GB2327880A - Fire retardant curtain - Google Patents

Fire retardant curtain Download PDF

Info

Publication number
GB2327880A
GB2327880A GB9823079A GB9823079A GB2327880A GB 2327880 A GB2327880 A GB 2327880A GB 9823079 A GB9823079 A GB 9823079A GB 9823079 A GB9823079 A GB 9823079A GB 2327880 A GB2327880 A GB 2327880A
Authority
GB
United Kingdom
Prior art keywords
curtain
web
arrangement
coil
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9823079A
Other versions
GB2327880B (en
GB9823079D0 (en
Inventor
Jochen Stoebich
Stefan Siller
Michael Ciop
Joachim Luther
Werner Schellenberger
Thomas Wegener
Hansjuergen Linde
Reinhard Konrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RASONTEC NV
Original Assignee
RASONTEC NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RASONTEC NV filed Critical RASONTEC NV
Priority claimed from GB9605767A external-priority patent/GB2299021B/en
Publication of GB9823079D0 publication Critical patent/GB9823079D0/en
Publication of GB2327880A publication Critical patent/GB2327880A/en
Application granted granted Critical
Publication of GB2327880B publication Critical patent/GB2327880B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/06Physical fire-barriers
    • A62C2/10Fire-proof curtains
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/02Shutters, movable grilles, or other safety closing devices, e.g. against burglary
    • E06B9/08Roll-type closures
    • E06B9/11Roller shutters
    • E06B9/13Roller shutters with closing members of one piece, e.g. of corrugated sheet metal
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/56Operating, guiding or securing devices or arrangements for roll-type closures; Spring drums; Tape drums; Counterweighting arrangements therefor
    • E06B9/58Guiding devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Operating, Guiding And Securing Of Roll- Type Closing Members (AREA)
  • Curtains And Furnishings For Windows Or Doors (AREA)

Abstract

A fire retardant curtain has a web of temperature resistant material wound onto a coil arranged on a core, the curtain web having first and second outer layers, a fibrous inner layer, and means to supply fire retardant within the curtain web. As shown, curtain has a web 105 wound on core 12c to form a loop which may be filled with liquid fire retardant material 115, e.g. water from outlet 113.

