GB1449857A - Formation-testing tool for obtaining multiple measurements and fluid samples - Google Patents

Formation-testing tool for obtaining multiple measurements and fluid samples

Info

Publication number
GB1449857A
GB1449857A GB5673973A GB5673973A GB1449857A GB 1449857 A GB1449857 A GB 1449857A GB 5673973 A GB5673973 A GB 5673973A GB 5673973 A GB5673973 A GB 5673973A GB 1449857 A GB1449857 A GB 1449857A
Authority
GB
United Kingdom
Prior art keywords
valve
pressure
pump
switches
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB5673973A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger NV
Original Assignee
Schlumberger NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger NV filed Critical Schlumberger NV
Publication of GB1449857A publication Critical patent/GB1449857A/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41572Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50563Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/555Pressure control for assuring a minimum pressure, e.g. by using a back pressure valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/575Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6653Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7107Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being mechanically linked
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7128Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/77Control of direction of movement of the output member
    • F15B2211/7716Control of direction of movement of the output member with automatic return

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Piles And Underground Anchors (AREA)
  • Electrotherapy Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

1449857 Formation sampling tool SCHLUMBERGER Ltd 7 Dec 1973 [8 Dec 1972] 56739/73 Heading E1F A formation testing tool includes a pump operable to pressurise a hydraulic circuit to successively higher pressure levels to cause sequential operation of the components of a fluid admission assembly intended to isolate an area of a wellbore wall, establish communication with a formation of interest via the isolated area and then admit a sample of concrete fluid into the tool. In a preferred embodiment, the pump 110 and its drive motor 111 are installed in an accumulator 112 including a piston 115 responsive to the ambient pressure in the well, the pump delivering into set and reset lines 119, 120 having respective solenoid-operated valves 121, 122 which together with the motor 111, a by-pass valve 127, pressure switches 124-126 and other solenoid-operated valves 182, 188 referred to below are controlled from the surface via switches (33, 34). When the tool reaches a required downhole location, the switches (33, 34) are moved to a position at which they cause energization of the motor and initial opening of valves 122, 127 to allow the motor to run the pump up to its operating speed under no-load, valve 122 thereafter closing and valve 121 opening so that the pump can, pressurize the set line 119 to a value controlled by the pressure switch 124. At a first pressure level in the set line, the fluid acts on pistons in cylinders 51, 52, 55, 56 and on piston 64 to extend the back-up member 50, the sealing pad 53 and the probe 57 into contact with the borehole wall, the pressure at this stage also raising piston 105 to cause plunger 106 to establish a low pressure in line 101 and in passage 81 between valve 85 and valves 86, 87 controlling admission to sample chambers 31, 32. When the pressure in the set line then rises to a second level, valve 129 opens to release fluid from chamber 76 so that a valve plunger 67 in the probe then retracts to uncover filter 80 and align ports 71 with a passage 79 communicating with a chamber 78 around the filter, at which point well fluids entering passage 81 and hose 82 via valve 88 flow into chamber 78 and through the filter to wash away any mudcake which may have collected on the filter as the valve plunger 67 retracted. The pressure in the set line next rises to a third level at which valve 128 opens to permit pressurization of extension 154 of the set line thereby causing sequential closure of valve 88 and opening of valve 85 so that the portion of passage 81 between the valves 85, 88 and hose 82 is isolated from the wellbore and connected to the previously-depressurized portion of passage 81 between valves 85-87, so that any producible connate fluids in the formation penetrated by the probe will be inducted into passage 81 via the filter, the pressure in the passage 81 being monitored by sensor 179 which transmits a signal uphole to allow a determination to be made as to the magnitude of the formation pressure and the mobility of the connate fluids. The pressure signal will also provide an indication of whether the sealing pad is not sealingly contacting the wall. The pressure in the set line finally rises to a level at which switch 124 stops the pump, and at this stage, if an operator decides that a sample of the connate fluids should be taken, then the switches (33, 34) at the surface are moved to their next position to open solenoid valve 182 which in turn opens valve 86 to admit a sample to chamber 31, the chamber 32 either being held in reserve for the next operating cycle or being supplied with a sample at this stage by operating a further switch (185) at the surface to open solenoid valve 188 which in turn opens valve 87. Upon moving the switches (33, 34) to a further position, the pump is restarted to pressurize the reset line via valve 122, valve 121 being closed directly and valve 127 being closed once the pump is run up to speed. At this stage, pressure switch 125 is enabled and stops the pump when the pressure in the reset line reaches a level sufficient to open valve 131 to depressurize portion 154 of the set line, thereby causing valves 128 and 86, 87 to close. The switches (33, 34) are next moved to a 'retract' position at which they disable switch 125 and enable switch 126 which allows the pump to raise the pressure in the reset line to successively higher levels to reopen valves 88, 130, the latter then allowing the pressure in the reset line to retract the backup member 50, the pad 53 and the probe 57. The valve 85 is finally reclosed and the pump is stopped by switch 126, the, switches (33, 34) then being moved, to their off-position preparatory to retrieving the tool or moving it to a new position in the well where a further testing or sampling operation is to be conducted. If at any stage in a testing or sampling operation it is decided to abandon the operation, the switches (33, 34) are simply moved direct to the retract position, skipping through any intermediate positions.
GB5673973A 1972-12-08 1973-12-07 Formation-testing tool for obtaining multiple measurements and fluid samples Expired GB1449857A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US31323572A 1972-12-08 1972-12-08

