FR3118060A1 - Utilisation anti-biofilm de vesicules membranaires extracellulaires - Google Patents
Utilisation anti-biofilm de vesicules membranaires extracellulaires Download PDFInfo
- Publication number
- FR3118060A1 FR3118060A1 FR2013717A FR2013717A FR3118060A1 FR 3118060 A1 FR3118060 A1 FR 3118060A1 FR 2013717 A FR2013717 A FR 2013717A FR 2013717 A FR2013717 A FR 2013717A FR 3118060 A1 FR3118060 A1 FR 3118060A1
- Authority
- FR
- France
- Prior art keywords
- biofilm
- probiotic
- membrane vesicles
- extracellular membrane
- genus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 33
- 230000003214 anti-biofilm Effects 0.000 title description 7
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000006041 probiotic Substances 0.000 claims abstract description 31
- 235000018291 probiotics Nutrition 0.000 claims abstract description 31
- 230000000529 probiotic effect Effects 0.000 claims abstract description 30
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 15
- 241000894006 Bacteria Species 0.000 claims description 24
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 19
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 15
- 241000186660 Lactobacillus Species 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 9
- 230000001580 bacterial effect Effects 0.000 claims description 8
- 235000013305 food Nutrition 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 6
- 241000194033 Enterococcus Species 0.000 claims description 6
- 238000000108 ultra-filtration Methods 0.000 claims description 6
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 5
- 241000194032 Enterococcus faecalis Species 0.000 claims description 5
- 241000588729 Hafnia alvei Species 0.000 claims description 5
- 241001138501 Salmonella enterica Species 0.000 claims description 5
- 241000191963 Staphylococcus epidermidis Species 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- 241000193755 Bacillus cereus Species 0.000 claims description 4
- 244000063299 Bacillus subtilis Species 0.000 claims description 4
- 241000222122 Candida albicans Species 0.000 claims description 4
- 241000588919 Citrobacter freundii Species 0.000 claims description 4
- 241000588921 Enterobacteriaceae Species 0.000 claims description 4
- 241000589516 Pseudomonas Species 0.000 claims description 4
- 241000589517 Pseudomonas aeruginosa Species 0.000 claims description 4
- 241000191940 Staphylococcus Species 0.000 claims description 4
- 241000191967 Staphylococcus aureus Species 0.000 claims description 4
- 229940095731 candida albicans Drugs 0.000 claims description 4
- 229940032049 enterococcus faecalis Drugs 0.000 claims description 4
- 238000003312 immunocapture Methods 0.000 claims description 4
- 229940039696 lactobacillus Drugs 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 241000186000 Bifidobacterium Species 0.000 claims description 2
- 241000186429 Propionibacterium Species 0.000 claims description 2
- 241000235070 Saccharomyces Species 0.000 claims description 2
- 241000194017 Streptococcus Species 0.000 claims description 2
- 239000006071 cream Substances 0.000 claims description 2
- 238000001085 differential centrifugation Methods 0.000 claims description 2
- 238000002270 exclusion chromatography Methods 0.000 claims description 2
- 239000005022 packaging material Substances 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 description 11
- 244000005700 microbiome Species 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 244000199866 Lactobacillus casei Species 0.000 description 4
- 241000186605 Lactobacillus paracasei Species 0.000 description 4
- 240000006024 Lactobacillus plantarum Species 0.000 description 4
- 230000000844 anti-bacterial effect Effects 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 210000001061 forehead Anatomy 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 230000003449 preventive effect Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical class OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 240000001046 Lactobacillus acidophilus Species 0.000 description 2
- 240000001929 Lactobacillus brevis Species 0.000 description 2
- 240000004365 Lactobacillus casei BL23 Species 0.000 description 2
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical class CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000032770 biofilm formation Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000003235 crystal violet staining Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- -1 iodine, isothiazolinones Chemical class 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229940072205 lactobacillus plantarum Drugs 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 102000044503 Antimicrobial Peptides Human genes 0.000 description 1
- 108700042778 Antimicrobial Peptides Proteins 0.000 description 1
- 108010062877 Bacteriocins Proteins 0.000 description 1
- 241000186018 Bifidobacterium adolescentis Species 0.000 description 1
- 241000901050 Bifidobacterium animalis subsp. lactis Species 0.000 description 1
- 241000186016 Bifidobacterium bifidum Species 0.000 description 1
- 241000186011 Bifidobacterium catenulatum Species 0.000 description 1
- 241001608472 Bifidobacterium longum Species 0.000 description 1
- 241000186015 Bifidobacterium longum subsp. infantis Species 0.000 description 1
- 241001134772 Bifidobacterium pseudocatenulatum Species 0.000 description 1
- 229940123208 Biguanide Drugs 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 206010011409 Cross infection Diseases 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 229920002444 Exopolysaccharide Polymers 0.000 description 1
- 208000019331 Foodborne disease Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 235000013956 Lactobacillus acidophilus Nutrition 0.000 description 1
- 241000186679 Lactobacillus buchneri Species 0.000 description 1
- 235000013958 Lactobacillus casei Nutrition 0.000 description 1
- 244000187342 Lactobacillus casei ATCC 334 Species 0.000 description 1
- 235000008018 Lactobacillus casei BL23 Nutrition 0.000 description 1
- 241000218492 Lactobacillus crispatus Species 0.000 description 1
- 241000186673 Lactobacillus delbrueckii Species 0.000 description 1
- 241000186840 Lactobacillus fermentum Species 0.000 description 1
- 241000186606 Lactobacillus gasseri Species 0.000 description 1
- 241000186604 Lactobacillus reuteri Species 0.000 description 1
- 241000218588 Lactobacillus rhamnosus Species 0.000 description 1
- 241001582342 Lactobacillus sakei subsp. sakei Species 0.000 description 1
- 241000186869 Lactobacillus salivarius Species 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- 210000004322 M2 macrophage Anatomy 0.000 description 1
- 241000736262 Microbiota Species 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical class [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241001313536 Thermothelomyces thermophila Species 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Chemical class 0.000 description 1
- 238000001720 action spectrum Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000004283 biguanides Chemical class 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000003876 biosurfactant Substances 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229920000912 exopolymer Polymers 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000005003 food packaging material Substances 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000007366 host health Effects 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229940039695 lactobacillus acidophilus Drugs 0.000 description 1
- 229940017800 lactobacillus casei Drugs 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000006872 mrs medium Substances 0.000 description 1
- 210000002487 multivesicular body Anatomy 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229960005141 piperazine Drugs 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 108010004131 poly(beta-D-mannuronate) lyase Proteins 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- ZRHANBBTXQZFSP-UHFFFAOYSA-M potassium;4-amino-3,5,6-trichloropyridine-2-carboxylate Chemical compound [K+].NC1=C(Cl)C(Cl)=NC(C([O-])=O)=C1Cl ZRHANBBTXQZFSP-UHFFFAOYSA-M 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229960002181 saccharomyces boulardii Drugs 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000009211 stress pathway Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/20—Bacteria; Substances produced thereby or obtained therefrom
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/225—Lactobacillus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Virology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biochemistry (AREA)
- Agronomy & Crop Science (AREA)
- Plant Pathology (AREA)
- Dentistry (AREA)
- Pest Control & Pesticides (AREA)
- Environmental Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Materials For Medical Uses (AREA)
Abstract
La présente invention se rapporte à une utilisation de vésicules membranaires extracellulaires d’au moins un probiotique pour prévenir ou réduire la formation d’un biofilm à la surface d’un matériau. La présente invention se rapporte également à un procédé de traitement d’une surface d’un matériau pour prévenir ou réduire la formation d’un biofilm sur ladite surface, ledit procédé comprenant une étape de mise en contact de vésicules membranaires extracellulaires provenant d’au moins un probiotique avec ladite surface. La présente invention se rapport en outre à un matériau comprenant à sa surface des vésicules membranaires extracellulaires d’au moins un probiotique, ou dans lequel sont incorporées des vésicules membranaires extracellulaires d’au moins un probiotique. Figure 2
Description
La présente invention se rapporte à l’utilisation d’outils biologiques pour prévenir ou réduire la formation d’un biofilm à la surface d’un matériau.
