GB1300768A - Improvements in or relating to semiconductor structures - Google Patents

Improvements in or relating to semiconductor structures

Info

Publication number
GB1300768A
GB1300768A GB2208270A GB2208270A GB1300768A GB 1300768 A GB1300768 A GB 1300768A GB 2208270 A GB2208270 A GB 2208270A GB 2208270 A GB2208270 A GB 2208270A GB 1300768 A GB1300768 A GB 1300768A
Authority
GB
United Kingdom
Prior art keywords
region
polycrystal
monocrystal
silicon
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB2208270A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairchild Semiconductor Corp
Original Assignee
Fairchild Camera and Instrument Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Camera and Instrument Corp filed Critical Fairchild Camera and Instrument Corp
Publication of GB1300768A publication Critical patent/GB1300768A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/002Scale prevention in a polymerisation reactor or its auxiliary parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Photovoltaic Devices (AREA)
  • Element Separation (AREA)

Abstract

1300768 Semi-conductor devices FAIRCHILD CAMERA & INSTRUMENT CORP 7 May 1970 [29 July 1969] 22082/70 Heading H1K A layer of silicon oxide 12 in grid form, P or N doped with Bo, P, As, is deposited on a substrate 11 of, e.g. mono-crystal silicon, spinel, or sapphire lightly doped with a similar impurity; to define a pattern of isolation regions for an integrated circuit wafer; the silicon oxide being deposited as a layer and thereafter photolithographically etched. Thereafter Si is epitaxially deposited by pyrolysis of silane on the surface to form a wafer 10 of single crystal Si 13 on the substrate and polycrystal Si 14 on the grid. During growth a selected dopant of opposite conductivity to that of the grid is added to the Si, and diffusion of dopant from the oxide into the polysilicon reverses the conductivity of the latter since diffusivity of dopant into polysilicon exceeds that into mono crystal silicon A sharp boundary between 13 and 14 is formed perpendicular to the substrate surface. Active and passive semi-conductor elements are now diffused by planar techniques into each island of monocrystal silicon surrounded by polycrystal silicon, and during diffusion into an island of an impurity of opposite type to that already contained in the island to form a base region, the impurities in the polycrystal silicon diffuse laterally at the same rate into the adjacent monocrystal silicon, and during diffusion into an island of an impurity of opposite type to that already contained in the island to form a base region the impurities in the polycrystal silicon diffuse laterally at the same rate into the adjacent monocrystal silicon, and during diffusion of an emitter region into such base region the impurity in polycrystal 14 continues to diffuse into monocrystal 13, and on completion of the diffusion the impurity in polycrystal 14 has migrated into monocrystal 13 to form PN junctions 15, 16, 17 which are sharply defined perpendicularly to the substrate (Fig. 2c). Since impurity in grid 12 diffuses both into polycrystal 14 and into adjacent monocrystal 13, regions 15a, 16a, 17a of the junctions contact substrate 11, which may be doped with impurity of similar conductivity type to the grid. Thus the monocrystal islands 13 surrounded by polycrystal 14 and substrate 11 are isolated from adjacent islands on backbiasing of the separating PN junctions. In a modification (Fig. 4c), a substrate 11 of, e.g. monocrystal silicon is formed with a silicon oxide grid 12, and region 21 is formed by diffusing dopant of opposite conductivity type to that of the grid to a selected depth of the substrate, and a region 20 of silicon oxide doped with the same conductivity type as region 21 is formed over one edge thereof. The wafer 10 is epitaxially deposited with monocrystal Si over surface 11, while polycrystal Si 14, 23 forms over grid 12 and oxide region 20. The dopant in region 21 diffuses into region 13 to form region 22, while dopants in grid 12 and region 20 diffuse rapidly into the newly grown polycrystal regions 14, 23. Polycrystal region 14 is doped with an opposite conductivity type to that of polycrystal region 23. Active and/or passive elements are diffused into the islands 13; e.g. an emitter 26 of the same conductivity type as monocrystal region 13 but with higher dopant concentration is diffused into base 25 of same conductivity type as polycrystal region 14. The collector comprises adjacent monocryatal 13 contacted by underlying buried layer 21, 22 of same conductivity as monocrystal 13 but more heavily doped; connected to the surface of wafer 10 through low resistance polycrystal pipe 23 overlying oxide region 20 which is bypassed by region 24a. Examples of practical fabrication are given.
GB2208270A 1969-07-29 1970-05-07 Improvements in or relating to semiconductor structures Expired GB1300768A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84582269A 1969-07-29 1969-07-29