Description

DESCRIPTION OF INVENTION Title: "Curtain, End Bar and Guide Bar" THE INVENTION relates to a curtain comprising a web of temperature resistant material forming a web surface and having lateral edge regions on either side, which web may be wound onto and unwound from a coil arranged on a coil core having two ends and being supported by a bearing arrangement including at least one supporting surface.
Such a curtain is herein referred to as being "of the kind specified". If, in this context, the term "temperature resistant" is used, the degree of any temperature resistance depends, not at last, also on the other fire protection measures discussed later in connection with the curtain, which can render a higher degree of temperature resistance superfluous.
In case of a fire, a dangerous element is constituted by the flames and the relatively high temperatures themselves. Simultaneously, there is also another potential danger from developing fumes having, certainly, also a higher temperature which, however, will not be as high as that of the blaze's source. These fumes, which, due to their higher temperature, will generally pass through the upper regions of a room, have the tendency to spread in large rooms and to cool down on a cooler walls.
Then the fumes will fill also the lower regions of the room so as to deprive man and beast of the last opportunity to find breathable air in the room.
Therefore, an endeavour has to be to prevent the fumes from spreading and to draw them off in such a manner that the fumes no longer pass to the lower regions of a room to render unbreathable the air in such lower regions.
Admittedly, the arrangement of draw off surfaces for the fumes is difficult, because such surfaces should not obstruct the normal use of a room.
From DE-A-23 38 352, a curtain of the kind specified is known by which draw off surfaces without any obstruction are provided, such surfaces being optionally adapted to shield against a blaze (fire-resistance). A disadvantage of this known attempt resides in that the curtains, by virtue of their support and by the arrangement of loose webs which are movable relatively to each other, are difficult to maintain in tight condition so that they do not result in effectively drawing off or shielding in case of a fire with the resulting air current developing thereby.
Therefore, it is an object of the invention to provide a better and more secure guiding of the curtain, by which a "sail"-effect bulging the curtain or whirling it out of is position by a strong air current is avoided.
According to the invention, there is provided a curtain comprising a web of temperature resistant material forming a web surface and having lateral edge regions on either side, which web may be wound onto and unwound from a coil arranged on a coil core having two ends and being supported by a bearing arrangement including at least one supporting surface, characterised in that the coil core, at least on one of its ends, is supported adjustably in height within a guidance and/or the curtain is guided by lateral guide bars including an arrangement for preventing the inserted curtain edge to be drawn out and/or that at least two curtain webs the surfaces of which face each other have a common end bar forming a weight for the curtain.
If one considers the support of the coil at the upper end of a curtain and the end bar at the lower end thereof as a guide, in the broadest sense of this term, the concept of the present invention consists in general terms in providing a guidance to at least one of the ends or edges of a curtain so as to maintain the curtain tight without bulging or whirling even with a strong air current during a blaze. The temperature-resistive material mentioned in the claim may be formed by thin metal sheets as well as by fabrics, particularly by woven clothing, made of temperature-resistive materials, preferably glass fibres, but also from carbon fibres, poly-carbon fibres or ceramic fibres. A preferred embodiment will be described later.
The problem with large widths of a web resides, of course, in the coil core's bending. Since, however, the curtain will suitably be uninterrupted and continuous with adjacent mutually interconnected webs, the accommodation of an intermediate support is difficult, but is achieved by the invention.
A support will preferably be arranged within the area of edges, i.e. at those places where either two webs are situated edge by edge and/or where a free edge of the curtain is located. In this way, the web can be wound in a more tightened fashion resulting in less problems.
With the inventive design, it is easier to save also actuation means for moving the curtain, i.e. a single device will normally be necessary only, e.g. a single motor rotating the coil.
For better guiding and for holding the curtain in a more tightened fashion, it is convenient to provide lateral guide bars, e.g. for large-area subdivision of a room by a curtain according to the invention In this way, a further problem can be under control. For the curtains are, of course, easily displaced out of their desired position by the air current developing during a fire, whereby sealing and proper draw off of fumes would no longer be ensured. This problem is especially avoided, if a gripping device is assigned to each guide bar ensuring that the curtain cannot slide out of guidance by the bars.
The end bar common to at least two curtain webs, whose surfaces face each other, prevents a relative movement of the webs under the air current of a blaze and results in a good guidance uniformly tightening both webs. Additionally, the advantage of a seal between the webs is achieved which opens up further possibility of fire protection, as will be discussed below.
By the an intermediate support, bending of coil cores, in particular of those of great length, is avoided. In this way, optionally the necessity of providing a connection between adjacent webs is dispensed. Moreover, one can take advantage of a single drive.
Further details and characteristics of the invention will become apparent from the following description of embodiments schematically illustrated in the drawings, in which: Fig. 1 shows a room equipped with a fume curtain; Fig. 2 is a cross-section along the line II-II of Fig. 1, of which Fig. 3 is an enlarged view of a detail; Fig. 4 is a cross-section through a lateral guide bar for a curtain Fig. 4a illustrates an alternative embodiment; Fig. 5 is a view along the line V-V of Fig. 2; Figs. 6a and 6b are alternative embodiments of a guide bar in a cross-section similar to Fig. 4 and in a lateral view; Fig. 7 is a plan view of a further embodiment of a cur tain; Fig. 8 represents a cross-sectional view of a wall separ ating having an opening to be closed in case of a fire, through which a roller conveyer extends, showing two embodiments of fire protection shutters according to the present invention, to which Figs. 9 and 10 each illustrate a modified embodiment; Fig. 11 shows a preferred design of a curtain; and Figs. 12 and 13 depict each a favourable embodiment, one in a lateral view, the other in a front view.
Fig. 1 shows the interior of a building having at least two floors of the type usual for banking halls or shopping centres. For the admission of light, a glass structure (not shown in Fig. 1) rests on top of columns 1, the structure being provided with a flue flap meeting the rules for fire protection. In this way, the columns support the overarch of a kind of a domed hall, whereas the adjoining corridors 2 comprise a ceiling 3 on the level of the first floor. For these corridors 2, a separate flue is provided (not shown).
In the case of a fire, irrespective whether the fire breaks out in the area of the domed hall or in the area of the corridors surrounding this hall or in one of the adjacent rooms, it is the first requirement to prevent the fume from spreading, e.g. from the corridors 2 into the domed hall where it cools and sinks down, thus, endangering breathing of the people which is present in the hall. Rather it should be ensured that the fume is drawn off the shortest way.
To this end, box-like casings 4 are installed around between the columns in the border region between the corridors 2 and the domed hall situated in front of them. These casings 4 house in their interior a coil 12 of a fume curtain 5 which can be lowered, if necessary, in the manner shown in Fig. 1.
With this aim in view, the curtains 5 are provided with lower end bars 6 which serve as a tightening weight when the curtains are unwound into its operative position, while closing a slot 7 in inoperative position which forms the exit for the curtain 5.
The curtain 5 consists suitably of a non-inflammable woven fabric, for example of glass fibres, carbon fibres, polycarbon fibres or ceramic fibres, optionally in combination also with one of the other type of fibres mentioned above which can also be used. If desired, the curtains may also comprise a non-inflammable impregnation and/or coating. Another embodiment which is preferably used for fire protection will be discussed below.
It is not necessary under all circumstances to lower the curtains fully to the bottom, because the hot fume will pass along the ceiling and will be drawn off in the corridors in the direction of arrow 8, while in the domed hall it is, for example, drawn upwardly along the arrow 9.
It can be seen that the distance between the columns 1 is relative large and can, in fact, amount to several meters.
Since a normal width of woven fabric are not sufficient in some cases and expensive large width looms had to be used, it is possible to arrange for several fabrics of smaller width adjacent and partially overlapping each other to be unwound each from a coil core supported within the casing 4. This leads, however, to an expensive construction, because each coil core must have its own drive, and the drives have to be mutually synchronised. For this reason, such a design is adapted for rather smaller rooms.
In order to provide a simpler construction for larger rooms, as of the type shown in Fig. 1, it is preferred within the scope of the present invention if the individual curtain webs are interconnected, for example by sewing the edges in the form of a butt joint or of an overlapping joint of fabric edges. In this case, however, a coil core is necessary which extends over the whole length of the casing 4, and, thus, some problems with supporting the coil will arise, since bending of the coil core and obstruction when unwinding the curtains 5 from their upper inoperative position into their operative position shown should be avoided.
This supporting problem may be overcome by an arrangement as shown in Fig. 2. In this design, the casing 4 is fastened to a tiling 10 of the building by means not shown but known per se. Within the casing 4, there is a coil core 11 onto which a coil 12 of a curtain 5 is wound. Also the end bar 6 mentioned above is shown.
The coil 12 is supported by a supporting arrangement preferably consisting of two supporting rollers 14 parallel to each other and rotatably mounted on two arms 13 (one only is visible) which project from one wall of the casing 4. The arms 13 are reinforced at the side of the casing wall by reinforcing ribs 13'. Theoretically, a single roller 14 beneath the coil 12 would be sufficient as it would also be possible to arrange a whole cage of several rollers around part of the circumference of the coil 12.