La présente invention trouve des applications dans de nombreux domaines de l’industrie, comme par exemple dans l’industrie agroalimentaire, l’industrie de la tuyauterie ou du traitement de surfaces ou encore dans le secteur médical.
Dans la description ci-dessous, les références entre crochets ([ ]) renvoient à la liste des références présentée à la fin du texte.
Etat de la technique
Les biofilms se présentent sous forme d’une pellicule visqueuse constituée de micro-organismes, souvent des bactéries, des levures, des champignons ou des algues.
Ils adhèrent aux surfaces des équipements industriels et colonisent toutes les surfaces industrielles, comme les canalisations, ou les filtres à membrane. Plusieurs études ont mis en évidence que lors de certaines opérations, notamment dans les échangeurs à plaques, des biofilms peuvent se former si les industriels ne se montrent pas particulièrement vigilants. Ils sont ainsi responsables, régulièrement, de graves contaminations de produits finis et de nombreuses toxi-infections alimentaires. Les biofilms sont par exemple une préoccupation majeure dans l’industrie de la transformation laitière. Les biofilms bactériens peuvent également se développer sur des implants ou lors d’infections chroniques ; ils constituent des réservoirs de pathogènes et peuvent être à l’origine d’infections nosocomiales.
Les biofilms résistent à la plupart des méthodes classiques de nettoyage, et ont tendance à se développer davantage dans l’eau ou dans les milieux aqueux. Toutefois, d’autres facteurs entrent en ligne de compte dans la formation des biofilms, comme les propriétés nutritionnelles ou la température.
Les stratégies actuelles permettant de limiter la formation d’un biofilm sont diverses (Rendueles O & Ghigo JM ([1]) ; Venkatesan N, Perumal G & Doble M ([2]) ; Rao PK & Sreenivasa MY ([3])). Certaines de ces stratégies sont préventives et visent à empêcher l’adhésion et la formation du biofilm. Une de ces stratégies est l’utilisation de molécules de signalisation synthétiques, qui brouillent le système de communication de cellules à cellules, essentiel à la formation du biofilm. Cette dernière application en est encore au stade de l’exploration.
La prévention de la formation de biofilms fait appel à ce jour aux nanotechnologies, avec l’incorporation d’agents anti-bactériens dans les supports inertes. Le relargage de nanoparticules est néanmoins à prendre en compte selon les applications.
D’autres stratégies sont curatives et visent à éradiquer les biofilms. Il s’agit de méthodes bactéricides, ou de méthodes de dispersion et de désagrégation d’un biofilm déjà formé. Parmi les méthodes bactéricides, on peut distinguer les approches physiques, chimiques ou biologiques.
Des traitements physiques et mécaniques, comme les radiations ionisantes, les radiations UV et les ultrasons, ont été expérimentés par le passé. Leur efficacité est partielle, mais il est possible de cumuler ces méthodes pour en potentialiser l’effet anti-biofilm. Dans le cas des traitements par ultrasons, de nombreux effets délétères ont été rapportés sur la qualité de l’aliment, sa composition physique et sa flaveur.
L’utilisation de désinfectant, notamment pour les produits frais, est fréquente. Ceux-ci sont cependant beaucoup plus actifs sur les cellules planctoniques. Par leur structure et en particulier la matrice EPS (substances exopolymériques), les bactéries dans le biofilm sont plus résistantes. Dans les industries alimentaires, les surfaces sont nettoyées avec des dérivés chlorés, du peroxide d’hydrogène, de l’iode, des isothiazolinones, l’ozone, l’acide peracétique, les composes acides, les biocides à base d’aldéhyde, les phénols, les biguanides, les surfactants, les halogens et les ammoniums quaternaires. En général, ces agents n’éradiquent pas totalement le biofilm, ne sont pas éco-responsables et sont à l’origine dans de nombreux cas de la corrosion des surfaces. L’effet des huiles essentielles sur la destruction des biofilms est également à l’étude.
L’utilisation de bactériophages est actuellement développée pour leur propriété bactéricide.
Récemment, il a été proposé l’incorporation de biosurfactants dans des liposomes avec une activité antibiofilm. Il s’agit dans ce cas de vésicules artificielles reconstituées. Des effets ont été mis en évidence contre un biofilm deS. aureus, pour des applications potentielles relatives à des maladies de peau.
Par ailleurs, des enzymes sont utilisées pour disperser le biofilm. Il s’agit majoritairement d’hydrolases (α-amylases, protéases, ribonucléases par exemple), d’oxydo-réductases (comme les glucose-oxydases ou les haloperoxidases), de transférases (comme la transaminase) ou de lyases (comme l’alginate lyase). Ces enzymes ne tuant pas les bactéries, elles sont généralement combinées avec des méthodes bactéricides.
Il existe donc un réel besoin d’outils palliant ces défauts, inconvénients et obstacles de l’art antérieur, en particulier d’un outil permettant de prévenir ou réduire la formation d’un biofilm à la surface d’un matériau.
Description de l’invention
Aux termes d’importantes recherches, la Demanderesse a réussi à démontrer que l’utilisation de vésicules membranaires, naturellement produites par des probiotiques, empêche la formation de biofilm par des micro-organismes pathogènes ou indésirables sur des surfaces biotiques et abiotiques.
De manière très avantageuse, les vésicules sont issues de probiotiques, ce qui confère un avantage pour leur utilisation, notamment pour la santé. Cette origine garantit un produit sûr, naturel, éco-responsable, non polluant, ayant un spectre d’action large, pouvant même constituer un film protecteur, avec une action préventive.
Avantageusement, plusieurs effets sont envisageables, dont l’effet antibiofilm et immunomodulateur, selon la souche probiotique utilisée pour isoler les vésicules.
Ainsi, un premier objet de l’invention se rapporte à l’utilisation de vésicules membranaires extracellulaires d’au moins un probiotique pour prévenir ou réduire la formation d’un biofilm à la surface d’un matériau.
On entend par « vésicules membranaires extracellulaires », au sens de la présente invention, toute vésicule de nature lipidique, libérée spontanément ou de manière induite (par les conditions de culture ou par des traitements physico-chimiques) dans le milieu par le probiotique, et renfermant au moins un principe actif appartenant à cette bactérie productrice. Avantageusement, il est envisageable de produire des vésicules chargées en principes actifs pouvant être des lipides, des protéines, des acides nucléiques ou des exopolysaccharides.
On entend par « probiotique », au sens de la présente invention, tout micro-organisme vivant qui, lorsqu’il est ingéré en quantité suffisante, a un effet bénéfique sur la santé de l’hôte. Il peut s’agir notamment de bactéries ou de levures probiotiques, notamment une bactérie telle qu’un lactobacille, une bifidobactérie, un entérocoque, une propionibactérie, un streptocoque et une bactérie du genreBacillus,ou une levure telle queSaccharomyces cerevisiaeetSaccharomyces boulardiou un de leurs mélanges. Les bactéries probiotiques peuvent être choisies parmi :L. acidophilus, L. crispatus , L. gasseri , L. delbrueckii , L. salivarius , L. casei , L. paracasei , L. plantarum, L. rhamnosus , L. reuteri , L. brevis, L. buchneri , L. fermentum, B. adolescentis , B. angulation, B. bifidum, B. breve, B. catenulatum , B. infantis , B. lactis, B. longum, B. pseudocatenulatum , S. thermophiles, ou un de leurs mélanges,de préférence les bactéries probiotiques sontL. casei , L. paracaseietL. plantarumou un de leurs mélanges. Les levures probiotiques convenant pour la présente invention peuvent être choisies parmi : Saccharomyces cerevisiae et Saccharomyces boulardii ou un de leurs mélanges.
