FR3094497A1 - Measurement of the air gap of a rotation sensor by means of the sensor itself - Google Patents

Measurement of the air gap of a rotation sensor by means of the sensor itself Download PDF

Info

Publication number
FR3094497A1
FR3094497A1 FR1903040A FR1903040A FR3094497A1 FR 3094497 A1 FR3094497 A1 FR 3094497A1 FR 1903040 A FR1903040 A FR 1903040A FR 1903040 A FR1903040 A FR 1903040A FR 3094497 A1 FR3094497 A1 FR 3094497A1
Authority
FR
France
Prior art keywords
voltage
measurement
air gap
sensor
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1903040A
Other languages
French (fr)
Other versions
FR3094497B1 (en
Inventor
Benoît Marie Bernard KIEFFER
Jean-Paul Clément SCHIELIN Jean-François
Jacques Paul Michel Gauvrit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Priority to FR1903040A priority Critical patent/FR3094497B1/en
Publication of FR3094497A1 publication Critical patent/FR3094497A1/en
Application granted granted Critical
Publication of FR3094497B1 publication Critical patent/FR3094497B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/06Arrangement of sensing elements responsive to speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/182Two-dimensional patterned crenellated, notched
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • F05D2250/283Three-dimensional patterned honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/294Three-dimensional machined; miscellaneous grooved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05D2270/821Displacement measuring means, e.g. inductive

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

L’invention concerne un procédé de mesure de l’entrefer (E) entre un capteur (1) de rotation et une roue phonique (2), le capteur de rotation étant à reluctance variable et comprenant une première voie (A) de mesure et une deuxième voie (B) de mesure correspondant à au moins deux bobinages indépendants du capteur, le procédé étant mis en œuvre au moyen d’une unité de commande (3) connectée au capteur (1) de rotation et comprenant les étapes suivantes : - injection d’une tension alternative (VA) d’amplitude fixe sur la première voie du capteur ; - mesure d’une tension induite (VB) sur la deuxième voie de mesure (B) ; - estimation d’un entrefer (E) à partir de la tension injectée sur la première voie et de la tension mesurée sur la deuxième voie. Figure pour l’abrégé : Figure 1The invention relates to a method for measuring the air gap (E) between a rotation sensor (1) and a tone wheel (2), the rotation sensor having variable reluctance and comprising a first measurement channel (A) and a second measurement channel (B) corresponding to at least two independent windings of the sensor, the method being implemented by means of a control unit (3) connected to the rotation sensor (1) and comprising the following steps: - injection of an alternating voltage (VA) of fixed amplitude on the first channel of the sensor; - measurement of an induced voltage (VB) on the second measurement channel (B); - estimation of an air gap (E) from the voltage injected on the first channel and the voltage measured on the second channel. Figure for the abstract: Figure 1

Description

Mesure de l'entrefer d'un capteur de rotation au moyen du capteur lui mêmeMeasurement of the air gap of a rotation sensor by means of the sensor itself

DOMAINE TECHNIQUE GENERALGENERAL TECHNICAL AREA

L’invention concerne la mesure de l’entrefer entre un capteur à reluctance variable et une roue dentée afin, notamment, de vérifier le réglage correct de l’entrefer permettant de mesurer la vitesse de rotation d’un organe tournant couplée à la roue dentée.The invention relates to the measurement of the air gap between a variable reluctance sensor and a toothed wheel in order, in particular, to check the correct adjustment of the air gap making it possible to measure the speed of rotation of a rotating member coupled to the toothed wheel. .

Et l’invention concerne notamment le réglage d’un tel capteur utilisé pour mesurer la vitesse de rotation d’une turbomachine d’un aéronef et de préférence pour mesurer un régime de la turbomachine notamment le régime basse pression de la turbomachine.And the invention relates in particular to the adjustment of such a sensor used to measure the speed of rotation of a turbomachine of an aircraft and preferably to measure a speed of the turbomachine in particular the low pressure speed of the turbomachine.

Un capteur de rotation à reluctance variable permet de mesurer la vitesse de rotation d’un organe tournant en exploitant l’intervalle (entrefer) entre la cible et la tête du capteur.A variable reluctance rotation sensor is used to measure the speed of rotation of a rotating component by exploiting the gap (air gap) between the target and the sensor head.