In this way, the coil 12 may be supported by pairs of supporting rollers 14 axially spaced from each other (the rollers of the pair being spaced in radial direction), although the coil as such, being continuous over its total length, would not allow otherwise for an intermediate support. Certainly, the consequence is that the coil 12, according to the unwinding length required and according to the length actually unwound, will assume different positions within the casing 4. Thus, the complete coil (i.e. the position corresponding to that of the end bar 6, as shown) will assume the position 12' represented in dash-dot-dotted lines whereas with unwound coil the core will assume the dashdotted position 12". In order to ensure reliable unwinding, a draw off guide is preferably provided about in a vertical centre plane V of slot 7, said guide being possibly formed by a draw off roller, but is preferably formed by a draw off edge 15, suitably being slightly resilient.
In order to enable a reliable movement of the core and the coil 12 up and down from position 12" to position 12' and vice-versa it is preferred to provide a vertical guidance in the form of a guiding slot 16 or a guiding bar, the slot, for example, being defined by two struts 17 of the casing 4. The construction within the region of this guiding slot 16 will be discussed in detail below when reference is made to Fig.
5.
In Fig. 2, the above-mentioned end bar 6 is illustrated whose construction is shown in detail and at an enlarged scale in Fig. 3. As has already been mentioned, the purpose of this bar is among others to serve as a weight, but it is clear that tightening of the woven fabric securing such a large room, as in Fig. 1, is also of eminent importance to enable proper winding onto the core and that it is difficult to accomplish with such a large width of the curtain.
As shown in Fig. 3, the end bar 6 consists of two bar legs 18 and 18' which, for example, could be integrally and resiliently formed, but in the embodiment illustrated are constructed as separate parts to facilitate handling. This also makes it easier to achieve a modular construction by combining the separate parts 18, 18' off-set over a desired length, thus achieving great stability without the need for additional connection parts. Each of these bar legs 18 and 18' has a clamping surface 19 at its free end, the two clamping surfaces 19 preferably being parallel to each other in the clamping position, as shown, in order to distribute the clamping force over a larger area. As will become apparent, it is preferred if the two clamping surfaces 19 are formed as smooth surfaces, although it would theoretically possible to provide them with projections, such as teeth, biting into the fabric of curtain 5.
The purpose of this preferred construction to suitably enable an adjustment in length after clamping the end of the curtain wherein portions of the curtain which form wrinkles may be drawn deeper into the end bar, while too tightened portions are redrawn. This will be facilitated if clamping is achieved purely by friction so that drawing of individual curtain portions is rendered possible.
Actuation of the clamping device is effected in such a manner that the bar legs 18 and 18' first take an open position indicated by interrupted lines. In this position, a clamping bolt 20 is not yet screwed tightly into aligned bores 21, 22 of overlapping connection cross-pieces 25, 25' and in a clamping socket or nut 23 shown in Fig. 3, i.e. a desired length of the curtain 5 may be inserted between the two bar legs 18, 18' and their clamping surfaces 19 being open now.
Then, with screwing the clamping bolt 20 in, the two clamping surfaces 19 approach each other and hold firmly the clamped portion of the curtain 5. The clamping socket or nut 23 may be formed as a separate part or maybe rigidly secured to the connection cross-piece 25 of the bar leg 18. In particular, it is a riveted nut.
Preferably the design is such that at least one of the two bar legs 18, 18', particularly both, comprise each an inclined portion 24, 24' which forms an angle with the vertical centre plane V mentioned above, the two inclined portions 24, 24' forming a kind of wedge. Suitably, a clamp piece 26 is inserted in that wedge which is preferably rounded in a rod-like manner and has particularly a circular cross-section.
As may be seen in Fig. 3, the end of the curtain can be wrapped around the clamp piece 26, and then protrudes as end 5' outside the clamping surfaces 19. Due to the smooth form of the clamping surfaces 19 and the rounded peripheral surface of the clamp piece, it is easy to balance the tension of the curtain under the weight of the end bar 6 by drawing the free end 5' or the curtain before tightening the clamping bolt 20 so that the curtain in its lower, operative position (cf. Fig. 1) is uniformly tensioned over its entire width. In this situation, a clamping action will result between the clamp piece 26 and the inner surfaces of the inclined portions 24, 24' forming an inner wedge. Only when a balance of tension is attained which ensures winding of the curtain 5 onto the coil 12 without wrinkles (cf. Fig. 2), the clamping bolt will be finally tightened so that the bar legs 18, 18' assume their position shown in full lines in Fig. 3. In ac cordance with the application, the clamp piece 26 may have less or more weight and, thus, will also act as a load element.
It has already been mentioned above that it is, in principle, possible to accommodate individual webs of curtains either in a adjacent position or overlapping each other onto separate coil cores. In such a case, however, a tight lateral closure will not be attained. Although this will at first lead to only a relatively small slot-like opening (which nevertheless has to be taken into account), but will result in bulging of the curtain by the air current arising in the case of a blaze. This will displace the curtain out of its vertical position so that its function as a guide for fumes or as a barrier against the fire will be called into question. It is true that the above-mentioned weight of the end bar 6 has a stabilising effect, but still a further improvement may be provided within the scope of the invention (but also independently from the movable support of the coil 12 or the construction of the end bar) by guiding or sealing the border edges of the curtain 5 composed of several (or at least two) webs of fabric within (in the arrangement of Fig. 1) substantially vertically extending guide rails or bars comprising a holding device. A first embodiment of such a guide bar is shown in Fig. 4.
In this embodiment, the curtain 5, which besides could consist of one or more webs commonly wound around a core, suitably has an edge 27 turned up and sewed forming a reinforcement of the fabric web at this location. This edge area of the curtain 5 extends into a guide bar F which substantially is formed as a so-called "open surface box section" as shown, i.e. it is a box section one surface 28 of which is open to form a slot 29 in longitudinal direction.
Within the region of this slot 29, preferably at least one of two devices are arranged which serve for tightening the curtain (to avoid bulging under the air current of a blaze), on the one hand, and for sealing (to avoid permeable gaps), on the other hand. One of these devices is formed by a sealing brush 30. In difference to the common arrangement being about perpendicular to a slot, however, the sealing brush is preferably obliquely inclined to the plane of the curtain 5 in such a manner that the ends of its bristles point against the edge area 27 of the curtain 5. This has two effects: On the one hand, the individual bristles brace themselves against small unevenness' provided by the curtain threads forming of the curtain surface, particularly against its warp threads, in the case that the curtain 5 is formed by a woven fabric, as is preferred. However, if the edge 27 is thicker, as shown, the bristles' ends of the sealing brush 30 will brace also against this thicker edge and will provide a strong resistance given by their elasticity and their stiffness against drawing the curtain 5 out of the guide bar F, thus, virtually rendering impossible to draw the curtain out of the guide bar F.
A further arrangement for holding and sealing the curtain consists of a strip 31 of material which swells or expands under the effect of heat, e.g. a material being on the market under the trade name PROMASEAL. Preferably, a parallel abutment surface 32 defining the slot 29 is opposite this sealing strip 31. While the sealing strip 31 normally does not resist the movement of the curtain 5, it expands in case of a fire by the increased temperature and, thus, seals the slot 29, on the one hand, and holds the curtain 5 firmly pressed against the abutment surface 32. Also in this manner, the position of the curtain is stabilised in case of a fire.
All the measures described up to now can be realised either separately or in common as well as also in combination with the embodiment described later with reference to Figs. 6a and 6b.
In Fig. 4, it is indicated by interrupted lines how the legs 18 and 18' could be formed as modules of limited length. In such a construction, it is advantageous if, over the length of the end bar 6 (similarly to the alternate arrangement of webs 12a to 12d in the embodiment of Fig. 7 discussed later)1 alternately a module 18a of leg 18 is opposite each half section 18c and 18d each pertaining to another module of bar leg 18'. By this alternating arrangement, the opposite legs 18, 18' are hold each other firmly so that a separate connection device can optionally be omitted. It may, however, be provided in a similar manner to that, as will be described for the casing 4 or 4 and 4 or also for the coil cores.
In the case of Fig. 4a, a guide bar F" having approximately a U-shaped cross-section 27.1 into which, in the present embodiment, a pair of smaller profiles 27.2 are inserted on each side in such a manner that a slot or gap 129 is formed for receiving bar-shaped elements 115' of an inner layer 115 between two curtain webs 5. Instead of a pair of smaller profiles, a single one might be provided on either side, as is also conceivable that the profiles 27.2 situated adjacent the elements 115' serve for receiving additional layers or webs.
Normally, the elements 115' will form an about rectangular end edge 115", as is indicated in Fig. 4a by dash-dotted lines. However, material expanding under heat is preferably provided within an edge region 128, the material expanding the edge to the position shown in uninterrupted lines. To this end, either at least the edge region of the elements 115' is enclosed by a flexible layer or hull, or outlet opening or even a slot is provided within the edge region between the two webs of the curtain 5 allowing exiting the swelling material so as to assume, for example, the position shown. In this way, the curtain, e.g. forming a fire protection, is firmly held in place in case of a fire and is not permitted to move out of its position under the influence of a developing air current, because the elements 115', which may be formed by fire-proof granular material or interconnected packages of it, can abut or prop with their lateral expanded rim against the back side of the profiles 27.2.
In Fig. 5, a view along the line V-V of Fig. 2 is illustrated. In this figure, one of the struts 17 is shown guiding a supporting body 33 (only partially visible in Fig. 2). A similar strut 17' is provided at the opposite end of the coil core 11 (at right hand in Fig. 5). The supporting body 33, however, props on a resilient propping device, suitably in the form of a spring 34, as shown, so as to balance the weight of a motor for moving the curtain 5 up and down which is accommodated within the interior of the coil core at this location and, therefore, is not visible. This motor uses suitably the metallic coil core 11 as an external rotor which is provided with a series of permanent magnets in its interior, while the current supply lines for the centred stator are connected with a rigid axle 35, as is known for motors of the external rotor type. Instead of a spring 34, any other propping arrangement may be used, such as a balancing weight, a pneumatic spring or the like. Moreover, such a propping arrangement may be dispensable, if the weight of the coil 12 and of its coil core 11 is about uniform over their axial lengths, for example because a mechanic device is used for actuation and release of the curtain 5, as is known from rigid, generally plate-like fire shutters.
The above-mentioned motor may be of any kind. It may, however, be desirable to brake the downward movement of the curtain caused by the weight of the end bar after release, or even to be able to control it with respect to its speed. To this end, according to the invention it is more favourable to use an electric brake instead of the mechanical brakes employed heretofore. This can be done, for example, in such a manner that an eddy current brake is provided by a generator circuit of a DC motor, optionally of an AC motor instead (e.g. comprising condensers), i.e. that the motor is operated as a generator at least during lowering the respective curtain, but optionally is also switched this way during stopping. Thus, the curtain may normally be held by a mechanical stopping brake in its wound up condition. Only when a fire breaks out, the brake is released, for example by a fusing or melting holding device, after which the curtain is unwound by the weight of its end bar. During this movement, the motor is either switched into its generator mode, particularly continuously, or an appropriate pulse control is assigned to it, the pulse frequency determining the speed of the curtain. The motor is only operated in its prime mover mode to rise the curtain. It should be noted that such an electric brake is inventive independently from the type of support of the coil core or from the construction of the end and guide bars.
It has been mentioned that other arrangements for an electric brake are also conceivable. For example, the motor can be connected and controlled by a pulse supply circuit in which case the motor may be either formed as an asynchron, a synchron or even as a stepping motor. In the case of a DC motor, the pulses would have to be transformed into a corresponding DC current when operated in its prime mover mode. In this way, it is possible to predetermine exactly the rotational speed of the motor, and it is also possible to preselect a predetermined nominal speed and to control the pulse supply to meet this nominal speed, e.g. by means of rotational speed transducer connected either to the motor or to the coil core.
It may- ' further be seen from Fig. 5 that the supporting rollers 14 are conveniently arranged where thickening of the coil 12 will occur by adjacent fabric webs due to overlapping edge regions 37. By this arrangement, tight winding onto the coil core 11 without any problem is ensured. These edge regions 37 may be interconnected by a connection arrangement, such as a series of clasps, preferably at least one seam 37a.
Since the coil 12 is thickened by the overlapping edges, it may be advantageous to provide the coil core 11 in these regions 37 with a peripheral recess 11", as is indicated in Fig. 5 with interrupted lines.
Since the curtains according to the present invention should be used in buildings of various dimensions, it is favourable if the casing 4 and/or the coil core 11 and/or the end bar 6 are constructed of individual, substantially uniform modules which may be connected in axial direction by appropriate connection means. In Fig. 5, for example, two casing modules 4 and 4' are put together in a butt joint and are interconnected by means of a connecting collar 38. Likewise, it is indicated that the portion of the coil core 11 which forms the external rotor of the drive motor has an opening 38 at its right end (with reference to Fig. 5) into which a coupling end 40 of restricted diameter of the adjacent coil core module 11' is inserted for common rotation.
While Fig. 4 illustrates an embodiment of a guide bar F in which, for example, the sealing brush 30 is provided as an element elastically propping between guide bar F and curtain 5, such an element or a plurality thereof may also be formed in the manner shown in Figs. 6a and 6b. According to this embodiment spring or tension elements 41 are incorporated into the curtain 5, e.g. sewed or woven in. These springy elements consist, for example, of elastic spring steel and are connected to a clamping plate 42 at their ends. As is especially clearly shown in Fig. 6a, the clamping plate 42 consists of two plate elements 42 and 42" having convexities 43 to define an elongate cavity in which a respective one of the springy wires 41 is received and is, for example, secured by a clamping screw 44. Such springy wires may consist of chromium steel and may have a reinforcing effect onto a woven fabric from a relatively low temperature melting material, such as glass, as will be explained later.
Both plate elements 42 42 have, however, still another purpose. To wit, each of the plate elements is provided with an oblique bearing slot 45, 45', the inclination of these bearing slots being oriented in opposite directions so that one (45) opens at the upper edge of the pertaining plate element 42', while the other (45') opens at the lower edge of the pertaining plate element 42". The axle 46 of a roller 47 is now inserted in each of the bearing slots 45, 45', the inclination facilitating inserting under tension.
Also in this embodiment, the guide bar F' is formed as an open surface box section, thus providing a roll on surface or r
Due to the distances a, there are portions of the coil cores gila, llb where the same are uncovered so that it is possible to accommodate intermediate bearings 14a to 14d connected to the casing 4, 4' through struts 13a to 13d. Suitably, the two coil cores lla, 11b have a common drive within a gear box 49 (which, in contrast to the embodiment of Figs. 2 and 5, can be connected to the casing module 4 in a stationary manner) in which the movement of the motor, having a stator 35, is transmitted by gear wheels, as is indicated in interrupted lines. Of course, the two coils lla, llb will rotate in opposite sense to each other. Such a common drive may be a nonelectric one, as already mentioned, and may, for example, be realised by means of a releasable weight in known manner (or may comprise the electric brake discussed above) . Another embodiment could provide that the support arrangements of Figs 2 and 7 are combined, for example, the bearings 14a and 14b for one (lla or llb) of the coil cores, the rollers 14 of Fig. 2 for the other one.
While the two coil cores lla, llb are relatively closely adjacent to each other, this is not necessary in each case, since with embodiments comprising a common outlet slot 7 the webs 12a to 12d will be combined in it. Moreover, reference is made to the embodiment of Fig. 12 described later. On the other hand, the foregoing embodiments have shown that the coil cores lla, llb within the casing 4 may be stationary in horizontal direction; this also is not forcibly necessary, because it would be possible that at least one of the coil cores is supported moveably against the other and is urged (pressed or drawn) against it by a biasing arrangement, such as a spring, in order to ensure tight engagement of the coil webs 12a and 12b with the webs 12c and 12d. In each case, any gap between the webs are reduced if a single end bar (as 6 in Figs. 2 and 3) is common to all webs, thus tightening the free ends of those webs 12a to 12d and constituting a common, relatively large weight against movement by any air current.
If desired, it is also possible to provide only part of the webs, for example the webs 12a and 12c facing each other, on the one hand, and 12b and 12d on the other hand, with a common end bar, but, in general, this will not add any advantage. Another means for reducing gaps are the abovementioned guide bars.
As has already been explained above with reference to Fig. 5, a modular construction is of advantage also in this case.
While the points of interconnection of individual modules of the coil cores lla, llb are not shown (they are covered by the coils 12a to 12d or by the bearings 13a to 13d), the joint between the casing modules 4, 4' may be seen as a mere non-limiting example. In this example, the joint is of the plug connection type in a similar way, as has been described with reference to the coil core modules 11, 11' of Fig. 5.
The module 4' has a restricted connecting edge 50 to be plugged simply into the module 4. If desired, an additional connection by cementing, soldering, brazing or welding may be provided; it is further conceivable to prestress the individual modules by means of bracing elements, such as bracing wires so that dismounting is easier possible. For example for a large hall, a plurality of such modules (either of the casing and/or of the coil core and/or of the end guide) may be put together, the last one being fittingly cut. It is to be understood that the casing 4, 4' of Fig. 7, for the rest, will be constructed in analogous manner as represented in Fig. 2, although modifications are within the scope of the invention Furthermore, it is within the scope of the present invention to use other means as curtain webs instead of a fabric provided the material is temperature resistant and/or inflammable. A special embodiment will be described later.
For supporting the respective coil, a supporting arrangement 13, 14 having at least one supporting surface is provided. As a supporting surface a supporting roller, a supporting belt or even a slide surface may be used. In the case of a slide surface, friction should be as much reduced as possible to which end optionally an air cushion is employed.
In the case of Fig. 8, two rooms 2a, 2b are separated from each other by a wall 110, but are connected through an opening 104 of wall 110. A conveyor extends through the opening 104, the conveyor, in this embodiment being represented as a roller conveyor 101, but may be formed by any other conveyor, e.g. as a belt conveyor. It is clear that the opening 104 constitutes only a possible, non-limiting example of an application of a curtain according to the invention.
Although this conveyor 101 obstructs closing of the opening 104, this opening has to be shut off quickly and securely in the case of a fire. Known plate-like shutters have a relatively great mass even with relatively small openings (as the opening 104) for which reason it is necessary to provide brakes for their closing movement, the above-mentioned electric brake being a preferred embodiment. In this way, accidents and damages of piece goods or of the shutter itself are avoided However, by such brakes the speed of achieving closure will be limited.
