GB2298214A - Structural components - Google Patents
Structural components Download PDFInfo
- Publication number
- GB2298214A GB2298214A GB9503908A GB9503908A GB2298214A GB 2298214 A GB2298214 A GB 2298214A GB 9503908 A GB9503908 A GB 9503908A GB 9503908 A GB9503908 A GB 9503908A GB 2298214 A GB2298214 A GB 2298214A
- Authority
- GB
- United Kingdom
- Prior art keywords
- structural member
- component
- microspheres
- enclosure
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/30—Columns; Pillars; Struts
- E04C3/36—Columns; Pillars; Struts of materials not covered by groups E04C3/32 or E04C3/34; of a combination of two or more materials
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/29—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Vibration Dampers (AREA)
- Powder Metallurgy (AREA)
Abstract
Structural members, having improved load bearing capability, as utilised in the construction of buildings, bridges, towers, frames and the like, comprising an enclosure 1 associated which is filled with hollow microspheres 2 to a density where the microspheres become a quasi-solid both during initial filling of an initial cross section enclosure and then forming of the member to reduced dimensions or to a modified regular or irregular cross section.
Description
IMPROVEMENTS IN STRUCTURAL COMPONENTS AND APPARATUS
This. invention relates to structural members, components and apparatus and methods of fabricating said structural members, components and apparatus having improved load bearing capability, as utilised in the construction of buildings, bridges, towers, frames and the like.
Presently structural members are round, rectangular or square hollow section. Other forms of structural members include 'I' beams, open channels and angles. To derive increased structural strength of hollow sectioned members, they may be filled with cement, concrete or the like. Such materials tend to be heavy.
The structural members can be utilised as beams, columns, struts and tie-bars.
It is the object of this invention to provide structural members, components or apparatus, such as beams, columns, struts, tie-bars and the like, which are formed of hollow regular or irregular shaped cross section members where the void space within them is filled with hollow microspheres which are compacted to a density whereby the microspheres become a quasi-solid.
The structural members may be formed of either a single element enclosure or of multiple elements within the outermost enclosure where the void space within, between and around the elememts is filled with hollow microspheres which are compacted to a density whereby the microspheres become a quasi-solid. Selected void spaces within the enclosure and between inner elements and within an innermost hollow element may not, in all cases, be filled with microspheres.
According to the invention there is also provided a structural member, component or apparatus all as described above, but where the load bearing capability of the structural member, component or appatutus is enhanced by forming the enclosures and elements within it to a new shape to provide further compaction of the hollow microspheres. The new shape and dimensions of the enclosures and inner elements after forming shall be such as to derive the required microsphere compaction and structural capability of the structural member. The forming of the structural member, component or apparatus to the final required shape or cross section and dimensions may be achieved by rolling, pressing, swaging, extrusion, cold drawing and other established methods of working materials.
The action of the compacting microspheres in the structural member, component or apparatus, is to cause the enclosure and inner elements to act compliantly when subjected to load.
The presence of the microspheres in the single and multi-element structural member, component or apparatus , especially when formed to a modified cross section, is to alter its mode of failure and thereby increasing its load to failure and increases the energy which can absorbed by the member, component or apparatus before unacceptable deformation or failure occurs.
The enclosures and elements comprising the structural member, component or apparatus may be made of metals such as steel, aluminium or other metals or of non-metallic materials such as plastics, glass reinforced plastics, carbon fibre.
It Is to be understood that the term 'apparatus' refers to individual pieces of equipment, structures, components or combinations of the aforesaid and the like.
For simplicity a structural member, component, apparatus shall henceforth be referred to as a 'structural member'.
Preferred embodiments of the invention will now be described, by way of example only, with reference to accompanying drawings., in which:
Figure 1 is a side elevation of a single outer element enclosure structural member according to the invention, which is acting as a beam, a part of which has been cut away for ease of reference.
Figure 2 is a cross section of the structural member of Figure 1 which is of circular form, which has typically been formed to a reduced diameter.
Figure 3 is a cross section of the structural member of Figure 1 which has been formed to a square cross section.
Figure 4 is a cross section of the structural member of Figure 1 which has been formed to a rectangular cross section.