Publications (1)

Publication Number Publication Date
GB1300768A true GB1300768A (en) 1972-12-20

Family

ID=25296163

Family Applications (1)

Application Number Title Priority Date Filing Date
GB2208270A Expired GB1300768A (en) 1969-07-29 1970-05-07 Improvements in or relating to semiconductor structures

Country Status (9)

Country Link
JP (1) JPS5619095B1 (en)
AU (1) AU1492370A (en)
BE (1) BE754061A (en)
CH (1) CH519252A (en)
DE (1) DE2035285A1 (en)
ES (1) ES381695A1 (en)
FR (1) FR2053238B1 (en)
GB (1) GB1300768A (en)
NL (1) NL7009356A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1101183B (en) * 1978-12-04 1985-09-28 Ates Componenti Elettron IMPROVEMENT IN THE PRODUCTION PROCESS FOR BIPOLAR TRANSISTORS INTAGRATED WITH HIGH BREAKDOWN VOLTAGE COLLECTOR-EMITTER AND RESULTING PRODUCT
DE3545244A1 (en) * 1985-12-20 1987-06-25 Licentia Gmbh STRUCTURED SEMICONDUCTOR BODY

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475661A (en) * 1966-02-09 1969-10-28 Sony Corp Semiconductor device including polycrystalline areas among monocrystalline areas

Also Published As

Publication number Publication date
FR2053238B1 (en) 1974-10-31
BE754061A (en) 1970-12-31
ES381695A1 (en) 1972-12-01
JPS5619095B1 (en) 1981-05-06
CH519252A (en) 1972-02-15
FR2053238A1 (en) 1971-04-16
NL7009356A (en) 1971-02-02
DE2035285A1 (en) 1971-02-11
AU1492370A (en) 1971-11-18

Similar Documents

Publication Publication Date Title
US3878552A (en) Bipolar integrated circuit and method
US3925120A (en) A method for manufacturing a semiconductor device having a buried epitaxial layer
US3913124A (en) Integrated semiconductor transistor structure with epitaxial contact to the buried sub-collector including fabrication method therefor
US4168997A (en) Method for making integrated circuit transistors with isolation and substrate connected collectors utilizing simultaneous outdiffusion to convert an epitaxial layer
GB1050478A (en)
US3345221A (en) Method of making a semiconductor device having improved pn junction avalanche characteristics
KR930000229B1 (en) Manufacturing method of semiconductor device
US3956033A (en) Method of fabricating an integrated semiconductor transistor structure with epitaxial contact to the buried sub-collector
GB1024359A (en) Semiconductor structures poviding both unipolar transistor and bipolar transistor functions and method of making same
US3953255A (en) Fabrication of matched complementary transistors in integrated circuits
GB1277973A (en) Semiconductor device
GB1241057A (en) Improvements relating to semiconductor structures
GB1300768A (en) Improvements in or relating to semiconductor structures
GB1194752A (en) Transistor
JPS5617071A (en) Semiconductor device
GB1260026A (en) A method of manufacturing a semiconductor photo-sensitive device
US3815222A (en) Semiconductor structure and method for lowering the collector resistance
GB1325082A (en) Semiconductor devices
US4191602A (en) Liquid phase epitaxial method of making a high power, vertical channel field effect transistor
JPS5856432A (en) Manufacture of semiconductor device
GB1028485A (en) Semiconductor devices
GB997996A (en) Field effect device and method of manufacturing the same
GB1503223A (en) Formation of buried layers in a substrate
KR940005705B1 (en) Growth method of selective single crystal layer
JPS5655060A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
PS Patent sealed
PLNP Patent lapsed through nonpayment of renewal fees