This drawback is avoided by the embodiment shown on the lefthand side of Fig. 8 in that a fire protection shutter 106 for separating the rooms 2a and 2b consists of a fire protection curtain 105 (in contrast to the fume curtain discussed above) which has little mass and, therefore, can be quickly unwound from the coil 12a. This coil 12a is mounted on wall 110 by a bracket 109 indicated by interrupted lines and has a drive, e.g. a motoric drive in the manner explained above. It is also possible, however, to move the coil 12a by energy mechanically stored, e.g. by a weight or a spring or the like, as has also been discussed above. It is to be understood that the above described supporting arrangement may also be used instead of a bracket, but this will not be necessary with the ordinarily small widths of wall openings 104.
The flexible outer layer 105 (the curtain) will, in general, be formed by a fabric woven from glass fibres, carbon fibres, ceramic fibres, silicon fibres or polycarbon fibres1 optionally from metal, such as thin metal sheet or wire, or of a combination of these materials. It has been found that it may be suitable to combine a material of lower melting point, e.g. one listed above, with a material of higher melting point. If, for example, a layer of metal sheet covers a woven fabric, e.g. of glass, protection is achieved for the glass material which has a comparatively lower melting point, particularly not at last by the reflection of heat radiation into the burning room, but also by a mechanical reinforcement for even in case of melting (and the resulting caking) of the glass material, the metal sheet will hold it together.
For example, threads or wires of chromium material, such as chromium steel, have been proved to be especially suitable.
Threads or wires of chromium steel may be woven in a fabric in more or less large distances, because they have to hold only the fabric together and to provide a sufficient strength when the material of lower melting point cakes. Distances of 0.2 to 3 cm (in warp and/or in weft) are realistic according to the respective application. Of course, the distance between the threads or wires is not limited in their lower values, but to higher values there are some resulting from temperature resistance and properties of the material of lower melting point as well as from the application of the curtain. Distances as high as 5 cm are, in fact, conceivable.
Optionally, such a woven fabric may comprise a coating either of metal sheet or any other suitable material. Among others, a coating of polyurethane has been found advantageous, especially when exhibiting a certain reflectivity.
It may be seen that the outer layer 105, thus obtained, due to its flexibility, may easily conform to the shape of the rollers 102 of the roller conveyor 101, thus ensuring tight closing of the opening 104. It may further be seen that the curtain 105 is favourably formed as a loop for reasons still to be explained, where the right-hand end 103 of the loop in Fig. 8 may be fastened to the upper side of the opening 104.
The loop-shaped design enables insertion of fire-proof or fire resistant material into the loop in an especially favourable manner. This can be done either shortly after lowering the outer layer 105 or during it. In this way, the position of the lower end of the loop is, not at last, secured between the rollers 102, since a considerable air current may develop through the opening 104 in case of a fire. The fire-proof or fire resistant material introduced into the loop may be of any type, as will still become apparent from the following description, but a flowable material, such as a powdery or granular material, is preferred. Of course it would also be possible to move a fire-proof or fire resistant plate into the loop.
As a flowable material, water or another liquid could be sprayed into the loop. Although it is known to spray water on both sides of a curtain, the arrangement of such a spraying device in the interior of a double curtain results in a more effective use of sprayed liquid, while maintaining the advantage of a double closure of the opening 104. For, on the one hand, a single spraying arrangement is necessary only (instead of a double one), and on the other hand, this liquid will remain for a longer time within the hull formed by the curtain, thereby developing a longer cooling effect, while with increasing temperatures being expelled in the form of steam through the pores (in the case of a woven fabric) or openings of the curtain, thus cooling the outer surface, as will be explained later.
A special kind of such flowable material are fire protection foams or mineral foams which will either foam by an additive introduced into the loop or by the temperature of the blaze itself. In many cases, it may be convenient to admix various additives to such a foaming material. Thus, it may be advantageous to admix material which foams under the influence of heat just within the region of the rollers 102, because the interspace between the roller will be sealed in this way most effectively. Optionally, a swelling material, as discussed with reference to Fig. 4a, can be used either alone or in combination.
Another favourable additive may consist of a substance which reacts endothermically which removes heat by chemical transformation, thus cooling the fire shutter and imparting a longer resistance. An example of such a substance is zinc oxalate, but a series of substances having similar properties are conceivable. Furthermore, it is possible to add a solidifying binding agent, but optionally merely water. A further possibility in this connection will be discussed later with reference to Fig. 11. Other suitable additives may be antifreezing agents, for example if the rooms 2a or 2b are subjected to temperatures below the freezing point. In an environment endangered by corrosion, corrosion-proofing agents could be added, for example to preserve the curtain web or a hull provided for the fire-proof material incorporated. For example it would be possible to pack a bulk material into bags, which optionally are interconnected, and to introduce them, in case of a fire, between two curtain webs or to lower them on one side of a curtain (e.g. if only one is provided).
Introducing such materials into a loop may be effected in various ways. For example, the housing 111 of a screw conveyor 112 (or any other conveyor, such as the plunger of a plunger pump) may be provided on the upper surface defining the opening 104 may be provided. This housing 111 can have a plurality of outlet openings 113 axially distributed over its length at its bottom side. In the case of a liquid, such as water, connection via a valve to an appropriate source, such as the line system, may be sufficient instead of a special conveyor.
When a fire breaks out, the coil 12 a is first unwound and simultaneously or shortly after, the conveyor 11-13 is actuated, e.g. the screw 112 is rotated, so that fire protection material, such as powdery or granular material, is discharged into the loop of the curtain web through the openings 113, thus forming an inner layer 115. This material is supplied from a source not shown, such as a supply bin or a tank. Such a supply bin will be discussed later with reference to the embodiment shown on the right side of Fig. 8. It is clear, however, that the kind and construction of the conveyor is of no importance, and that also other types of conveyors may be used, for example chain conveyors of the Redler type.
The openings 113 may have uniform cross-sections over the axial length of the housing 111, or the openings can exhibit an increasing cross-section when starting from the abovementioned supply bin. This would contribute to a more uniform distribution of the material within the loop of the curtain web 105. In the simplest case, a single opening 113, for instance in the middle of the width of the wall opening 104 (when measured in axial direction of the housing) may also be sufficient, in which case a more or less steep alluvial cone will form. Such an opening 113 needs not forcibly to be provided at the bottom side of the housing 111, but can also be laterally located (in particular in the case of liquids) or at the front side (in which case the housing will extend only over part of the width of the opening 104) Instead of a single conveyor 111-113, a plurality thereof may be provided, either in order to introduce a ready mixture of fire-proof or fire resistant material simultaneously at different locations, or by having at least part of the conveyors connected to at least one source of an additive discussed above.
Instead of the conveyor 111-113 extending in horizontal direction, as shown, one or more tubes for supplying fire protection material may be lowered from inside the wall 110 about simultaneously with the curtain. In this case, optionally a grid of at least two such conveyor tubes are provided which, for example will spray a fire protection liquid over the length and width of the curtain at different locations when a fire breaks out.
It has already been mentioned that the right-hand side of Fig. 8 shows an alternative embodiment. This refers, above all, to its modified construction, but it is easily possible to apply two or more curtains according to the present invention in a single wall opening 104, a variety of combinations of the embodiments described herein as well as of their individual features being, of course, possible. The reason for a difference in the construction of two curtains with surfaces which face each other can, for example, reside in a different danger of fire in the two rooms 2a and 2b so that one would provide a more effective fire protection towards the room of greater hazard.
If the free end 103 of the curtain 105 is fixed, as in the embodiment facing the room 2a, the lower end of the loop, thus formed, will move with only half the speed of rotation of the coil 12a. Since one is not limited with respect to this speed, this may be still faster than with braking the fire shutter.
If, however, a greater speed is to be achieved and the parallel portions of the loop should not move relatively to each other, it is preferred if both ends of the curtain are moveable, as in the previous embodiments. This needs not necessarily to be done by arranging two coils, but can also be effected in the manner discussed later with reference to Fig. 9.
In Fig. 8 (at right) both ends of the curtain 105a are wound each on a coil 12b and 12c, the coil 12b being mounted on a bracket 109a below the upper surface defining the wall opening 104, whereas the coil 12c is mounted by means of a bracket 109b on a supply bin 114. It has already been mentioned that there are various possibilities to unwind these coils, for example by means of a motor drive. These drives must not necessarily have the same speed, i.e. there is no need for a synchronisation.
Between the coils 12b and 12c, the supply bin 114 for the material of the inner layer 115 is provided and discharges it trough the open cross-section of the discharge opening 113a, e.g. after opening a slider or valve 116 which is only schematically indicated. However, it would also be possible that the web of the curtain itself covers the discharge opening 113a in wound up condition of the two coils 12b, 12c, for example to prevent powdery or granular material from exiting. In the same manner as mentioned with reference to the previous embodiment, a plurality of supply bins 114 may be provided, e.g. distributed over the width of the wall opening 104.
A speciality of this embodiment is that at least one, preferably a series of outflow openings 117 are provided at the lower side of the curtain loop. This requires, of course, that these openings 117 will assume the position shown, i.e.
the two coils 12b, 12c will, in general, be unwound with the same speed, although even in this embodiment it is not necessary. The respective opening 117 may be covered by a coating melting under elevated temperatures so that a sealing effect is only achieved after melting (or evaporating) of this coating. Analogously, the pores of a woven fabric, as described above, comprising a cooling agent exiting from the interior could be covered by a coating which melts under the heat of a blaze (thereby absorbing further heat), this being possible independently from the presence of the other characteristics of the invention and, thus, constituting an invention for its own.
The fire-proof or fire resistant material being discharged through the opening(s) 117 seals the space between adjacent rollers 102 and cools this area. The arrangement can also be such that at the beginning a material is filled into the loop of the curtain 105a which expands and swells under heat, particularly after being discharged through the outflow openings 117, thus filling all spaces and gaps when expanding.
When in this connection the question is of a loop of the curtain 105 or 105a, one may ask what the arrangement may be at the lateral edges of the web. In fact, there is some possibility that fire protection material (liquid, foam, powdery or granular material) could leave the loop through lateral gaps. This, however, can be prevented by the guide bars already mentioned and/or by arranging the curtain closely to the wall of the opening 104, particularly by a guide bar according to Fig. 4a.
Even if it has been stated that simultaneous unwinding both ends of a loop formed by a curtain accelerates closing of a wall opening, this must not necessarily be done with two (or more) separated coils 12b, 12c. Fig. 9 shows an approach where both ends of a curtain loop are wound up in two layers to form a common coil 12c, thus enabling common unwinding and achieving a more compact arrangement. The housing 111 of the conveyor ' for the fire protection agent serves, in this embodiment, also as a deflection means and as a spacer for the two parallel portions of the loop of the curtain 105.
Another embodiment is illustrated in Fig. 10 where four layers of curtain web are provided. Two outer curtains 105a, 105b are again interconnected by a common end bar 106 which optionally prevents that fire protection material, which may be introduced from above (see the conveyor 111-113 of the previous embodiment), can fall down (or only in a controlled manner through outflow openings 117). Between the two outer curtain webs 105a, 105b, this embodiment shows a double curtain web 105c forming a loop. Also into this loop, fireproof or fire resistant material may be filled (either in addition to filling the outer space 126 defined by the curtains 105a and 105b or alternatively to that) in the manner discussed above. Unwinding and supporting the coils of the curtains 105a to 105c may be effected according to one of the arrangements discussed previously. It is not even necessary to provide two separate curtains lOSa, 105b, for the end bar could have deflection rollers at its upper side (or in its interior) through which a loop of the web forming the curtain 105a is drawn up as the curtain 105b. Likewise, four (or another number) of separate curtains may be provided which may optionally have different properties (reflecting, a melting coating etc.).
Given the above-mentioned preconditions, a fire protection layer 115 between two curtains 105d (comprising either a loop or not) may preferably be formed in accordance with Fig. 11.
It should be understood that also in this embodiment the application of a moveable support for the upper end of the curtain or the common end bar as well as the guide bars are of advantage, but that this embodiment has inventive character for its own. To wit, if the curtain 105d is provided with a number of openings 132, which are preferably evenly distributed over at least part of its surface, these openings may be used to blow out a cooling gas forming a protective and isolating boundary layer to increase the endurance of the fire protection shutter in case of a blaze. The openings 132, in the simplest case, are formed by the pores of a woven fabric, e.g. of a plain woven fabric or even a sateen fabric or any other porous curtain web. Also use of a-jour weave having spaced holes may be favourable.
The inner fire protection layer 115 may be formed from a special additive which dissociates or transforms to a cooling (in comparison to the temperature of a blaze) gas or may even consist only of it. The simplest example for producing such a gas is water which transforms into steam under the heat of fire, thus fixing the temperature of the fire protection curtain to 100'C for a certain time. Water may be supplied via the conveying line 111 mentioned above and through spraying nozzles corresponding to openings 113.
In order to ensure uniform delivery of water steam, it is advantageous (just in the case of a curtain consisting of the two webs shown as well as of the inner layer of sufficient flexibility to be wound up provided therebetween) if the inner fire protection layer 115 consists of a fire-proof or fire resistant mineral foam which contains a gas used for foaming which is ordinarily air. When producing the foam, the gas is removed from the pores by introducing the porous foam into an air-tight chamber after which a vacuum is applied.
Subsequently, water is introduced into the chamber, and pressure is normalised again so that the pores of the foam will suck the water off.
It is advantageous to take measures to ensure that the watery contents of the foam remains in place and to prevent escape.
To this end, the water containing material may be enveloped with a protective mass, for example with a material melting under elevated temperatures, thus dissipating heat, and/or with a gel. This can be done by adding a gel or a dispersion of plastic material to the liquid, i.e. generally water, optionally with additives1 at the end of sucking into the pores of the foam, allowing it to deposit. Alternatively, depositing is effected by a precipitating reaction, as is known to those skilled in chemical processes.
Of the additives, again zinc oxalate should be mentioned (which, due its bad solubility in water may easily applied together with water) or such substances which, for example contain bound water, and which may be used in addition or alternatively to the foam mentioned above. Examples include mineral foams having a high degree of water of crystallisation, zeolites, lycopodium spores and/or hydrogel. Additives may also be introduced into water, such as the abovementioned antifreezing or corrosion-proofing agents. Such additives are particularly advantageous if the inner layer 115, as shown in Figs. 8 to 10, is only introduced in case of a fire.
Fig. 12 illustrates an embodiment taking another effect into account which may be of particular effect with high fire protection shutters (see the hall of Fig. 1). It concerns the fact that the temperature in case of a blaze is much higher at top than at bottom. This means that the fire protection shutter will be subjected to a higher temperature stress at its upper side than at its bottom portion. This effect can be counter-acted by broadening and reinforcing the fire protection shutter (curtain 105) towards to upper portion thereof. This measure can also be applied to fire protection shutters of rigid material, such as with plate-like shutters, roller blinds etc.; therefore, it constitutes a technical approach of inventive character for its own, although the use of a curtain in form of a loop is particularly preferred. The ratio of broadening in upward direction will, of course, depend upon the respective given conditions (e.g. height of the room, height of the fire protection shutter) as well as upon the actual hazards (e.g. presence of more or less hazardous materials etc.) or upon the requires quality of fire protection. In this connection, it will be clear that the interior of the loop shown in Fig. 12 may be filled with fire-proof or fire resistant material in the manner already described, for example also analogously to Fig. 10 by arranging the loop-shaped curtain 105c to extend only over the upper part of the height of the curtain 105 shown in Fig.
12.
The front view of Fig. 13 shows a curtain 205 without the end bar or the guide bars which may be formed in the manner described above. The curtain 205 is represented in unwound condition from a coil core 111. This embodiment illustrates another kind of multilayer construction of the curtain 205, since this curtain has fleece pads arranged in directions perpendicular to each other and being spaced by distances a and b, respectively. These pads p favour the evaporation of any fire protection liquid supplied, such as water. The distances a and b may be equal or different, and the distances a can also broaden in upward direction in order to provide less resistance to the liquid supplied into the, thus, formed capillary channels c at top than below.
The fleece pads p may be applied, optionally being glued or stitched, e.g. in individual points, onto the outer surface of the clothing forming the channels c, thus, constituting an outer layer. This may be effected on one side or on both sides of the curtain 205. Moreover, it is possible to weave a layer of sponge cloth into the fabric forming the channels c.
A further possibility consists in forming a hollow clothing, the fleece pads or any other fibre layers favour evaporation being inserted or woven into the cavities.
Supply of fire protection liquid is effected in this embodiment through a supply tubing t, for example, receiving water via a rotary joint known per se in engineering and not shown in Fig. 13. This tubing t is connected to a cylindrical cavity h extending over the whole coil core 111 from which discharge openings o depart for discharging the fire protection liquid supplied. The number of openings o is not critical, but it is favourable, if at least one opening 0 faces a capillary channel c over which the liquid is distributed in the direction of arrows f by gravity, on the one hand, and by capillary action, on the other hand. The diameter of the openings o can be increased with increasing distance from the tubing t in order to attain a more uniform distribution of the liquid over the length of the core 111.
Supplying water via the cavity h makes, of course, accommodation of a motor within the interior of the coil core 111 more difficult, though not impossible, since such a motor might be accommodated in a lateral prolongation of the core 111 beyond the width of the curtain 205, or on the outside of the core. The water (or any other fire protection liquid) supplied will evaporate on the surface of the curtain 205 in the same manner as has been described above with reference to Fig. 11, thus, protecting the fabric which is permeable for the developing steam due to its pores. Also in this embodiment, a coating may be provided on the surface of the curtain, which melts in case of a fire, thus, dissipating heat, and freeing the pores of the fabric only after having molten.
Another possibility is to form a surface of the curtain 205 which is gas permeable, but locks any liquid. It is to be understood that the supply of a fire protection liquid via the coil core, on the one hand, and the provision of a multilayered integral curtain contains inventive characteristics being independent from the other characteristics described in this s

Claims (46)

1. A curtain comprising a web of temperature resistant material forming a web surface and having lateral edge regions on either side, which web having an end bar and may be wound onto and unwound from a coil arranged on a coil core having two ends and being supported by a bearing arrangement including at least one supporting surface, characterised in that the curtain web includes a first outer web layer, at least one inner layer of fibrous material, and a second outer layer, and that supply means for a liquid fire retardant are provided which extend within the region of the upper end edge of the curtain web.
2. Curtain arrangement as claimed in claim 1, wherein at least one of said first and second outer layers is porous and has a coating.
3. Curtain arrangement as claimed in claim 2, wherein said coating is of a material melting under elevated temperatures.
4. Curtain arrangement as claimed in claim 1, wherein said at least one inner layer of fibrous material comprises a fleece material.
5. Curtain arrangement as claimed in claim 1, wherein at least one of the inner layers is continuous over the whole width of the curtain web and over its predetermined length.
6. Curtain arrangement as claimed in claim 1, wherein at least one of said first and second outer layers is porous.
7. Curtain arrangement as claimed in claim 1, wherein at least two of said layers are wound on a common coil.
8. Curtain arrangement as claimed in claim 7, wherein said inner and outer layers are fixed to each other to form an integral curtain.
9. Curtain as claimed in any of the preceding claims, wherein said coil core comprises a cavity for enabling supply of a fire protection liquid, especially of water, and at least one discharge opening for said liquid supplied to said cavity leading towards its periphery.
10. A curtain comprising a web of temperature resistant material forming a web surface and having lateral edge regions on either side, which web may be wound onto and unwound from a coil arranged on a coil core having two ends and being supported by a bearing arrangement including at least one supporting surface, characterised in that the coil core, at least on one of its ends, is supported adjustably in height within a guidance and/or the curtain is guided by lateral guide bars including an arrangement for preventing the inserted curtain edge to be drawn out and/or that at least two curtain webs the surfaces of which face each other have a common end bar forming a weight for the curtain.
11. Curtain as claimed in claim 10, wherein at least two webs are interconnected within the area of their edges in side-by-side relationship by a connecting arrangement, such as a seam, and are wound on a common coil core to form a coil supported by at least one bearing arrangement situated between its axially spaced ends, said bearing arrangement comprising at least one supporting surface.
12. Curtain as claimed in claim 10 or 11, wherein at least two supporting rollers parallel to each other support the coil.
13. Curtain as claimed in any of the preceding claims, wherein the coil core elastically props against a propping device at least on one end, particularly that comprising a drive means, such as a motor.
14. Curtain as claimed in any of the preceding claims, wherein the respective coil core and its support are accommodated within a casing having an outlet slot for the curtain, a draw off arrangement, such as a draw off edge defining the plane of the curtain and guiding it.
15. Curtain as claimed in any of the preceding claims, wherein two curtain webs are interconnected by having a pair of common lateral guide bars holding firmly the lateral edges of the curtain.
16. Curtain as claimed in any of the preceding claims, wherein the support arrangement is provided at least on one edge region of the curtain web.
17. Curtain as claimed in any of the preceding claims, wherein the edge regions are thickened, the coil core having a smaller diameter at the respective thickened edge region.
18. Curtain as claimed in any of the preceding claims, wherein the casing and/or the respective coil core and/or the end bar are constructed from individual, substantially uniform modules interconnected in axial direction by a connecting arrangement.
19. Curtain as claimed in any of the preceding claims, wherein at least two curtain webs are wound in spaced relationship onto a common coil core, at least one intermediate bearing being provided within the space thus formed.
20. Curtain as claimed in any of the preceding claims, wherein supply means for fire-proof or fire resistant material are provided between two curtains the surfaces of which face each other in order to introduce such material between the curtains.
21. Curtain as claimed in any of the preceding claims, wherein two curtains are provided, the surfaces of which face each other and have a varying distance from each other, the distance being larger at the upper side of the curtains than at the lower side.
22. Curtain as claimed in any of the preceding claims, comprising material swelling and expanding under the influence of heat within at least one of said edge regions.
23. Curtain as claimed in claim 22, wherein said edge region is guided within a slot.
24. Curtain as claimed in any of the preceding claims, wherein at least one, preferably a plurality of, opening(s) is or are provided at an edge region between two curtain webs or portions, the surfaces of which face each other.
25. Curtain as claimed in any of the preceding claims, comprising two curtain webs or portions, the surfaces of which face each other so as to define an inner space, at least one of said web surfaces including a plurality of openings for the outflow of a cooling fluid supplied from said inner space.
26. Curtain as claimed in claim 25, wherein said outflow openings are evenly distributed over at least one area of the respective web surface.
27. Curtain as claimed in claim 25 or 26, wherein said cooling fluid is formed by a fluid exiting through said outflow openings as a gas in case of a fire.
28. Curtain as claimed in any of the preceding claims, further comprising a coating on at least part of one of its web surfaces, the coating preferably melting under heat.
29. Curtain as claimed in any of the preceding claims, comprising an electrically brakeable motor as a drive having a braking mode and a prime mover mode for winding the curtain.
30. Curtain as claimed in claim 29, wherein said motor in its braking mode is switched to form a generator.
31. Curtain as claimed in any of the preceding claims, wherein said coil core comprises a cavity for enabling supply of a fire protection liquid, especially of water, and at least one discharge opening for said liquid supplied to said cavity leading towards its periphery.
32. Curtain as claimed in any of the preceding claims, wherein it consists of at least two layers of fabric, one of them being a layer of fibres favourising evaporation.
33. An end bar for a curtain as claimed in any of the preceding claims, characterised in that it comprises a pair of elongated clamping bar legs having two lateral ends opposite to one another, one end of which including a connection cross-piece, whereas the opposite end of each leg has a clamping surface, the clamping surface of both legs preferably being substantially parallel in clamping position.
34. End bar as claimed in claim 33, wherein said clamping surface is substantially smooth.
35. End bar as claimed in claim 33 or 34, wherein the two legs are formed as separate parts, said connection cross-pieces of both legs being angled, preferably under right angles, and overlap each other, the end bar further comprising actuating means, such as a clamping bolt, for clamping said clamping surfaces together.
36. End bar as claimed in any of claims 33 to 35, wherein at least one of said legs comprises an oblique surface between said connecting cross-piece and said clamping surface, said oblique surface being inclined under an angle with respect to a centre plane extending between the clamping surfaces of the two legs facing each other, the end bar further comprising a clamp piece, preferably being rod-like rounded, which is inserted between the two legs to engage said oblique surface and to provoke a wedge effect onto a curtain inserted therebetween.
37. End bar as claimed in any of claims 33 to 36, wherein at least one of the elongated legs consists of at least two parts to be interconnected in longitudinal direction as individual, substantially uniform modules.
38. Guide bar for a curtain as claimed in any of claims 10 to 32, characterised in that it comprises a holding and/or sealing arrangement for laterally tightening or sealing said curtain cooperating with a guide slot defining a slot plane for receiving one edge region of said curtain.
39. Guide bar as claimed in claim 38, comprising at least one propping element elastically propping between the guide bar and the curtain, preferably against the edge region thereof, which, in particular, is thickened.
40. Guide bar as claimed in claim 39, wherein said element is brush-like, and is particularly formed as a sealing brush, said brush-like element being supported in an inclined fashion pointing outwardly towards the edge region of the curtain.
41. Guide bar as claimed in claim 39 or 40, wherein said element is formed from a material expandable under heat, being particularly bar-shaped, and is situated on a surface of the guide bar extending substantially parallel to said slot plane, an abutment surface being opposite, and preferably parallel to, said surface of the guide bar.
42. Guide bar as claimed in claim 41, comprising an open surface box section, the open surface of the box section being elongated to define said slot so that two rail surfaces remain on either side of said slot, tension elements applied to the curtain, preferably provided with rollers, being insertable into the box section and propping against said rail surfaces.
43. A curtain according to claim 10 and substantially as hereinbefore described with reference to and as shown in any one or more of the accompanying drawings.
44. An end bar for a curtain according to claim 33 and substantially as hereinbefore described with reference to and as shown in any one or more of the accompanying drawings.
45. A guide bar for a curtain according to claim 38 and substantially as hereinbefore described with reference to and as shown in any one or more of the accompanying drawings.
46. Any novel feature or combination of features described herein.
GB9823079A 1995-03-22 1996-03-19 Fire retardant curtain Expired - Fee Related GB2327880B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH81595 1995-03-22
DE19512355 1995-04-01
GB9605767A GB2299021B (en) 1995-03-22 1996-03-19 Curtain,end bar and guide bar

Publications (3)

Publication Number Publication Date
GB9823079D0 GB9823079D0 (en) 1998-12-16
GB2327880A true GB2327880A (en) 1999-02-10
GB2327880B GB2327880B (en) 1999-08-25

Family

ID=27172437

Family Applications (3)

Application Number Title Priority Date Filing Date
GB9906611A Expired - Fee Related GB2332860B (en) 1995-03-22 1996-03-19 Curtain,end bar and guide bar
GB9905286A Expired - Fee Related GB2331701B (en) 1995-03-22 1996-03-19 Curtain,end bar and guide bar
GB9823079A Expired - Fee Related GB2327880B (en) 1995-03-22 1996-03-19 Fire retardant curtain

Family Applications Before (2)

Application Number Title Priority Date Filing Date
GB9906611A Expired - Fee Related GB2332860B (en) 1995-03-22 1996-03-19 Curtain,end bar and guide bar
GB9905286A Expired - Fee Related GB2331701B (en) 1995-03-22 1996-03-19 Curtain,end bar and guide bar

Country Status (1)

Country Link
GB (3) GB2332860B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2360703A (en) * 2000-03-31 2001-10-03 Julian S Shen Fire curtain system
WO2002072203A1 (en) * 2001-03-13 2002-09-19 Alain Denes Extendable partition wall that can be used in road traffic tunnels
WO2003097169A1 (en) * 2002-05-15 2003-11-27 Prospective Concepts Ag Bulkhead for sealing off a tunnel in the event of a fire

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213811B4 (en) * 2002-03-27 2010-10-21 Efaflex Tor- Und Sicherheitssysteme Gmbh & Co. Kg Method for operating a gate assembly and gate assembly with fire protection and high-speed function
GB0313587D0 (en) * 2003-06-12 2003-07-16 Cooper Andrew P Barrier
WO2006039736A1 (en) * 2004-10-14 2006-04-20 Gwion Cain Flexible fire barrier for property protection
GB2428737B (en) * 2005-08-02 2010-01-06 Environmental Seals Ltd Rolling fire barrier
US8016017B2 (en) 2007-07-26 2011-09-13 Smoke Guard, Inc. Barrier systems and associated methods, including vapor and/or fire barrier systems
US8113266B2 (en) 2007-07-26 2012-02-14 Smoke Guard, Inc. Barrier systems and associated methods, including vapor and/or fire barrier systems
US7735539B2 (en) 2007-12-28 2010-06-15 Nohara Guard System Co. Ltd. Fire-resistant smoke-suppressant device
GB201304316D0 (en) 2013-03-07 2013-04-24 Coopers Fire Ltd Fire & smoke curtain
EP4158143A1 (en) * 2020-05-26 2023-04-05 ASSA ABLOY Entrance Systems AB Vertical folding door system
EP4372196A1 (en) * 2022-11-17 2024-05-22 Frinova GmbH Quick-running door

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188186A (en) * 1990-11-16 1993-02-23 Nash Dale K Barricade for isolating open areas from spreading fire or smoke
EP0774277A1 (en) * 1995-11-20 1997-05-21 Société d'Exploitation du Parc des Expositions de la Ville de Paris Fire curtain

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0063015B1 (en) * 1981-04-04 1984-11-14 Hugh Gerald Charles Window insulation system
GB2139683A (en) * 1983-05-12 1984-11-14 Lewis Plc John Guide structure for a shutter
GB8326163D0 (en) * 1983-09-29 1983-11-02 Baldwin & Stanton Ltd Covering structures
DE3429781A1 (en) * 1984-04-02 1985-10-10 Schieffer GmbH & Co KG, 4780 Lippstadt ROLLING DOOR WITH A FLEXIBLE DOOR LEAF
GB8624735D0 (en) * 1986-10-15 1986-11-19 Clark Door Ltd Roller door assemblies
BE906022A (en) * 1986-12-23 1987-04-16 Coenraets B J SHUTTER DEVICE.
US5195594A (en) * 1991-08-12 1993-03-23 Allen Thomas H Apparatus and method for rapidly and reliably sealing off certain exit and entrance ways in response to smoke or fire
GB9522851D0 (en) * 1995-11-08 1996-01-10 Shaw Stanley R Industrial/commercial door

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188186A (en) * 1990-11-16 1993-02-23 Nash Dale K Barricade for isolating open areas from spreading fire or smoke
EP0774277A1 (en) * 1995-11-20 1997-05-21 Société d'Exploitation du Parc des Expositions de la Ville de Paris Fire curtain

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2360703A (en) * 2000-03-31 2001-10-03 Julian S Shen Fire curtain system
WO2002072203A1 (en) * 2001-03-13 2002-09-19 Alain Denes Extendable partition wall that can be used in road traffic tunnels
FR2822174A1 (en) * 2001-03-13 2002-09-20 Alain Denes DEPLOYABLE PARTITION FOR USE IN ROAD TUNNELS
WO2003097169A1 (en) * 2002-05-15 2003-11-27 Prospective Concepts Ag Bulkhead for sealing off a tunnel in the event of a fire

Also Published As

Publication number Publication date
GB2331701B (en) 1999-08-25
GB2327880B (en) 1999-08-25
GB9823079D0 (en) 1998-12-16
GB9906611D0 (en) 1999-05-19
GB2332860A (en) 1999-07-07
GB9905286D0 (en) 1999-04-28
GB2332860B (en) 1999-08-25
GB2331701A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US5862851A (en) Curtain arrangement for preventing spread of smoke
US6357507B1 (en) Curtain arrangement for preventing spread of smoke
GB2327880A (en) Fire retardant curtain
US3877525A (en) Flame-guard device for isolating and stepping of premises
JP3104011B2 (en) Fireproof or smokeproof fireproof shutter
RU2457008C2 (en) Fire-retardant coverings
US5809699A (en) Fire curtain
US20130061544A1 (en) Means for firestopping a curtain wall construction
PL2110506T5 (en) Screen and roller shutter with such a screen
JP7472375B2 (en) Disaster prevention equipment
US3654996A (en) Ceiling construction
GB2428737A (en) Rolling barrier
JP2021087754A (en) Fire extinguisher and fire extinguishing system
US3861443A (en) Fire and heat radiation damper
JP2000073469A (en) Tabular member, space partitioning device, fire-resistant heat-insulating sheet and fire-preventive system
JP3295042B2 (en) Fireproof screen
JPH0670991A (en) Fireproof and smokeproof system
JP3340966B2 (en) Fireproof screen
DE19655307B4 (en) Fire-resistant curtain for public building - with coil core supported adjustably within guide which prevents inserted curtain edge being drawn out.
RU175287U1 (en) Barrier for protection against fire and smoke
JP3429640B2 (en) Screen device
JP2008297782A (en) Fireproof screen
JP4987293B2 (en) Switchgear
DE2650274A1 (en) Automatically closing fire localising installation - has ceiling mounted fire proof system of pleated curtains dropping down around affected areas
CN114259660A (en) Fire-fighting equipment storage and emergency refuge device

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20040319