Figure is a cross section of the structural member of Figure 1 which has been formed to an elliptical cross section.
Figure 6 is a side elevation of a multi-element enclosure structural member according to the invention, which is acting as a beam, a part of which is has been cut away for ease of reference.
Figure 7 is a cross section of the structural member of Figure 6 which has been formed to a circular cross section.
Figure 8 is a cross section of the structural member of Figure 6 which has been formed to a square cross section.
Figure 9 is a cross section of the structural member of Figure 6 which has been formed to a rectangular cross section.
Figure 10 is a cross section of the structural member of Figure 6 which has been formed to an elliptical cross section.
Figure 11 is a cross section of a single element enclosure structural member of Figure 1 which has been formed to an irregular cross section.
Figure 12 is a cross section of a multi- element enclosure structural member of Figure 6 which has been formed to an irregular cross section.
Figure 13 is a cross section of a single element enclosure structural member of Figure 1 which has been formed to an irregular cross section which features a single plate inner element.
Figure 12 is a cross section of a multi-element enclosure structural member of Figure 6 which has been formed to an irregular cross section which features a single plate inner element.
Referring to Figure 1 there is shown an elongate structural member which has a single outer element enclosure (1) which is sealed at its ends by suitable means, the hollow space within it being filled with hollow microspheres (2) which are compacted to a density where the microspheres become a quasi-solid. The compaction of the microspheres being achieved during filling and or by forming of the structural member to reduced dimensions and modified cross section.
The voids between the microspheres (2) may be filled with a bonding material which is mixed with the microspheres prior to filling of the enclosure or introduced after the enclosure has been filled with microspheres but before or following there compaction.
Figures 2, 3, 4 and 5 each show the cross section of a single elentent circular, square, rectangular and elliptical cross section after forming to reduced dimensions and/or modified cross section.
Referring to Figure 6 there is shown a double element elongate structural member which has an enclosure (1) and an inner member (3) which the outer element or both elements are sealed at their ends by suitable means, the hollow space within and between the elements being filled with hollow microspheres (2) which are compacted to a density where the microspheres become a quasi-solid. The compaction of the microspheres being achieved during filling and or by forming of the structural member to reduced dimensions and modified cross section.
The voids between the microspheres (2) may again be filled with a bonding material which is mixed with the microspheres prior to filling of the enclosure or introduced after the enclosure has been filled with microspheres before or following their compaction.
Figures 7, 8, 9 and 10 each show the cross section of a double element circular, square, rectangular and elliptical cross section after forming to reduced dimensions and/or modified cross section.
Figure 11 shows the cross section of the single element structural member where the enclosure (1) has been formed to a modified cross section. The operation to form the structural member to its modified cross section shall be carried out after filling and/or compacting of the microspheres within the original shaped enclosure , and where appropriate before the bonding liquid is fully set.
Figure 12 show the cross section of the double element structural member where the enclosure (1) and inner element (3) have been formed to a modified cross section. The operation to form the structural member to its modified cross section shall be carried out after filling and/or compacting of the microspheres within original shaped enclosure and inner elements, and where appropriate before the bonding liquid is fully set.
Figure 13 and 14 each show the cross section of a single and double element structural member as Figure 11 and 12 where the inner element (3) is a single plate member.
Claims (20)
1. Structural member, component or apparatus comprising a enclosure associated with said structural member, component or apparatus, which enclosure is filled with hollow microspsheres to a density where the microspheres become a quasi-solid both during initial filling of an initial cross section enclosure and then forming of the member to reduced dimensions or to a modified regular or irregular cross section.
2. Structural member, component or apparatus comprising both of an outer and inner enclosure and intermediate inner elements associated with said structural member, component or apparatus, which enclosure and void space within and between enclosures and inner elements is filled with hollow microspsheres to a density where the microspheres become a quasi-solid both during initial filling of an initial cross section enclosure and then forming of the member to reduced dimensions or to a modified regular or irregular cross section.
3. Structural member, component or apparatus as claimed in claims 1 and 2 in which the microspheres are of ceramic material.
4. Structural member, component or apparatus as claimed in any of the preceding claims in which the microspheres have a particle diameter in the range 5 to 1000 microns.