Dans le cas de la mesure du régime basse pression d’une turbomachine, le capteur à reluctance variable est disposé, avec un entrefer déterminé, au-dessus d’une roue phonique agencée sur l’arbre basse pression de la turbomachine.In the case of the measurement of the low pressure speed of a turbomachine, the variable reluctance sensor is arranged, with a determined air gap, above a phonic wheel arranged on the low pressure shaft of the turbomachine.

Telle que connue, une roue phonique comprend des creux et des dents et en tournant l’alternance des creux et des dents engendre une modification du flux magnétique vu par le capteur à reluctance variable. En effet, le capteur à reluctance variable comporte un aimant permanent qui crée un champ magnétique dans un bobinage. Le flux magnétique se referme soit dans l’air soit dans le métal de la roue phonique tournant devant le capteur. Il apparaît ainsi des variations de flux dans la bobine et une force électromotrice alternative à ses bornes : la bobine est traversée par le flux magnétique modulé par la variation de l’entrefer.As known, a phonic wheel comprises hollows and teeth and by turning the alternation of hollows and teeth causes a modification of the magnetic flux seen by the variable reluctance sensor. Indeed, the variable reluctance sensor comprises a permanent magnet which creates a magnetic field in a winding. The magnetic flux closes either in the air or in the metal of the tone wheel rotating in front of the sensor. There thus appear flux variations in the coil and an alternating electromotive force at its terminals: the coil is traversed by the magnetic flux modulated by the variation of the air gap.

La variation de flux induit dans la bobine une tension alternative dont la fréquence est égale à la fréquence de passage des dents de la roue phonique, et l’amplitude est donc une fonction de l’entrefer et de la fréquence. La tension ainsi générée permet d’être mesurée et d’être traitée afin de déduire la vitesse de rotation d’un arbre tournant.The variation in flux induces an alternating voltage in the coil, the frequency of which is equal to the frequency of passage of the teeth of the tone wheel, and the amplitude is therefore a function of the air gap and the frequency. The voltage thus generated can be measured and processed in order to deduce the speed of rotation of a rotating shaft.

Un problème avec ce type de capteur de rotation est que la valeur de l’entrefer doit être réglée de manière précise afin de calculer correctement le régime.A problem with this type of rotation sensor is that the air gap value must be set precisely in order to correctly calculate the rpm.

Classiquement dans le cas d’un capteur utilisé pour mesurer un régime d’une turbomachine, l’entrefer est réglé au montage de la turbomachine et la mesure de l’entrefer est effectuée au moyen d’une cale paillette et d’une cale de réglage servant à ajuster l’entrefer si besoin. A ce titre, une roue phonique d’outillage (non définitive) est utilisée. Un problème est que lorsque tout est assemblé avec notamment la roue phonique définitive en place il peut s’avérer difficile d’avoir accès au capteur.Conventionally in the case of a sensor used to measure the speed of a turbomachine, the air gap is adjusted when the turbomachine is assembled and the measurement of the air gap is carried out by means of a spangled wedge and a wedge of setting used to adjust the air gap if necessary. As such, a tooling tone wheel (not definitive) is used. A problem is that when everything is assembled, including the final tone wheel in place, it can be difficult to access the sensor.

L’invention propose de faciliter la mesure de l’entrefer entre un capteur de rotation et une roue phonique montée sur un arbre pour lequel la vitesse de rotation est mesurée au moyen du capteur de rotation.The invention proposes to facilitate the measurement of the air gap between a rotation sensor and a phonic wheel mounted on a shaft for which the speed of rotation is measured by means of the rotation sensor.

A cet effet, l’invention propose de mesure de l’entrefer entre un capteur de rotation et une roue phonique, le capteur de rotation étant à reluctance variable et comprenant une première voie de mesure et une deuxième voie de mesure correspondant à au moins deux bobinages indépendants du capteur, le procédé étant mis en œuvre au moyen d’une unité de commande connectée au capteur de rotation et comprenant les étapes suivantes :To this end, the invention proposes measuring the air gap between a rotation sensor and a phonic wheel, the rotation sensor being variable reluctance and comprising a first measurement channel and a second measurement channel corresponding to at least two windings independent of the sensor, the method being implemented by means of a control unit connected to the rotation sensor and comprising the following steps:

- injection d’une tension alternative d’amplitude fixe sur la première voie du capteur ;- injection of an alternating voltage of fixed amplitude on the first channel of the sensor;

- mesure d’une tension induite sur la deuxième voie de mesure ;- measurement of an induced voltage on the second measurement channel;

- estimation d’un entrefer à partir de la tension injectée sur la première voie et de la tension mesurée sur la deuxième voie.- estimation of an air gap from the voltage injected on the first channel and the voltage measured on the second channel.

L’invention est avantageusement complétée par les caractéristiques suivantes, prises seules ou en une quelconque de leur combinaison techniquement possible :The invention is advantageously completed by the following characteristics, taken alone or in any of their technically possible combination:

- la roue phonique comprend une alternance de dents et de creux, avec une dent d’indexation présentant une hauteur inférieure à la hauteur des autres dents, et le procédé comprend une étape de rotation de la roue phonique de manière à ce que la tension induite soit mesurée pendant le passage d’au moins deux dents devant le capteur.- the tone wheel comprises alternating teeth and recesses, with an indexing tooth having a height less than the height of the other teeth, and the method comprises a step of rotating the tone wheel so that the voltage induced is measured during the passage of at least two teeth in front of the sensor.

- la roue phonique est tournée d’un quart de tour au cours de la mesure de la tension résultante.- the tone wheel is turned a quarter turn during the measurement of the resulting voltage.

- la tension résultante est mesurée instantanément.- the resulting voltage is measured instantaneously.

- l’estimation de l’entrefer est mise en œuvre au moyen de tables de correspondance comprenant un réseau de courbes, chaque courbe correspondant à la variation de la tension résultante en fonction de la fréquence de la tension injectée pour un entrefer donné et une tension injectée.- the estimation of the air gap is implemented by means of correspondence tables comprising a network of curves, each curve corresponding to the variation of the resulting voltage as a function of the frequency of the injected voltage for a given air gap and a voltage injected.

- la tension injectée comprend une fréquence comprise entre 0,5kHz et 5kHz typiquement 1 kHz.- the injected voltage comprises a frequency between 0.5 kHz and 5 kHz, typically 1 kHz.

- la tension injectée comprend une amplitude comprise entre 0,5V et 5V typiquement 1V.- the injected voltage has an amplitude between 0.5V and 5V, typically 1V.

L’invention concerne également un système de mesure de l’entrefer entre une roue phonique et un capteur de rotation, ledit système comprenant une unité de commande comprenant une unité de traitement configurée pour mettre en œuvre un procédé selon l’invention.The invention also relates to a system for measuring the air gap between a phonic wheel and a rotation sensor, said system comprising a control unit comprising a processing unit configured to implement a method according to the invention.

L’invention concerne aussi produit programme d’ordinateur comprenant des instructions de code pour l’exécution des étapes d’un procédé selon l’invention, lorsque celui-ci est exécuté par au moins un processeur.The invention also relates to a computer program product comprising code instructions for the execution of the steps of a method according to the invention, when the latter is executed by at least one processor.

L’invention concerne enfin une turbomachine comprenant : un arbre tournant (30) typiquement un arbre basse pression ; une roue phonique montée sur ledit arbre tournant ; un système de mesure selon l’invention.The invention finally relates to a turbomachine comprising: a rotating shaft (30) typically a low-pressure shaft; a phonic wheel mounted on said rotating shaft; a measuring system according to the invention.

Les avantages de l’invention sont multiples.The advantages of the invention are multiple.

L’invention permet de vérifier facilement l’entrefer sans avoir à démonter l’enceinte dans laquelle il se trouve.The invention makes it easy to check the air gap without having to dismantle the enclosure in which it is located.

L’invention permet d’éviter une mesure manuelle de l’entrefer ce qui permet au cours du temps de vérifier le bon réglage de l’entrefer sans avoir besoin d’accéder directement au capteur de rotation monté à proximité de l’arbre tournant.The invention makes it possible to avoid manual measurement of the air gap, which makes it possible over time to check the correct adjustment of the air gap without the need for direct access to the rotation sensor mounted close to the rotating shaft.

D’autres caractéristiques, buts et avantages de l’invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :Other characteristics, objects and advantages of the invention will emerge from the description which follows, which is purely illustrative and not limiting, and which must be read in conjunction with the appended drawings in which:

la figure 1 illustre une architecture de test de l’entrefer dans laquelle est mise en œuvre l’invention ; FIG. 1 illustrates an air gap test architecture in which the invention is implemented;

la figure 2 illustre un capteur de rotation et une roue phonique utilisés dans l’invention ; FIG. 2 illustrates a rotation sensor and a phonic wheel used in the invention;

la figure 3 illustre des étapes d’un procédé selon l’invention ; FIG. 3 illustrates steps of a method according to the invention;

la figure 4 illustre les variations de tension sur chaque voie du capteur conformément à l’invention ; FIG. 4 illustrates the voltage variations on each channel of the sensor in accordance with the invention;

la figure 5 illustre un réseau de courbes de variation de l’entrefer en fonction de la fréquence de rotation du moteur utilisées dans l’invention FIG. 5 illustrates a network of curves of variation of the air gap as a function of the rotational frequency of the motor used in the invention

Sur l’ensemble des figures les éléments similaires portent des références identiques.In all the figures, similar elements bear identical references.

Lafigure 1illustre un agencement possible d’un capteur 1 de rotation disposé en face d’une roue phonique 2. Un tel capteur 1 de rotation permet de mesurer la vitesse de rotation d’un arbre tournant 30 (par exemple d’une turbomachine) sur lequel est montée la roue phonique 2. FIG. 1 illustrates a possible arrangement of a rotation sensor 1 arranged opposite a phonic wheel 2. Such a rotation sensor 1 makes it possible to measure the speed of rotation of a rotating shaft 30 (for example of a turbomachine ) on which the tone wheel 2 is mounted.

Le capteur de rotation 1 est un capteur à reluctance variable et comprend deux voies de mesure A, B qui permettent classiquement et de manière connue en soi de redonder la mesure de la vitesse de rotation.The rotation sensor 1 is a variable reluctance sensor and comprises two measurement channels A, B which conventionally and in a manner known per se make it possible to redundant the measurement of the speed of rotation.

Chaque voie de mesure comprend un circuit magnétique, chacun comprenant un bobinage. La première voie A et la deuxième voie B sont indépendantes est isolées l’une de l’autre. Un tel capteur de rotation 1 est typiquement décrit dans le document FR 2 369 565.Each measurement channel comprises a magnetic circuit, each comprising a winding. The first channel A and the second channel B are independent and isolated from each other. Such a rotation sensor 1 is typically described in document FR 2 369 565.

Le capteur 1 de rotation est situé à une distance E de la roue phonique illustrée sur lafigure 2. En particulier, la roue phonique étant constituée d’une alternance de creux 21 et de dents 22, la distance E est mesurée entre le capteur 1 de rotation et les dents de la roue phonique. Cette distance est l’entrefer E du capteur de rotation 1.The rotation sensor 1 is located at a distance E from the phonic wheel illustrated in FIG . In particular, the phonic wheel being made up of an alternation of recesses 21 and teeth 22, the distance E is measured between the rotation sensor 1 and the teeth of the phonic wheel. This distance is the air gap E of rotation sensor 1.

Afin de mesurer l’entrefer E pour notamment vérifier qu’il est correctement réglé car conditionnant la fiabilité de la mesure de de la vitesse de rotation, la première voie A et la deuxième voie B sont connectées à une unité de commande 3.In order to measure the air gap E, in particular to check that it is correctly adjusted because it conditions the reliability of the measurement of the rotational speed, the first channel A and the second channel B are connected to a control unit 3.

Comme on va le voir par la suite, l’unité de commande 3 permet de commander un générateur 4 de tension pour injecter une tension VA dans la première voie A du capteur. L’unité de commande 3 permet également de mesurer une tension résultante VB au moyen de la deuxième voie B couplée à un voltmètre 5.As will be seen later, the control unit 3 makes it possible to control a voltage generator 4 to inject a voltage VA into the first channel A of the sensor. The control unit 3 also makes it possible to measure a resulting voltage VB by means of the second channel B coupled to a voltmeter 5.

La tension injectée dans la première voie A va générer une tension induite dans la bobine de la deuxième voie VB du fait que le flux magnétique reboucle par le ou les noyaux ferromagnétiques. un champ magnétique qui va être mesuré par la deuxième voie B. C’est en particulier la tension induite.The voltage injected into the first channel A will generate an induced voltage in the coil of the second channel VB because the magnetic flux loops back through the ferromagnetic core or cores. a magnetic field which will be measured by the second channel B. This is in particular the induced voltage.

A ce titre, l’unité de commande 3 comprend un processeur 31 configuré pour mettre en œuvre des étapes d’un procédé de mesure de l’entrefer E comme décrit ci-après et en relation avec lafigure 3.As such, the control unit 3 comprises a processor 31 configured to implement the steps of a method for measuring the air gap E as described below and in relation to FIG .

Une tension sinusoïdale VA est injectée (étape INJ) sur la première voie A du capteur 1 de rotation et une tension résultante VB est mesurée (étape MES) par un voltmètre 5 connecté sur la deuxième voie B. Lafigure 4illustre la variation de la tension VA (en haut) et de la tension VB (en bas) au cours du temps.A sinusoidal voltage VA is injected (step INJ) on the first channel A of the rotation sensor 1 and a resulting voltage VB is measured (step MES) by a voltmeter 5 connected to the second channel B. FIG. 4 illustrates the variation of the voltage VA (top) and voltage VB (bottom) over time.

La mesure est effectuée de préférence instantanément.The measurement is preferably carried out instantaneously.

La tension VA présente les caractéristiques suivantes :

  • amplitude comprise entre 0,5V et 5V, typiquement 1V ;
  • fréquence comprise entre 0,5kHz et 5kHz, typiquement 1kHz.
Voltage VA has the following characteristics:
  • amplitude between 0.5V and 5V, typically 1V;
  • frequency between 0.5kHz and 5kHz, typically 1kHz.

A partir des tensions injectées et mesurées, une estimation (étape EST) de l’entrefer E est effectuée.From the injected and measured voltages, an estimation (EST step) of the air gap E is performed.

A ce titre, des tables de correspondances comme illustrées sur lafigure 5sont stockées dans une mémoire 32 de l’unité de commande 3.As such, correspondence tables as illustrated in Figure 5 are stored in a memory 32 of the control unit 3.

De telles tables sont notamment un réseau de courbes de variation de la tension induite en fonction de la fréquence de la tension injectée et ce pour un entrefer donné. On note que la tension injectée est toujours la même, seule la fréquence varie. On obtient autant de courbes que de valeurs d’entrefer étudiées. La table donne la correspondance entre la tension résultante VB mesurée sur la voie B et l’entrefer. Ces tables sont obtenues au cours de la fabrication en usine du capteur de rotation et notamment celui-ci est soumis à une tension VA pour plusieurs valeurs d’entrefer, et les mesures VB sont reportées en faisant varier la fréquence.Such tables are in particular a network of curves of variation of the induced voltage as a function of the frequency of the injected voltage and this for a given air gap. Note that the injected voltage is always the same, only the frequency varies. We obtain as many curves as air gap values studied. The table gives the correspondence between the resulting voltage VB measured on track B and the air gap. These tables are obtained during factory manufacture of the rotation sensor and in particular the latter is subjected to a voltage VA for several air gap values, and the VB measurements are reported by varying the frequency.

Par exemple, pour une tension injectée VA d’amplitude 1V et de fréquence 1kHz il y a plusieurs valeurs d’entrefer possibles en fonction de la tension résultante VB. L’entrefer estimé E est la valeur relevée sur une courbe du réseau de courbes qui correspond à la tension VB.For example, for an injected voltage VA of amplitude 1V and frequency 1kHz there are several possible air gap values depending on the resulting voltage VB. The estimated air gap E is the value noted on a curve of the network of curves which corresponds to the voltage VB.

En relevant la valeur de l’entrefer E’ associée à la tension injectée VA et à la tension mesurée VB, on vérifie (étape VER) que l’entrefer estimé E correspond à l’entrefer réglé initialement.By noting the value of the air gap E' associated with the injected voltage VA and the measured voltage VB, it is verified (step VER) that the estimated air gap E corresponds to the air gap initially set.

De manière avantageuse, la roue phonique comprend une alternance de dents et de creux, avec une dent d’indexation (dent basse) présentant une hauteur inférieure à la hauteur des autres dents. Ainsi, le procédé comprend une rotation (étape ROT) de la roue phonique 2 de manière à ce que la tension induite soit mesurée pendant le passage d’au moins deux dents devant le capteur 1, l’entrefer étant la distance entre le capteur de rotation et les dents de la roue phonique. De ce fait, on s’assure que la mesure est effectuée sur une dent qui n’est pas la dent basse mais sur une autre dent et non un creux.Advantageously, the phonic wheel comprises alternating teeth and recesses, with an indexing tooth (low tooth) having a height lower than the height of the other teeth. Thus, the method comprises a rotation (ROT step) of the phonic wheel 2 so that the induced voltage is measured during the passage of at least two teeth in front of the sensor 1, the gap being the distance between the sensor of rotation and the teeth of the tone wheel. This ensures that the measurement is taken on a tooth which is not the low tooth but on another tooth and not a hollow.

En effet, au cours de cette mesure on ne sait pas quelle dent est en face du capteur, ça peut être une dent basse auquel cas on ne trouvera pas le même entrefer que les autres. C’est pour ça qu’il est préconisé de faire le test sur plusieurs dents afin d’être sûr de ne pas mesurer l’entrefer de la dent basse qui sert à compter les tous de l’arbre. Le passage de cette dent basse devant le capteur produit un signal d’amplitude différente de celle du signal causé par le passage d’une dent haute (les autres dents) permettant à l’acquisition de compter chaque tour de la roue phonique 2.Indeed, during this measurement we do not know which tooth is in front of the sensor, it may be a low tooth in which case we will not find the same air gap as the others. This is why it is recommended to carry out the test on several teeth in order to be sure not to measure the air gap of the lower tooth which is used to count all of the shaft. The passage of this low tooth in front of the sensor produces a signal of different amplitude from that of the signal caused by the passage of a high tooth (the other teeth) allowing the acquisition to count each revolution of the tone wheel 2.

La tension résultante VB est directement impactée par le fait qu’elle est mesurée sur une dent ou un creux. Ceci est illustré sur la figure 4 montrant la variation de la tension VA (en haut) et de la tension VB (en bas) au cours du temps. On voit sur cette figure une chute de la tension VB qui correspond au passage d’une dent à un creux.The resulting voltage VB is directly impacted by the fact that it is measured on a tooth or a hollow. This is illustrated in Figure 4 showing the variation of voltage VA (top) and voltage VB (bottom) over time. We see in this figure a drop in the voltage VB which corresponds to the transition from a tooth to a hollow.

Claims (10)

Procédé de mesure de l’entrefer (E) entre un capteur (1) de rotation et une roue phonique (2), le capteur de rotation étant à reluctance variable et comprenant une première voie (A) de mesure et une deuxième voie (B) de mesure correspondant à au moins deux bobinages indépendants du capteur, le procédé étant mis en œuvre au moyen d’une unité de commande (3) connectée au capteur (1) de rotation et comprenant les étapes suivantes :
- injection (INJ) d’une tension alternative (VA) d’amplitude fixe sur la première voie du capteur ;
- mesure (MES) d’une tension induite (VB) sur la deuxième voie de mesure (B) ;
- estimation (EST) d’un entrefer (E) à partir de la tension injectée sur la première voie et de la tension mesurée sur la deuxième voie.
Method for measuring the air gap (E) between a rotation sensor (1) and a phonic wheel (2), the rotation sensor being variable reluctance and comprising a first measurement channel (A) and a second channel (B ) measurement corresponding to at least two independent windings of the sensor, the method being implemented by means of a control unit (3) connected to the rotation sensor (1) and comprising the following steps:
- injection (INJ) of an alternating voltage (VA) of fixed amplitude on the first channel of the sensor;
- measurement (MES) of an induced voltage (VB) on the second measurement channel (B);
- estimation (EST) of an air gap (E) from the voltage injected on the first channel and the voltage measured on the second channel.
Procédé de mesure selon la revendication 1, dans lequel la roue phonique comprend une alternance de dents et de creux, avec une dent d’indexation présentant une hauteur inférieure à la hauteur des autres dents, et le procédé comprend une étape de rotation (ROT) de la roue phonique de manière à ce que la tension induite soit mesurée pendant le passage d’au moins deux dents devant le capteur (1).Method of measurement according to claim 1, in which the phonic wheel comprises an alternation of teeth and recesses, with an indexing tooth having a height lower than the height of the other teeth, and the method comprises a step of rotation (ROT) of the tone wheel so that the induced voltage is measured during the passage of at least two teeth in front of the sensor (1). Procédé de mesure selon la revendication 2, dans lequel la roue phonique est tournée d’un quart de tour au cours de la mesure de la tension résultante.Measuring method according to Claim 2, in which the tone wheel is turned a quarter turn during the measurement of the resulting voltage. Procédé de mesure selon l’une des revendications 1 à 3, dans lequel la tension résultante est mesurée instantanément.Measuring method according to one of Claims 1 to 3, in which the resulting voltage is measured instantaneously. Procédé de mesure selon l’une des revendications 1 à 2, dans lequel l’estimation (EST) de l’entrefer est mise en œuvre au moyen de tables de correspondance comprenant un réseau de courbes, chaque courbe correspondant à la variation de la tension résultante en fonction de la fréquence de la tension injectée pour un entrefer donné et une tension injectée.Measurement method according to one of Claims 1 to 2, in which the estimation (EST) of the air gap is implemented by means of correspondence tables comprising a network of curves, each curve corresponding to the variation of the voltage resultant as a function of the frequency of the injected voltage for a given air gap and an injected voltage. Procédé de mesure selon l’une des revendications 1 à 5, dans lequel la tension injectée comprend une fréquence comprise entre 0,5kHz et 5kHz typiquement 1 kHz.Measurement method according to one of Claims 1 to 5, in which the injected voltage comprises a frequency comprised between 0.5 kHz and 5 kHz, typically 1 kHz. Procédé de mesure selon l’une des revendications 1 à 6, dans lequel la tension injectée comprend une amplitude comprise entre 0,5V et 5V typiquement 1V.Measurement method according to one of Claims 1 to 6, in which the injected voltage comprises an amplitude of between 0.5V and 5V, typically 1V. Système de mesure de l’entrefer entre une roue phonique et un capteur de rotation, ledit système comprenant une unité de commande comprenant une unité de traitement configurée pour mettre en œuvre un procédé selon l’une des revendications précédentes.System for measuring the air gap between a phonic wheel and a rotation sensor, said system comprising a control unit comprising a processing unit configured to implement a method according to one of the preceding claims. Produit programme d’ordinateur comprenant des instructions de code pour l’exécution des étapes d’un procédé selon l’une des revendications 1 à 7, lorsque celui-ci est exécuté par au moins un processeur.Computer program product comprising code instructions for the execution of the steps of a method according to one of Claims 1 to 7, when the latter is executed by at least one processor. Turbomachine comprenant
- un arbre tournant (30) typiquement un arbre basse pression ;
- une roue phonique montée sur ledit arbre tournant ;
- un système de mesure selon la revendication 8.
Turbomachine including
- a rotating shaft (30) typically a low pressure shaft;
- a phonic wheel mounted on said rotating shaft;
- a measuring system according to claim 8.
FR1903040A 2019-03-25 2019-03-25 Measurement of the air gap of a rotation sensor by means of the sensor itself Active FR3094497B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1903040A FR3094497B1 (en) 2019-03-25 2019-03-25 Measurement of the air gap of a rotation sensor by means of the sensor itself

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1903040 2019-03-25
FR1903040A FR3094497B1 (en) 2019-03-25 2019-03-25 Measurement of the air gap of a rotation sensor by means of the sensor itself

Publications (2)

Publication Number Publication Date
FR3094497A1 true FR3094497A1 (en) 2020-10-02
FR3094497B1 FR3094497B1 (en) 2021-02-26

Family

ID=67742605

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1903040A Active FR3094497B1 (en) 2019-03-25 2019-03-25 Measurement of the air gap of a rotation sensor by means of the sensor itself

Country Status (1)

Country Link
FR (1) FR3094497B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2369565A1 (en) 1976-10-26 1978-05-26 Snecma MULTI-WINDING ELECTROMAGNETIC SENSOR FOR SPEED MEASUREMENT
US20050083041A1 (en) * 2003-10-16 2005-04-21 Aaron Schwartzbart Hybrid inductive sensor
US20060071658A1 (en) * 2003-04-30 2006-04-06 Micro-Epsilon Messtechnik Gmbh & Co. Kg Method and device for determining motion parameters of a conductive, profiled surface
WO2007085772A1 (en) * 2006-01-30 2007-08-02 Hispano Suiza Electromagnetic sensor for a rotating member rotational speed
DE102016217693A1 (en) * 2016-09-15 2018-03-15 Rolls-Royce Deutschland Ltd & Co Kg Apparatus and method for measuring a rotational movement of a rotatable component, in particular a rotational direction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2369565A1 (en) 1976-10-26 1978-05-26 Snecma MULTI-WINDING ELECTROMAGNETIC SENSOR FOR SPEED MEASUREMENT
US20060071658A1 (en) * 2003-04-30 2006-04-06 Micro-Epsilon Messtechnik Gmbh & Co. Kg Method and device for determining motion parameters of a conductive, profiled surface
US20050083041A1 (en) * 2003-10-16 2005-04-21 Aaron Schwartzbart Hybrid inductive sensor
WO2007085772A1 (en) * 2006-01-30 2007-08-02 Hispano Suiza Electromagnetic sensor for a rotating member rotational speed
DE102016217693A1 (en) * 2016-09-15 2018-03-15 Rolls-Royce Deutschland Ltd & Co Kg Apparatus and method for measuring a rotational movement of a rotatable component, in particular a rotational direction