Publications (1)

Publication Number Publication Date
GB1449857A true GB1449857A (en) 1976-09-15

Family

ID=23214911

Family Applications (1)

Application Number Title Priority Date Filing Date
GB5673973A Expired GB1449857A (en) 1972-12-08 1973-12-07 Formation-testing tool for obtaining multiple measurements and fluid samples

Country Status (12)

Country Link
US (1) US3780575A (en)
JP (1) JPS5616279B2 (en)
AR (1) AR215408A1 (en)
BR (1) BR7309631D0 (en)
CA (1) CA988030A (en)
DE (1) DE2360268C2 (en)
FR (1) FR2209890B1 (en)
GB (1) GB1449857A (en)
IE (1) IE38549B1 (en)
NL (1) NL178805C (en)
NO (1) NO141697C (en)
SU (1) SU839448A3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9810060B2 (en) 2012-07-02 2017-11-07 Halliburton Energy Services, Inc. Controlling formation tester probe extension force
CN110261165A (en) * 2019-05-13 2019-09-20 湖南达道新能源开发有限公司 It is a kind of can multi-faceted detection geothermal measurement device

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507957A (en) * 1983-05-16 1985-04-02 Dresser Industries, Inc. Apparatus for testing earth formations
US4513612A (en) * 1983-06-27 1985-04-30 Halliburton Company Multiple flow rate formation testing device and method
US4720996A (en) * 1986-01-10 1988-01-26 Western Atlas International, Inc. Power control system for subsurface formation testing apparatus
US4745802A (en) * 1986-09-18 1988-05-24 Halliburton Company Formation testing tool and method of obtaining post-test drawdown and pressure readings
US4742459A (en) * 1986-09-29 1988-05-03 Schlumber Technology Corp. Method and apparatus for determining hydraulic properties of formations surrounding a borehole
US4860580A (en) * 1988-11-07 1989-08-29 Durocher David Formation testing apparatus and method
US5279153A (en) * 1991-08-30 1994-01-18 Schlumberger Technology Corporation Apparatus for determining horizontal and/or vertical permeability of an earth formation
US5265015A (en) * 1991-06-27 1993-11-23 Schlumberger Technology Corporation Determining horizontal and/or vertical permeability of an earth formation
US5269180A (en) * 1991-09-17 1993-12-14 Schlumberger Technology Corp. Borehole tool, procedures, and interpretation for making permeability measurements of subsurface formations
US5329811A (en) * 1993-02-04 1994-07-19 Halliburton Company Downhole fluid property measurement tool
US5555945A (en) * 1994-08-15 1996-09-17 Halliburton Company Early evaluation by fall-off testing
US5540280A (en) * 1994-08-15 1996-07-30 Halliburton Company Early evaluation system
US5622223A (en) * 1995-09-01 1997-04-22 Haliburton Company Apparatus and method for retrieving formation fluid samples utilizing differential pressure measurements
EP0781893B8 (en) * 1995-12-26 2007-02-14 HALLIBURTON ENERGY SERVICES, Inc. Apparatus and method for early evaluation and servicing of a well
US5741962A (en) * 1996-04-05 1998-04-21 Halliburton Energy Services, Inc. Apparatus and method for analyzing a retrieving formation fluid utilizing acoustic measurements
US5934374A (en) * 1996-08-01 1999-08-10 Halliburton Energy Services, Inc. Formation tester with improved sample collection system
US5826662A (en) * 1997-02-03 1998-10-27 Halliburton Energy Services, Inc. Apparatus for testing and sampling open-hole oil and gas wells
US5859430A (en) * 1997-04-10 1999-01-12 Schlumberger Technology Corporation Method and apparatus for the downhole compositional analysis of formation gases
US5887652A (en) * 1997-08-04 1999-03-30 Halliburton Energy Services, Inc. Method and apparatus for bottom-hole testing in open-hole wells
US5939717A (en) * 1998-01-29 1999-08-17 Schlumberger Technology Corporation Methods and apparatus for determining gas-oil ratio in a geological formation through the use of spectroscopy
US6350986B1 (en) 1999-02-23 2002-02-26 Schlumberger Technology Corporation Analysis of downhole OBM-contaminated formation fluid
US6274865B1 (en) 1999-02-23 2001-08-14 Schlumberger Technology Corporation Analysis of downhole OBM-contaminated formation fluid
GB2359631B (en) * 2000-02-26 2002-03-06 Schlumberger Holdings Hydrogen sulphide detection method and apparatus
GB2362469B (en) 2000-05-18 2004-06-30 Schlumberger Holdings Potentiometric sensor for wellbore applications
US6437326B1 (en) 2000-06-27 2002-08-20 Schlumberger Technology Corporation Permanent optical sensor downhole fluid analysis systems
US6476384B1 (en) 2000-10-10 2002-11-05 Schlumberger Technology Corporation Methods and apparatus for downhole fluids analysis
US6474152B1 (en) 2000-11-02 2002-11-05 Schlumberger Technology Corporation Methods and apparatus for optically measuring fluid compressibility downhole
US7025138B2 (en) 2000-12-08 2006-04-11 Schlumberger Technology Corporation Method and apparatus for hydrogen sulfide monitoring
US6501072B2 (en) 2001-01-29 2002-12-31 Schlumberger Technology Corporation Methods and apparatus for determining precipitation onset pressure of asphaltenes
US6590647B2 (en) 2001-05-04 2003-07-08 Schlumberger Technology Corporation Physical property determination using surface enhanced raman emissions
GB2381862A (en) 2001-11-10 2003-05-14 Schlumberger Holdings Fluid density measurement
US7028773B2 (en) * 2001-11-28 2006-04-18 Schlumberger Technology Coporation Assessing downhole WBM-contaminated connate water
US6729400B2 (en) 2001-11-28 2004-05-04 Schlumberger Technology Corporation Method for validating a downhole connate water sample
US7075062B2 (en) 2001-12-10 2006-07-11 Schlumberger Technology Corporation Apparatus and methods for downhole determination of characteristics of formation fluids
US6640625B1 (en) 2002-05-08 2003-11-04 Anthony R. H. Goodwin Method and apparatus for measuring fluid density downhole
US7002142B2 (en) * 2002-06-26 2006-02-21 Schlumberger Technology Corporation Determining dew precipitation and onset pressure in oilfield retrograde condensate