5. Structural member, component or apparatus as claimed in any one of the preceding claims in which the bulk density of the packed microspheres lies in the range of 0.3 to 1.0 g/cc.
6. Structural member, component or apparatus as claimed in any one of the preceding claims in which the bulk density of the compacted microspheres is in the range of 0.37 to 1.5 g/cc.
7. Structural member, component or apparatus as claimed in any one of the preceding claims where the void spaces formed between the microspheres are filled with a solid matrix, the forming of the structural member, component or apparatus being carried out before or after the solid matrix has set.
8. Structural member, component or apparatus as claimed in any one of the preceding claims where the microspheres are bonded together at their contacting surfaces only, but where the void spaces between the microspheres remain predominantly an empty void. The forming of the structural member, component or apparatus being carried out before or after bonding.
9. Apparatus or structure where the structural member, component or apparatus in any one of the preceding claims is located within the apparatus or structure.
10. Apparatus or structure where the structural member, component or apparatus in any one of claims 1 to 8 forms a part the apparatus or structure.
11. A method of creating a structural member, component or apparatus comprising an enclosure associated with said structural member, component or apparatus, which enclosure is filled with hollow microspsheres to a density where the microspheres become a quasi-solid both during initial filling of an initial cross section enclosure and then in the forming of the member to reduced dimensions or to a modified regular or irregular cross section.
12. A method of creating a structural member, component or apparatus comprising both of an outer and inner enclosure and/or intermediate inner elements associated with said structural member, component or apparatus, which enclosure and void space within and between enclosures and inner elements is filled with hollow microspsheres to a density where the microspheres become a quasi-solid both during initial filling of an initial cross section enclosure and then forming of the member to reduced dimensions or to a modified regular or irregular cross section.
13. A method of creating a structural member, component or apparatus as claimed in claims 11 and 12 in which the microspheres are of ceramic material.
14. A method of creating a structural member, component or apparatus as claimed in claims 11 to 13 in which the microspheres have a particle diameter in the range 5 to 1000 micron.
15. A method of creating a structural member, component or apparatus as claimed in claims 11 to 14 in which the bulk density of the packed microspheres lies in the range of 0.3 to 1.0 g/cc.
16. A method of creating a structural member, component or apparatus as claimed in claims 11 to 15 in which the bulk density of the compacted microspheres is in the range of 0.37 to 1.5 g/cc.
17. A method of creating a structural member, component or apparatus as claimed in claims 11 to 16 where the void spaces formed between the microspheres are filled with a solid matrix.
The forming of the structural member, component or apparatus being carried out before or after the solid matrix has set.
18. A method of creating a structural member, component or apparatus as claimed in claims 11 to 16 where the microspheres are bonded together at their contacting surfaces only, but where the void spaces between the microspheres remain predominantly an empty void, the forming of the structural member, component or apparatus being carried out before or after the solid matrix has set.
19. A method of creating an apparatus or structure where the structural member, component or apparatus in any one of the preceding claims is located within the apparatus or structure.
20. A method of creating an apparatus or structure where the structural member, component or apparatus in any one of claims 11 to 18 forms a part the apparatus or structure.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9503908A GB2298214A (en) | 1995-02-27 | 1995-02-27 | Structural components |
AU47288/96A AU4728896A (en) | 1995-02-27 | 1996-02-23 | Improvements in structural components and apparatus |
PCT/GB1996/000418 WO1996027061A1 (en) | 1995-02-27 | 1996-02-23 | Improvements in structural components and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9503908A GB2298214A (en) | 1995-02-27 | 1995-02-27 | Structural components |
Publications (2)
Publication Number | Publication Date |
---|---|
GB9503908D0 GB9503908D0 (en) | 1995-04-19 |
GB2298214A true GB2298214A (en) | 1996-08-28 |
Family