Selon l’invention, des combinaisons de différents types de vésicules, provenant par exemple de différents types de bactéries probiotiques, peuvent être réalisées. On peut par exemple utiliser des vésicules provenant d’une ou plusieurs espèces bactériennes différentes, le nombre d’espèces différentes n’étant pas limité. Il peut s’agir par exemple d’un mélange deL. caseietL. paracasei .Eventuellement, les vésicules peuvent être utilisées en association avec au moins un antimicrobien, que l’homme du métier pourra choisir parmi les antimicrobiens connus en fonction de l’application visée.
On entend par « biofilm », au sens de la présente invention, une communauté multicelluaire de micro-organismes adhérant entre eux et à une surface, et sécrétant une matrice adhésive et protectrice.
Selon l’invention, le biofilm peut être un biofilm bactérien, un biofilm levurien ou un biofilm mixte. On entend par « biofilm bactérien », au sens de la présente invention, un biofilm dont la communauté multicellulaire de micro-organismes est constituée essentiellement de bactéries. On entend par « biofilm levurien », au sens de la présente invention, un biofilm dont la communauté multicellulaire de micro-organismes est constituée essentiellement de levures. Par exemple, le biofilm bactérien peut être formé par au moins une espèce bactérienne choisie parmi la famille des entérobactéries, notammentSalmonella entericaEnteritidis,Hafnia alveiet/ouCitrobacter freundii, le genreStaphylococcus, notammentStaphylococcus aureusouStaphylococcus epidermidis, le genreBacillus, notammentBacillus cereusouBacillus subtilis, le genrePseudomonas, notammentPseudomonas aeruginosaet le genreEnterococcus, notammentEnterococcus faecalis .Par exemple, le biofilm levurien peut être formé par l’espèce levurienneCandida albicans.On entend par « biofilm mixte », au sens de la présente invention, un biofilm composé d’une communauté de différents types de micro-organismes, pouvant comprendre notamment des bactéries, des levures et/ou des phages. Par exemple, le biofilm mixte peut comprendre un mélange d’au moins une bactérie choisie parmi la famille des entérobactéries, notammentSalmonella entericaEnteritidis,Hafnia alveiet/ouCitrobacter freundii, le genreStaphylococcus, notammentStaphylococcus aureusouStaphylococcus epidermidis, le genreBacillus, notammentBacillus cereusouBacillus subtilis, le genrePseudomonas, notammentPseudomonas aeruginosaet le genreEnterococcus, notammentEnterococcus faecalis,et de l’espèce levurienneCandida albicans.
On entend par « prévenir la formation d’un biofilm », au sens de la présente invention, l’action d’empêcher totalement, sur une surface dépourvue de biofilm, la formation de celui-ci. En particulier, les vésicules empêchent l’adhésion des bactéries sur la surface traitée. L’effet préventif des vésicules membranaires extracellulaires peut avoir lieu pendant une durée pouvant atteindre plusieurs semaines à plusieurs mois après le traitement de la surface, notamment si on conditionne la surface avec les vésicules et qu’on stabilise le matériau, par séchage par exemple.
On entend par « réduire la formation d’un biofilm », au sens de la présente invention, l’action d’empêcher en partie, sur une surface dépourvue de biofilm, la formation de celui-ci. La réduction peut être une réduction d’au moins 20% de la formation d’un biofilm, par rapport à une surface identique et conservée dans les mêmes conditions, en l’absence de traitement. L’effet de réduction de la formation d’un biofilm des vésicules membranaires extracellulaires peut avoir lieu pendant une durée pouvant atteindre plusieurs semaines à plusieurs mois après le traitement de la surface, notamment si on conditionne la surface avec les vésicules et qu’on stabilise le matériau, par séchage par exemple.
Les vésicules membranaires extracellulaires peuvent être produites selon tout procédé connu de l’homme du métier. Le procédé de production peut par exemple comprendre les étapes suivantes :
(a) culture d’au moins un probiotique dans des conditions adaptées à la production de vésicules membranaires extracellulaires,
(b) séparation de l’au moins un probiotique et des vésicules membranaires extracellulaires produites à l’étape (a) et,
(c) purification et concentration des vésicules membranaires extracellulaires.
(a) culture d’au moins un probiotique dans des conditions adaptées à la production de vésicules membranaires extracellulaires,
(b) séparation de l’au moins un probiotique et des vésicules membranaires extracellulaires produites à l’étape (a) et,
(c) purification et concentration des vésicules membranaires extracellulaires.
L’étape (a) de culture peut être réalisée dans des conditions standard connues de l’homme du métier, en fonction de la nature du probiotique. Par exemple, dans le cas des lactobacilles, la culture peut être réalisée dans le milieu MRS, à 37°C, pendant 24 h.
L’étape (b) de séparation peut être elle aussi réalisée dans des conditions standard connues de l’homme du métier, en fonction de la nature du probiotique. Il peut s’agir par exemple d’une étape de filtration. Par exemple, dans le cas des lactobacilles, la centrifugation peut être réalisée à 4000 g pendant 20 min et la filtration peut être réalisée avec un filtre ayant une taille de pores d’environ 0,22 µm.
L’étape (c) de purification et de concentration peut être réalisée dans des conditions standard connues de l’homme du métier, en fonction de la nature du probiotique. L’étape de purification et de concentration peut comprendre au moins une technique connue de l’homme du métier, comme par exemple la centrifugation différentielle, illustrée par Zaborowska et al. ([4]), le gradient de densité, illustré par Kim et al. ([5]) ou Dean et al. ([6]), la chromatographie d’exclusion, illustré par Kuhn et al. ([7]), l’ultrafiltration, illustrée par Mata Forsberg et al. ([8]), Domínguez Rubio et al. ([9]), Choi et al., 2020 ([10]) ou Kim et al. ([5]), l’immunocapture (IC), illustrée par Wubbolts et al. ([11]), comme par exemple l’IC sur colonne, par billes magnétiques couplées à des anticorps ou tout autre surface couplée à un anticorps spécifique, ou encore la précipitation, comme illustré par Bäuerl et al. ([12]) cette liste n’étant pas limitative. Dans le cas des lactobacilles, l’ultrafiltration peut être une filtration d’exclusion à environ 100 kDa. Avantageusement, l’étape (c) peut permettre d’obtenir une solution de vésicules d’une concentration d’environ 1011particules / mL, ce nombre étant donné à titre indicatif et pouvant varier selon les conditions de mise en œuvre des différentes étapes du protocole c).
La stabilisation et la conservation des vésicules membranaires extracellulaires peuvent être réalisées dans des conditions standard connues de l’homme du métier. Par exemple, l’étape de stabilisation et de conservation peut comprendre une étape de séchage et/ou de congélation.
Le matériau sur lequel sont utilisées les vésicules membranaires extracellulaires peut être tout matériau sur lequel un biofilm est susceptible de se former. Il peut s’agir notamment d’un matériau choisi parmi les métaux, les alliages de métaux, les polymères, le verre, la céramique, et les aliments.
Les vésicules membranaires extracellulaires peuvent être incorporées dans des produits permettant de traiter ces matériaux. Il peut s’agir par exemple d’un spray, ou d’un produit de couverture du type peinture, laque ou vernis.
Dans le cadre du traitement d’une surface selon l’invention, l’utilisation s’entend d’une utilisation ex vivo, non théraeutique.
Un autre objet de l’invention se rapporte à un procédé de traitement d’une surface d’un matériau pour prévenir ou réduire la formation d’un biofilm sur ladite surface, ledit procédé comprenant une étape de mise en contact de vésicules membranaires extracellulaires provenant d’au moins un probiotique avec ladite surface.