US7075063B2 (en) * 2002-06-26 2006-07-11 Schlumberger Technology Corporation Determining phase transition pressure of downhole retrograde condensate
GB2391314B (en) * 2002-07-25 2005-08-10 Schlumberger Holdings Methods and apparatus for the measurement of hydrogen sulphide and thiols in fluids
US7152466B2 (en) * 2002-11-01 2006-12-26 Schlumberger Technology Corporation Methods and apparatus for rapidly measuring pressure in earth formations
GB2397651B (en) * 2003-01-15 2005-08-24 Schlumberger Holdings Methods and apparatus for the measurement of hydrogen sulphide and thiols in fluids
JP2007535655A (en) * 2003-05-02 2007-12-06 ベイカー ヒューズ インコーポレイテッド Method and apparatus for an improved optical analyzer
US7013723B2 (en) * 2003-06-13 2006-03-21 Schlumberger Technology Corporation Apparatus and methods for canceling the effects of fluid storage in downhole tools
GB2404738B (en) * 2003-08-04 2005-09-28 Schlumberger Holdings System and method for sensing using diamond based microelectrodes
GB2409902B (en) 2004-01-08 2006-04-19 Schlumberger Holdings Electro-chemical sensor
US8758593B2 (en) * 2004-01-08 2014-06-24 Schlumberger Technology Corporation Electrochemical sensor
GB2415047B (en) * 2004-06-09 2008-01-02 Schlumberger Holdings Electro-chemical sensor
US7565835B2 (en) * 2004-11-17 2009-07-28 Schlumberger Technology Corporation Method and apparatus for balanced pressure sampling
GB2420849B (en) * 2004-12-02 2007-06-27 Schlumberger Holdings Optical pH sensor
US7461547B2 (en) 2005-04-29 2008-12-09 Schlumberger Technology Corporation Methods and apparatus of downhole fluid analysis
US7279678B2 (en) * 2005-08-15 2007-10-09 Schlumber Technology Corporation Method and apparatus for composition analysis in a logging environment
US7392697B2 (en) * 2005-09-19 2008-07-01 Schlumberger Technology Corporation Apparatus for downhole fluids analysis utilizing micro electro mechanical system (MEMS) or other sensors
US7673679B2 (en) * 2005-09-19 2010-03-09 Schlumberger Technology Corporation Protective barriers for small devices
GB2430749B (en) * 2005-09-21 2007-11-28 Schlumberger Holdings Electro-chemical sensor
US7609380B2 (en) * 2005-11-14 2009-10-27 Schlumberger Technology Corporation Real-time calibration for downhole spectrometer
US20070108378A1 (en) * 2005-11-14 2007-05-17 Toru Terabayashi High pressure optical cell for a downhole optical fluid analyzer
US7511813B2 (en) * 2006-01-26 2009-03-31 Schlumberger Technology Corporation Downhole spectral analysis tool
US7379180B2 (en) 2006-01-26 2008-05-27 Schlumberger Technology Corporation Method and apparatus for downhole spectral analysis of fluids
US7336356B2 (en) * 2006-01-26 2008-02-26 Schlumberger Technology Corporation Method and apparatus for downhole spectral analysis of fluids
US7445043B2 (en) * 2006-02-16 2008-11-04 Schlumberger Technology Corporation System and method for detecting pressure disturbances in a formation while performing an operation
WO2007143473A1 (en) * 2006-06-01 2007-12-13 Shell Oil Company Terahertz analysis of a fluid from an earth formation using a downhole tool
US7707878B2 (en) * 2007-09-20 2010-05-04 Schlumberger Technology Corporation Circulation pump for circulating downhole fluids, and characterization apparatus of downhole fluids
US7788972B2 (en) * 2007-09-20 2010-09-07 Schlumberger Technology Corporation Method of downhole characterization of formation fluids, measurement controller for downhole characterization of formation fluids, and apparatus for downhole characterization of formation fluids
US7520160B1 (en) * 2007-10-04 2009-04-21 Schlumberger Technology Corporation Electrochemical sensor
US20090160047A1 (en) * 2007-12-21 2009-06-25 Schlumberger Technology Corporation Downhole tool
US8297351B2 (en) 2007-12-27 2012-10-30 Schlumberger Technology Corporation Downhole sensing system using carbon nanotube FET
US8434356B2 (en) 2009-08-18 2013-05-07 Schlumberger Technology Corporation Fluid density from downhole optical measurements
US9309735B2 (en) * 2008-06-17 2016-04-12 Schlumberger Technology Corporation System and method for maintaining operability of a downhole actuator
US8109157B2 (en) * 2008-06-30 2012-02-07 Schlumberger Technology Corporation Methods and apparatus of downhole fluids analysis
US7874355B2 (en) * 2008-07-02 2011-01-25 Schlumberger Technology Corporation Methods and apparatus for removing deposits on components in a downhole tool
WO2010116250A2 (en) 2009-04-10 2010-10-14 Schlumberger Technology B.V. Downhole sensor systems and methods thereof
US8483445B2 (en) 2010-09-29 2013-07-09 Schlumberger Technology Corporation Imaging methods and systems for downhole fluid analysis
GB2490117B (en) 2011-04-18 2014-04-09 Schlumberger Holdings Electrochemical pH sensor
FR2968348B1 (en) * 2010-12-03 2015-01-16 Total Sa METHOD OF MEASURING PRESSURE IN A SUBTERRANEAN FORMATION
US9097088B2 (en) 2010-12-15 2015-08-04 Schlumberger Technology Corporation Downhole tool thermal device
GB2497795B (en) 2011-12-21 2020-04-08 Schlumberger Holdings Derivatization of carbon
GB2497791B (en) 2011-12-21 2021-01-20 Schlumberger Holdings Derivatization of carbon
GB2497788B (en) 2011-12-21 2020-12-30 Schlumberger Holdings Derivatization of carbon
GB2497972B (en) 2011-12-23 2016-03-16 Schlumberger Holdings Electrochemical sensors
RU2601354C1 (en) * 2015-11-25 2016-11-10 Общество с ограниченной ответственностью Научно-производственная фирма "Пакер" Formation testing device
US10481291B2 (en) * 2016-03-03 2019-11-19 Shell Oil Company Chemically-selective imager for imaging fluid of a subsurface formation and method of using same
NO342792B1 (en) 2016-11-30 2018-08-06 Hydrophilic As A probe arrangement for pressure measurement of a water phase inside a hydrocarbon reservoir
EP4153841A4 (en) * 2020-05-22 2024-06-19 Services Pétroliers Schlumberger Sidewall coring tool systems and methods
CN113605888B (en) * 2021-06-24 2023-10-13 浙江大学 Single-pump driving energy-saving hydraulic system for small-diameter stratum tester

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011554A (en) * 1956-01-23 1961-12-05 Schlumberger Well Surv Corp Apparatus for investigating earth formations
US3352361A (en) * 1965-03-08 1967-11-14 Schlumberger Technology Corp Formation fluid-sampling apparatus
US3385364A (en) * 1966-06-13 1968-05-28 Schlumberger Technology Corp Formation fluid-sampling apparatus
US3577781A (en) * 1969-01-10 1971-05-04 Schlumberger Technology Corp Tool to take multiple formation fluid pressures
US3530933A (en) * 1969-04-02 1970-09-29 Schlumberger Technology Corp Formation-sampling apparatus
US3565169A (en) * 1969-04-02 1971-02-23 Schlumberger Technology Corp Formation-sampling apparatus
US3653436A (en) * 1970-03-18 1972-04-04 Schlumberger Technology Corp Formation-sampling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9810060B2 (en) 2012-07-02 2017-11-07 Halliburton Energy Services, Inc. Controlling formation tester probe extension force
CN110261165A (en) * 2019-05-13 2019-09-20 湖南达道新能源开发有限公司 It is a kind of can multi-faceted detection geothermal measurement device
CN110261165B (en) * 2019-05-13 2021-07-23 湖南达道新能源开发有限公司 Geothermal detection device capable of achieving multi-azimuth detection

Also Published As

Publication number Publication date
FR2209890A1 (en) 1974-07-05
IE38549L (en) 1975-06-08
FR2209890B1 (en) 1978-10-27
BR7309631D0 (en) 1974-10-22
JPS501794A (en) 1975-01-09
IE38549B1 (en) 1978-04-12
NL178805B (en) 1985-12-16
SU839448A3 (en) 1981-06-15
NL7316840A (en) 1974-06-11
NO141697B (en) 1980-01-14
JPS5616279B2 (en) 1981-04-15
DE2360268C2 (en) 1984-05-03
DE2360268A1 (en) 1974-06-12
CA988030A (en) 1976-04-27
NO141697C (en) 1980-05-07
US3780575A (en) 1973-12-25
AR215408A1 (en) 1979-10-15
AU6303673A (en) 1975-05-29
NL178805C (en) 1986-05-16

Similar Documents

Publication Publication Date Title
GB1449857A (en) Formation-testing tool for obtaining multiple measurements and fluid samples
US3859851A (en) Methods and apparatus for testing earth formations
US6182757B1 (en) Method of sampling a well using an isolation valve
US5337822A (en) Well fluid sampling tool
US4287946A (en) Formation testers
CA2147027C (en) Method and apparatus for acquiring and processing subsurface samples of connate fluid
US3952588A (en) Apparatus for testing earth formations
US4210018A (en) Formation testers
CA1201652A (en) Apparatus for testing earth formations
US4507957A (en) Apparatus for testing earth formations
AU755739B2 (en) Sample chamber with dead volume flushing
US6668924B2 (en) Reduced contamination sampling
US3731530A (en) Apparatus for determining the gas content of drilling muds
US5587525A (en) Formation fluid flow rate determination method and apparatus for electric wireline formation testing tools
US3811321A (en) Methods and apparatus for testing earth formations
US3924463A (en) Apparatus for testing earth formations composed of particles of various sizes
US3294170A (en) Formation sampler
GB1502213A (en) Pressure operated isolation valve for use in a well testing apparatus and its method of operation
US3782191A (en) Apparatus for testing earth formations
US2741313A (en) Wire line tester
US2607425A (en) Well cementing tool
CA2138134A1 (en) Method and apparatus for pressure, volume and temperature measurement and characterization of subsurface formations
US3107730A (en) Sample taking apparatus
US2503557A (en) Formation tester
US3217806A (en) Fluid testing apparatus

Legal Events

Date Code Title Description
PS Patent sealed [section 19, patents act 1949]
PE20 Patent expired after termination of 20 years

Effective date: 19931206