ID=10770324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB9503908A Withdrawn GB2298214A (en) | 1995-02-27 | 1995-02-27 | Structural components |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU4728896A (en) |
GB (1) | GB2298214A (en) |
WO (1) | WO1996027061A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2324550A (en) * | 1997-04-26 | 1998-10-28 | British Aerospace | Forming or treating an article or preform |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1982003102A1 (en) * | 1981-03-06 | 1982-09-16 | Jack G Bitterly | Structural member |
GB2266104A (en) * | 1992-04-15 | 1993-10-20 | Keith John Kingham | Non-ferrous metal 2-part composite product |
GB2276891A (en) * | 1993-04-05 | 1994-10-12 | Euro Stress Ltd | Struts with compression and tension elements |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3258883A (en) * | 1962-09-25 | 1966-07-05 | North American Aviation Inc | Rigidized evacuated structure |
US4195111A (en) * | 1977-10-25 | 1980-03-25 | Fowler Holdings Limited | Load supporting means and the formation thereof |
AU2617092A (en) * | 1991-10-23 | 1993-04-29 | Hi-Tec Building Products Pty. Ltd. | Light-weight material |
JPH07233587A (en) * | 1993-12-28 | 1995-09-05 | Nippon Hume Pipe Co Ltd | Light weight concrete and production method thereof and architectural panel by use thereof |
-
1995
- 1995-02-27 GB GB9503908A patent/GB2298214A/en not_active Withdrawn
-
1996
- 1996-02-23 AU AU47288/96A patent/AU4728896A/en not_active Abandoned
- 1996-02-23 WO PCT/GB1996/000418 patent/WO1996027061A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1982003102A1 (en) * | 1981-03-06 | 1982-09-16 | Jack G Bitterly | Structural member |
GB2266104A (en) * | 1992-04-15 | 1993-10-20 | Keith John Kingham | Non-ferrous metal 2-part composite product |
GB2276891A (en) * | 1993-04-05 | 1994-10-12 | Euro Stress Ltd | Struts with compression and tension elements |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2324550A (en) * | 1997-04-26 | 1998-10-28 | British Aerospace | Forming or treating an article or preform |
GB2324550B (en) * | 1997-04-26 | 2001-03-14 | British Aerospace | Methods of forming or treating an article or preform |
US6270706B1 (en) * | 1997-04-26 | 2001-08-07 | Bae Systems Plc | Methods of forming or treating an article or preform |
Also Published As
Publication number | Publication date |
---|---|
WO1996027061A1 (en) | 1996-09-06 |
GB9503908D0 (en) | 1995-04-19 |
AU4728896A (en) | 1996-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1205831A (en) | Energy absorbers | |
CA1259808A (en) | Concrete filled steel tube column and method of constructing same | |
EP1745182B1 (en) | Cantilever plate connection element | |
Kuranovas et al. | Behaviour of hollow concrete‐filled steel tubular composite elements | |
EP0025856A2 (en) | Device for anchoring the end of at least one rod of fibrous composite material used as a tensioning member in prestressed concrete constructions | |
EP1612339B1 (en) | Heat insulating building element | |
AU7939400A (en) | Composite structures with fracture-tough matrix and methods for designing and producing the structures | |
EP2352887B1 (en) | Construction elements for buildings | |
GB2298214A (en) | Structural components | |
CN112982730B (en) | Self-resetting wall with tuning-swinging-friction composite grading energy consumption function | |
EP2365154B1 (en) | Device for anchoring tension members | |
JP2021017738A (en) | Reinforcement structure and reinforcement method of masonry construction structure | |
CN105729621A (en) | Concrete member prefabrication component | |
Hassan et al. | Numerical study of column-column connections for prefabricated concrete-filled steel columns | |
DE884409C (en) | Reinforced concrete component with prestressed reinforcement and process for its manufacture | |
CA1134170A (en) | Multi-axial machine for dynamic tests on large structures | |
KR19980026153A (en) | Connection structure for connecting concrete columns and steel beams in buildings | |
WO2013026566A1 (en) | Design elements and components made of fiber-reinforced basalt | |
WO1998040192A1 (en) | An elongated structural wooden member | |
Pagnotta et al. | Experimental characterization of friction properties of materials for innovative beam-to-column dissipative connection for low-damage RC structures | |
US3736712A (en) | Composite building structure and walls therefor | |
EP3161226A1 (en) | Anchor dowel | |
EP0693600B1 (en) | Vibration reduced composite girder | |
DE2705483A1 (en) | Rigid strand tension members anchoring assembly - has anchor unit of binding material closely following member and socket deformations | |
CN221567535U (en) | Energy-consumption reinforced concrete shear wall structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |