GB2158157A - De-aerating an aircraft engines fuel supply - Google Patents

De-aerating an aircraft engines fuel supply Download PDF

Info

Publication number
GB2158157A
GB2158157A GB08509543A GB8509543A GB2158157A GB 2158157 A GB2158157 A GB 2158157A GB 08509543 A GB08509543 A GB 08509543A GB 8509543 A GB8509543 A GB 8509543A GB 2158157 A GB2158157 A GB 2158157A
Authority
GB
United Kingdom
Prior art keywords
fuel
fuel supply
air
vapour
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08509543A
Other versions
GB2158157B (en
GB8509543D0 (en
Inventor
Peter John Taylor
Alan Clarke
John Stanley Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plessey Co Ltd
Original Assignee
Plessey Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB848409999A external-priority patent/GB8409999D0/en
Application filed by Plessey Co Ltd filed Critical Plessey Co Ltd
Priority to GB08509543A priority Critical patent/GB2158157B/en
Publication of GB8509543D0 publication Critical patent/GB8509543D0/en
Publication of GB2158157A publication Critical patent/GB2158157A/en
Application granted granted Critical
Publication of GB2158157B publication Critical patent/GB2158157B/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/236Fuel delivery systems comprising two or more pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

SPECIFICATION Fuel supply systems This invention relates to fuel supply systems and more specifically to fuel supply systems primarily for use in rotary wing aircraft.
In one known fuel supply system for rotary wing aircraft fuel is pumped from a fuel tank to one or more engines normally situated at a higher level than the fuel tank of the aircraft.
In this system, due to the fact that the fuel is pumped to the engine (s) a fracture occurring in the pipeline connecting the fuel tank to the engine, may result in fuel being pumped into the aircraft thereby creating a serious fire risk.
An alternative known fuel supply system which avoids this fire risk uses a suction principle whereby fuel is drawn up from the fuel tank by a jet pump. However, due to the pressure drop in the pipeline as the fuel rises from the tank to the jet pump, air and vapour separates out from the fuel which leads to a reduction in fuel input to the engine (s). This is particularly dangerous since a reduced or intermittent fuel input can lead to engine instability.
The present invention is directed to a fuel supply system which avoids the serious fire risk referred to above whilst at least alleviating the problem of air and vapour being fed to the engine.
According to the present invention there is provided a fuel supply system for use in aircraft, wherein the system comprises means for separating air and vapour from a fuel mixture at relatively low pressure derived by suction from a fuel tank of the aircraft and for providing a relatively high pressure fuel supply to the aircraft engine (s) and pump means for returning the separated air and vapour to the fuel tank.
The means for providing the high pressure fuel supply may include a fuel pump (e. g. gear pump) preferably connected to a fuel control system, the fuel pump being operative to pump fuel either directly from the separating means to the fuel control system or indirectly from the separating means through a jet pump, and the fuel control system being operative to control the supply of fuel to an engine.
Excess fuel or spill from the fuel control system is preferably fed back to the separating means or the jet pump for the motivation thereof.
The separating means may comprise a gravitational separator chamber for separating the air and the vapour from the fuel mixture, with a jet pump being provided on the outlet side of the separating means to deliver fuel at said relatively high pressure. In this case, the excess fuel from the fuel control system may be arranged to power the jet pump.
Alternatively, the separating means may comprise a vortex separator chamber which separates the air and the vapour from the fuel mixture and provides the fuel supply at said relatively high pressure. In this case, the excess fuel from the fuel control system may be arranged to power the vortex separator chamber.
Still further, the separating means may comprise means for condensing the vapour in the mixture to provide an air/fuel mixture, and a vortex separator chamber for separating the air from the mixture. In this case, the means for condensing the vapour may be a jet pump which is powered by the excess fuel from the fuel control system.
The invention will now be described by way of example with reference to the accompanying drawings, in which like references designate like elements, and in which: Figure 1 is a diagram of a prior art fuel supply system; Figure 2 is a diagram of a fuel supply system embodying the present invention; Figure 3 is a diagram of a second embodiment of the present invention; and, Figure 4 is a diagram of a third embodiment of the present invention.
In Figure 1, there is shown a diagram of a prior art fuel supply system for a rotary wing aircraft, which system comprises a jet pump 1 and a fuel control system 2.