On entend par « traitement », au sens de la présente invention, l’application d’une couche de vésicules membranaires extracellulaires à la surface du matériau. L’application a notamment lieu dans des conditions normales d’utilisation du matériau, par exemple à température ambiante et à pression atmosphérique. La quantité de vésicules appliquée sur la surface peut être déterminée par l’homme du métier, en fonction du matériau et du type de vésicule.
Un autre objet de l’invention se rapporte à un matériau comprenant à sa surface des vésicules membranaires extracellulaires d’au moins un probiotique.
Selon l’invention, les vésicules recouvrent au moins en partie, et de préférence totalement, la surface du matériau. Elles peuvent ainsi former une couche, d’une épaisseur pouvant être comprise entre 10 et 500 nm. L’épaisseur sera déterminée par l’homme du métier en fonctions des applications.
Le matériau peut être un matériau d’emballage, notamment d’emballage alimentaire, une conduite d’eau, un échangeur thermique, un pipeline, ou un cathéter. Le matériau peut également être un matériau utilisé dans le secteur médical, car en complément de l’activité anti-biofilm, les vésicules peuvent apporter une activité anti-inflammatoire (Mata Forsberg et al. ([8]), Kim et al. ([13]), Ñahui Palomino et al. ([14]), Yamasaki-Yashiki et al. ([12]), (Bäuerl et al. ([12]), Choi et al. ([10]), Kuhn et al. ([7]). Ainsi, les vésicules peuvent être incorporées dans des pansements, des crèmes ou recouvrir certains dispositifs médicaux.
D’autres avantages pourront encore apparaître à l’homme du métier à la lecture des exemples ci-dessous, illustrés par les figures annexées, donnés à titre illustratif.
Brève description des figures
La représente le schéma illustrant les étapes du protocole réalisé dans les exemples 1 et 2.
La figure 2 représente une partie du spectre d’action de l’effet antibiofilm des vésicules de L. casei BL23 et L. paracasei ATCC334. Les pathogènes S aureus ( ), S.epidermis ( ), H. alvei ( ), S. enterica ( ), E. faecalis ( ), P. Aeruginosa ( ) et B. subtilis ( ) ont été traités par 0,04 µg/µl de vésicules. Un contrôle est réalisé avec les vésicules purifiées à partir du milieu de culture MRS. La formation du biofilm par les pathogènes après 24h à 37°C est quantifiée par coloration au Cristal violet.
EXEMPLES
Exemple 1 : Isolement des vésicules membranaires
Matériel:
-Milieu de culture MRS (Man, Rogosa, Sharpe)
-Filtres 0,22 µm PES (Polyethersulfone)
-Seringues 10 ml
-Bouteilles pyrex 250 ml (stérile)
-Tube à centrifuger de 15 ml et de 50 ml (stérile)
-Système d’ultrafiltration (100-kDa-exclusion filter) :
Amicon® Ultra (ref. UFC510008)
Centricon Plus-70 (ref. UFC710008)
-Centrifugeuse Heraeus Multifuge X3R
-Adaptateur Rotor swing-out BIOLiner (11646190)
Adaptateur pour tubes à centrifuger de 50 ml
Adaptateur pour flacons de 250 ml
-Ultracentrifugeuse OPTIMA L séries 90K (NS COL 96J32)
-Beckman SW41 Ti Swinging-Bucket Rotor (ref. 331362)
-Thin-wall polypropylene tube 13.2 mL, 14 x 89 mm (ref. 33137)
-Phosphate Buffered Saline (stérile)
-Milieu de culture MRS (Man, Rogosa, Sharpe)
-Filtres 0,22 µm PES (Polyethersulfone)
-Seringues 10 ml
-Bouteilles pyrex 250 ml (stérile)
-Tube à centrifuger de 15 ml et de 50 ml (stérile)
-Système d’ultrafiltration (100-kDa-exclusion filter) :
Amicon® Ultra (ref. UFC510008)
Centricon Plus-70 (ref. UFC710008)
-Centrifugeuse Heraeus Multifuge X3R
-Adaptateur Rotor swing-out BIOLiner (11646190)
Adaptateur pour tubes à centrifuger de 50 ml
Adaptateur pour flacons de 250 ml
-Ultracentrifugeuse OPTIMA L séries 90K (NS COL 96J32)
-Beckman SW41 Ti Swinging-Bucket Rotor (ref. 331362)
-Thin-wall polypropylene tube 13.2 mL, 14 x 89 mm (ref. 33137)
-Phosphate Buffered Saline (stérile)
Protocole
Etape 1 : Mise en culture des lactobacilles
Un protocole de mise en culture des lactobacilles avec des paramètres standards est proposé ci-dessous.
-Inoculer 15 ml de MRS avec environ 50 µl d’un lactobacille conservé dans 20% glycérol à 80°C (Sortie de cryotube)
-Incuber à 37°C, 24 h
-Inoculer 15 ml de MRS avec la sortie de cryotube. Diluer pour obtenir une densité optique à 600 nm de 0,05 (DO600nm=0,05) (Pré-culture)
-Incuber à 37°C, 24 h
-Inoculer 250 ml de MRS à DO600nm=0,05 avec la pré-culture (Culture de travail)
-Incuber à 37°C pendant 24 h
-Inoculer 15 ml de MRS avec environ 50 µl d’un lactobacille conservé dans 20% glycérol à 80°C (Sortie de cryotube)
-Incuber à 37°C, 24 h
-Inoculer 15 ml de MRS avec la sortie de cryotube. Diluer pour obtenir une densité optique à 600 nm de 0,05 (DO600nm=0,05) (Pré-culture)
-Incuber à 37°C, 24 h
-Inoculer 250 ml de MRS à DO600nm=0,05 avec la pré-culture (Culture de travail)
-Incuber à 37°C pendant 24 h
Etape 2 : Concentration et isolement des vésicules par filtration et ultrafiltration
Le matériel biologique est maintenu à 4°C dans des conditions d’asepsie au cours de l’étape 2
-Centrifuger les 250 ml à 4 000 g pendant 20 min pour précipiter les cellules
-Recueillir le surnageant clarifié dans une bouteille stérile de 250 ml
-Filtrer le surnageant clarifié à travers un filtre de 0,22 µm
-Concentrer le surnageant en utilisant un système d'ultrafiltration (100-kDa-exclusion filter) (ref. UFC710008)
-Concentrer les 250 ml jusqu’à obtenir un volume de 10-15 ml de liquide
-Filtrer à travers un filtre de 0,22 µm (afin d'éliminer les matières agrégées)
-Ultracentrifuger le surnageant concentré à 110 000g pendant 2 h à 4°C
-Eliminer le surnageant et resuspendre le culot avec 500 µl de PBS à 4°C (fraction de vésicules concentrée)
-Réaliser un dosage protéique (dosage de Bradford) de la fraction vésiculaire concentrée ainsi obtenue
-Conserver la fraction vésiculaire au froid.
-Centrifuger les 250 ml à 4 000 g pendant 20 min pour précipiter les cellules
-Recueillir le surnageant clarifié dans une bouteille stérile de 250 ml
-Filtrer le surnageant clarifié à travers un filtre de 0,22 µm
-Concentrer le surnageant en utilisant un système d'ultrafiltration (100-kDa-exclusion filter) (ref. UFC710008)
-Concentrer les 250 ml jusqu’à obtenir un volume de 10-15 ml de liquide
-Filtrer à travers un filtre de 0,22 µm (afin d'éliminer les matières agrégées)
-Ultracentrifuger le surnageant concentré à 110 000g pendant 2 h à 4°C
-Eliminer le surnageant et resuspendre le culot avec 500 µl de PBS à 4°C (fraction de vésicules concentrée)
-Réaliser un dosage protéique (dosage de Bradford) de la fraction vésiculaire concentrée ainsi obtenue
-Conserver la fraction vésiculaire au froid.
Exemple 2 : Activité antibiofilm de la faction vésiculaire des lactobacilles
Matériel
-Milieu de culture TSB
-Plaque de culture 96 puits fond plat avec couvercle 1 GREINER 2515432
-Pro-Lab Diagnostics™ Solution cristal violet (ref. 12926287)
-Milieu de culture TSB
-Plaque de culture 96 puits fond plat avec couvercle 1 GREINER 2515432
-Pro-Lab Diagnostics™ Solution cristal violet (ref. 12926287)
Protocole
Etape 1 : Formation d'un biofilm sur des microplaques de polystyrène et traitement avec la fraction de vésicules concentrée
-Inoculer 15 ml de TSB avec environ 50 µl de bactéries conservés dans 20% glycérol à 80°C (Sortie de cryotube)
-Incuber à 37°C, 24 h (± agitation, ± aérobie selon la bactérie étudiée)
-Inoculer 15 ml de TSB avec la sortie de cryotube. Diluer pour obtenir une densité optique à 600nm de 0,05 (DO600nm=0,05) (Pré-culture)
-Incuber à 37°C, 24 h (± agitation, ± aérobie selon la bactérie étudiée)
-Inoculer 20 ml de TSB à DO600nm=0,05 avec la pré-culture (Culture de travail)
-Répartir la culture de travail dans les puits d’une plaque de polystyrène et ajouter la fraction vésiculaire à une concentration finale de 0,04 µg/µl dans 100 µl de volume final.
-Incuber à 37°C, 24 h (± agitation, ± aérobie selon la bactérie étudiée)
-Inoculer 15 ml de TSB avec environ 50 µl de bactéries conservés dans 20% glycérol à 80°C (Sortie de cryotube)
-Incuber à 37°C, 24 h (± agitation, ± aérobie selon la bactérie étudiée)
-Inoculer 15 ml de TSB avec la sortie de cryotube. Diluer pour obtenir une densité optique à 600nm de 0,05 (DO600nm=0,05) (Pré-culture)
-Incuber à 37°C, 24 h (± agitation, ± aérobie selon la bactérie étudiée)
-Inoculer 20 ml de TSB à DO600nm=0,05 avec la pré-culture (Culture de travail)
-Répartir la culture de travail dans les puits d’une plaque de polystyrène et ajouter la fraction vésiculaire à une concentration finale de 0,04 µg/µl dans 100 µl de volume final.
-Incuber à 37°C, 24 h (± agitation, ± aérobie selon la bactérie étudiée)
Etape 2 : Quantification de la formation du biofilm par coloration au cristal violet
-Retirer les bactéries en suspension présentes dans chacun des puits de la plaque de polystyrène
-Laver 2 fois avec 200 µl d’eau distillée chaque puit de la plaque de polystyrène
-Ajouter 150 µl de cristal violet à 0.5% (dilution dans de l’eau distillée) dans chaque puit
-Incuber 1 h sans agitation
-Laver 2 fois avec 200 µl d’eau distillée chaque puit de la plaque de polystyrène
-Ajouter 150 µl d’éthanol 95% (dilution dans de l’eau distillée) dans chaque puit
-Mesurer l’absorbance à 595 nm
-Retirer les bactéries en suspension présentes dans chacun des puits de la plaque de polystyrène
-Laver 2 fois avec 200 µl d’eau distillée chaque puit de la plaque de polystyrène
-Ajouter 150 µl de cristal violet à 0.5% (dilution dans de l’eau distillée) dans chaque puit
-Incuber 1 h sans agitation
-Laver 2 fois avec 200 µl d’eau distillée chaque puit de la plaque de polystyrène
-Ajouter 150 µl d’éthanol 95% (dilution dans de l’eau distillée) dans chaque puit
-Mesurer l’absorbance à 595 nm
LISTE DES REFERENCES
1.Rendueles O & Ghigo JM, Multi-species biofilms: how to avoid unfriendly neighbors FEMS Microbiol Rev 2012; 36: 972–989. DOI: 10.1111/j.1574-6976.2012.00328.x
2.Venkatesan N, Perumal G & Doble M, Bacterial resistance in biofilm-associated Bacteria Future Microbiol 2015;10(11):1743-50. DOI: 10.2217/fmb.15.69
3.Rao PK & Sreenivasa MY, Probiotic Lactobacillus Strains and Their Antimicrobial Peptides to Counteract Biofilm- Associated Infections- A Promising Biological Approach SM J Bioinform Proteomics. 2016; 1(2): 1009.
4.Zaborowska, M., Taulé Flores, C., Vazirisani, F., Shah, F.A., Thomsen, P., Trobos, M., 2020. Extracellular Vesicles Influence the Growth and Adhesion of Staphylococcus epidermidis Under Antimicrobial Selective Pressure. Front. Microbiol. 11, 1132.
5 .Kim, H., Kim, M., Myoung, K., Kim, W., Ko, J., Kim, K.P., Cho, E.-G., 2020. Comparative Lipidomic Analysis of Extracellular Vesicles Derived from Lactobacillus plantarum APsulloc 331261 Living in Green Tea Leaves Using Liquid Chromatography-Mass Spectrometry. Int. J. Mol. Sci. 21, 8076.
6 .Dean, S.N., Rimmer, M.A., Turner, K.B., Phillips, D.A., Caruana, J.C., Hervey, W.J., Leary, D.H., Walper, S.A., 2020. Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery. Front. Microbiol. 11, 710.
7 .Kuhn, T., Koch, M., Fuhrmann, G., 2020. Probiomimetics—Novel Lactobacillus ‐Mimicking Microparticles Show Anti‐Inflammatory and Barrier‐Protecting Effects in Gastrointestinal Models. Small 16, 2003158.
8 .Mata Forsberg, M., Björkander, S., Pang, Y., Lundqvist, L., Ndi, M., Ott, M., Escribá, I.B., Jaeger, M.-C., Roos, S., Sverremark-Ekström, E., 2019. Extracellular Membrane Vesicles from Lactobacilli Dampen IFN-γ Responses in a Monocyte-Dependent Manner. Sci. Rep. 9, 17109.
9 .Domínguez Rubio, A.P., Martínez, J.H., Martínez Casillas, D.C., Coluccio Leskow, F., Piuri, M., Pérez, O.E., 2017. Lactobacillus casei BL23 Produces Microvesicles Carrying Proteins That Have Been Associated with Its Probiotic Effect. Front. Microbiol. 8, 1783.
10 .Choi, J.H., Moon, C.M., Shin, T.-S., Kim, E.K., McDowell, A., Jo, M.-K., Joo, Y.H., Kim, S.-E., Jung, H.-K., Shim, K.-N., Jung, S.-A., Kim, Y.-K., 2020. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Exp. Mol. Med. 52, 423–437.
11 .Wubbolts, R., Leckie, R.S., Veenhuizen, P.T.M., Schwarzmann, G., Möbius, W., Hoernschemeyer, J., Slot, J.-W., Geuze, H.J., Stoorvogel, W., 2003. Proteomic and Biochemical Analyses of Human B Cell-derived Exosomes: POTENTIAL IMPLICATIONS FOR THEIR FUNCTION AND MULTIVESICULAR BODY FORMATION. J. Biol. Chem. 278, 10963–10972.
12 .Bäuerl, C., Coll-Marqués, J.M., Tarazona-González, C., Pérez-Martínez, G., 2020. Lactobacillus casei extracellular vesicles stimulate EGFR pathway likely due to the presence of proteins P40 and P75 bound to their surface. Sci. Rep. 10, 19237.
13 .Kim, W., Lee, E.J., Bae, I.-H., Myoung, K., Kim, S.T., Park, P.J., Lee, K.-H., Pham, A.V.Q., Ko, J., Oh, S.H., Cho, E.-G., 2020. Lactobacillus plantarum -derived extracellular vesicles induce anti-inflammatory M2 macrophage polarization in vitro. J. Extracell. Vesicles 9, 1793514.