Also Published As

Publication number Publication date
FR3094497B1 (en) 2021-02-26

Similar Documents

Publication Publication Date Title
FR2978833A1 (en) AUTOMATIC CALIBRATION METHOD OF CAMSHAFT SENSOR FOR MOTOR VEHICLE
FR2944875A1 (en) METHOD FOR DETECTING A STRUCTURAL FAULT IN A MECHANICAL ASSEMBLY COMPRISING A ROTATING ORGAN
FR2990088A1 (en) METHOD FOR DETERMINING THE ANGULAR SHIFT BETWEEN THE ROTOR AND THE STATOR OF AN ELECTRIC MACHINE OF A MOTOR VEHICLE
WO2017088968A1 (en) Method of automatic calibration of a camshaft sensor for motor vehicle engine
FR3041426A1 (en) AUTOMATIC CALIBRATION METHOD OF CAMSHAFT SENSOR FOR MOTOR VEHICLE ENGINE
FR2770902A1 (en) DEVICE FOR DETECTING THE ROTATION OF A WORKPIECE, INCLUDING ITS DIRECTION OF ROTATION
FR3029283A1 (en) CAMSHAFT OR CRANKSHAFT SENSOR FOR MOTOR VEHICLE AND METHOD FOR DIAGNOSING SUCH SENSOR
FR2882140A1 (en) POSITION SENSOR WITH COMPENSATED MAGNETIC POLES
Lasjerdi et al. Static eccentricity fault diagnosis in wound-rotor resolvers
FR2488997A3 (en) Rotational speed and angle detector for engine crankshaft - uses inductive sensor to detect passage of magnetic reference tooth on starter ring gear
JP2004529362A (en) Method for measuring frequency of current ripple contained in armature signal of DC motor to be rectified
FR3094497A1 (en) Measurement of the air gap of a rotation sensor by means of the sensor itself
FR2861922A1 (en) ELECTRONICALLY SWITCHED MOTOR (EC) AND METHOD FOR OPERATING SUCH A MOTOR
Leclere et al. An analysis of instantaneous angular speed measurement errors
FR2768509A1 (en) METHOD FOR DETERMINING ROTOR VIBRATIONS OF ROTATING MACHINE, EQUIPMENT FOR ROTATING MACHINE AND EQUIPPED ROTATING MACHINE
WO2020064734A1 (en) Method for determining the position of a motor vehicle crankshaft
EP3981068A1 (en) Method for estimating the electomagnetic torque of a synchronous electric machine
WO2019193271A1 (en) Method for automatic calibration of a camshaft sensor in order to correct a reluctor runout
Pacas et al. Bearing damage detection in permanent magnet synchronous machines
EP2965102B1 (en) Method for detecting a short-circuit fault in the windings of a rotor of a rotating electric machine
JPH0221266A (en) Measurement of rotation of dc motor
WO2017220924A1 (en) Method for estimating the position and speed of the rotor of an alternating current machine for a motor vehicle, and corresponding system
FR3025672A1 (en) SYSTEM AND METHOD FOR CONTROLLING AN ASYNCHRONOUS ELECTRIC MACHINE
FR3057351A1 (en) METHOD FOR VALIDATING THE ANGULAR POSITION OF THE ROTOR OF AN ELECTRIC MACHINE FOR A MOTOR VEHICLE
CH701063B1 (en) Rotor position estimating method for e.g. three phase linear permanent magnet synchronous motor, involves determining component of signal varying with position of rotor of machine, and determining position of rotor from component

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20201002

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6