GB2231472A - Vertical deflection circuit with service mode operation - Google Patents

Vertical deflection circuit with service mode operation Download PDF

Info

Publication number
GB2231472A
GB2231472A GB9011762A GB9011762A GB2231472A GB 2231472 A GB2231472 A GB 2231472A GB 9011762 A GB9011762 A GB 9011762A GB 9011762 A GB9011762 A GB 9011762A GB 2231472 A GB2231472 A GB 2231472A
Authority
GB
United Kingdom
Prior art keywords
deflection
transistor
output terminal
coupled
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9011762A
Other versions
GB2231472B (en
GB9011762D0 (en
Inventor
James Albert Wilber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Licensing Corp
Original Assignee
RCA Licensing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/901,614 external-priority patent/US4694226A/en
Application filed by RCA Licensing Corp filed Critical RCA Licensing Corp
Publication of GB9011762D0 publication Critical patent/GB9011762D0/en
Publication of GB2231472A publication Critical patent/GB2231472A/en
Application granted granted Critical
Publication of GB2231472B publication Critical patent/GB2231472B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers

Abstract

A deflection circuit with a service mode arrangement comprises a deflection winding Lv, and a deflection amplifier 22 having an output terminal A coupled to the deflection winding and being responsive to a deflection rate drive signal for generating a deflection rate deflection current in the deflection winding. An error amplifier Q1 having an input terminal coupled to said output terminal, has an output terminal B, at which there is developed an error voltage, coupled to an input terminal of the deflection amplifier to form a negative feedback loop for stabilizing a DC voltage level at the output terminal of the deflection amplifier. Service switch means 50 coupled to the output terminal B of the error amplifier applies thereto during service mode operation a DC bias voltage that overrides the error voltage for disabling the generation of the deflection rate deflection current. <IMAGE>

Description

DEFLECTION CIRCUIT WITH SERVICE MODE OPERATION This invention relates to a deflection circuit with service mode operation and is divided from our application No. 8719262 ("the parent application").
To manually adjust the color temperature in a television receiver or other video display apparatus, various circuits in the television receiver are disabled including the vertical deflection circuit. The vertical deflection circuit is disabled in order to collapse the raster into a single (horizontal) line. A service switch may be used to ground or otherwise apply a disabling potential at a point in the vertical deflection circuit that prevents the generation of vertical deflection current.
When the vertical deflection circuit includes a push-pull output stage, the vertical deflection circuit may be disabled in such a manner as to disable the AC vertical sawtooth generator or to bias the push-pull output stage into developing or. y a DC voltage at its output terminal.
The DC blocking capacitor coupled to the vertical deflection winding will remain charged during service mode of operation. The voltage level to which the DC blocking capacitor is charged during service mode operation may undesirably be greater than the normal DC operating voltage level.
In accordance with the present invention, a deflection circuit with a service mode arrangement comprises a deflection winding, and a deflection amplifier having an output terminal coupled to the deflection winding and being responsive to a deflection rate drive signal for generating a deflection rate deflection current in the deflection winding. An error amplifier having an input terminal coupled to said output terminal, has an output terminal, at which there is developed an error voltage, coupled to an input terminal of the deflection amplifier to form a negative feedback loop for stabilizing a DC voltage level at the output terminal of the deflection amplifier.Service mode means coupled to the output terminal of the error amplifier applies thereto during service mode operation a DC bias voltage that overrides the error voltage for disabling the generation of the deflection rate deflection current.
The accompanying drawing illustrates a vertical deflection circuit with service mode operation, embodying the present invention and also that of the parent application.
In the illustrated vertical deflection circuit 20 for a television receiver or other video display apparatus, a vertical deflection winding LV is coupled to a vertical amplifier output stage 21 at an output terminal A. A current sampling resistor R8 is coupled to deflection winding LV at a terminal C, and a DC blocking and S-shaping capacitor Cv is coupled to resistor R8 at a terminal D.
Vertical output stage 21 includes a top amplifier transistor Q4 coupled to a +24V DC supply via a diode D2 and a bottom amplifier transistor Q3 coupled to a ground reference potential point. A driver stage 22 is coupled to output stage 21 for driving the output stage at a vertical rate in a sawtooth manner to generate a sawtooth vertical deflection current iv in vertical deflection winding Lv.
Driver stage 22 includes an inverting amplifier, driver transistor Q2, and a current source 23 coupled to the collector of the transistor. Driver transistor Q2 drives top output transistor Q4 via a non-inverting buffer transistor Q5 and drives bottom output transistor Q3 via an inverting stage Ul and a non-inverting buffer transistor Q6. The driver and output stages may be incorporated into an integrated circuit, IC 1, such as the LA7831, manufactured by Sanyo Corporation.
To generate a vertical sawtooth current iv in vertical deflection winding Lv, a vertical ramp generator 26 generates a downwardly going vertical ramp voltage 27 that is AC coupled by a capacitor C2 to the base of an error amplifier transistor Q1. Error amplifier transistor Q1 inverts vertical ramp voltage 27 to develop a vertical input voltage 28 across a collector load resistor R1 of transistor Q1. Input voltage 28 is applied to an input terminal B of driver stage 22 that is coupled to the base of inverting amplifier transistor Q2 via a resistor R2.
Vertical input voltage 28 progressively increases the conduction of driver transistor Q2 during the vertical trace interval, progressively shunting more of current I1, developed by current source 23, away from top output amplifier portion Q5 and Q4. During the first half of trace, output transistor Q4 is conducting, to couple the +24V supply to vertical deflection winding Lv via diode D2.
A decreasing vertical deflection current i flows in V deflection winding Lv and charges DC blocking capacitor Cv from the +24V supply via transistor Q4.
During the second half of vertical trace, driver transistor Q2 has been made sufficiently conductive by input voltage 28 to turn off top output transistor Q4 and turn on bottom output transistor Q3. DC blocking capacitor CV discharges to ground via vertical deflection winding LV and transistor Q3, thereby generating the negative sawtooth portion of vertical deflection current To initiate the vertical retrace interval, input voltage 28 turns off driver transistor Q2, thereby turning off bottom output transistor Q3 and turning on top output transistor Q4. Conventional vertical retrace circuitry, not illustrated in the FIGURE, provides for the retrace of vertical deflection current iv.
The operation of output stage 21 in response to vertical input voltage 28, develops a vertical output voltage 29 at output terminal A that is applied to vertical deflection winding Lv The DC level, V0, established at output terminal A, also establishes the same DC level at terminals C and D. Vertical deflection current iv generates an AC sawtooth voltage between terminals C and D, across sampling resistor R8, and generates a parabolic component 30 to the voltage VD developed across DC blocking capacitor Cv.
A DC negative feedback loop from output terminal A to input terminal B stabilizes the DC operating voltage level at terminal A. The voltage at terminal A is coupled via terminal C to the emitter of error amplifier transistor Q1 to establish the DC voltage of the emitter at voltage level V0. Voltage level V0 is compared with a reference voltage level Vr that is developed at the base of transistor Q1 by voltage dividing resistors R9 and R10.
The level of input voltage 28 is controlled by the conduction of transistor Q1 for stabilizing the DC voltage level V0 at an operating level that is approximately lVbe above reference voltage level Vr AC negative feedback for scan linearization is provided by coupling the AC sawtooth voltage developed across sampling resistor R8 to the emitter of error transistor Q1 via a voltage dividing network comprising potentiometer R12 and resistors R14 and R15. The AC sawtooth voltage at the emitter of error transistor Q1 is compared against reference ramp voltage 27 that is AC coupled to the base of the transistor Q1 in order to develop the AC component of input voltage 28.Deflection current amplitude is adjusted by adjusting the wiper arm of potentiometer R12.
Ramp generator 26, that develops AC reference ramp voltage 27, comprises an RC integrating network, capacitor C1 and resistor Rill, and a reset switch, transistor Q7, coupled across capacitor Ci. Voltage VD developed across DC blocking capacitor CV is applied to the integrating network of capacitor C1 and resistor R11 via a resistor R13. The DC component of voltage VD is integrated by capacitor C1 to generate a downwardly-going ramp of voltage across resistor Rll. The AC, parabolic component of voltage VD is integrated by capacitor C1 to provide S-shaping of the ramp voltage across resistor R11.
To initiate vertical retrace, ramp capacitor C1 is discharged by making reset transistor Q7 conductive. A vertical reset pulse 36, generated by vertical synchronization circuitry not illustrated in the FIGURE, is applied to the base of a transistor Q8, making the transistor nonconductive during the short reset pulse interval. The collector of transistor Q8 is coupled to a +8V supply by a resistor R16 and is coupled to ground y a resistor R17. The junction of the two resistors and the collector of transistor Q8 is AC coupled to the base of reset transistor Q7 via a capacitor C3 and a resistor R18.
Negative going reset pulse 36 is inverted by transistor Q8 and applied to the base of transistor Q7, to turn transistor Q7 on and discharge capacitor C1. The sharp increase in ramp voltage 27 when capacitor C1 is discharged is coupled to the base of error amplifier transistor Q1 and turns the transistor off to initiate the vertical retrace interval.
A resistor R6 coupled between the collector and base of reset transistor Q7 discharges capacitor C3 to remove charge accumulated on the capacitor during the cutoff interval of transistor Q8. A resistor R5 is coupled between output terminal A and the junction of capacitor C1 and resistor Ril to introduce a compensating current that compensates for the slight exponential waveshape to the ramp current developed in resistor Rll. A capacitor C5 in series with a resistor Rl9 across deflection winding LV damps deflection winding resonances.
Resistor R13 provides current limiting under transient picture tube arcing conditions should the ground reference potential point for voltage VD differ greatly from other ground reference potential points, such as for the base or emitter of error amplifier transistor Q1. A parallel network of a resistor R7 and a capacitor C4 is coupled between output terminal A and the emitter of error amplifier transistor Q1 to compensate for horizontal rate pickup by vertical deflection winding LV A capacitor C6 in series with a resistor R20 is coupled between input terminal B and ground to roll off the gain at higher frequencies to prevent deflection circuit high frequency oscillation.
During service mode operation of the television receiver, when, for example, color temperature is to be manually adjusted, it may be desirable to provide for vertical collapse of the raster by disabling vertical deflection circuit 20. In accordance with a feature of the invention, a service mode switching circuit 50 disables the generation of vertical deflection current in the service mode of operation. Service mode switching circuit 50 includes a current source 24 coupled to a +5V supply, a service mode switching transistor Q9 having its collector coupled to current source 24 and its emitter coupled to ground, and a diode D1, having its cathode coupled to vertical input terminal B and its anode coupled to the junction of current source 24 and the collector of transistor Q9 via a resistor R4.
During the normal mode of television receiver operation, a mode-switching signal 25, that may be conventionally generated, is in the high state, maintaining transistor Q9 in saturated conduction. Current I2 of current source 24 is shunted to ground. The near-ground potential at the collector of transistor Q9 provides reverse biasing of diode D1, thereby disconnecting service mode switching circuit 50 from vertical input terminal B.
To assert the service mode of television receiver operation, mode-switching signal 25 is switched to the low state to cutoff conduction in transistor Q9. With transistor Q9 cutoff, its collector voltage increases sufficiently to forward bias diode D1 and provide a path for current I2 to flow to input terminal B. Current I2 flows in resistor R1 and to the base of driver transistor Q2 to bias the transistor into continuous, saturated conduction.
The continuous, saturated conduction of driver transistor Q2 shunts current 11 from the top portion of output stage 21, thereby cutting off conduction in output transistor Q4. At the same time, the saturated conduction of driver transistor Q2 turns on bottom output transistor Q3 and maintains this transistor in continuous, saturated conduction.
With transistor Q3 in continuous, saturated conduction during service mode of operation, DC blocking capacitor Cv is discharged to ground via this transistor.
With transistor Q4 in cutoff, the +24V supply is disconnected from terminal A and from vertical deflection winding , preventing the recharging of capacitor Cv. By making transistor Q3 conductive and transistor Q4 cutoff during service mode operation, instead of making transistor Q4 conductive and transistor Q3 cutoff, capacitor Cv is discharged to zero volts instead of being charged to the +24V supply level. This arrangement advantageously avoids stressing capacitor Cv during service mode operation by a voltage in excess of the normal DC operating voltage level v0.
To reliably maintain the television receiver in the service mode of operation, the amplitude of biasing current I2, provided by service mode switching circuit 50, is sufficiently large to develop a base biasing voltage across resistor R1 that maintains driver transistor Q2 in saturated conduction. By coupling current I2 to the output of error amplifier transistor Q1, the DC negative feedback loop is bypassed. Thus, when the DC negative feedback loop attempts to raise the DC voltage level at terminal A, in an attempt to maintain a stabilized operating voltage level V0 during service mode operation, error amplifier transistor Q1 becomes cutoff.With error amplifier transistor Q1 cutoff, the DC negative feedback loop becomes disconnected from input terminal B and will not attempt to adversely counteract the operation of service mode switching circuit 50.
The switching arrangement of transistor Q9 and diode D1 is advantageously designed to raise the voltage level at vertical input terminal B so as to bias driver transistor Q2 into continuous, saturated conduction. By this means, vertical deflection circuit 20 is disabled during service mode operation. This type of switching arrangement has several advantages over other types of switching arrangements which, for example, attempt to ground vertical input terminal B through a diode in order to shunt base current away from driver transistor Q2 and bring the transistor into cutoff.
Because the emitter of driver transistor Q2 is grounded via emitter resistor R3, a relatively small bias or offset voltage at the base will bring transistor Q2 out of cutoff. Approximately 0.7V is needed to offset the forward base-emitter junction voltage of transistor 92, and approximately 0.2V of additional offset voltage is needed to take into account the voltage drop across resistor R3 produced by collector-to-emitter current flow in transistor Q2. Thus, for the values illustrated in the FIGURE, the voltage. at the base required to bring transistor Q2 out of cutoff is near 0.9v. A service switching arrangement, that attempts to disable vertical deflection circuit 20 by shunting base current to ground via a diode coupled in parallel with the base-emitter junction of transistor Q2, may, therefore, have difficulty in maintaining the voltage at terminal B below the cutoff biasing voltage level of the transistor.

Claims (4)

CLAIMS:
1. A deflection circuit with a service mode arrangement, comprising: a deflection winding; a deflection amplifier having an output terminal coupled to said deflection winding and being responsive to a deflection rate drive signal for generating a deflection rate deflection current in said deflection winding; an error amplifier having an input terminal coupled to said output terminal and having an output terminal at which there is developed an error voltage, said output terminal being coupled to an input terminal of said deflection amplifier to form a negative feedback loop for stabilizing a DC voltage level at the output terminal of said deflection amplifier; and service mode means coupled to the output terminal of said error amplifier for applying thereto during service mode operation a DC bias voltage that overrides said error voltage for disabling the generation of said deflection rate deflection current.
2. A deflection circuit according to Claim 1 wherein said DC bias voltage changes the DC voltage level at the output terminal of said deflection amplifier so as to cutoff said error amplifier.
3. A deflection circuit according to Claim 2 including a deflection rate ramp signal generator and means for generating a deflection rate sampling signal representative of said deflection current, said ramp and sampling signals being applied as inputs to said error amplifier to form an AC negative feedback loop that develops said deflection rate drive signal.
4. A deflection circuit substantially as hereinbefore described with reference to the accompanying drawings.
GB9011762A 1986-08-29 1990-05-25 Deflection circuit with service mode operation Expired - Fee Related GB2231472B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/901,614 US4694226A (en) 1986-08-29 1986-08-29 Vertical deflection circuit with service mode operation
GB8719262A GB2194716B (en) 1986-08-29 1987-08-14 Vertical deflection circuit with service mode operation

Publications (3)

Publication Number Publication Date
GB9011762D0 GB9011762D0 (en) 1990-07-18
GB2231472A true GB2231472A (en) 1990-11-14
GB2231472B GB2231472B (en) 1991-05-08

Family

ID=26292607

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9011762A Expired - Fee Related GB2231472B (en) 1986-08-29 1990-05-25 Deflection circuit with service mode operation

Country Status (1)

Country Link
GB (1) GB2231472B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022720A1 (en) * 2004-08-17 2006-03-02 Thomson Licensing Terminal sharing arrangement for providing a diagnostic function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022720A1 (en) * 2004-08-17 2006-03-02 Thomson Licensing Terminal sharing arrangement for providing a diagnostic function
US8405728B2 (en) 2004-08-17 2013-03-26 Thomson Licensing Terminal sharing arrangement for providing a diagnostic function

Also Published As

Publication number Publication date
GB2231472B (en) 1991-05-08
GB9011762D0 (en) 1990-07-18

Similar Documents

Publication Publication Date Title
US5130615A (en) Television apparatus having kinescope spot burn protection circuit with extended grid cut-off time constant
KR100296435B1 (en) A deflection circuit having a controllable sawtooth generator
US4795949A (en) Deflection current correction circuit
US4694226A (en) Vertical deflection circuit with service mode operation
KR100688133B1 (en) Dynamic focus voltage amplitude controller
GB2231472A (en) Vertical deflection circuit with service mode operation
US4795948A (en) Vertical deflection circuit with service mode operation
KR100296433B1 (en) Sawtooth Signal Generator with Retrace Slope Selectable in Deflector
EP0455146B1 (en) Parabolic voltage generating circuit
US3414667A (en) Beam current stabilizing circuit
US4238714A (en) Horizontal deflection output circuit
US5703445A (en) Sawtooth generator with disturbance signal rejection for a deflection apparatus
US4651063A (en) Horizontal deflection circuit
KR100296432B1 (en) Service regulator for sawtooth generator of video display
KR100296431B1 (en) Resistance Matching Deflection Device for Video Display
JP3201476B2 (en) Television deflection device
KR100296434B1 (en) Service switch for video display deflector
KR100222903B1 (en) Stabilization screen circuit of monitor
KR850001618Y1 (en) Switched afpc loop filter with off set voltage cancellation
KR890005832Y1 (en) On screen stable circuit
US20050212452A1 (en) Waveform generator for controlling an electron beam in a cathode ray tube
JPH0417501B2 (en)
JP3660062B2 (en) Analog blanking pulse generator
WO2003090449A2 (en) Focus voltage control arrangement with ultor voltage tracking
JPH05191662A (en) Vertical deflection circuit

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20020814