Unpressurised fuel is drawn up from a tank (not shown) via a pipeline 3 by means of the jet pump 1. The jet pump 1 provides a pressurised input of fuel to a fuel pump 4 which may be in the form of a gear pump.
The fuel pump 4 pumps the fuel from the jet pump 1 to the fuel control system 2 which determines the amount of fuel to be fed to the engine (not shown) in response to the demands of the engine.
Excess fuel supplied to the fuel control system 2 is fed along a pipeline 5 and is used to drive the jet pump 1. This excess fuel fed to the jet pump is the motive flow of the jet pump 1.
In a helicopter, the fuel supply system is usually situated above the fuel tank and so the pressure of the fuel drops as it rises from the tank to the fuel supply system. The pressure drop causes air to separate out of the fuel and some of the fuel vaporises. The air and vapour form into bubbles 6 which pass up the pipeline 3 with the fuel.
As a consequence of the bubbles 6 being mixed with the fuel, the flow of fuel into the jet pump 1 becomes intermittent (known as slug flow) and hence the total flow of fuel into the fuel control system 2 falls. This fall in the net input of fuel to the engine can in turn lead to engine instability due to pressure fluctuations in the high pressure delivery of the fuel pump 4. Further, the jet pump 1 pulls air out of solution in the fuel and causes air bubbles to enter the fuel pump 4.
Referring now to figure 2, there is shown a diagram of one fuel supply system which embodies the present invention. In this system, there is included a gravitational separator chamber 10 which separates air and vapour from the fuel mixture which passes up the pipeline 3. The mixture passes into the separator chamber 10 and fuel gravitates to the bottom of the chamber. Air and vapour rises to the top of the chamber 10 and is pumped back to the fuel tank (not shown) via a pipel- ine 11 by means of a pump means 12 which may be in the form of a ring pump.
The fuel which has gravitated to the bottom of the separator chamber 10 is drawn into the jet pump 1 which is operated by means of the motive flow of spill fuel through the pipeline 5. Fuel from jet pump 1 is pumped by means of the pump means 4 into the fuel control system 2 as described above with reference to figure 1.
Since air and vapour is allowed to rise out of the fuel gravitating to the bottom of the separator chamber 10, the fuel entering the jet pump 1 from the bottom of the separator chamber 10 is substantially free from air and vapour bubbles. Consequently, fluctuations in the pressure of fuel supplied to the fuel control system 2 and the engine are avoided.
Referring to figure 3, a second embodiment of the present invention is shown. In this embodiment a vortex separator chamber 13 is used to separate the air and the vapour from the mixture which passes up the pipeline 3.
The excess fuel which passes along the pipeline 5 from the fuel control system 2 is fed into the vortex separator chamber 13 so that the fuel mixture within the chamber is caused to swirl around the periphery of the chamber walls as indicated by arrows. Due to centrifugal forces, the pressure of the mixture is lower towards the centre of the chamber than along the wall. Consequently, air and vapour bubbles are encouraged to collect at the centre of the chamber 13 where they can be extracted by means of the pump means 12 and returned to the fuel tank (not shown) via the pipeline 11.
The fuel which is derived from the peripheral region of the chamber 13 is pumped to the fuel control system 2 via the gear pump 4. Since this fuel is derived from a relatively high pressure region in the vortex chamber 13, it is substantially de-aerated as well as being at a relatively high pressure compared with the pressure of the fuel supplied to the chamber from the fuel tank.
Figure 4 is a diagram of a third embodiment of the present invention in which the jet pump 1 is situated before the vortex separator chamber 13. The jet pump 1 is powered by the motive flow of spill fuel from the fuel control system 2 and this draws the fuel mixture from the tank (not shown) via the pipeline 3 into the separator chamber 13. The operation of the jet pump 1 causes fuel vapour to return to its liquid phase (i. e. to condense) and so the mixture leaving the jet pump contains substantially only fuel and air.
The air is separated from the air/fuel mixture in the vortex separator chamber 13 in the manner described with reference to Figure 3, except in this case, the chamber 13 is powered by the relatively high pressure air/fuel output of the jet pump 1.
Since the air/fuel mixture leaving the jet pump 1 is at a higher pressure than the incoming fuel mixture from the tank, the Net Positive Suction Head (NPSH) available for the gear pump 4 and the pump means 12 in increased, and hence the fuel is prevented from boiling at these positions.
Consequently, a fuel supply system constructed in accordance with this embodiment can supply fuel to an engine at higher altitudes where the fuel is at its boiling point.
Since the embodiments of the invention described above operate on a suction principle, a refuelling input line can be joined to the pipeline 3, or to the pipeline 11 and fuel pumped to the fuel tank by the pump 12.

Claims (12)

1. A fuel supply system for use in aircraft, wherein the system comprises a means for separating air and vapour from a fuel mixture at relatively low pressure derived by suction from a fuel tank of the aircraft and for providing a fuel supply at a relatively high pressure, and pump means for returning the separated air and vapour to the tank.
2. A fuel supply system according to claim 1, wherein the means for providing the fuel supply inclues pump means.
3. A fuel supply system according to claim 1, wherein the system comprises pump means connected to a fuel control system, the pump means being operative to pump fuel from the air and vapour separating means to the fuel control system, and the fuel control system being operative to control the supply of fuel to an engine of the aircraft.
4. A fuel supply system according to claim 3, wherein excess fuel from the fuel control system is fed back to the air and vapour separating means or to pump means associated therewith for the actuation thereof.
5. A fuel supply system according to any of claims 1 to 4, wherein the air and vapour separating means comprises a gravitational separator chamber for separating the air and the vapour from the fuel mixture with an associated jet pump for providing the fuel supply at said relatively high pressure.
6. A fuel supply system according to claim 5, wherein the excess fuel from the fuel control system is arranged to power the jet pump.
7. A fuel supply system according to any of claims 1 to 4, wherein the separating means comprises a vortex separator chamber for separating the air and the vapour from the mixture and for providing the fuel supply at said relatively high pressure.
8. A fuel supply system according to claim 3 and claim 7, wherein the excess fuel from the fuel control system is arranged to power the vortex separator chamber.
9. A fuel supply system according to any of claims 1 to 4, wherein the separating means comprises means for condensing the vapour in the fuel mixture to provide an air/fuel mixture, and a vortex separator chamber for separating the air from the mixture.
10. A fuel supply system according to claim 9, wherein the means for condensing the vapour is a jet pump.
11. A fuel supply system according to claim 10, when dependent upon claims 3 and 7, wherein the excess fuel from the fuel control system is arranged to power the jet pump.
12. A fuel supply system substantially as herein described with reference to figure 2, figure 3 or figure 4 of the accompanying drawings.
GB08509543A 1984-04-17 1985-04-13 De-aerating an aircraft engines fuel supply Expired GB2158157B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB08509543A GB2158157B (en) 1984-04-17 1985-04-13 De-aerating an aircraft engines fuel supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB848409999A GB8409999D0 (en) 1984-04-17 1984-04-17 Fuel supply system
GB08509543A GB2158157B (en) 1984-04-17 1985-04-13 De-aerating an aircraft engines fuel supply

Publications (3)

Publication Number Publication Date
GB8509543D0 GB8509543D0 (en) 1985-05-15
GB2158157A true GB2158157A (en) 1985-11-06
GB2158157B GB2158157B (en) 1987-12-31

Family

ID=26287630

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08509543A Expired GB2158157B (en) 1984-04-17 1985-04-13 De-aerating an aircraft engines fuel supply

Country Status (1)

Country Link
GB (1) GB2158157B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900045A (en) * 1997-04-18 1999-05-04 Taiwan Semiconductor Manufacturing Co.Ltd. Method and apparatus for eliminating air bubbles from a liquid dispensing line
EP1559884A2 (en) 2004-01-29 2005-08-03 United Technologies Corporation Extended operability aircraft fuel delivery system
EP3070306A1 (en) * 2015-03-20 2016-09-21 Hamilton Sundstrand Corporation Fuel pump system for bubble control
EP3077290A4 (en) * 2013-12-06 2017-08-09 Sikorsky Aircraft Corporation Bubble collector for suction fuel system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB508342A (en) * 1938-08-19 1939-06-29 Prosper L Orange Improvements in or relating to systems for supplying liquids in a gas- or air-free condition to liquid consuming apparatus
GB775161A (en) * 1954-05-17 1957-05-22 Rene Leduc Improvements in centrifugal pump installations
GB796886A (en) * 1955-01-20 1958-06-18 Walter Jordan Gas separator for fuel decanting installations
GB1260833A (en) * 1968-02-15 1972-01-19 Lucas Industries Ltd Self priming liquid pumping system
GB1323845A (en) * 1968-02-22 1973-07-18 H J Godwin Ltd Improvements relating to the priming of pumps

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB508342A (en) * 1938-08-19 1939-06-29 Prosper L Orange Improvements in or relating to systems for supplying liquids in a gas- or air-free condition to liquid consuming apparatus
GB775161A (en) * 1954-05-17 1957-05-22 Rene Leduc Improvements in centrifugal pump installations
GB796886A (en) * 1955-01-20 1958-06-18 Walter Jordan Gas separator for fuel decanting installations
GB1260833A (en) * 1968-02-15 1972-01-19 Lucas Industries Ltd Self priming liquid pumping system
GB1323845A (en) * 1968-02-22 1973-07-18 H J Godwin Ltd Improvements relating to the priming of pumps

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900045A (en) * 1997-04-18 1999-05-04 Taiwan Semiconductor Manufacturing Co.Ltd. Method and apparatus for eliminating air bubbles from a liquid dispensing line
EP1559884A2 (en) 2004-01-29 2005-08-03 United Technologies Corporation Extended operability aircraft fuel delivery system
EP1559884A3 (en) * 2004-01-29 2008-12-17 United Technologies Corporation Extended operability aircraft fuel delivery system
EP3077290A4 (en) * 2013-12-06 2017-08-09 Sikorsky Aircraft Corporation Bubble collector for suction fuel system
EP3070306A1 (en) * 2015-03-20 2016-09-21 Hamilton Sundstrand Corporation Fuel pump system for bubble control
US9964081B2 (en) 2015-03-20 2018-05-08 Hamilton Sundstrand Corporation Fuel pump system for bubble control

Also Published As

Publication number Publication date
GB2158157B (en) 1987-12-31
GB8509543D0 (en) 1985-05-15

Similar Documents

Publication Publication Date Title
US4691510A (en) Fuel supply systems
EP3412577B1 (en) Fuel system
US2414158A (en) Fuel supply system with vapor separator and booster pump
US2330558A (en) High altitude fuel system for aircraft
US4033706A (en) Fluid delivery system with a jet pump booster and means to maintain a constant rate of flow through the jet nozzle
US4066386A (en) Priming systems for pumps
US4704070A (en) Fuel system bubble dissipation device
US3736072A (en) Systems for the supply of liquid fuel to gas-turbine engines
US3895885A (en) Emptying system for fluid tanks
US9140225B2 (en) Fuel feed network for a rotorcraft engine, the network including means for priming a pump for sucking fuel from a feed tank
US5490387A (en) Flame-out resistant fuel pumping system
GB2158157A (en) De-aerating an aircraft engines fuel supply
US2383369A (en) Fuel system
EP0294064A1 (en) Centrifugal pump system with inlet reservoir
EP0045483B1 (en) Self-priming rotary pump, particularly for bringing liquids to their boiling point
US3387644A (en) Fuel vapor and air eductor system
US2357174A (en) Fuel pumping system
US2845870A (en) Fuel booster pump
EP3077290B1 (en) Bubble collector for suction fuel system
US2846952A (en) Fuel pump
CN110433574A (en) A kind of forced-ventilated fuel oil bubble stripper for Micro-Aviation Engine
US6810671B2 (en) Method for the fuel supply and a fuel supply system for aircraft equipped with at least one aero gas turbine
US2459807A (en) Multiple tank fuel system with emergency pump to maintain required discharge pressure
US2340166A (en) Booster pump entry vane construction
US3181468A (en) Fuel supply system

Legal Events

Date Code Title Description
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19980415