Various Water-absorbing Compositions containing Zeolite in different proportions and comparative Frangibility Tests 5 thereon A series of co-granulate compositions were prepared, by a procedure generally similar to that described in Example 1 above, but with differing relative proportions between the SAP and the zeolite. Each such composition was then subjected to the frangibility test described in Example 3 above.
The details of the compositions as thus prepared and tested, as well as the frangibility test results thus obtained, were as follows:
Example 4(i): 33.3% SAP / 66.7% zeolite co-granulate showed a percentage frangibility of 13.23% 15 Example 4(ii). 40% SAP / 60% zeolite cogranulate showed a percentage frangibility of 9.44% Example 4(iiiiii): A 50/50 composition of the two chemicals showed a percentage frangibility of 15.78% Example 4(iv): A 60% SAP / 40% zeolite co-granulate showed a 20 percentage frangibility of 15.78% Example 4(v): A 66.7% SAP / 33.3% zeolite co-granulate showed a percentage frangibility of 31.20% These results are depicted graphically in Figure 1 of the accompanying drawings, from which it appears that the optimum ratio is at or around 50% SAP 150% zeol ite.
Example 5: Various Water-absorbing Compositions containing Carbon Black in different proportions and comparative Frangibility Tests thereon A series of co-granulate compositions were prepared, by a procedure akin to that described in Example 1 above, but using carbon black in place of 10 zeolite and with differing relative proportions between the SAP and the carbon black. Each such composition was then subjected to the frangibility test described in Example 3 above.
The details of the compositions as thus prepared and tested, as well as the frangibility test results thus obtained, were as follows:
SAP% Carbon Black% Frangib Llity 33.3 66.7 17.59 50 14.05 66.7 33.3 26.1 Example 5(i): A33.3% SAP / 66.7% carbon black co-granulate showed a frangibility of 17.59% Example 5(ii)-. A 50/50 co-granulate showed a percentage frangibility of 14.05% Example 5(iii): A 66.7% SAP / 33.3% carbon black co-granulate showed a percentage frangibility of 26.10% These results are depicted graphically in Figure 2 of the accompanying drawings, from which it appears that the optimum ratio is in the region of 50% SAP / 50% carbon black.
Example 6: Various Water-absorbing Compositions containing both Zeolite and Silica in different proportions and comparative Frangibility Tests thereon A series of co-granulate compositions were prepared, by a procedure similar to that described in Example 1 above, but containing both zeolite and silica gel and with different relative proportions between the various ingredients. Each such co-granulate was then subjected to the frangibility test described in Example 3 above.
The details of the compositions as thus prepared and tested, as well as the frangibility test results thus obtained, were as follows:
SAP % Zeolite % Silica % Frangibility % Example 6(i): 29.4 29.4 41.2 32.94 Example 6(ii): 37 37 26 31.82 Example 6(iii): 40 35 25 25.26 Example 6(iv): 41.7 29.2 29.2 34.21 Example 6(v)-. 45.4 22.7 31.8 34.7 Example 6(vi): 50 15 35 40.9 These results are depicted graphically in Figure 3 of the accompanying drawings, from which it appears that the best ratio tested was 40% SAP / 35% zeolite / 25% silica gel - but an optimum value was not determined in this series of tests.
Example 7: Various Water-absorbing Compositions containing both Silicate and residual Sodium Sulphate (Na2SO4) in different proportions and comparative Frangibility Tests thereon A series of co-granulate compositions were prepared, by -a procedure similar to that described in Example 1 above, containing silicate incorporated as silica gel still containing residual Na2SO4 with different relative proportions between the various ingredients. Each such composition was then subjected to the frangibility test described in Example 3 above.
The details of the compositions as thus prepared and tested, as well as the frangibility test results thus obtained, were as follows:
SAP % Silica % Na2SO4 % Franqibilitv % Example 7(i)- 35.87 35.87 28.26 18.36 Example 7(iii): 44.41 31.09 24.50 10.71 Example 7(iii)-. 52.8 26.4 20.8 9.24 These results are depicted graphically in Figure 4 of the accompanying drawings, from which it appears that the best ratio tested was 52.8% SAP 26.4% silica / 9.24% Na2SO4, but an optimum value was not determined.

Claims (41)

1 Water-absorbing compositions in granular form comprising both superabsorbent water-insoluble polymeric material capable of absorbing water to form a gel without dissolving therein and at least one other water-insoluble 5 but non-polymeric material, said granular composition substantially consisting of a co-granulate between all the waterinsoluble materials present wherein each granule contains all said materials in substantially the same relative proportions as those wherein they are present in the composition as a whole.
2. Compositions as claimed in claim 1, in which the super-absorbent 10 water-insoluble polymeric material is or includes a part-neutralized water- insoluble hydrogel-forming resin derived from cross-linked polyacrylic acid.
3. Compositions as claimed in any of the preceding claims, especially suitable for use in an horticultural or agricultural context, in which the other water-insoluble but non-polymeric material is or includes absorbent-earth(s), expanded clay mineral(s) and/or organic fibre(s).
4. Compositions as claimed in claim 3, in which the other water-insoluble but non-polymeric material is or includes perlite.
5. Compositions as claimed in claim 1 or claim 2, especially suitable for use in personal care end-products, in which the other water-insoluble but non-polymeric material is or includes carbon.
6. Compositions as claimed in claim 1 or claim 2, suitable for use in personal hygiene products, in which the other water-insoluble but nonpolymeric material is or includes one or more aluminosilicate(s).
7. Compositions as claimed in claim 6, in which the aluminosilicate is or includes zeolite A.
8. Compositions as claimed in any of claims 1, 2, 6 or 7, in which the other water-insoluble but non-polymeric material is or includes one or more silicate(s).
9. Compositions as claimed in claim 8, in which the silicate is in the form of silica gel.
10. Compositions as claimed in claim 9, in which the silica gel includes sodium salt(s) formed during the production thereof.
11. Compositions as claimed in any of claims 1, 2 or 6 to 10, in which the other water-insoluble non-polymeric material includes both zeolite and silicate.
12. Compositions as claimed in claim 11, in which the relative proportions of these ingredients are substantially as follows:
SAP: Zeolite - Silica = 1 - 0.5 - 0.7 where uSAP" stands for super-absorbent polymer.
13. Compositions as claimed in any of the preceding claims, which additionally include one or more performance-enhancer(s) and/or filler(s).
14. Compositions as claimed in claim 13, especially for end-use in 20 personal hygiene or personal care products, in which the performanceenhancer is or includes one or more source(s) of sulphur-reactive metal cations and/or insoluble compounds of such metals.
15. Compositions as claimed in claim 11, in which the performance_19enhancing deodorizer is or includes one or more soluble zinc salt(s) and/or zinc carbonate and/or zinc oxide.
16. Compositions as claimed in claim 13, especially for end-use in an horticultural or agricultural context, in which the performance-enhancer is or includes one or more of the following, viz. plant-nutrients and/or trace elements and/or slow-release and/or systemic insecticide(s) and/or hormonal rooting stimulant(s) and/or degradation retardant(s).
17. Compositions as claimed in any of the preceding claims, especially suitable for use in an horticultural or agricultural context, which contain from 90% to 99.5% by weight of the super-absorbent polymeric material and from 10% to 0.5% of the other, water-insoluble but non-polymeric material, the balance (if any) of the composition comprising water and/or binder(s) and/or filler(s) and/or performance-enhancer(s).
18. Compositions as claimed in any of claims 1 to 16, suitable for use in personal care or personal hygiene products, which contain from 20% to 80% by weight of the super-absorbent polymeric material and from 80% to 20% by weight of the other water-insoluble but non-polymeric material, the balance (if any) of the composition comprising water and/or binder(s) and/or performance-enhancer(s).
19. Compositions as claimed in any of the preceding claims, in which the surface of the granules is dusted with an inert powder to serve as a flowaid.
20. Compositions as claimed in any of the preceding claims and substantially as herein described.
21. Water-absorbing compositions in granular form substantially as herein described with reference to any of the Examples.
22. Processes for preparing water-absorbing compositions in which a superabsorbent water-insoluble polymeric material in particulate form is intimately mixed with at least one other water-insoluble but nonpolymeric material also in particulate form, and the resulting mixture is granulated, together with a liquid granulating agent, so as to form a cogranulate wherein each granule contains all said materials in substantially the same relative proportions as those wherein they are present in the composition as a whole, and the resultant co-granulate is dried.
23. Processes as claimed in claim 22, in which the liquid granulating agent is or includes water.
24. Processes as claimed in claim 23, in which the aqueous granulating agent includes a binder.
25. Processes as claimed in claim 24, in which the binder is or includes modified starch(es) and/or cellulose(s) and/or gum(s) and/or vinyl polymer(s).
26. Processes as claimed in any of claims 22 to 25, in which both the super-absorbent water-insoluble polymeric material and the other waterinsoluble but non-polymeric material are in finely-divided particulate form when intimately admixed prior to co-granulation.
27. Processes as claimed in claim 26, in which the super-absorbent polymeric material is incorporated into the co-granulate in ground form, optionally cross-linked.
28. Processes as claimed in claim 26 or 27, in which the other waterinsoluble but non-polymeric material is or includes a zeolite and in which the latter is incorporated into the co-granulate in the form of an aqueous slurry of finely-divided particulate-form zeolite, the water in said aqueous slurry serving as the granulating agent or part of it.
29. Processes as claimed in any of claims 26 to 28, in which the other water-insoluble but non-polymeric material is or includes silicate and in which the latter is incorporated into the co-granulate in the form of undried silica gel, the water in said silica gel serving as the granulating agent or part of it.
30. Processes as claimed in claim 29, in which the silica gel before incorporation into the co-granulate is pre-mixed with any desired metal compound(s) and/or complex(es).
31. Processes as claimed in any of claims 22 to 30, in which the resultant co-granulate is dried at a temperature in the range of from 500C to 6500C.
32. Processes as claimed in claim 31, in which the drying temperature is in the range of from 1 00"C to 150"C.
33. Processes as claimed in any of claims 22 to 31, in which granulation is effected by conventional granulation techniques to yield a granulate particle size in the range of from 45pm to 5mm.
34. Processes as claimed in claim 33, intended to yield an end-product especially useful in an horticultural, or agricultural seedbed, in which granulation is effected so as to yield a co-granulate particle size in the range of from 45 to 150pm.
35. Processes as claimed in claim 33, intended to yield an end-product especially useful in an horticultural or agricultural plant-container, in which granulation is effected so as to yield a co-granulate particle size in the range of from 500 to 850pm.
36. Processes as claimed in claim 33, intended to yield an end-product especially useful in an horticultural or agricultural shrub- or tree4ransplanting operation, in which granulation is effected so as to yield a co-granulate particle size in the range of from 2mm to 5mm.
37. Processes as claimed in claim 33, intended to yield an en_d-,prodUct 10 especially useful in personal care or personal hygiene products, in which granulation is effected to yield a granulate particle size in the range of from 100 to 500pm.
38. Processes as claimed in any of claims 22 to 37, in which after granulation and drying the resultant co-granulate is sieved or otherwise separated from sub-standard fines, and the latter are re-cycled back direct to the granulation step.
39. Processes as claimed in any of claims 22 to 38 and substantially as herein described.
40. Processes for preparing water-absorbing compositions as described 20 herein with reference to any of the Examples.
41. Use in the manufacture of cateminials and diapers or incontinence padding of a water-absorbing composition as claimed in any of claims 1 to 21 and/or as prepared by the process of any of claims 8 to 40.
GB9922379A 1998-09-22 1999-09-22 Water absorbing compositions and processes for their manufacture Expired - Fee Related GB2341866B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB9820573.5A GB9820573D0 (en) 1998-09-22 1998-09-22 Water absorbing composition

Publications (3)

Publication Number Publication Date
GB9922379D0 GB9922379D0 (en) 1999-11-24
GB2341866A true GB2341866A (en) 2000-03-29
GB2341866B GB2341866B (en) 2003-02-05

Family

ID=10839233

Family Applications (2)

Application Number Title Priority Date Filing Date
GBGB9820573.5A Ceased GB9820573D0 (en) 1998-09-22 1998-09-22 Water absorbing composition
GB9922379A Expired - Fee Related GB2341866B (en) 1998-09-22 1999-09-22 Water absorbing compositions and processes for their manufacture

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GBGB9820573.5A Ceased GB9820573D0 (en) 1998-09-22 1998-09-22 Water absorbing composition

Country Status (3)

Country Link
AU (1) AU6098599A (en)
GB (2) GB9820573D0 (en)
WO (1) WO2000016816A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079341A1 (en) * 2000-04-17 2001-10-25 T H C Pty Ltd Humidity sensitive composition
WO2007098932A2 (en) * 2006-02-28 2007-09-07 Evonik Stockhausen Gmbh Biodegradable super-absorbent polymer composition with good absorption and retention properties
US8426670B2 (en) 2001-09-19 2013-04-23 Nippon Shokubai Co., Ltd. Absorbent structure, absorbent article, water-absorbent resin, and its production process and evaluation method
EP2358444B1 (en) 2008-11-17 2016-12-28 L'Oréal Cosmetic method for treating human perspiration using particles of an expanded amorphous mineral material; compositions.

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007566C2 (en) * 2000-02-18 2003-02-20 Hakle Kimberly De Gmbh Absorbent article
AU2001250152B2 (en) * 2000-04-17 2004-04-22 Vm3 International Pty Ltd Humidity sensitive composition
US10653571B2 (en) 2015-12-10 2020-05-19 The Procter & Gamble Company Article comprising odor control composition
CN107176875A (en) * 2017-05-15 2017-09-19 覃广强 A kind of sulfur-rich slow release fertilizer
CN113117129A (en) * 2019-12-31 2021-07-16 南昌智发科技有限公司 Sterilization composite water absorbent for diaper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450922A2 (en) * 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Method for production of fluid stable aggregate
US5147921A (en) * 1990-08-14 1992-09-15 Societe Francaise Hoechst Powdered superabsorbents, containing silica, their preparation process and their use
WO1992018171A1 (en) * 1991-04-12 1992-10-29 The Procter & Gamble Company Absorbent structures containing specific particle size distributions of superabsorbent hydrogel-forming materials
US5258448A (en) * 1991-10-11 1993-11-02 Societe Francaise Hoechst Absorbent polymers, manufacturing process and their use in particular for sanitary articles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568619A (en) * 1979-06-28 1981-01-29 Sumitomo Chemical Co Culture soil for plant
DE3838086A1 (en) * 1988-11-10 1990-05-17 Henkel Kgaa METHOD FOR PRODUCING HIGH DENSITY GRANULES CONTAINING ZEOLITE
AU7259791A (en) * 1990-02-12 1991-09-03 Procter & Gamble Company, The Mixed odor controlling compositions
JP3046064B2 (en) * 1990-02-12 2000-05-29 ザ、プロクター、エンド、ギャンブル、カンパニー High performance odor control composition
DE4237503A1 (en) * 1992-11-06 1994-05-11 Huels Chemische Werke Ag Agglomerates for the cultivation of raw soils
RU2146270C1 (en) * 1993-05-03 2000-03-10 Хемише Фабрик Штокхаузен ГмбХ Polymer compositions and method of preparation thereof
JPH0790108A (en) * 1993-09-20 1995-04-04 Mitsubishi Chem Corp Method for granulating highly water-absorbing resin
DE69616519T2 (en) * 1996-06-07 2002-07-11 Procter & Gamble Breathable absorbent articles with an odor control system containing silica
EP0811388A1 (en) * 1996-06-07 1997-12-10 The Procter & Gamble Company Activated carbon free absorbent articles having a silica and zeolite odour control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450922A2 (en) * 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Method for production of fluid stable aggregate
US5147921A (en) * 1990-08-14 1992-09-15 Societe Francaise Hoechst Powdered superabsorbents, containing silica, their preparation process and their use
WO1992018171A1 (en) * 1991-04-12 1992-10-29 The Procter & Gamble Company Absorbent structures containing specific particle size distributions of superabsorbent hydrogel-forming materials
US5258448A (en) * 1991-10-11 1993-11-02 Societe Francaise Hoechst Absorbent polymers, manufacturing process and their use in particular for sanitary articles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079341A1 (en) * 2000-04-17 2001-10-25 T H C Pty Ltd Humidity sensitive composition
US6693148B2 (en) * 2000-04-17 2004-02-17 Puro-Systems Pty Ltd Humidity sensitive composition
KR100737025B1 (en) 2000-04-17 2007-07-09 퓨로-시스템즈 피티와이 리미티드 Humidity sensitive composition
US8426670B2 (en) 2001-09-19 2013-04-23 Nippon Shokubai Co., Ltd. Absorbent structure, absorbent article, water-absorbent resin, and its production process and evaluation method
WO2007098932A2 (en) * 2006-02-28 2007-09-07 Evonik Stockhausen Gmbh Biodegradable super-absorbent polymer composition with good absorption and retention properties
WO2007098932A3 (en) * 2006-02-28 2008-04-10 Stockhausen Chem Fab Gmbh Biodegradable super-absorbent polymer composition with good absorption and retention properties
US8829107B2 (en) 2006-02-28 2014-09-09 Evonik Degussa Gmbh Biodegradable superabsorbent polymer composition with good absorption and retention properties
EP2358444B1 (en) 2008-11-17 2016-12-28 L'Oréal Cosmetic method for treating human perspiration using particles of an expanded amorphous mineral material; compositions.
US11266583B2 (en) 2008-11-17 2022-03-08 L'oreal Cosmetic method for treating human perspiration using particles of an expanded amorphous mineral material; compositions

Also Published As

Publication number Publication date
GB9820573D0 (en) 1998-11-11
GB9922379D0 (en) 1999-11-24
WO2000016816A1 (en) 2000-03-30
GB2341866B (en) 2003-02-05
AU6098599A (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US4734478A (en) Water absorbing agent
JP6170035B2 (en) Multipurpose lignin-carbohydrate binding system
CA2758873C (en) Dispersible sulphur fertilizer pellets
US3980463A (en) Process for producing granular composition for use in agriculture and horticulture
JPH043411B2 (en)
GB2341866A (en) Water-absorbing granular compositions
US4898935A (en) Method of producing sucrose fatty acid ester granules
NO20170416A1 (en) Fertilizer comprising bioavailable Si and method for production thereof
US3214261A (en) Granular soil neutralizer and the process of preparing said product
US8404259B2 (en) Dispersible granular substrate for pesticide delivery
TR201607901T1 (en) Fertilizer products.
JP3336037B2 (en) Soil water retention agent
US4008065A (en) Granulated fertilizer composition and method for its preparation
JPH043412B2 (en)
JP4397638B2 (en) Sustained release of agricultural chemical granules
JP2527558B2 (en) Method for producing water-soluble granules
US11905212B1 (en) Method of forming a non-dispersible granular substrate and the granular substrates formed thereby
WO1990012503A1 (en) Water soluble pesticide granules
JPH0330602A (en) Coated and granulated seed
JPH09188587A (en) Granular magnesium oxide fertilizer
JPH02172883A (en) Granulating agent for fertilizer
JPH10297985A (en) Agent for improving calcium cyanamide, composition and granule containing the same, and controlling of hydrolysis rate of calcium cyanamide
JPS60221383A (en) Granular limy fertilizer and manufacture
JPH0543874A (en) Material for retaining water in soil
CN115028925A (en) Antibacterial polyolefin composition

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20070922