14 .Ñahui Palomino, R.A., Vanpouille, C., Laghi, L., Parolin, C., Melikov, K., Backlund, P., Vitali, B., Margolis, L., 2019. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nat. Commun. 10, 5656.
15 .Yamasaki-Yashiki, S., Miyoshi, Y., Nakayama, T., Kunisawa, J., Katakura, Y., 2019. IgA-enhancing effects of membrane vesicles derived from Lactobacillus sakei subsp. sakei NBRC15893. Biosci. Microbiota Food Health 38, 23–29.
1.Rendueles O & Ghigo JM, Multi-species biofilms: how to avoid unfriendly neighbors FEMS Microbiol Rev 2012; 36: 972–989. DOI: 10.1111/j.1574-6976.2012.00328.x
2.Venkatesan N, Perumal G & Doble M, Bacterial resistance in biofilm-associated Bacteria Future Microbiol 2015;10(11):1743-50. DOI: 10.2217/fmb.15.69
3.Rao PK & Sreenivasa MY, Probiotic Lactobacillus Strains and Their Antimicrobial Peptides to Counteract Biofilm- Associated Infections- A Promising Biological Approach SM J Bioinform Proteomics. 2016; 1(2): 1009.
4.Zaborowska, M., Taulé Flores, C., Vazirisani, F., Shah, F.A., Thomsen, P., Trobos, M., 2020. Extracellular Vesicles Influence the Growth and Adhesion of Staphylococcus epidermidis Under Antimicrobial Selective Pressure. Front. Microbiol. 11, 1132.
5 .Kim, H., Kim, M., Myoung, K., Kim, W., Ko, J., Kim, K.P., Cho, E.-G., 2020. Comparative Lipidomic Analysis of Extracellular Vesicles Derived from Lactobacillus plantarum APsulloc 331261 Living in Green Tea Leaves Using Liquid Chromatography-Mass Spectrometry. Int. J. Mol. Sci. 21, 8076.
6 .Dean, S.N., Rimmer, M.A., Turner, K.B., Phillips, D.A., Caruana, J.C., Hervey, W.J., Leary, D.H., Walper, S.A., 2020. Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery. Front. Microbiol. 11, 710.
7 .Kuhn, T., Koch, M., Fuhrmann, G., 2020. Probiomimetics—Novel Lactobacillus ‐Mimicking Microparticles Show Anti‐Inflammatory and Barrier‐Protecting Effects in Gastrointestinal Models. Small 16, 2003158.
8 .Mata Forsberg, M., Björkander, S., Pang, Y., Lundqvist, L., Ndi, M., Ott, M., Escribá, I.B., Jaeger, M.-C., Roos, S., Sverremark-Ekström, E., 2019. Extracellular Membrane Vesicles from Lactobacilli Dampen IFN-γ Responses in a Monocyte-Dependent Manner. Sci. Rep. 9, 17109.
9 .Domínguez Rubio, A.P., Martínez, J.H., Martínez Casillas, D.C., Coluccio Leskow, F., Piuri, M., Pérez, O.E., 2017. Lactobacillus casei BL23 Produces Microvesicles Carrying Proteins That Have Been Associated with Its Probiotic Effect. Front. Microbiol. 8, 1783.
10 .Choi, J.H., Moon, C.M., Shin, T.-S., Kim, E.K., McDowell, A., Jo, M.-K., Joo, Y.H., Kim, S.-E., Jung, H.-K., Shim, K.-N., Jung, S.-A., Kim, Y.-K., 2020. Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Exp. Mol. Med. 52, 423–437.
11 .Wubbolts, R., Leckie, R.S., Veenhuizen, P.T.M., Schwarzmann, G., Möbius, W., Hoernschemeyer, J., Slot, J.-W., Geuze, H.J., Stoorvogel, W., 2003. Proteomic and Biochemical Analyses of Human B Cell-derived Exosomes: POTENTIAL IMPLICATIONS FOR THEIR FUNCTION AND MULTIVESICULAR BODY FORMATION. J. Biol. Chem. 278, 10963–10972.
12 .Bäuerl, C., Coll-Marqués, J.M., Tarazona-González, C., Pérez-Martínez, G., 2020. Lactobacillus casei extracellular vesicles stimulate EGFR pathway likely due to the presence of proteins P40 and P75 bound to their surface. Sci. Rep. 10, 19237.
13 .Kim, W., Lee, E.J., Bae, I.-H., Myoung, K., Kim, S.T., Park, P.J., Lee, K.-H., Pham, A.V.Q., Ko, J., Oh, S.H., Cho, E.-G., 2020. Lactobacillus plantarum -derived extracellular vesicles induce anti-inflammatory M2 macrophage polarization in vitro. J. Extracell. Vesicles 9, 1793514.
14 .Ñahui Palomino, R.A., Vanpouille, C., Laghi, L., Parolin, C., Melikov, K., Backlund, P., Vitali, B., Margolis, L., 2019. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nat. Commun. 10, 5656.
15 .Yamasaki-Yashiki, S., Miyoshi, Y., Nakayama, T., Kunisawa, J., Katakura, Y., 2019. IgA-enhancing effects of membrane vesicles derived from Lactobacillus sakei subsp. sakei NBRC15893. Biosci. Microbiota Food Health 38, 23–29.
Claims (11)
- Utilisation de vésicules membranaires extracellulaires d’au moins un probiotique pour prévenir ou réduire la formation d’un biofilm à la surface d’un matériau.
- Utilisation selon la revendication 1, dans laquelle l’au moins un probiotique est choisi parmi une bactérie probiotique telle qu’un lactobacille, une bifidobactérie, un entérocoque, une propionibactérie, un streptocoque et une bactérie du genre Bacillus, ou une levure telle queSaccharomyces cerevisiaeetSaccharomyces boulardiou un de leurs mélanges.
- Utilisation selon la revendication 1 ou 2, dans laquelle le biofilm est un biofilm bactérien, un biofilm levurien ou un biofilm mixte.
- Utilisation selon la revendication 3, dans laquelle :
- ledit biofilm bactérien comprend au moins une bactérie choisie parmi la famille des entérobactéries, notammentSalmonella enterica Enteritidis,Hafnia alveiet/ouCitrobacter freundii, le genre Staphylococcus, notammentStaphylococcus aureusouStaphylococcus epidermidis, le genre Bacillus, notammentBacillus cereusouBacillus subtilis, le genre Pseudomonas, notammentPseudomonas aeruginosaet le genre Enterococcus, notammentEnterococcus faecalis;
- ledit biofilm levurien comprend l’espèce levurienneCandida albicans
- ledit biofilm mixte comprend un mélange d’au moins une bactérie choisie parmi la famille des entérobactéries, notammentSalmonella enterica Enteritidis,Hafnia alveiet/ouCitrobacter freundii, le genre Staphylococcus, notammentStaphylococcus aureusouStaphylococcus epidermidis, le genre Bacillus, notammentBacillus cereusouBacillus subtilis, le genre Pseudomonas, notammentPseudomonas aeruginosaet le genre Enterococcus, notammentEnterococcus faecalis, et de l’espèce levurienneCandida albicans. - Utilisation selon l’une quelconque des revendications précédentes, dans laquelle les vésicules membranaires extracellulaires sont produites par un procédé comprenant les étapes suivantes:
(a) culture d’au moins un probiotique dans des conditions adaptées à la production de vésicules membranaires extracellulaires,
(b) séparation de l’au moins un probiotique et des vésicules membranaires extracellulaires produites à l’étape (a) et,
(c) purification et concentration des vésicules membranaires extracellulaires. - Utilisation selon la revendication 5, dans laquelle ladite étape de purification et de concentration comprend au moins une étape choisie parmi la centrifugation différentielle, le gradient de densité, la chromatographie d’exclusion, l’ultrafiltration, l’immunocapture et la précipitation.
- Utilisation selon l’une quelconque des revendications précédentes, dans laquelle ledit matériau est choisi parmi les métaux, les alliages de métaux, les polymères, le verre, la céramique, et les aliments.
- Procédé de traitement d’une surface d’un matériau pour prévenir ou réduire la formation d’un biofilm sur ladite surface, ledit procédé comprenant une étape de mise en contact de vésicules membranaires extracellulaires provenant d’au moins un probiotique avec ladite surface.
- Matériau comprenant à sa surface des vésicules membranaires extracellulaires d’au moins un probiotique, ou dans lequel sont incorporées des vésicules membranaires extracellulaires d’au moins un probiotique, ledit matériau étant choisi parmi les métaux, les alliages de métaux, les polymères, le verre, la céramique, et les aliments.
- Matériau selon la revendication 9, dans lequel lesdites vésicules forment une couche d’une épaisseur comprise entre 10 et 500 nm sur ladite surface.
- Matériau selon la revendication 9, choisi parmi un matériau d’emballage, notamment d’emballage alimentaire, une conduite d’eau, un échangeur thermique, un pipeline, un cathéter, un pansement, une crème et un dispositif médical.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2013717A FR3118060A1 (fr) | 2020-12-18 | 2020-12-18 | Utilisation anti-biofilm de vesicules membranaires extracellulaires |
US18/258,199 US20240057610A1 (en) | 2020-12-18 | 2021-12-17 | Use of extracellular membrane vesicles for anti-biofilm purposes |
EP21851620.1A EP4263800A1 (fr) | 2020-12-18 | 2021-12-17 | Utilisation anti-biofilm de vesicules membranaires extracellulaires |
PCT/FR2021/052374 WO2022129808A1 (fr) | 2020-12-18 | 2021-12-17 | Utilisation anti-biofilm de vesicules membranaires extracellulaires |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2013717 | 2020-12-18 | ||
FR2013717A FR3118060A1 (fr) | 2020-12-18 | 2020-12-18 | Utilisation anti-biofilm de vesicules membranaires extracellulaires |
Publications (1)
Publication Number | Publication Date |
---|---|
FR3118060A1 true FR3118060A1 (fr) | 2022-06-24 |
Family
ID=75539434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2013717A Pending FR3118060A1 (fr) | 2020-12-18 | 2020-12-18 | Utilisation anti-biofilm de vesicules membranaires extracellulaires |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240057610A1 (fr) |
EP (1) | EP4263800A1 (fr) |
FR (1) | FR3118060A1 (fr) |
WO (1) | WO2022129808A1 (fr) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019051380A1 (fr) * | 2017-09-08 | 2019-03-14 | Evelo Biosciences, Inc. | Vésicules extracellulaires (ev) bactériennes |
-
2020
- 2020-12-18 FR FR2013717A patent/FR3118060A1/fr active Pending
-
2021
- 2021-12-17 WO PCT/FR2021/052374 patent/WO2022129808A1/fr active Application Filing
- 2021-12-17 US US18/258,199 patent/US20240057610A1/en active Pending
- 2021-12-17 EP EP21851620.1A patent/EP4263800A1/fr active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019051380A1 (fr) * | 2017-09-08 | 2019-03-14 | Evelo Biosciences, Inc. | Vésicules extracellulaires (ev) bactériennes |
Non-Patent Citations (23)
Title |
---|
BÂUERL, C.COLL-MARQUÉS, J.M.TARAZONA-GONZÂLEZ, C.PÉREZ-MARTINEZ, G.: "Lactobacillus casei extracellular vesicles stimulate EGFR pathway likely due to the presence of proteins P40 and P75 bound to their surface", SCI. REP., vol. 10, 2020, pages 19237 |
CARVALHO FÁBIO M. ET AL: "Targeting biofilms in medical devices using probiotic cells: a systematic review", AIMS MATERIALS SCIENCE, vol. 8, no. 4, 24 June 2021 (2021-06-24), pages 501 - 523, XP055832620, ISSN: 2372-0484, DOI: 10.3934/matersci.2021031 * |
CHOI JI HYUN ET AL: "Abstract", EXPERIMENTAL AND MOLECULAR MEDICINE, vol. 52, no. 3, 1 March 2020 (2020-03-01), KR, pages 423 - 437, XP055832897, ISSN: 1226-3613, Retrieved from the Internet <URL:https://www.nature.com/articles/s12276-019-0359-3.pdf> DOI: 10.1038/s12276-019-0359-3 * |
CHOI, J.H.MOON, C.M.SHIN, T.-S.KIM, E.K.MCDOWELL, A.JO, M.-K.JOO, Y.H.KIM, S.-E.JUNG, H.-K.SHIM, K.-N.: "Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway", EXP. MOL. MED., vol. 52, 2020, pages 423 - 437 |
DEAN SCOTT N. ET AL: "Isolation and characterization of Lactobacillus-derived membrane vesicles", SCIENTIFIC REPORTS, vol. 9, no. 1, 1 December 2019 (2019-12-01), pages 877, XP055832540, Retrieved from the Internet <URL:https://www.nature.com/articles/s41598-018-37120-6.pdf> DOI: 10.1038/s41598-018-37120-6 * |
DEAN SCOTT N. ET AL: "Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery", FRONTIERS IN MICROBIOLOGY, vol. 11, 30 April 2020 (2020-04-30), XP055832533, DOI: 10.3389/fmicb.2020.00710 * |
DEAN, S.N.RIMMER, M.A.TURNER, K.B.PHILLIPS, D.A.CARUANA, J.C.HERVEY, W.J.LEARY, D.H.WALPER, S.A.: "Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery", FRONT. MICROBIOL., vol. 11, 2020, pages 710 |
DOMINGUEZ RUBIO, A.P.MARTINEZ, J.H.MARTMEZ CASILLAS, D.C.COLUCCIO LESKOW, F.PIURI, M.PÉREZ, O.E.: "Lactobacillus casei BL23 Produces Microvesicles Carrying Proteins That Have Been Associated with Its Probiotic Effect", FRONT. MICROBIOL., vol. 8, 2017, pages 1783 |
GÓMEZ NATACHA C. ET AL: "Use of Potential Probiotic Lactic Acid Bacteria (LAB) Biofilms for the Control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 Biofilms Formation", FRONTIERS IN MICROBIOLOGY, vol. 7, 10 June 2016 (2016-06-10), XP055832658, DOI: 10.3389/fmicb.2016.00863 * |
ISAYENKO O. Y. ET AL: "Effect of disintegrates and metabolites of Lactobacillus rhamnosus and Saccharomyces boulardii on biofilms of antibiotic resistant conditionally pathogenic and pathogenic bacteria", REGULATORY MECHANISMS IN BIOSYSTEMS, vol. 10, no. 1, 25 March 2019 (2019-03-25), pages 3 - 8, XP055832535, ISSN: 2519-8521, Retrieved from the Internet <URL:https://medicine.dp.ua/index.php/med/article/download/498/519> DOI: 10.15421/021901 * |
KIM, H.KIM, M.MYOUNG, K.KIM, W.KO, J.KIM, K.P.CHO, E.-G.: "Comparative Lipidomic Analysis of Extracellular Vesicles Derived from Lactobacillus plantarum APsulloc 331261 Living in Green Tea Leaves Using Liquid Chroma-tography-Mass Spectrometry", INT. J. MOL. SCI., vol. 21, 2020, pages 8076 |
KIM, W.LEE, E.J.BAE, I.-H.MYOUNG, K.KIM, S.T.PARK, P.J.LEE, K.-H.PHAM, A.V.Q.KO, J.OH, S.H.: "Lactobacillus plantarum -derived extracellular vesicles induce anti-inflammatory M2 macrophage polarization in vitro", J. EXTRACELL. VESICLES, vol. 9, 2020, pages 1793514 |
KNYSH O. V. ET AL: "Influence of cell-free extracts of Bifidobacterium bifidum and Lactobacillus reuteri on proliferation and biofilm formation by Escherichia coli and Pseudomonas aeruginosa", REGULATORY MECHANISMS IN BIOSYSTEMS, vol. 10, no. 2, 17 April 2019 (2019-04-17), pages 251 - 256, XP055832537, ISSN: 2519-8521, Retrieved from the Internet <URL:https://medicine.dp.ua/index.php/med/article/download/538/557> DOI: 10.15421/021938 * |
KUHN, T.KOCH, M.FUHRMANN, G.: "Probiomimetics-Novel Lactobacillus -Mimicking Microparticles Show Anti-Inflammatory and Barrier-Protecting Effects in Gastrointestinal Models", SMALL, vol. 16, 2020, pages 2003158 |
LEE BAO-HONG ET AL: "The applications of Lactobacillus plantarum-derived extracellular vesicles as a novel natural antibacterial agent for improving quality and safety in tuna fish", FOOD CHEMISTRY, ELSEVIER LTD, NL, vol. 340, 17 September 2020 (2020-09-17), XP086358438, ISSN: 0308-8146, [retrieved on 20200917], DOI: 10.1016/J.FOODCHEM.2020.128104 * |
MATA FORSBERG, M.BJÔRKANDER, S.PANG, Y.LUNDQVIST, L.NDI, M.OTT, M.ESCRIBÂ, I.B.JAEGER, M.-C.ROOS, S.SVERREMARK-EKSTRÔM, E.: "Extracellular Membrane Vesicles from Lactobacilli Dampen IFN-y Responses in a Monocyte-Dependent Manner", SCI. REP., vol. 9, 2019, pages 17109 |
NAHUI PALOMINO, R.A.VANPOUILLE, C.LAGHI, L.PAROLIN, C.MELIKOV, K.BACKLUND, P.VITALI, B.MARGOLIS, L.: "Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues", NAT. COMMUN., vol. 10, 2019, pages 5656 |
RAO PKSREENIVASA MY: "Probiotic Lactobacillus Strains and Their Antimicrobial Peptides to Counteract Biofilm- Associated Infections- A Promising Biological Approach SM", J BIOINFORM PROTEOMICS, vol. 1, no. 2, 2016, pages 1009 |
RENDUELES OGHIGO JM: "Multi-species biofilms: how to avoid unfriendly neighbors", FEMS MICROBIOL REV, vol. 36, 2012, pages 972 - 989 |
VENKATESAN NPERUMAL GDOBLE M: "Bacterial résistance in biofilm-associated", BACTERIA FUTURE MICROBIOL, vol. 10, no. 11, 2015, pages 1743 - 50 |
WUBBOLTS, R.LECKIE, R.S.VEENHUIZEN, P.T.M.SCHWARZMANN, G.MÔBIUS, W.HOERNSCHEMEYER, J.SLOT, J.-W.GEUZE, H.J.STOORVOGEL, W.: "Proteomic and Biochemical Analyses of Human B Cell-derived Exosomes: POTENTIAL IMPLICATIONS FOR THEIR FUNCTION AND MULTIVESICULAR BODY FORMATION", J. BIOL. CHEM., vol. 278, 2003, pages 10963 - 10972, XP055196513, DOI: 10.1074/jbc.M207550200 |
YAMASAKI-YASHIKI, S.MIYOSHI, Y.NAKAYAMA, T.KUNISAWA, J.KATAKURA, Y.: "IgA-enhancing effects of membrane vesicles derived from Lactobacillus sakei subsp. sakei NBRC15893", BIOSCI. MICROBIOTA FOOD HEALTH, vol. 38, 2019, pages 23 - 29, XP055726840, DOI: 10.12938/bmfh.18-015 |
ZABOROWSKA, M.TAULÉ FLORES, C.VAZIRISANI, F.SHAH, F.A.THOMSEN, P.TROBOS, M.: "Extracellular Vesicles Influence the Growth and Adhésion of Staphylococcus epidermidis Under Antimicrobial Selective Pressure", FRONT. MICROBIOL., vol. 11, 2020, pages 1132 |
Also Published As
Publication number | Publication date |
---|---|
WO2022129808A1 (fr) | 2022-06-23 |
EP4263800A1 (fr) | 2023-10-25 |
US20240057610A1 (en) | 2024-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sharma et al. | Probiotic characterization and antioxidant properties of Weissella confusa KR780676, isolated from an Indian fermented food | |
Gudiña et al. | Antimicrobial and anti-adhesive activities of cell-bound biosurfactant from Lactobacillus agilis CCUG31450 | |
CA2639961C (fr) | Nouvelles souches de lactobacillus et leurs utilisations | |
US9635862B2 (en) | Method of producing partially purified extracellular metabolite products from bacillus coagulans and biological applications thereof | |
Niaz et al. | Antimicrobial and antibiofilm potential of bacteriocin loaded nano-vesicles functionalized with rhamnolipids against foodborne pathogens | |
Lara-Hidalgo et al. | Isolation of yeasts from guajillo pepper (Capsicum annuum L.) fermentation and study of some probiotic characteristics | |
Agaliya et al. | Screening of Lactobacillus plantarum isolated from fermented idli batter for probiotic properties | |
EP3286139B1 (fr) | Préparation apyrogène contenant des nanoparticules synthétisées par des bactéries magnétotactiques pour des applications médicales ou cosmétiques | |
WO2012023578A1 (fr) | Agent pour amélioration de la survie de bactérie lactique et/ou de bactérie bifidus | |
WO2013114185A1 (fr) | Bactéries probiotiques microencapsulées multicouches | |
BE1024197A1 (fr) | Procédé d'enrobage de microorganismes, poudre desdits microorganismes enrobés obtenue et composition pharmaceutique, nutraceutique, cosmétique, alimentaire ou sanitaire la comprenant. | |
Khalid et al. | Milk phospholipids-based nanostructures functionalized with rhamnolipids and bacteriocin: Intrinsic and synergistic antimicrobial activity for cheese preservation | |
Bevilacqua et al. | A low-power ultrasound attenuation improves the stability of biofilm and hydrophobicity of Propionibacterium freudenreichii subsp. freudenreichii DSM 20271 and Acidipropionibacterium jensenii DSM 20535 | |
US20220249583A1 (en) | Novel lactic acid bacteria strain - antibacterial peptides produced by said strain and related pharmaceutical compositions | |
Kumar Bajaj et al. | Bioprospecting for functionally-proficient potential probiotics | |
FR3118060A1 (fr) | Utilisation anti-biofilm de vesicules membranaires extracellulaires | |
Saleh et al. | Isolation and characterization of bacteriocins produced by Bifidobacterium lactis BB-12 and Bifidobacterium longum BB-46 | |
Sharma et al. | Biosurfactants of probiotic lactic acid bacteria | |
N’tcha et al. | Probiotic properties of lactic acid bacteria isolated from a beninese traditional beer’s ferment | |
Kaur et al. | Biosurfactant from Lactobacillus sp. as an antibiofilm agent | |
JP5006198B2 (ja) | 病原菌の細胞への付着阻害能を有するビフィズス菌、その処理物及びそれを含有する食品・医薬品組成物 | |
Aslim et al. | The effect of immobilization on some probiotic properties of Streptococcus thermophilus strains | |
KR101172839B1 (ko) | 코팅 유산균의 제조방법 및 상기 코팅 유산균을 포함하는 보쌈용 수육의 제조방법 | |
Van Duc et al. | Encapsulation of Lactobacillus acidophilus in yeast cell walls (Saccharomyces cerevisiae) for improving survival in gastrointestinal conditions | |
RU2367686C1 (ru) | Способ получения антиадгезивного компонента на основе лектинсвязывающих структур |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20220624 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |