FR3091288A1 - Compositions de caoutchouc à base d’au moins un composé portant des fonctions carbonate cycliques - Google Patents
Compositions de caoutchouc à base d’au moins un composé portant des fonctions carbonate cycliques Download PDFInfo
- Publication number
- FR3091288A1 FR3091288A1 FR1900845A FR1900845A FR3091288A1 FR 3091288 A1 FR3091288 A1 FR 3091288A1 FR 1900845 A FR1900845 A FR 1900845A FR 1900845 A FR1900845 A FR 1900845A FR 3091288 A1 FR3091288 A1 FR 3091288A1
- Authority
- FR
- France
- Prior art keywords
- formula
- group
- compound
- chosen
- rubber composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 197
- 150000001875 compounds Chemical class 0.000 title claims abstract description 168
- 229920001971 elastomer Polymers 0.000 title claims abstract description 153
- 239000005060 rubber Substances 0.000 title claims abstract description 89
- 150000005676 cyclic carbonates Chemical group 0.000 title description 14
- 229920003244 diene elastomer Polymers 0.000 claims abstract description 79
- 150000002430 hydrocarbons Chemical group 0.000 claims abstract description 75
- 239000000806 elastomer Substances 0.000 claims abstract description 64
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 60
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 58
- 239000012763 reinforcing filler Substances 0.000 claims abstract description 42
- 125000000732 arylene group Chemical group 0.000 claims abstract description 28
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 21
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 17
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 10
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 10
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 7
- 229920001577 copolymer Polymers 0.000 claims description 59
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- 229920006395 saturated elastomer Polymers 0.000 claims description 24
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Natural products CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 21
- 239000006229 carbon black Substances 0.000 claims description 21
- 229910052717 sulfur Inorganic materials 0.000 claims description 19
- 229920002857 polybutadiene Polymers 0.000 claims description 16
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 14
- 239000011593 sulfur Substances 0.000 claims description 14
- 229920005549 butyl rubber Polymers 0.000 claims description 12
- 229920002943 EPDM rubber Polymers 0.000 claims description 11
- 244000043261 Hevea brasiliensis Species 0.000 claims description 11
- 229920003052 natural elastomer Polymers 0.000 claims description 11
- 229920001194 natural rubber Polymers 0.000 claims description 11
- 229920003051 synthetic elastomer Polymers 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 150000002825 nitriles Chemical group 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 6
- 125000006736 (C6-C20) aryl group Chemical group 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 53
- 238000000034 method Methods 0.000 description 39
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 32
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 28
- 239000000243 solution Substances 0.000 description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 27
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 27
- 238000002360 preparation method Methods 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 235000019241 carbon black Nutrition 0.000 description 20
- -1 polysiloxane functional groups Chemical group 0.000 description 20
- 239000000377 silicon dioxide Substances 0.000 description 20
- 150000001993 dienes Chemical class 0.000 description 19
- 230000003014 reinforcing effect Effects 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 17
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 16
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 16
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- 239000011256 inorganic filler Substances 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 229910003475 inorganic filler Inorganic materials 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 239000002585 base Substances 0.000 description 13
- 239000012071 phase Substances 0.000 description 13
- 238000005481 NMR spectroscopy Methods 0.000 description 12
- 239000003208 petroleum Substances 0.000 description 12
- 239000000178 monomer Substances 0.000 description 11
- 239000002244 precipitate Substances 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 235000019441 ethanol Nutrition 0.000 description 10
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 8
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 239000012429 reaction media Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 7
- 239000007822 coupling agent Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 229920003048 styrene butadiene rubber Polymers 0.000 description 7
- 238000004073 vulcanization Methods 0.000 description 7
- 229960001701 chloroform Drugs 0.000 description 6
- 238000004898 kneading Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- SQDFHQJTAWCFIB-UHFFFAOYSA-N n-methylidenehydroxylamine Chemical compound ON=C SQDFHQJTAWCFIB-UHFFFAOYSA-N 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000001542 size-exclusion chromatography Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 125000006686 (C1-C24) alkyl group Chemical group 0.000 description 5
- 239000002174 Styrene-butadiene Substances 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 150000007855 nitrilimines Chemical class 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 150000001282 organosilanes Chemical class 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 5
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 4
- UUYCPGWIVPDWQG-UHFFFAOYSA-N 2,4,6-trimethyl-3-[(2-oxo-1,3-dioxolan-4-yl)methoxy]benzaldehyde Chemical compound CC1=C(C=O)C(=CC(=C1OCC1OC(OC1)=O)C)C UUYCPGWIVPDWQG-UHFFFAOYSA-N 0.000 description 4
- 101100377807 Arabidopsis thaliana ABCI1 gene Proteins 0.000 description 4
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000010382 chemical cross-linking Methods 0.000 description 4
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 150000002923 oximes Chemical class 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 238000010526 radical polymerization reaction Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- BPRYUXCVCCNUFE-UHFFFAOYSA-N 2,4,6-trimethylphenol Chemical compound CC1=CC(C)=C(O)C(C)=C1 BPRYUXCVCCNUFE-UHFFFAOYSA-N 0.000 description 3
- RHBPNJSRGTXCAB-UHFFFAOYSA-N 2-[(2-oxo-1,3-dioxolan-4-yl)methoxy]naphthalene-1-carbonitrile Chemical compound O=C1OCC(O1)COC1=C(C2=CC=CC=C2C=C1)C#N RHBPNJSRGTXCAB-UHFFFAOYSA-N 0.000 description 3
- NTCCNERMXRIPTR-UHFFFAOYSA-N 2-hydroxy-1-naphthaldehyde Chemical compound C1=CC=CC2=C(C=O)C(O)=CC=C21 NTCCNERMXRIPTR-UHFFFAOYSA-N 0.000 description 3
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229920001174 Diethylhydroxylamine Polymers 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000011903 deuterated solvents Substances 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- DEQZTKGFXNUBJL-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)cyclohexanamine Chemical compound C1CCCCC1NSC1=NC2=CC=CC=C2S1 DEQZTKGFXNUBJL-UHFFFAOYSA-N 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 0 *c(c(*C=*)c1*)c(*)c2c1c(O*)c(*)c(N)c2* Chemical compound *c(c(*C=*)c1*)c(*)c2c1c(O*)c(*)c(N)c2* 0.000 description 2
- MXHPKBLTRVAQGK-UHFFFAOYSA-N 2,4,6-trimethyl-3-(oxiran-2-ylmethoxy)benzaldehyde Chemical compound CC1=C(C=O)C(=CC(=C1OCC1OC1)C)C MXHPKBLTRVAQGK-UHFFFAOYSA-N 0.000 description 2
- HNSDBWICCAHBJB-UHFFFAOYSA-N 3-hydroxy-2,4,6-trimethylbenzaldehyde Chemical compound CC1=CC(C)=C(C=O)C(C)=C1O HNSDBWICCAHBJB-UHFFFAOYSA-N 0.000 description 2
- JFMGYULNQJPJCY-UHFFFAOYSA-N 4-(hydroxymethyl)-1,3-dioxolan-2-one Chemical compound OCC1COC(=O)O1 JFMGYULNQJPJCY-UHFFFAOYSA-N 0.000 description 2
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 229940126062 Compound A Drugs 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 2
- GRTGGSXWHGKRSB-UHFFFAOYSA-N dichloromethyl methyl ether Chemical compound COC(Cl)Cl GRTGGSXWHGKRSB-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000012764 mineral filler Substances 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical group [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical class S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- MAOBFOXLCJIFLV-UHFFFAOYSA-N (2-aminophenyl)-phenylmethanone Chemical group NC1=CC=CC=C1C(=O)C1=CC=CC=C1 MAOBFOXLCJIFLV-UHFFFAOYSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical class C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- IWGYIXQWXUSIFF-UHFFFAOYSA-N 2,4,6-trimethyl-3-[(2-oxo-1,3-dioxolan-4-yl)methoxy]benzonitrile Chemical compound CC1=C(C#N)C(=CC(=C1OCC1OC(OC1)=O)C)C IWGYIXQWXUSIFF-UHFFFAOYSA-N 0.000 description 1
- UHWXXTIQDQVYEC-UHFFFAOYSA-N 2,4,6-trimethyl-3-[(2-oxo-1,3-dioxolan-4-yl)methoxy]benzonitrile oxide Chemical compound CC1=CC(=C(C(=C1C#[N+][O-])C)OCC2COC(=O)O2)C UHWXXTIQDQVYEC-UHFFFAOYSA-N 0.000 description 1
- BAPVEBLAKFNHGN-UHFFFAOYSA-N 2-(oxiran-2-ylmethoxy)naphthalene-1-carbaldehyde Chemical compound C1=CC2=CC=CC=C2C(C=O)=C1OCC1CO1 BAPVEBLAKFNHGN-UHFFFAOYSA-N 0.000 description 1
- YAKZZBOSVQJSBU-UHFFFAOYSA-N 2-[(2-oxo-1,3-dioxolan-4-yl)methoxy]naphthalene-1-carbonitrile oxide Chemical compound C1C(OC(=O)O1)COC2=C(C3=CC=CC=C3C=C2)C#[N+][O-] YAKZZBOSVQJSBU-UHFFFAOYSA-N 0.000 description 1
- PBKADZMAZVCJMR-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;dihydrate Chemical compound O.O.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O PBKADZMAZVCJMR-UHFFFAOYSA-N 0.000 description 1
- 238000012584 2D NMR experiment Methods 0.000 description 1
- 238000012573 2D experiment Methods 0.000 description 1
- UCRGLQHZBIOGPN-UHFFFAOYSA-N 4-(hydroxymethyl)-1,3-dioxolan-2-one;2-methylprop-2-enoic acid Chemical group CC(=C)C(O)=O.OCC1COC(=O)O1 UCRGLQHZBIOGPN-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N Glycerol trioctadecanoate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical group CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 229910019093 NaOCl Inorganic materials 0.000 description 1
- LIHWHSFUYJUXQH-UHFFFAOYSA-N O.O.[Na].C(CN(CC(=O)O)CC(=O)O)N(CC(=O)O)CC(=O)O Chemical compound O.O.[Na].C(CN(CC(=O)O)CC(=O)O)N(CC(=O)O)CC(=O)O LIHWHSFUYJUXQH-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000010958 [3+2] cycloaddition reaction Methods 0.000 description 1
- 238000011000 absolute method Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000002929 anti-fatigue Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229920006272 aromatic hydrocarbon resin Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000011208 chromatographic data Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006352 cycloaddition reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- WITDFSFZHZYQHB-UHFFFAOYSA-N dibenzylcarbamothioylsulfanyl n,n-dibenzylcarbamodithioate Chemical compound C=1C=CC=CC=1CN(CC=1C=CC=CC=1)C(=S)SSC(=S)N(CC=1C=CC=CC=1)CC1=CC=CC=C1 WITDFSFZHZYQHB-UHFFFAOYSA-N 0.000 description 1
- 125000002897 diene group Chemical group 0.000 description 1
- FVCOIAYSJZGECG-UHFFFAOYSA-N diethylhydroxylamine Chemical compound CCN(O)CC FVCOIAYSJZGECG-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012156 elution solvent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 229940083094 guanine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 238000003919 heteronuclear multiple bond coherence Methods 0.000 description 1
- 238000005570 heteronuclear single quantum coherence Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- VILGDADBAQFRJE-UHFFFAOYSA-N n,n-bis(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropan-2-amine Chemical compound C1=CC=C2SC(SN(SC=3SC4=CC=CC=C4N=3)C(C)(C)C)=NC2=C1 VILGDADBAQFRJE-UHFFFAOYSA-N 0.000 description 1
- IUJLOAKJZQBENM-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropan-2-amine Chemical compound C1=CC=C2SC(SNC(C)(C)C)=NC2=C1 IUJLOAKJZQBENM-UHFFFAOYSA-N 0.000 description 1
- CMAUJSNXENPPOF-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-n-cyclohexylcyclohexanamine Chemical compound C1CCCCC1N(C1CCCCC1)SC1=NC2=CC=CC=C2S1 CMAUJSNXENPPOF-UHFFFAOYSA-N 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 238000010966 qNMR Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000006235 reinforcing carbon black Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 150000003335 secondary amines Chemical group 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- FBBATURSCRIBHN-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyldisulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSCCC[Si](OCC)(OCC)OCC FBBATURSCRIBHN-UHFFFAOYSA-N 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical group OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- NMEPHPOFYLLFTK-UHFFFAOYSA-N trimethoxy(octyl)silane Chemical compound CCCCCCCC[Si](OC)(OC)OC NMEPHPOFYLLFTK-UHFFFAOYSA-N 0.000 description 1
- 239000012936 vulcanization activator Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000012991 xanthate Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- AUMBZPPBWALQRO-UHFFFAOYSA-L zinc;n,n-dibenzylcarbamodithioate Chemical compound [Zn+2].C=1C=CC=CC=1CN(C(=S)[S-])CC1=CC=CC=C1.C=1C=CC=CC=1CN(C(=S)[S-])CC1=CC=CC=C1 AUMBZPPBWALQRO-UHFFFAOYSA-L 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
L’invention concerne une composition de caoutchouc à base d’au moins un élastomère diénique, au moins une charge renforçante, au moins un agent de réticulation et au moins un composé de formule (I), éventuellement déjà greffé sur ledit élastomère dans laquelle : Q représente un dipôle comprenant au moins un atome d’azote ; A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ; E représente un groupe de liaison divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ; R1, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et n est un entier ayant une valeur supérieure ou égale à 1. L’invention concerne également un article semi-fini pour pneumatique et un pneumatique comprenant une telle composition.
Description
Description
Titre de l'invention : Compositions de caoutchouc à base d’au moins un composé portant des fonctions carbonate cycliques
[0001] La présente invention concerne une composition de caoutchouc, notamment destinées à la fabrication de pneumatiques, à base d’au moins un élastomère diénique, d’au moins une charge renforçante, d’au moins un agent de réticulation et d’au moins un composé particulier portant des fonctions carbonate cycliques. La demande concerne également un procédé de préparation d’une telle composition et ainsi qu’un articule semi-fini pour pneumatique et un pneumatique comprenant une telle composition de caoutchouc.
Arrière-plan technique
[0002] Dans le domaine industriel, des mélanges de polymères avec des charges sont souvent utilisés. Pour que de tels mélanges présentent de bonnes propriétés, on recherche en permanence des moyens pour améliorer la dispersion des charges au sein des polymères.
[0003] En particulier pour des compositions de caoutchouc destinées à la fabrication de pneumatiques, les manufacturiers recherchent en permanence que les compositions de caoutchouc chargées possèdent de bonne propriétés mécaniques, tel que le renforcement, et une hystérèse aussi faible que possible, synonyme d’une basse résistance au roulement.
[0004] On sait, que d’une manière générale, pour obtenir les propriétés de renforcement optimales conférées par une charge renforçante, il convient que cette dernière soit présente dans la matrice élastomèrique sous forme finale qui soit à la fois la plus finement divisée possible et répartie de la façon la plus homogène possible. Or, de telles conditions ne peuvent être réalisées que dans la mesure où la charge renforçante présente une très bonne aptitude, d’une part à s’incorporer dans la matrice élastomèrique lors du mélange avec l’élastomère et à se désagglomérer, d’autre part à se disperser de façon homogène dans cette matrice.
[0005] De manière tout à fait connue, le noir de carbone présente de telles aptitudes, ce qui n’est en général pas le cas des charges inorganiques. En effet, pour des raisons d’affinités réciproques, les particules de charge inorganique ont une fâcheuse tendance, dans la matrice élastomèrique, à s’agglomérer entre elles. Ces interactions ont pour conséquences néfastes de limiter la dispersion de la charge et donc de limiter les propriétés de renforcement à un niveau sensiblement inférieur à celui qu’il serait théoriquement possible d’atteindre si toutes les liaisons (charges renforçantes/élastomères) susceptibles d’être créées pendant l’opération de mélangeage auraient été effec2 tivement obtenues.
[0006] De nombreuses solutions ont déjà été expérimentées pour atteindre une bonne dispersion de la charge renforçante dans une composition de caoutchouc et pour obtenir des compositions de caoutchouc présentant de bonnes propriétés de renforcement ainsi qu’une baisse de l’hystérèse.
[0007] En particulier, on peut citer l’utilisation dans une composition de caoutchouc polymères dont la structure a été modifiée en fin de polymérisation au moyen d'agents de fonctionnalisation, de couplage ou d'étoilage dans le but d'obtenir une bonne interaction entre le polymère ainsi modifié et la charge renforçante, qu'il s'agisse du noir de carbone ou d'une charge inorganique renforçante. On peut citer par exemple les élastomères diéniques comportant des groupes fonctionnels comprenant une liaison carbone-étain, des groupes fonctionnels aminés tels que l’aminobenzophénone, des groupes fonctionnels silanol ou polysiloxane ayant une extrémité silanol.
[0008] En particulier, il est connu du document WO2018015646 une composition de caoutchouc à base d’un terpolymère de styrène, butadiène et de méthacrylate de 4-(hydroxyméthyl)-l,3-dioxolan-2-one portant des fonctions carbonates pendantes le long de sa chaîne principale, de la silice et un système de réticulation. Par rapport à une composition de caoutchouc à base d’un copolymère SBR non greffé, ce terpolymère confère à la composition de caoutchouc le contenant un meilleur renforcement. Ce terpolymère est obtenu par polymérisation radicalaire.
[0009] Cependant, il existe toujours un besoin constant de disposer de compositions de caoutchouc présentant des propriétés améliorées par rapport aux compositions de caoutchouc de l’art antérieur.
[0010] Ce besoin est satisfait grâce à des compositions de caoutchouc à base d’un élastomère diénique, d’une charge renforçante, d’un système de réticulation et d’au moins un composé porteurs de fonctions carbonate cycliques, qui peut éventuellement être déjà greffé sur ledit élastomère diénique. Ces compositions de caoutchouc comprenant présentent de meilleures propriétés de renforcement et de meilleures propriétés hystérétiques. Avantageusement, les élastomères diéniques mis en œuvre dans ces compositions peuvent avoir n’importe quel type de microstructure.
[0011] L’invention a donc pour objet une composition de caoutchouc à base d’au moins un élastomère diénique, au moins une charge renforçante, au moins un agent de réticulation et au moins un composé de formule (I), éventuellement déjà greffé sur ledit élastomère diénique
[Chem.I]
dans laquelle :
• Q représente un dipôle comprenant au moins un atome d’azote ;
• A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ;
• E représente un groupe de liaison divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
• RI, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et • n est un entier ayant une valeur supérieure ou égale à 1.
[0012] Un autre objet de l’invention est un procédé de préparation de la composition de caoutchouc selon l’invention.
[0013] L’invention a également pour objet un produit semi-fini pour pneumatique comprenant au moins une composition de caoutchouc selon l’invention.
[0014] Un autre objet de l’invention est un pneumatique comprenant une composition de caoutchouc selon l’invention.
Description détaillée
[0015] Un premier objet de la présente invention est une composition de caoutchouc à base d’au moins un élastomère diénique, au moins une charge renforçante, au moins un agent de réticulation et au moins un composé de formule (I), éventuellement déjà greffé sur ledit élastomère diénique
[Chem.I]
[0016]
[0017]
[0018]
[0019]
[0020] (D dans laquelle :
• Q représente un dipôle comprenant au moins un atome d’azote ;
• A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ;
• E représente un groupe de liaison divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
• RI, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et • n est un entier ayant une valeur supérieure ou égale à 1.
Dans la présente, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des pourcentages (%) en masse.
D'autre part, tout intervalle de valeurs désigné par l'expression « entre a et b » représente le domaine de valeurs allant de plus de a à moins de b (c’est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression « de a à b » signifie le domaine de valeurs allant de a jusqu'à b (c’est-à-dire incluant les bornes strictes a et b).
Les composés comprenant du carbone mentionnés dans la description peuvent être d'origine fossile ou biosourcée. Dans ce dernier cas, ils peuvent être, partiellement ou totalement, issus de la biomasse ou obtenus à partir de matières premières renouvelables issues de la biomasse. Sont concernés notamment les polymères, les plastifiants, les charges, etc.
Le terme « pce » signifie au sens de la présente demande, partie en poids pour cent parties en poids d’élastomères
Lorsqu’on fait référence à un composé « majoritaire », on entend au sens de la présente invention, que ce composé est majoritaire parmi les composés du même type
[0021]
[0022]
[0023]
[0024]
[0025]
[0026]
[0027]
[0028]
[0029] dans la composition, c’est-à-dire que c’est celui qui représente la plus grande quantité en masse parmi les composés du même type. Ainsi, par exemple, un élastomère majoritaire est l’élastomère représentant la plus grande masse par rapport à la masse totale des élastomères dans la composition. De la même manière, une charge dite majoritaire est celle représentant la plus grande masse parmi les charges de la composition. A titre d’exemple, dans un système comprenant un seul élastomère, celui-ci est majoritaire au sens de la présente invention ; et dans un système comprenant deux élastomères, l’élastomère majoritaire représente plus de la moitié de la masse des élastomères, de préférence plus de 51 % en masse de la masse totale des élastomères.
Par l'expression « composition à base de », il faut entendre une composition comportant le mélange et/ou le produit de réaction in situ des différents constituants utilisés, certains de ces constituants pouvant réagir et/ou étant destinés à réagir entre eux, au moins partiellement, lors des différentes phases de fabrication de la composition ; la composition pouvant ainsi être à l’état totalement ou partiellement réticulé ou à l’état non-réticulé.
La composition de caoutchouc selon l’invention comprend au moins un composé de formule (I) éventuellement déjà greffé sur l’élastomère diénique.
Conformément à la formule (I), le composé contient un groupement Q désignant un dipôle comprenant au moins un atome d’azote.
Par « dipôle » au sens de la présente invention, on entend une fonction capable de former une addition dipolaire 1,3 sur une liaison carbone-carbone insaturée.
De préférence, le dipôle comprenant au moins un atome d’azote est choisi parmi le groupe constitué par l’oxyde de nitrile, la nitrone et la nitrile imine.
Par oxyde de nitrile, on entend au sens de la présente invention un dipôle répondant à la formule [Chem a] -c=N—>O, y compris ses formes mésomères.
Par imine de nitrile, on entend au sens de la présente invention un dipôle répondant à la formule [Chem b] y compris ses formes mésomères.
Par nitrone, on entend au sens de la présente invention un dipôle répondant à la formule [Chem c] -c=N(->O)-, y compris ses formes mésomères.
Plus préférentiellement encore, le groupement Q est un groupement de formule (II), (III) ou (IV) [Chem II, III, IV]
R5 (Π)
--^=ιψ·—σ (III)
*.
:N+---N-----Rg (IV) dans lesquelles :
• le symbole * représente le rattachement de Q à A ; et • R4, R5 et R6 sont choisis indépendamment parmi un atome d’hydrogène, un alkyle, linéaire ou ramifié, en C1-C20, un cycloalkyle en C3-C30 éventuellement substitué par une chaîne hydrocarbonée, un aryle en C6-C20 éventuellement substitué par une chaîne hydrocarbonée.
[0030] Par « chaîne hydrocarbonée », on entend une chaîne comprenant un ou plusieurs atomes de carbone et un ou plusieurs atomes d’hydrogène. La chaîne hydrocarbonée peut être saturée ou insaturée, de préférence saturée, linéaire, ramifiée ou cyclique et peut comprendre de 1 à 24 atomes de carbone.
[0031] De préférence R4, R5 et R6 sont choisis indépendamment parmi un atome d’hydrogène, un alkyle, linéaire ou ramifié, en C1-C20, un cycloalkyle en C3-C30 éventuellement substitué par une chaîne hydrocarbonée saturée en C1-C24, un aryle en C6-C20 éventuellement substitué par une chaîne hydrocarbonée saturée en C1-C24. Plus préférentiellement encore, R4, R5 et R6 sont choisis, indépendamment les uns par rapport aux autres, parmi un atome d’hydrogène, un alkyle, linéaire ou ramifié, en C1-C20, un cycloalkyle en C3-C30 éventuellement substitué par un alkyle, linéaire ou ramifié, en C1-C6, un aryle en C6-C20 éventuellement substitué par un alkyle, linéaire ou ramifié, en C1-C6.
[0032] Conformément à la formule (I), A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes.
[0033] On entend au sens de la présente invention par « cycle arènediyle », un groupe hydrocarboné aromatique monocyclique ou polycyclique, dérivé d’un arène dans lequel 2 atomes d’hydrogène ont été supprimés. Un cycle arènediyle est donc un groupe divalent.
[0034] Par « groupe hydrocarboné aromatique monocyclique ou polycyclique », on entend un ou des cycles aromatiques dont le squelette est constitué d’atomes de carbone. Autrement dit, il n’y a pas d’hétéroatomes dans le squelette du cycle. Le cycle arènediyle peut être monocyclique, c’est-à-dire constitué d’un seul cycle, ou polycyclique, c’est-à-dire constitué de plusieurs cycles hydrocarbures aromatiques condensés ; de tels cycles condensés ont alors en commun au moins deux atomes de carbone successifs. Ces cycles peuvent être ortho-condensés ou ortho- et péricondensés. De préférence, le cycle arènediyle comprend entre 6 et 14 atomes de carbone.
[0035] De préférence, lorsque le cycle arènediyle est substitué par une ou plusieurs chaîne(s) hydrocarbonée(s), identique(s) ou différente(s), indépendante(s) les unes des autres, éventuellement substituée(s) ou interrompue(s) par un ou plusieurs hétéroatome(s), cette ou ces chaîne(s) sont inertes vis-à-vis de la fonction carbonate cyclique et du groupement Q.
[0036] On entend, au sens de la présente invention, par « chaîne(s) hydrocarbonée(s) inerte(s) vis-à-vis de la fonction carbonate cyclique et du groupement Q » une chaîne hydrocarbonée qui ne réagit ni avec ladite fonction carbonate cyclique ni avec ledit groupement Q. Ainsi, ladite chaîne hydrocarbonée inerte par rapport à ladite fonction et audit groupement est, par exemple, une chaîne hydrocarbonée qui ne présente pas de fonctions alcényle ou alcynyle, susceptibles de réagir avec ladite fonction ou ledit groupement. De manière préférée, ces chaînes hydrocarbonées sont saturées et peuvent comprendre de 1 à 24 atomes de carbone.
[0037] De préférence, le groupement A est un cycle arènediyle en C6-C14 éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes. Plus préférentiellement, le groupement A est un cycle arènediyle, de préférence en C6-C14, éventuellement substitué par une ou plusieurs chaîne(s) hydrocarbonée(s), identique(s) ou différente(s), saturée(s) en C1-C24, éventuellement substituée(s) ou interrompue(s) par un ou plusieurs hétéroatome(s) d’azote, de soufre ou d’oxygène. Plus préférentiellement encore, le groupement A est un cycle arènediyle en C6-C14, éventuellement substitué par un ou plusieurs groupe(s) alkyle, identique(s) ou différent(s), en C1-C12, (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou par un groupe choisi par -OR’, -NHR’, -SR’, R’ étant un groupe alkyle, préférentiellement un groupe alkyle en Cl-Cl2, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4.
[0038] De préférence, le composé de formule (I) est choisi parmi les composés de formule (la) et (Ib) suivantes : [Chem.IaJb]
dans lesquelles :
— le groupement Q est tel que défini précédemment ; préférentiellement est choisi parmi le groupe constitué par l’oxyde de nitrile, la nitrone et la nitrile imine, plus préférentiellement Q est le groupe de formule (III);
—un groupement choisi parmi R7 à RI 1 de la formule (la) et un groupement choisi parmi R7 à R13 de la formule (Ib) désigne le groupe de formule (V) suivante : [Chem.V]
(V>
dans laquelle n, E, RI, R2 et R3 sont tels que définis précédemment, — les quatre autres groupements de la formule (la) et les six autres groupements de la formule (Ib), identiques ou différents, représentent indépendamment les uns les autres, un atome d’hydrogène ou une chaîne hydrocarbonée, linéaire ou ramifiée, de préférence saturée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes.
[0039] Préférentiellement, ladite chaîne hydrocarbonée dans les composés de formule (la) et (Ib) est inerte vis-à-vis du groupe de formule (V) et du groupement Q. Préférentiellement, ladite chaîne hydrocarbonée est saturée et peut comprendre de 1 à 24 atomes de carbone. Préférentiellement, ladite chaîne hydrocarbonée est un alkyle en C1-C12 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, -NHR’, -SR’, R’ étant un alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4.
[0040] Selon un mode de réalisation préférée de l’invention, dans la formule (la), R8 représente un groupe de formule (V) tel que défini ci-dessus et R7, R9, RIO et RI 1, identiques ou différents, représentent un atome d’hydrogène ou une chaîne hydrocarbonée, linéaire ou ramifiée, de préférence saturée en C1-C24, éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes. Plus préférentiellement, R8 représente un groupe de formule (V) tel que défini ci-dessus et R7, R9, RIO et RI 1, identiques ou différents représentent un atome d’hydrogène ou un alkyle en C1-C12 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, -NHR’, -SR’, R’ étant un alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4.
[0041] Plus préférentiellement encore dans ce mode de réalisation, R8 représente un groupe de formule (V) tel que défini ci-dessus, RIO représente un atome d’hydrogène et R7, R9 et RI 1 représentent une chaîne hydrocarbonée, linéaire ou ramifiée, de préférence saturée en C1-C24, éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes. Plus préférentiellement encore, R8 représente un groupe de formule (V) tel que défini ci-dessus, RIO représente un atome d’hydrogène et R7, R9 et RI 1 représentent un alkyle en C1-C12 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, -NHR’, -SR’, R’ étant un alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4.
[0042] Selon un autre mode de réalisation préférée de l’invention, dans la formule (Ib), R7 représente un groupe de formule (V) tel que défini ci-dessus et R8 à R13 identiques ou différents, représentent un atome d’hydrogène ou une chaîne hydrocarbonée, linéaire ou ramifiée, de préférence saturée en C1-C24, éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes. Plus préférentiellement, R7 représente un groupe de formule (V) tel que défini ci-dessus et R8 à RI3, identiques ou différents, représentent un atome d’hydrogène ou un alkyle en C1-C12 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, NHR’, -SR’, R’ étant un alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4. Plus préférentiellement encore dans ce mode de réalisation, R7 représente un groupe de formule (V) tel que défini ci-dessus et R8 à R13, identiques, représentent un atome d’hydrogène.
[0043] Conformément aux composés de formule (I), (la) et (Ib), le groupement E est un groupe de liaison divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatome(s). Par « groupe de liaison divalent hydrocarboné » on entend au sens de la présente invention, un groupe espaceur formant un pont entre le groupement A et le groupe de formule (V), ce groupe espaceur étant une chaîne hydrocarbonée, saturée ou insaturée, de préférence saturée en C1-C24, linéaire ou ramifiée, pouvant éventuellement contenir un ou plusieurs hétéroatome(s) tel(s) que par exemple N, O et S. Ladite chaîne hydrocarbonée peut éventuellement être substituée, pour autant que les substituants ne réagissent pas avec le groupement Q et le groupe de formule (V) tel que défini ci-dessus.
[0044] Préférentiellement, dans les composés de formule (I), (la) et (Ib), le groupement E est une chaîne hydrocarbonée linéaire ou ramifiée, de préférence saturée en C1-C24, plus préférentiellement en C1-C10, encore plus préférentiellement en C1-C6, éventuellement interrompue par un ou plusieurs atomes d’azote, de soufre ou d’oxygène.
[0045] De préférence, dans les composés de formule (I), (la) et (Ib), le groupement E est choisi dans le groupe constitué par -R-, -NH-R-, -O-R- et -S-R- avec R un alkylène linéaire ou ramifié en C1-C24, de préférence en Cl-CIO, plus préférentiellement en
C1-C6.
[0046] Plus préférentiellement encore, dans les composés de formule (I), (la) et (Ib), le groupement E est choisi dans le groupe constitué par -R- et -O-R-avec R un alkylène linéaire ou ramifié en C1-C24, de préférence en Cl-CIO, plus préférentiellement en C1-C6.
[0047] Plus préférentiellement encore, dans les composés de formule (I), (la) et (Ib), le groupement E est choisi parmi -CH2-, -CH2-CH2-, -CH2-CH2-CH2-, CH2-CH2-CH2-CH2-, -O-CH2-, -O-CH2-CH2-, -O-CH2-CH2-CH2- et O-CH2-CH2-CH2-CH2-.
[0048] Dans les composés de formule (I), (la) et (Ib), n est un entier supérieur ou égal à 1, plus préférentiellement n est un entier ayant pour valeur 1, 2, 3 ou 4 ; plus préférentiellement n est un entier ayant pour valeur 1 ou 2, encore plus préférentiellement n = 1.
[0049] Dans les composés de formule (I), (la) et (Ib), RI, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatome(s), tel(s) que par exemple N, O et S. Plus préférentiellement, les groupes RI, R2, R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou un alkyle linéaire ou ramifié en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6. Plus préférentiellement encore, le groupe RI est un atome d’hydrogène et les groupes R2 et R3, identiques ou différents, sont des alkyles linéaires ou ramifiés en C1-C24, préférentiellement en C1-C10, plus préférentiellement en C1-C6. Plus préférentiellement encore, RI, R2 et R3, identiques, sont un atome d’hydrogène.
[0050] Préférentiellement, parmi les composés de formule (I), les composés de formule (VI) sont particulièrement préférés [Chem. VI]
R3
(VI) dans laquelle :
A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou
[0051]
[0052] plusieurs hétéroatomes ;
• E représente un groupe divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
• RI, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et • n est un entier ayant une valeur supérieure ou égale à 1.
De préférence, dans les composés de formule (VI), le groupement A est un cycle arènediyle, de préférence en C6-C14, éventuellement substitué par une ou plusieurs chaîne(s) hydrocarbonée(s), identique(s) ou différente(s), indépendante(s) les unes des autres, de préférence saturée(s) en C1-C24, éventuellement substituée(s) ou interrompue(s) par un ou plusieurs hétéroatome(s) par exemple, tel(s) que O, N et S. Plus préférentiellement, le groupement A est un cycle arènediyle en C6-C14 éventuellement substitué par un ou plusieurs groupe(s) alkyle, identique(s) ou différent(s), en C1-C12 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou par un groupe choisi par -OR’, -NHR’, -SR’, R’ étant un groupe alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4.
Plus préférentiellement encore, parmi les composés de formule (VI), les composés de formule (Via) et (VIb) sont particulièrement préférés [Chem. Via,VIb]
[0053] dans lesquelles :
— un groupement choisi parmi R7 à RI 1 de la formule (Via) et un groupement choisi parmi R7 à R13 de la formule (VIb) désigne le groupe de formule (V) suivante :
[Chem.V]
(V) dans laquelle η, E, RI, R2 et R3 sont tels que définis précédemment, — les quatre autres groupements de la formule (Via) et les six autres groupements de la formule (VIb), identiques ou différents, représentent indépendamment les uns les autres, un atome d’hydrogène ou une chaîne hydrocarbonée, linéaire ou ramifiée, de préférence saturée en C1-C24, éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes. Préférentiellement, ladite chaîne hydrocarbonée dans les composés de formule (Via) et (VIb) est inerte vis-à-vis du groupe de formule (V) et du groupement Q. Préférentiellement, ladite chaîne hydrocarbonée est un alkyle en C1-C12 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, -NHR’, -SR’, R’ étant un alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4.
[0054] Préférentiellement, dans les composés de formule (VI), (Via) et (VIb), le groupement E est une chaîne hydrocarbonée linéaire ou ramifiée, de préférence saturée en C1-C24, plus préférentiellement en C1-C10, encore plus préférentiellement en C1-C6, éventuellement interrompue par un ou plusieurs atomes d’azote, de soufre ou d’oxygène. De préférence, le groupement E est choisi dans le groupe constitué par -R-, -NHR-, OR- et -SR- avec R un alkylène linéaire ou ramifié en C1-C24, de préférence en C1-C10, plus préférentiellement en C1-C6. Plus préférentiellement encore, le groupement E est choisi dans le groupe constitué par -R- et -O-R- avec R un alkylène linéaire ou ramifié en C1-C24, de préférence en Cl-CIO, plus préférentiellement en C1-C6. Plus préférentiellement encore, le groupement E est choisi parmi -CH2-, CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2-, -O-CH2-, -O-CH2-CH2-, O-CH2-CH2-CH2- et -O-CH2-CH2-CH2-CH2-.
[0055] Préférentiellement, dans les composés de formule (VI), (Via) et (VIb), n est un entier supérieur ou égal à 1, plus préférentiellement n est un entier ayant pour valeur 1, 2, 3 ou 4 ; plus préférentiellement n est un entier ayant pour valeur 1 ou 2, encore plus préférentiellement n = 1.
[0056] Préférentiellement, dans les composés de formule (VI), (Via) et (VIb), RI, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hé téroatome(s), tel(s) que par exemple N, O et S. Plus préférentiellement, les groupes RI, R2, R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou un alkyle linéaire ou ramifié en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6. Plus préférentiellement encore, le groupe RI est un atome d’hydrogène et les groupes R2 et R3, identiques ou différents, sont des alkyles linéaires ou ramifiés en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6. Plus préférentiellement encore, RI, R2 et R3, identiques, sont un atome d’hydrogène.
[0057] Selon un mode de réalisation préférée de l’invention, dans la formule (Via), R8 représente un groupe de formule (V) tel que défini ci-dessus et R7, R9, RIO et RI 1, identiques ou différents, représentent un atome d’hydrogène, un alkyle en Cl-Cl 2 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, -NHR’, -SR’, R’ étant un alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4.
[0058] Plus préférentiellement encore dans ce mode de réalisation, R8 représente un groupe de formule (V) tel que défini ci-dessus, RIO représente un atome d’hydrogène et R7, R9 et RI 1 représentent un alkyle en C1-C12 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, -NHR’, -SR’, R’ étant un alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4.
[0059] Parmi les composés de formule (Via), ceux qui sont particulièrement préférés sont ceux ayant les caractéristiques suivantes :
• R7, R9 et RI 1, identiques ou différents, représentent un alkyle en C1-C12 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, -NHR’, -SR’, R’ étant un alkyle en CrC12, plus préférentiellement en Ci-C6, plus préférentiellement encore en Ci-C4 ; et • RIO représente un atome d’hydrogène ; et • R8 représente un groupe de formule (V) avec n=l ou 2, de préférence n=l, le groupement E est choisi dans le groupe constitué par -R- et -O-R- avec R un alkylène linéaire ou ramifié en CrC24, de préférence en CrCio, plus préférentiellement en Ci-C6, plus préférentiellement encore, le groupement E est choisi parmi -CH2-, -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2-, O-CH2-, -O-CH2-CH2-, -O-CH2-CH2-CH2- et -O-CH2-CH2-CH2-CH2- et les groupes Rh R2, R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou un alkyle linéaire ou ramifié en Ci-C24, préférentiellement en Ci-Cio, plus préférentiellement en Ci-C6, de préférence sont tous identiques et sont un atome d’hydrogène.
[0060] Selon un autre mode de réalisation préférée de l’invention, dans la formule (VIb), R7 représente un groupe de formule (V) tel que défini ci-dessus et R8 à RI3, identiques ou différents, représentent un atome d’hydrogène, un alkyle en Cl-Cl2 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, -NHR’, -SR’, R’ étant un alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4. Plus préférentiellement encore dans ce mode de réalisation, R7 représente un groupe de formule (V) et R8 à R13, identiques, représentent un atome d’hydrogène.
[0061] Parmi les composés de formule (VIb), ceux qui sont particulièrement préférés sont ceux ayant les caractéristiques suivantes :
• R7 représente un groupe de formule (V) avec n=l ou 2, de préférence n=l, le groupement E est choisi dans le groupe constitué par -R- et -O-R- avec R un alkylène linéaire ou ramifié en C1-C24, de préférence en Cl-CIO, plus préférentiellement en C1-C6, plus préférentiellement encore, le groupement E est choisi parmi -CH2-, -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2-, O-CH2-, -O-CH2-CH2-, -O-CH2-CH2-CH2- et -O-CH2-CH2-CH2-CH2- et les groupes RI, R2, R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou un alkyle linéaire ou ramifié en C1-C24, préférentiellement en C1-C10, plus préférentiellement en C1-C6, de préférence sont tous identiques et sont un atome d’hydrogène ; et • R8 à R13, identiques ou différents, représentent un atome d’hydrogène, un alkyle en C1-C12 (plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4) ou un groupe choisi parmi -OR’, -NHR’, -SR’, R’ étant un alkyle en C1-C12, plus préférentiellement en C1-C6, plus préférentiellement encore en C1-C4 ; plus préférentiellement R8 à R13, identiques, représentent un atome d’hydrogène.
[0062] Selon un mode de réalisation particulier, le composé de formule (I), de préférence le composé de formule (VI), est choisi dans le groupe constitué par le composé de formule (VII) et le composé de formule (VIII)
[Chem. VII]
[Chem. VIII]
[0063] Les agents de fonctionnalisation de formule (VI), ainsi que leurs modes de réalisation préférées, peuvent être obtenus, par exemple, à partir d’un procédé de préparation comprenant au moins une réaction (d) d’un composé oxime de formule (IX) avec un agent oxydant en présence d’au moins un solvant organique SL1 selon le schéma réactionnel suivant : [Chem d]
(IX)
(VI) avec • A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes carbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ;
• E représente un groupe divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
• Rb R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et • n est un entier ayant une valeur supérieure ou égale à 1.
[0064] Les modes préférés de A, E, RI, R2 et R3 et n tels que décrit-ci dessus s’appliquent également au procédé de préparation d’un composé de formule (VI) à partir d’un composé de formule (IX).
[0065] De manière préférée, ledit agent oxydant est choisi parmi l’hypochlorite de sodium, le N-bromosuccinimide en présence d’une base, le N-chlorosucinimide en présence d’une base, et l’eau oxygénée en présence d’un catalyseur. Plus préférentiellement, le catalyseur est choisi parmi le groupe constitué par l’hypochlorite de sodium et le Nchlorosucinimide en présence d’une base.
[0066] Avantageusement, la quantité d’agent oxydant est de 1 à 5 équivalent molaires, préférentiellement de 1 à 2 équivalents molaires par rapport à la quantité molaire du composé oxime de formule (IX).
[0067] Préférentiellement le solvant organique SL1 est choisi parmi les solvants chlorés et les solvants de type ester, éther et alcool, plus préférentiellement choisi parmi le dichlorométhane, le trichlorométhane, l’acétate d’éthyle, l’acétate de butyle, l’éther diéthylique, l’isopropanol et l’éthanol, encore plus préférentiellement est choisi parmi l’acétate d’éthyle, le trichlorométhane, le dichlorométhane et l’acétate de butyle.
[0068] De préférence, le composé oxime de formule (IX) représente de 1 à 30 % en poids, de préférence de 1 à 20 % en poids, par rapport au poids total de l’ensemble comprenant ledit composé oxime de formule (IX), ledit solvant organique SL1 et ledit agent oxydant.
[0069] Le composé oxime de formule (IX) peut être obtenu à partir d’un procédé de préparation comprenant au moins une réaction (c) d’un composé de formule (X) avec une solution aqueuse d’hydroxylamine NH2OH (composé de formule (XI)) selon le schéma réactionnel suivant : [Chem e]
H---N---OH
avec :
• A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes carbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ;
• E représente un groupe divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
• RI, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et • n est un entier ayant une valeur supérieure ou égale à 1.
[0070] Les modes préférés de A, E, RI, R2 et R3 et n s’appliquent également au procédé de préparation d’un composé de formule (IX) à partir d’un composé de formule (X).
[0071] Préférentiellement, l’ajout d’hydroxylamine (composé de formule (XI)) est réalisé à une température allant de 1°C à 100°C, plus préférentiellement entre 20°C et 70°C.
[0072] Préférentiellement, l’ajout de la solution aqueuse d’hydroxylamine nécessaire à la réaction décrite ci-dessus est effectué en deux fois.
[0073] Plus préférentiellement, le composé de formule (X) est mis en contact avec une première quantité de composé de formule (XI) comprise dans un domaine allant de 1,02 à 2 équivalents molaires par rapport au composé de formule (X), préférentiellement comprise dans un domaine allant de 1,1 et 1,75 équivalents molaires; puis 2 à 10 heures après cette mise en contact, une deuxième quantité de composé de formule (XI) est ajouté au milieu réactionnel. Cette deuxième quantité de composé de formule (XI) est préférentiellement comprise dans un domaine allant de 0,25 à 1,5 équivalents molaire par rapport au composé de formule (X), préférentiellement entre 0,25 et 0,75 équivalents molaires.
[0074] La réaction décrite ci-dessus peut être adaptée pour obtenir les composés de formule (I) à partir du composé de formule (IX). En particulier, le procédé de préparation du composé de formule (I) dans lequel Q est une nitrone comprend au moins une réaction du composé de formule (X) avec une hydroxylamine de formule NR4R5-OH où R4 et R5, identiques ou différents, de préférence différents, sont tels que définis précédemment, y compris leurs modes préférés.
[0075] Le composé de formule (X) peut être obtenu par un procédé de préparation comprenant au moins une réaction (b) de carbonatation du composé de formule (XII) en présence de CO2, d’un solvant organique SL2 et d’un catalyseur selon le schéma réactionnel suivant : [Chem f]
avec :
A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes carbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ;
• E représente un groupe divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
• RI, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et • n est un entier ayant une valeur supérieure ou égale à 1.
[0076] Les modes préférés de A, E, RI, R2 et R3 et n s’appliquent également au procédé de préparation d’un composé de formule (X) à partir d’un composé de formule (XII).
[0077] Le catalyseur peut être choisi dans le groupe constitué par les sels d’ammonium, les sels des métaux alcalino-terreux (comme par exemple les sels de zinc, les sels de cobalt), les sels des métaux pauvres (tels que les sels d’aluminium, les sels de titane, les sels d’étain). De préférence le catalyseur est un sel d’ammonium, plus préférentiellement est choisi dans le groupe constitué par le tétrabuylammonium (TBAB) et le bromure de tétrabutylammonium.
[0078] Le solvant organique SL2 est choisi parmi les solvant chlorés et les solvants de type ester, éther, alcool, amide, plus préférentiellement est choisi parmi le dichlorométhane, le trichlorométhane, l’acétate d’éthyle, l’acétate de butyle, l’éther diéthylique, l’isopropanol et l’éthanol, le Ν,Ν-diméthylformamide (DME), le 1,4-dioxane ; encore plus préférentiellement est choisi parmi le DME et le 1,4-dioxane.
[0079] Le composé de formule (XII) peut être obtenu par un procédé de préparation comprenant au moins une réaction (a) du composé de formule (XIII) avec un composé de formule (XIV) en présence d’au moins une base et à une température allant de 20°C à 150°C selon le schéma réactionnel suivant : [Chem g]
(ΧΙΠ) (XIV) (Ail) avec :
A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes carbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hé20 téroatomes ;
• E représente un groupe divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
• Rb R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ;
• n est un entier ayant une valeur supérieure ou égale à 1 ;
• Y représente un groupe nucléophile ; et • Z représente un groupe nucléofuge.
[0080] Les modes préférés de A, E, RI, R2 et R3 et n s’appliquent également au procédé de préparation d’un composé de formule (XII) à partir des composés de formule (XIII) et (XIV).
[0081] On entend par « groupe nucléofuge » un groupe partant.
[0082] On entend « par groupe nucléophile » un composé comprenant au moins un atome porteur d’un doublet libre ou d’un atome chargé négativement.
[0083] De manière préférée, le groupe Y est choisi parmi les fonctions hydroxyle, thiol, amine primaire et amine secondaire.
[0084] Le groupe Z peut être choisi parmi le chlore, le brome, l’iode, le fluor, le groupe mésylate, le groupe tosylate, le groupe acétate, et le groupe trifluorométhylsulfonate.
[0085] Plus préférentiellement, le groupe Y est la fonction hydroxyle et le groupe Z est le chlore.
[0086] La réaction entre le composé de formule (XIII) et celui de formule (XIV) est réalisée en présence d’au moins une base et à une température allant de 20°C à 150°C.
[0087] La base peut être choisie parmi les alcoolates alcalins, les carbonates alcalins, les carbonates alcalino-terreux, les hydroxydes alcalins, les hydroxydes alcalino-terreux et leurs mélanges.
[0088] Préférentiellement, la base est choisie parmi le méthanolate de sodium, le carbonate de potassium et la soude, plus préférentiellement le carbonate de potassium.
[0089] Préférentiellement, la quantité molaire de base est de 1,5 à 8 équivalents molaires, de préférence de 2 à 6 équivalents molaires par rapport à la quantité molaire de composé de formule (XIII).
[0090] Selon un mode de réalisation, il est possible d’ajouter un ou plusieurs catalyseurs choisi parmi un catalyseur de type sel d’argent (I), un catalyseur de transfert de phase de type ammonium quaternaire, et leur mélanges.
[0091] Les composés de formule (XIII) et (XIV) tels que définis ci-dessus sont disponibles commercialement auprès de fournisseurs tels que Sigma-Aldrich, Merk etc.
[0092] Selon un mode de réalisation préférentiel, le procédé de préparation d’un composé de formule (VI) comprend au moins les réactions successives suivantes : la réaction (c) suivit de la réaction (d) telles qu’elles ont été définies précédemment. Plus préférentiellement encore dans ce mode de réalisation, l’ajout de la quantité totale d’hydroxylamine est effectué en deux fois dans la réaction (c).
[0093] Selon un autre mode de réalisation préférentiel, le procédé de préparation d’un composé de formule (VI) comprend au moins les réactions successives suivantes : la réaction (a) suivi de la réaction (b) suivi de la réaction (c) puis suivi la réaction (d) telles qu’elles ont été définies précédemment. Plus préférentiellement de mode de réalisation préférentiel, l’ajout de la quantité totale d’hydroxylamine est effectué en deux fois dans la réaction (c).
[0094] La composition de caoutchouc selon l’invention comprend également à titre de constituant au moins un élastomère diénique, notamment un au moins un élastomère diénique sur lequel est déjà greffé le composé de formule I, en particulier le composé de formule (VI).
[0095] Par élastomère (ou indistinctement caoutchouc) « diénique », qu’il soit naturel ou synthétique, doit être compris de manière connue un élastomère constitué au moins en partie (i.e., un homopolymère ou un copolymère) d’unités monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
[0096] Ces élastomères diéniques peuvent être classés dans deux catégories :
« essentiellement insaturés » ou « essentiellement saturés ». On entend en général par « essentiellement insaturé », un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15 % (% en moles) ; c'est ainsi que des élastomères diéniques tels que les caoutchoucs butyle ou les copolymères de diènes et d'alpha-oléfines type EPDM n'entrent pas dans la définition précédente et peuvent être notamment qualifiés d'élastomères diéniques « essentiellement saturés » (taux de motifs d'origine diénique faible ou très faible, toujours inférieur à 15 %).
[0097] On entend particulièrement par élastomère diénique susceptible d'être utilisé dans le cadre de la présente invention :
a. tout homopolymère d’un monomère diène, conjugué ou non, ayant de 4 à 18 atomes de carbone ;
b. tout copolymère d'un diène, conjugué ou non, ayant de 4 à 18 atomes de carbone et d’au moins un autre monomère.
[0098] L’autre monomère peut être l’éthylène, une oléfine ou un diène, conjugué ou non.
[0099] A titre de diènes conjugués conviennent les diènes conjugués ayant de 4 à 12 atomes de carbone, en particulier les 1,3-diènes, tels que notamment le 1,3-butadiène et l’isoprène.
[0100] A titre de diènes non conjugués conviennent les diènes non conjugués ayant de 6 à 12 atomes de carbone, tels que le 1,4-hexadiène, l'éthylidène norbomène, le dicyclo22 pentadiène.
[0101] A titre d’oléfines conviennent les composés vinylaromatiques ayant de 8 à 20 atomes de carbone et les α-monooléfmes aliphatiques ayant de 3 à 12 atomes de carbone.
[0102] A titre de composés vinylaromatiques conviennent par exemple le styrène, l'ortho-, méta-, para-méthylstyrène, le mélange commercial vinyle-toluène, le paratertiobutylstyrène.
[0103] A titre d’a-monooléfmes aliphatiques conviennent notamment les a-monooléfmes aliphatiques acycliques ayant de 3 à 18 atomes de carbone.
[0104] Plus particulièrement, l’élastomère diénique est :
a. tout homopolymère d’un monomère diène conjugué, notamment tout homopolymère obtenu par polymérisation d'un monomère diène conjugué ayant de 4 à 12 atomes de carbone;
b. tout copolymère obtenu par copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinylaromatiques ayant de 8 à 20 atomes de carbone;
c. un copolymère d'isobutène et d'isoprène (caoutchouc butyle), ainsi que les versions halogénées, en particulier chlorées ou bromées, de ce type de copolymère ,
d. tout copolymère obtenu par copolymérisation d'un ou plusieurs diènes, conjugués ou non, avec l’éthylène, une α-monooléfme ou leur mélange comme par exemple les élastomères obtenus à partir d'éthylène, de propylène avec un monomère diène non conjugué du type précité.
[0105] Préférentiellement, l’élastomère diénique est choisi dans le groupe constitué par les copolymères d’éthylène-propylène-monomère diène (EPDM), le caoutchouc butyle (IRR), le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les polybutadiènes (BR), les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères.
[0106] Préférentiellement, l’élastomère diénique est choisi dans le groupe constitué par les copolymères d’éthylène-propylène-monomère diène (EPDM), le caoutchouc butyle (IRR), le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les polybutadiènes (BR), les copolymères de butadiène-styrène (SBR), les copolymères d’éthylène-butadiène (EBR), les copolymères d'isoprène-butadiène (BIR) ou les copolymères d'isoprène-butadiène-styrène (SBIR), les copolymères d'isobutène-isoprène (caoutchouc butyle - IIR), les copolymères d'isoprène-styrène (SIR) et les mélanges de ces élastomères.
[0107] Préférentiellement, l’élastomère diénique est choisi dans le groupe constitué par les copolymères d’éthylène-propylène-monomère diène, le caoutchouc butyle et le mélange de ces caoutchoucs.
[0108] Préférentiellement, l’élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères. Plus préférentiellement, l’élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène-styrène, les copolymères d’éthylène-butadiène, les copolymères d'isoprène-butadiène, les copolymères d'isoprène-butadiène-styrène, les copolymères d'isobutène-isoprène, les copolymères d'isoprène-styrène et les mélanges de ces élastomères.
[0109] Préférentiellement, l’élastomère diénique est choisi dans le groupe constitué par les polybutadiènes, les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères. Plus préférentiellement, l’élastomère diénique est choisi dans le groupe constitué par les polybutadiènes, les copolymères de butadiène-styrène, les copolymères d’éthylène-butadiène, les copolymères d'isoprène-butadiène, les copolymères d'isoprène-butadiène-styrène, les copolymères d'isobutène-isoprène, les copolymères d'isoprène-styrène et les mélanges de ces élastomères
[0110] Conviennent les polybutadiènes et en particulier ceux ayant une teneur (% molaire) en unités -1,2 comprise entre 4% et 80% ou ceux ayant une teneur (% molaire) en cis1,4 supérieure à 80%, les polyisoprènes, les copolymères de butadiène-styrène et en particulier ceux ayant une Tg (température de transition vitreuse (Tg, mesurée selon ASTM D3418-08) comprise entre 0°C et - 90°C et plus particulièrement entre - 10°C et - 70°C, une teneur en styrène comprise entre 1% et 60% en poids et plus particulièrement entre 20% et 50%, une teneur (% molaire) en liaisons -1,2 de la partie butadiènique comprise entre 4% et 75%, une teneur (% molaire) en liaisons trans-1,4 comprise entre 10% et 80%, les copolymères de butadiène-isoprène et notamment ceux ayant une teneur en isoprène comprise entre 5% et 90% en poids et une Tg de - 40°C à - 80°C, les copolymères isoprène-styrène et notamment ceux ayant une teneur en styrène comprise entre 5 % et 50 % en poids et une Tg comprise entre - 5 C et - 50°C. Dans le cas des copolymères de butadiène-styrène-isoprène conviennent notamment ceux ayant une teneur en styrène comprise entre 5 % et 50 % en poids et plus particulièrement comprise entre 10 % et 40 %, une teneur en isoprène comprise entre 15 % et 60 % en poids et plus particulièrement entre 20 % et 50 %, une teneur en butadiène comprise entre 5 % et 50 % en poids et plus particulièrement comprise entre 20 % et 40 %, une teneur (% molaire) en unités -1,2 de la partie butadiènique comprise entre 4 % et 85 %, une teneur (% molaire) en unités trans -1,4 de la partie butadiènique comprise entre 6 % et 80 %, une teneur (% molaire) en unités -1,2 plus -3,4 de la partie isoprénique comprise entre 5 % et 70 % et une teneur (% molaire) en unités trans -1,4 de la partie isoprénique comprise entre 10 % et 50 %, et plus généralement tout co24 polymère butadiène-styrène-isoprène ayant une Tg comprise entre - 5°C et - 70°C.
[0111] Les élastomères diéniques, peuvent avoir toute microstructure qui est fonction des conditions de polymérisation utilisées. Ces polymères, peuvent être par exemple à blocs, statistiques, séquencés, microséquencés, et être préparer en dispersion en émulsion ou en solution. Ils peuvent être couplés et/ou étoilés, par exemple au moyen d’un atome silicium ou d’étain qui lie entre elles les chaînes polymères.
[0112] Comme vu précédemment, la composition de caoutchouc selon l’invention est à base d’au moins un élastomère diénique et d’au moins un composé de formule (I), en particulier de formule (VI). L’élastomère diénique peut être greffé par le composé de formule (I), en particulier par le composé de formule (VI), préalablement à son introduction dans la composition de caoutchouc, ou bien peut être greffé par réaction avec le composé de formule (I), en particulier celui de formule (VI), lors de la fabrication de la composition de caoutchouc. Lorsque la composition de caoutchouc comprend au moins un élastomère préalablement greffé par le composé de formule (I), en particulier par le composé de formule (VI), le taux molaire de greffage du composé de formule (I) sur ledit élastomère, en particulier du composé de formule (VI), est compris dans un domaine allant de 0,01 % à 15 %, de préférence de 0,05 % à 10 %, plus préférentiellement de 0,07 à 5 %. Dans le mode de réalisation où l’élastomère est greffé par réaction avec le composé de formule (I), en particulier celui de formule (VI), lors de la fabrication de la composition de caoutchouc, alors le taux du composé de formule (I), en particulier le taux du composé de formule (VI) dans la composition de caoutchouc selon l’invention de caoutchouc selon l’invention est compris dans un domaine allant de 0,01 à 150 pce ; de préférence dans un domaine allant de 0,02 à 30 pce.
[0113] La composition de caoutchouc selon l’invention peut contenir un seul élastomère diénique greffé par le composé de formule (I), en particulier par le composé de formule (VI), (soit greffé préalablement à son introduction dans la composition de caoutchouc, soit greffé par réaction avec ledit composé de formule (I), en particulier avec ledit composé de formule (VI), pendant la fabrication de la composition de caoutchouc), ou un mélange de plusieurs élastomères diéniques greffés, ou dont certains sont greffés et d’autres pas.
[0114] Le ou les autres élastomères diéniques utilisés en mélange avec l’élastomère greffé selon l’invention sont des élastomères diéniques conventionnels tels que décrits plus hauts, qu’ils soient étoilés, couplés, fonctionnalisés ou non.
[0115] Dans le cas d’un mélange avec au moins un autre élastomère diénique, l’élastomère diénique greffé selon l’invention est l’élastomère majoritaire dans la composition de caoutchouc. On notera que l’amélioration des propriétés de la composition de caoutchouc selon l’invention sera d’autant plus élevée, que la proportion dudit ou desdits élastomères additionnels dans la composition de caoutchouc selon l’invention sera plus réduite.
[0116] Le ou les élastomères diéniques greffés selon l’invention peuvent être utilisés en association avec tout type d’élastomère synthétique autre que diénique, voire avec des polymères autres que des élastomères, par exemple des polymères thermoplastiques.
[0117] Comme vu précédemment, un autre composant de la composition de caoutchouc selon l’invention est une charge renforçante.
[0118] On peut utiliser tout type de charge dite renforçante, connue pour ses capacités à renforcer une composition de caoutchouc utilisable notamment pour la fabrication de pneumatiques, par exemple une charge organique telle que du noir de carbone, une charge inorganique telle que de la silice ou encore un mélange de ces deux types de charges.
[0119] Avantageusement, la charge renforçante est choisie parmi le noir de carbone, une charge inorganique et leurs mélanges.
[0120] Comme noirs de carbone conviennent tous les noirs de carbone, notamment les noirs conventionnellement utilisés dans les pneumatiques ou leurs bandes de roulement. Parmi ces derniers, on citera plus particulièrement les noirs de carbone renforçants des séries 100, 200, 300, ou les noirs de série 500, 600 ou 700 (grades ASTM D1765-2017), comme par exemple les noirs NI 15, N134, N234, N326, N330, N339, N347, N375, N550, N683, N772). Ces noirs de carbone peuvent être utilisés à l'état isolé, tels que disponibles commercialement, ou sous tout autre forme, par exemple comme support de certains des additifs de caoutchouterie utilisés. Les noirs de carbone pourraient être par exemple déjà incorporés à l'élastomère diénique, notamment isoprènique sous la forme d'un masterbatch (voir par exemple demandes WO97/36724-A2 ou W099/16600-A1). Pour les noirs de carbone, la surface spécifique STSA est déterminée selon la norme ASTM D6556-2016.
[0121] Par « charge inorganique renforçante », doit être entendu ici toute charge inorganique ou minérale, quelles que soient sa couleur et son origine (naturelle ou de synthèse), encore appelée charge « blanche », charge « claire » ou même charge « non-noire » par opposition au noir de carbone, capable de renforcer à elle seule, sans autre moyen qu’un agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication de pneumatiques. De manière connue, certaines charges inorganiques renforçantes peuvent se caractériser notamment par la présence de groupes hydroxyle (-OH) à leur surface.
[0122] Comme charges inorganiques renforçantes conviennent notamment des charges minérales du type siliceux, préférentiellement la silice (SiO2) ou du type alumineux, en particulier l’alumine (A12O3).
[0123] La silice utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface spécifique BET ainsi qu'une surface spécifique CT AB toutes deux inférieures à 450 m2/g, de préférence comprises dans un domaine allant de 30 à 400 m2/g.
[0124] On peut utiliser tout type de silice précipitée, notamment des silices précipitées hautement dispersibles (dites « HDS » pour « highly dispersible » ou « highly dispersible silica »). Ces silices précipitées, hautement dispersibles ou non, sont bien connues de l’homme du métier. On peut citer, par exemple, les silices décrites dans les demandes W003/016215-A1 et W003/016387-A1. Parmi les silices HDS commerciales, on peut notamment utiliser les silices « Ultrasil ® 5000GR », « Ultrasil ® 7000GR » de la société Evonik, les silices « Zeosil ® 1085GR», « Zeosil® 1115 MP », « Zeosil® 1165MP », « Zeosil® Premium 200MP », « Zeosil® HRS 1200 MP » de la Société Solvay. A titre de silice non HDS, les silices commerciales suivantes peuvent être utilisées : les silices « Ultrasil ® VN2GR », « Ultrasil ® VN3GR » de la société Evonik, la silice « Zeosil® 175GR » » de la société Solvay, les silices « Hi-Sil EZ120G(-D) », « Hi-Sil EZ160G(-D) », « Hi-Sil EZ200G(-D) », « Hi-Sil 243LD », « Hi-Sil 210 », « Hi-Sil HDP 320G » de la société PPG.
[0125] Dans le présent exposé, la surface spécifique BET pour la charge inorganique, en particulier pour la silice, est déterminée par adsorption de gaz à l’aide de la méthode de Brunauer-Emmett-Teller décrite dans « The Journal of the American Chemical Society » (Vol. 60, page 309, février 1938), et plus précisément selon une méthode adaptée de la norme NF ISO 5794-1, annexe E de juin 2010 [méthode volumétrique multipoints (5 points) - gaz: azote - dégazage sous vide: une heure à 160°C - domaine de pression relative p/po : 0,05 à 0,17]. Les valeurs de surface spécifique CT AB ont été déterminées selon la norme NF ISO 5794-1, annexe G de juin 2010. Le procédé est basé sur l'adsorption du CTAB (bromure de N-hexadécyl-N,N,N-triméthylammonium) sur la surface « externe » de la charge renforçante.
[0126] Lorsqu’une charge inorganique renforçante est utilisée dans la composition de caoutchouc selon l’invention, en particulier s’il s’agit de silice, cette charge inorganique renforçante a préférentiellement une surface BET comprise dans un domaine allant de 45 à 400 m2/g, plus préférentiellement comprise dans un domaine allant de 60 à 300 m2 /g·
[0127] L'état physique sous lequel se présente la charge inorganique renforçante est indifférent, que ce soit sous forme de poudre, de microperles, de granulés, ou encore de billes ou toute autre forme densifiée appropriée. Bien entendu on entend également par charge inorganique renforçante des mélanges de différentes charges inorganiques renforçantes, en particulier de silices telles que décrites ci-dessus.
[0128] Pour coupler la charge inorganique renforçante à l'élastomère diénique, on peut utiliser de manière bien connue un agent de couplage (ou agent de liaison) au moins bi27 fonctionnel destiné à assurer une connexion suffisante, de nature chimique et/ou physique, entre la charge inorganique (surface de ses particules) et l'élastomère diénique.
[0129] On utilise en particulier des organosilanes ou des polyorganosiloxanes au moins bifonctionnels. Par « bifonctionnel », on entend un composé possédant un premier groupe fonctionnel capable d’interagir avec la charge inorganique et un second groupe fonctionnel capable d’interagir avec l’élastomère diénique. Par exemple, un tel composé bifonctionnel peut comprendre un premier groupe fonctionnel comprenant un atome de silicium, le dit premier groupe fonctionnel étant apte à interagir avec les groupes hydroxyles d’une charge inorganique et un second groupe fonctionnel comprenant un atome de soufre, le dit second groupe fonctionnel étant apte à interagir avec l’élastomère diénique.
[0130] Préférentiellement, les organosilanes sont choisis dans le groupe constitué par les organosilanes polysulfurés (symétriques ou asymétriques) tels que le tétrasulfure de bis(3-triéthoxysilylpropyl), en abrégé TESPT commercialisé sous la dénomination « Si69 » par la société Evonik ou le disulfure de bis-(triéthoxysilylpropyle), en abrégé TES PD commercialisé sous la dénomination « Si75 » par la société Evonik, les polyorganosiloxanes, les mercaptosilanes, les mercaptosilanes bloqués, tels que l’octanethioate de S-(3-(triéthoxysilyl)propyle)commercialisé par la société Momentive sous la dénomination « NXT Silane ». Plus préférentiellement, l’organosilane est un organosilane polysulfuré.
[0131] Bien entendu pourraient être également utilisés des mélanges des agents de couplage précédemment décrits.
[0132] La teneur en agent de couplage dans la composition de l’invention est avantageusement inférieure ou égale à 35 pce, étant entendu qu’il est en général souhaitable d’en utiliser le moins possible. Typiquement le taux d’agent de couplage représente de 0,5% à 15% en poids par rapport à la quantité de charge inorganique renforçante.
[0133] L'homme du métier comprendra qu’en remplacement de la charge inorganique renforçante décrite ci-dessus, pourrait être utilisée une charge renforçante d'une autre nature, dès lors que cette charge renforçante d’une autre nature serait recouverte d'une couche inorganique telle que de la silice, ou bien comporterait à sa surface des sites fonctionnels, notamment hydroxyles, nécessitant l'utilisation d'un agent de couplage pour établir la liaison entre cette charge renforçante et l'élastomère diénique. A titre d'exemple, on peut citer des noirs de carbone partiellement ou intégralement recouverts de silice, ou des noirs de carbone modifiés par de la silice, tels que, à titre non limitatif, les charges de type « Ecoblack® » de la série CRX2000 » ou de la série « CRX4000 » de la société Cabot Corporation.
[0134] L'homme du métier saura adapter le taux de charge renforçante dans la composition de caoutchouc de l’invention selon l’utilisation concernée, notamment selon le type de pneumatiques concerné, par exemple pneumatique pour moto, pour véhicule de tourisme ou encore pour véhicule utilitaire tel que camionnette ou poids lourd. De préférence, ce taux de charge renforçante est compris dans un domaine allant de 10 à 200 pce, plus préférentiellement de 30 à 180 pce, l’optimum étant de manière connue différent selon les applications particulières visées.
[0135] Selon un mode de réalisation, la charge renforçante comprend majoritairement de la silice ; de préférence consiste essentiellement en de la silice, plus préférentiellement encore consiste en de la silice. Dans ce mode de réalisation où la charge renforçante comprend majoritairement de la silice, le taux de noir de carbone présent dans la composition de caoutchouc est préférentiellement compris dans un domaine allant de 2 à 20 pce.
[0136] Selon un autre mode de réalisation de l’invention, la charge renforçante comprend majoritairement du noir de carbone, voire consiste essentiellement en du noir de carbone, plus préférentiellement encore consiste en du noir de carbone.
[0137] Un autre composant de la composition de caoutchouc selon l’invention est un agent de réticulation.
[0138] L’agent de réticulation peut être tout type de système connu de l’homme de l’art dans le domaine des compositions de caoutchouc pour pneumatique. Il peut notamment être à base de soufre.
[0139] De manière préférentielle, l’agent de réticulation est à base de soufre, on parle alors d’un système de vulcanisation. Le soufre peut être apporté sous toute forme, notamment sous forme de soufre moléculaire, ou d'un agent donneur de soufre. Au moins un accélérateur de vulcanisation est également préférentiellement présent, et, de manière optionnelle, préférentielle également, on peut utiliser divers activateurs de vulcanisation connus tels qu'oxyde de zinc, acide stéarique ou composé équivalent tels que les sels d’acide stéarique et sels de métaux de transition, dérivés guanidiques (en particulier diphénylguanidine), ou encore des retardateurs de vulcanisation connus.
[0140] Le soufre est utilisé à un taux préférentiel compris entre 0,5 et 12 pce, en particulier entre 1 et 10 pce. L'accélérateur de vulcanisation est utilisé à un taux préférentiel compris entre 0,5 et 10 pce, plus préférentiellement compris entre 0,5 et 5,0 pce.
[0141] On peut utiliser comme accélérateur tout composé susceptible d'agir comme accélérateur de vulcanisation des élastomères diéniques en présence de soufre, notamment des accélérateurs du type thiazoles ainsi que leurs dérivés, des accélérateurs de types sulfénamides, thiurames, dithiocarbamates, dithiophosphates, thiourées et xanthates. A titre d'exemples de tels accélérateurs, on peut citer notamment les composés suivants : disulfure de 2-mercaptobenzothiazyle (en abrégé « MBTS »), N-cyclohexyl-2-benzothiazyle sulfénamide (« CBS »), N,N-dicyclohexyl-2-benzothiazyle sulfénamide (« DCBS »), N-ter-butyl-2-benzothiazyle sulfénamide (« TBBS »), Nter-butyl-2-benzothiazyle sulfénimide (« TBSI »), disulfure de tetrabenzylthiurame (« TBZTD »), dibenzyldithiocarbamate de zinc (« ZBEC ») et les mélanges de ces composés.
[0142] Les compositions de caoutchouc conformes à l'invention peuvent comporter également tout ou partie des additifs et agents de mise en œuvre usuels, connus de l’homme de l’art et habituellement utilisés dans les compositions de caoutchouc pour pneumatiques, en particulier de bandes de roulement, comme par exemple des plastifiants (tels que des huiles plastifiantes et/ou des résines plastifiantes), des charges non renforçantes, des pigments, des agents de protection tels que cires anti-ozone, antiozonants chimiques, anti-oxydants, des agents anti-fatigue, des résines renforçantes (telles que décrites par exemple dans la demande WO 02/10269).
[0143] Un autre objet de la présente invention est un procédé de préparation de la composition de caoutchouc décrite ci-dessus.
[0144] La composition de caoutchouc conforme à l’invention est fabriquée dans des mélangeurs appropriés, en utilisant deux phases de préparation successives bien connues de l'homme du métier :
• une première phase de travail ou malaxage thermomécanique (phase dite « non-productive ») conduite à une température maximale comprise dans un domaine allant de 110°C à 200°C, de préférence de 130°C à 185°C, pendant une durée généralement comprise entre 2 et 10 minutes, • une seconde phase de travail mécanique (phase dite « productive »), qui est réalisée dans un mélangeur externe tel qu'un mélangeur à cylindres, après refroidissement du mélange obtenu au cours de la première phase nonproductive jusqu'à une plus basse température, typiquement inférieure à 120°C, par exemple entre 40°C et 100°C.On incorpore alors l’agent de réticulation, et l’ensemble est mélangé pendant quelques minutes, par exemple entre 5 et 15 min.
[0145] De manière générale, tous les constituants de base de la composition de selon de l'invention, à l'exception de l’agent de réticulation chimique, à savoir la ou les charges renforçantes, l'agent de couplage le cas échéant, sont incorporés de manière intime, par malaxage, à l'élastomère diénique ou aux élastomères diéniques au cours de la première phase dite non-productive, c'est-à-dire que l'on introduit dans le mélangeur et que l'on malaxe thermomécaniquement, en une ou plusieurs étapes, au moins ces différents constituants de base jusqu'à atteindre la température maximale comprise entre 110°C et 200°C, de préférence comprise entre 130°C et 185°C.
[0146] Selon un premier mode de réalisation de l'invention, l'élastomère diénique a été greffé par le composé de formule (I), en particulier par le composé de formule (VI) préalablement à la fabrication de la composition de caoutchouc. Ainsi, dans ce cas, c'est l'élastomère diénique greffé qui est introduit au cours de la première phase dite non-productive. Ainsi selon ce premier mode de réalisation du procédé, celui-ci comprend les étapes suivantes:
• modifier l'élastomère diénique par greffage en post-polymérisation en solution ou en masse du composé de formule (I), en particulier du composé de formule (VI), tel que défini ci-dessus, • incorporer à l'élastomère diénique ainsi greffé par le composé de formule (I), en particulier par le composé de formule (VI), la charge renforçante et tous les constituants de base de la composition, à l'exception de l’agent de réticulation, en malaxant thermomécaniquement le mélange, en une ou plusieurs fois, jusqu'à atteindre une température maximale comprise entre 110°C et 200°C, de préférence entre 130°C et 185°C, • refroidir le mélange précédent à une température inférieure à 100°C, • incorporer ensuite l'agent de réticulation, et • malaxer le mélange obtenu à l’étape précédente jusqu'à une température inférieure à 120°C.
[0147] Le greffage de l'élastomère diénique se fait par réaction dudit élastomère diénique avec le groupement Q porté par le composé de formule (I), en particulier par l’oxyde de nitrile porté par le composé de formule (VI). Lors de cette réaction, ce groupement Q forme une liaison covalente avec la chaîne dudit élastomère diénique. Plus précisément, le greffage du composé de formule (I), en particulier du composé de formule (VI), est effectué par cycloaddition [3+2] du groupement Q (respectivement de l’oxyde de nitrile) avec une insaturation de la chaîne de l’élastomère diénique initiale. Un mécanisme de la cycloaddition [3+2] peut être trouvé dans le document W02012/007441.
[0148] L’élastomère diénique porte le long de la chaîne polymère principale un ou plusieurs groupes pendants issus de la réaction de greffage des composés de formule (I), en particulier du composé de formule (VI), tels que définis ci-dessus. Avantageusement, ces groupes pendants sont répartis le long de la chaîne polymère principale de façon aléatoire.
[0149] Le greffage du composé de formule (I), en particulier du composé de formule (VI), peut être réalisé en masse, par exemple dans un mélangeur interne ou un mélangeur externe tel qu'un mélangeur à cylindres. Le greffage est alors mis en œuvre soit à une température du mélangeur externe ou du mélangeur interne inférieure à 60°C, suivi d'une étape de réaction de greffage sous presse ou en étuve à des températures allant de 80°C à 200°C, soit à une température du mélangeur externe ou du mélangeur interne supérieure à 60°C sans traitement thermique postérieur.
[0150] Le procédé de greffage peut également être effectué en solution en continu ou en discontinu. L’élastomère diénique ainsi greffé peut être séparé de sa solution par tout type de moyen connu de l’homme du métier, en particulier par une opération de stripping à la vapeur d’eau.
[0151] Selon un second mode de réalisation de l'invention, le greffage de l'élastomère diénique par le composé de formule (I), en particulier de formule (VI), est effectué concomitamment à la fabrication de la composition de caoutchouc. Dans ce cas, tant l'élastomère diénique non encore greffé que le composé de formule (I), en particulier de formule (VI), sont introduits au cours de la première phase dite non-productive. De manière préférentielle, la charge renforçante est alors ajoutée subséquemment au cours de cette même phase non- productive afin de prévenir toute réaction parasite avec le compose de formule (I), en particulier le composé de formule (VI).
[0152] Ainsi, selon ce deuxième mode de réalisation du procédé, celui-ci comprend les étapes suivantes:
• incorporer à l'élastomère diénique, au moins un composé de formule (I), en particulier au moins un composé de formule (VI), tel que défini ci-dessus, et, de préférence subséquemment, la charge renforçante, ainsi que tous les constituants de base de la composition, à l'exception de l’agent de réticulation chimique, en malaxant thermomécaniquement le mélange, en une ou plusieurs fois, jusqu'à atteindre une température maximale comprise entre 110°C et 200°C, de préférence entre 130°C et 185°C ;
• refroidir le mélange obtenu à l’étape précédente à une température inférieure à 100°C, • incorporer ensuite l'agent de réticulation, • malaxer le mélange obtenu à l’étape précédente jusqu'à une température maximale inférieure à 120°C.
[0153] Dans ces deux modes de réalisation préférés, le taux molaire de greffage du composé de formule (I), en particulier du composé de formule (VI), est compris dans un domaine allant de 0,01 % à 15 %, de préférence de 0,05 % à 10 %, plus préférentiellement de 0,07 à 5 %.
[0154] Par « taux molaire de greffage » on entend le nombre de mol de composé de formule (I), en particulier du composé de formule (VI), greffé sur l’élastomère diénique pour 100 moles d’unité monomère constituant l’élastomère diénique. Le taux molaire de greffage peut être déterminé par les méthodes conventionnelles d’analyses des polymères, telles que par exemple l’analyse RMN Ή.
[0155] La composition de caoutchouc finale ainsi obtenu peut ensuite être calandrée par exemple sous forme d’une feuille ou d’une plaque, notamment pour caractérisation, ou encore extrudée sous la forme d’un profilé de caoutchouc utilisable comme article semi-fini pour pneumatique.
[0156] Un autre objet de la présente invention est un article semi-fini pour pneumatique comprenant une composition de caoutchouc telle que définie ci-dessus, de préférence l’article semi-fini est une bande de roulement.
[0157] L’invention a également pour objet un pneumatique comprenant une composition de caoutchouc selon l’invention telle que définie ci-dessus ; de préférence dans tout ou partie de sa bande de roulement.
[0158] Préférentiellement, le pneumatique selon l’invention sera choisi parmi les pneumatiques destinés à équiper un véhicule à deux roues, un véhicule de tourisme, ou encore un véhicule dit « poids lourd » (c'est-à-dire métro, bus, véhicules hors-la-route, engins de transport routier tels que camions, tracteurs, remorques), ou encore des avions, des engins de génie civil, agraire, ou de manutention.
[0159] En plus, des objets décrits précédemment, l’invention concerne au moins l’un des objets décrits aux points suivants :
[0160] 1 Composition de caoutchouc à base d’au moins un élastomère diénique, au moins une charge renforçante, au moins un agent de réticulation et au moins un composé de formule (I), éventuellement déjà greffé sur ledit élastomère [Chem I]
E---A---Q (D dans laquelle :
Q représente un dipôle comprenant au moins un atome d’azote ;
A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ;
E représente un groupe de liaison divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
Ri, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et n est un entier ayant une valeur supérieure ou égale à 1.
[0161] 2. Composition selon le point 1, dans laquelle l’élastomère diénique est choisi dans le groupe constitué par les copolymères d’éthylène-propylène-monomère diène, le caoutchouc butyle, le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères.
[0162] 3. Composition selon le point 1, dans laquelle l’élastomère diénique est choisi dans le groupe constitué par les copolymères d’éthylène-propylène-monomère diène, le caoutchouc butyle et le mélange de ces caoutchouc.
[0163] 4. Composition selon le point 1, dans laquelle l’élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères.
[0164] 5. Composition selon le point 1, dans laquelle l’élastomère diénique est choisi dans le groupe constitué par les polybutadiènes, les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères.
[0165] 6. Composition selon le point 1, dans laquelle l’élastomère diénique est choisi dans le groupe constitué par les polybutadiènes, les copolymères de styrène-butadiène, les copolymères d’isobutène-isoprène, les copolymères d’éthylène-butadiène, les copolymères d’isoprène-styrène, les copolymères d’isoprène-butadiène, les copolymères d’isoprène-butadiène-styrène et les mélanges de ces élastomères.
[0166] 7. Composition selon l’un quelconque des points 1 à 6, dans laquelle le groupement
Q est choisi parmi le groupe constitué par l’oxyde de nitrile, la nitrone et la nitrile imine.
[0167] 8. Composition selon le point 7, dans laquelle le groupement Q est un groupe de formule (II), (III) ou (IV) [Chem II, III, IV]
X Z° *---=N+—o- *---==M+—N--Re * r5 (III) <IV>
(II) dans lesquelles :
• le symbole * représente le rattachement de Q à A ; et • R4, R5 et R6 sont choisis indépendamment parmi un atome d’hydrogène, un alkyle en C1-C20 linéaire ou ramifié, un cycloalkyle en C3-C30 éventuellement substitué par une chaîne hydrocarbonée, un aryle en C6-C20 éventuellement substitué par une chaîne hydrocarbonée.
[0168] 9. Composition selon l’un quelconque des points 1 à 8, dans laquelle le groupement
A est un cycle arènediyle en C6-C14 éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes.
[0169] 10. Composition selon le point 9, dans laquelle le composé de formule (I) est choisi parmi les composés de formule (la) et (Ib) [Chem la, Ib]
[0170] dans lesquelles :
— le groupement Q est tel que défini selon l’une quelconque des points 1, 9 et 10 ;
— un groupement choisi parmi R7 à RI 1 de la formule (la) et un groupement choisi parmi R7 à R13 de la formule (Ib) désigne le groupe de formule (V) suivante : [Chem V]
Rs
(V)
[0171] dans laquelle n, E, RI, R2 et R3 sont tels que définis au point 1, — les quatre autres groupements de la formule (la) et les six autres groupements de la formule (Ib), identiques ou différents, représentent indépendamment les uns les autres, un atome d’hydrogène ou une chaîne hydrocarbonée, linéaire ou ramifiée, de préférence saturée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes.
[0172] 11. Composition selon le point 10, dans laquelle le composé de formule (I) est choisi parmi les composés de formule (VI) [Chem VI]
[0173]
[0174]
[0175]
[0176]
[0177] dans laquelle :
• A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes carbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ;
• E représente un groupe divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
• Rb R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et • n est un entier ayant une valeur supérieure ou égale à 1.
12. Composition selon le point 11, dans laquelle le groupement A est un cycle arènediyle en C6-C14 éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes.
13. Composition selon l’un quelconque des points 1 à 12, dans laquelle n= 1, 2, 3 ou 4, préférentiellement n=l ou 2, plus préférentiellement n=l.
14. Composition selon l’un quelconque des points 1 à 13, dans laquelle le groupement E est choisi parmi une chaîne hydrocarbonée linéaire ou ramifiée, de préférence saturée en C1-C24, préférentiellement en C1-C10, plus préférentiellement en C1-C6 éventuellement interrompue par un ou plusieurs atomes d’azote, de soufre ou d’oxygène.
15. Composition selon l’un quelconque des points 1 à 14, dans laquelle le groupement E est choisi dans le groupe constitué par -R- ou -OR- où R est un alkylène en C1-C24, de préférence en C1-C10, plus préférentiellement en C1-C6.
16. Composition selon l’un quelconque des points 1 à 15, dans laquelle le groupement E est choisi parmi -CH2-, -CH2-CH2-, -CH2-CH2-CH2-, CH2-CH2-CH2-CH2-, -O-CH2-, -O-CH2-CH2-, -O-CH2-CH2-CH2- et O-CH2-CH2-CH2-CH2-.
[0178] 17. Composition selon l’un quelconque des points 1 à 16, dans laquelle les groupes
RI, R2, R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou un alkyle linéaire ou ramifié en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6.
[0179] 18. Composition selon l’un quelconque des points 1 à 17, dans laquelle le groupe RI est un atome d’hydrogène et les groupes R2 et R3, identiques ou différents, sont des alkyles linéaires ou ramifiés en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6.
[0180] 19. Composition selon l’un quelconque des points 1 à 18, dans laquelle les groupes
RI, R2 et R3 sont un atome d’hydrogène.
[0181] 20. Composition selon l’un quelconque des points 13 à 19, dans laquelle le composé de formule (I) est choisi dans le groupe constitué par le composé de formule (VII) et le composé de formule (VIII) [Chem VII]
(VIT)
[Chem. VIII]
[0182] 21. Composition selon l’un quelconque des points 1 à 20, dans laquelle la charge renforçante est choisie parmi le noir de carbone, une charge renforçante inorganique et leurs mélanges.
[0183] 22. Composition selon le point 21, dans laquelle la charge renforçante comprend du noir de carbone.
[0184] 23. Composition selon le point 21, dans laquelle la charge renforçante comprend une charge renforçante inorganique.
[0185] 24. Composition selon le point 23, dans laquelle la charge renforçante inorganique est de la silice.
[0186] 25. Composition selon l’un quelconque des points 1 à 24, dans laquelle le taux molaire de greffage du composé de formule (I) est compris dans un domaine allant de 0,01 % à 15 %, de préférence de 0,05 % à 10 %, plus préférentiellement de 0,07 à 5 %.
[0187] 26. Procédé de préparation d’une composition de caoutchouc telle que définie à l’un quelconque des points 1 à 25, comprenant les étapes suivantes :
• modifier un élastomère diénique par greffage post-polymérisation en solution ou en masse du composé de formule (I), en particulier le composé de formule (VI);
• incorporer à l’élastomère diénique ainsi greffé par le composé de formule (I), en particulier le composé de formule (VI), la charge renforçante, en malaxant le mélange en une ou plusieurs fois, jusqu’à atteindre une température maximale comprise entre 110°C et 200°C, de préférence entre 130°C et 185°C ;
• refroidir le mélange précédent à une température inférieure ou égale à 100°C, • incorporer ensuite l’agent de réticulation chimique, et • malaxer le mélange obtenu à l’étape précédente jusqu’à une température inférieure à 120°C.
[0188] 27. Procédé de préparation d’une composition de caoutchouc telle que définie à l’un quelconque des points 1 à 25, comprenant les étapes suivantes :
• incorporer au cours du mélangeage en masse à l’élastomère diénique, au moins composé de formule(I), en particulier le composé de formule (VI), et de préférence subséquemment, la charge renforçante, en malaxant thermomécaniquement le mélange, en une ou plusieurs fois, jusqu’à atteindre une température maximale comprise entre 110°C et 200°C, de préférence entre 130°C et 185°C ;
• refroidir le mélange obtenu à l’étape précédente à une température inférieure ou égale à 100°C ;
• incorporer ensuite l’agent de réticulation chimique, et • malaxer le mélange obtenu à l’étape précédente jusqu’à une température in- férieure à 120°C.
[0189] 28. Procédé selon le point 26 ou 27, dans lequel l’élastomère diénique est choisi dans le groupe constitué par les copolymères d’éthylène-propylène-monomère diène, le caoutchouc butyle, le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères.
[0190] 29. Procédé selon le point 26 ou 27, dans lequel l’élastomère diénique est choisi dans le groupe constitué par les copolymères d’éthylène-propylène-monomère diène, le caoutchouc butyle et le mélange de ces caoutchouc.
[0191] 30. Procédé selon le point 26 ou 27, dans lequel l’élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères.
[0192] 31. Procédé selon le point 26 ou 27, dans lequel l’élastomère diénique est choisi dans le groupe constitué par les polybutadiènes, les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères.
[0193] 32. Procédé selon le point 26 ou 27, dans lequel l’élastomère diénique est choisi dans le groupe constitué par les polybutadiènes, les copolymères de styrène-butadiène, les copolymères d’éthylène-butadiène, les copolymères d’isobutène-isoprène, les copolymères d’isoprène-styrène, les copolymères d’isoprène-butadiène, les copolymères d’isoprène-butadiène-styrène et les mélanges de ces élastomères.
[0194] 33. Procédé selon l’un quelconque des points 26 à 32, dans lequel le taux molaire de greffage du composé de formule (I) est compris dans un domaine allant de 0,01 % à 15 %, de préférence de 0,05 % à 10 %, plus préférentiellement de 0,07 à 5 %.
[0195] 34. Procédé selon l’un quelconque des points 26 à 33, dans lequel le groupement Q est choisi parmi le groupe constitué par l’oxyde de nitrile, la nitrone et la nitrile imine.
[0196] 35. Procédé selon le point 34, dans lequel le groupement Q est un groupe de formule (II), (III) ou (IV) [Chem II, III, IV]
---Q’ (III) (IV) (II) dans lesquelles :
le symbole * représente le rattachement de Q à A ; et
R4, R5 et R6 sont choisis indépendamment parmi un atome d’hydrogène, un alkyle en C1-C20 linéaire ou ramifié, un cycloalkyle en C3-C30 éven tuellement substitué par une chaîne hydrocarbonée, un aryle en C6-C20 éventuellement substitué par une chaîne hydrocarbonée.
[0197] 36. Procédé selon l’un quelconque des points 26 à 35, dans lequel le groupement A est un cycle arènediyle en C6-C14 éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes.
[0198] 37. Procédé selon le point 36, dans lequel le composé de formule (I) est choisi parmi les composés de formule (la) et (Ib) [Chem la, Ib]
dans lesquelles :
— le groupement Q est tel que défini selon l’un quelconque des points 23, 31 et 32;
— un groupement choisi parmi R7 à Ru de la formule (la) et un groupement choisi parmi R7 à Rn de la formule (Ib) désigne le groupe de formule (V) suivante : [Chem V]
(V) dans laquelle η, E, Rb R2 et R3 sont tels que définis au point 1, —les quatre autres groupements de la formule (la) et les six autres groupements de la formule (Ib), identiques ou différents, représentent indépendamment les uns les autres, un atome d’hydrogène ou une chaîne hydrocarbonée, linéaire ou ramifiée, de préférence saturée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes.
[0199] 38. Procédé selon le point 35, dans lequel le composé de formule (I) est choisi parmi les composés de formule (VI) [Chem VI]
[0200]
[0201]
[0202]
[0203]
[0204]
[0205] (VI) dans laquelle :
• A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes carbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ;
• E représente un groupe divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;
• Ri, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et • n est un entier ayant une valeur supérieure ou égale à 1.
39. Procédé selon le point 37, dans lequel le groupement A est un cycle arènediyle en C6-C14 éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes.
40. Procédé selon l’un quelconque des points 26 à 39, dans lequel n= 1, 2, 3 ou 4, préférentiellement n=l ou 2, plus préférentiellement n=l.
41. Procédé selon l’un quelconque des points 26 à 40, dans lequel le groupement E est choisi parmi une chaîne hydrocarbonée linéaire ou ramifiée, de préférence saturée en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6 éventuellement interrompue par un ou plusieurs atomes d’azote, de soufre ou d’oxygène.
42. Procédé selon l’un quelconque des points 26 à 41, dans lequel groupement E est choisi dans le groupe constitué par -R- ou -OR- où R est un alkylène en C1-C24, de préférence en C1-C10, plus préférentiellement en C1-C6.
43. Procédé selon l’un quelconque des points 26 à 42, dans lequel le groupement E est choisi parmi -CH2-, -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2-, O-CH2-, -O-CH2-CH2-, -O-CH2-CH2-CH2- et -O-CH2-CH2-CH2-CH2-.
44. Procédé selon l’un quelconque des points 26 à 43, dans lequel les groupes RI, R2, R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou un alkyle linéaire ou ramifié en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6.
[0206] 45. Procédé selon l’un quelconque des points 26 à 44, dans lequel le groupe RI est un atome d’hydrogène et les groupes R2 et R3, identiques ou différents, sont des alkyles linéaires ou ramifiés en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6.
[0207] 46. polymère modifié selon l’un quelconque des points 26 à 45, dans lequel les groupes RI, R2 et R3 sont un atome d’hydrogène.
[0208] 47. Procédé selon l’un quelconque des points 36 à 46, dans lequel le composé de formule (V) est choisi dans le groupe constitué par le composé de formule (VII) et le composé de formule (VIII) [Chem. VII]
(VH)
[Chem. VIII]
0’
(Vin)
[0209] 48. Article semi-fini pour pneumatique comprenant au moins une composition de caoutchouc telle que définie à l’un quelconque des points 1 à 25 ou bien obtenue selon le procédé tel que défini à l’un quelconque des points 26 à 47.
[0210] 49. Pneumatique comprenant au moins une composition de caoutchouc telle que définie à l’un quelconque des points 1 à 25 ou bien obtenue selon le procédé tel que défini à l’un quelconque des points 26 à 47.
[0211] Les exemples qui suivent illustrent l'invention sans toutefois la limiter.
Exemples
[0212] Détermination de la température de transition vitreuse
[0213] La température de transition vitreuse Tg des polymères sont mesures au moyen d’un calorimètre différentiel (« Differential Scanning Calorimeter ») selon la norme ASTM D3418-08.
[0214] Caractérisations des molécules
[0215] L’analyse structurale ainsi que la détermination des puretés molaires des molécules de synthèse sont réalisées par une analyse RMN. Les spectres sont acquis sur un spectromètre Avance 3 400 MHz BRUKER équipé d’une sonde « large bande BBLO-zgrad 5 mm ». L’expérience RMN Ή quantitative, utilise une séquence simple impulsion 30° et un délai de répétition de 3 secondes entre chacune des 64 acquisitions. Les échantillons sont solubilisés dans un solvant deutéré, le diméthylsulfoxide deutéré (DMSO) sauf indication contraire. Le solvant deutéré est également utilisé pour le signal de « lock ». Par exemple, la calibration est réalisée sur le signal des protons du DMSO deutéré à 2,44 ppm par rapport à une référence TMS à 0 ppm. Le spectre RMN Ή couplé aux expériences 2D HSQC 'H/13C et HMBC 'H/13C permettent la détermination structurale des molécules (cf tableaux d’attribution). Les quantifications molaires sont réalisées à partir du spectre RMN ID Ή quantitatif.
[0216] Molécules greffée sur élastomère diénique
[0217] La détermination du taux molaire du composé greffé testé sur un élastomère diénique est réalisée par une analyse RMN. Les spectres sont acquis sur un spectromètre 500 MHz BRUKER équipé d’une sonde « CryoSonde BBEO-zgrad-5 mm ». L’expérience RMN Ή quantitative, utilise une séquence simple impulsion 30° et un délai de répétition de 5 secondes entre chaque acquisition. Les échantillons sont solubilisés dans un solvant deutéré, le chloroforme deutéré (CDC13) sauf indication contraire dans le but d’obtenir un signal de « lock ». Des expériences RMN 2D ont permis de vérifier la nature du motif greffé grâce aux déplacements chimiques des atomes de carbone et de proton.
[0218] Mesure des masses molaires moyennes en nombre fMn), en poids fMw) et de l’indice de polydispersité des élastomères diéniques,
[0219] On utilise la chromatographie d'exclusion stérique ou SEC (Size Exclusion Chromatography). La SEC permet de séparer les macromolécules en solution suivant leur taille à travers des colonnes remplies d'un gel poreux. Les macromolécules sont séparées suivant leur volume hydrodynamique, les plus volumineuses étant éluées en premier.
[0220] Sans être une méthode absolue, la SEC permet d'appréhender la distribution des masses molaires d'un élastomère. A partir de produits étalons commerciaux, les dif43 férentes masses molaires moyennes en nombre (Mn) et en poids (Mw) peuvent être déterminées et l'indice de polymolécularité (Ip = Mw/Mn) calculé via un étalonnage dit de MOORE.
[0221] Il n'y a pas de traitement particulier de l'échantillon de l’élastomère avant analyse. Celui-ci est simplement solubilisé à une concentration d'environ 1 g/1, dans du chloroforme ou dans le mélange suivant : tétrahydrofurane + 1 % vol. de diisopropylamine + 1 % vol. de triéthylamine + 1 % vol. d'eau distillée (% vol. =% volume). Puis, la solution est filtrée sur filtre de porosité 0,45 μιη avant injection.
[0222] L'appareillage utilisé est un chromatographe « WATERS alliance ». Le solvant d'élution est le mélange suivant : tétrahydrofurane + 1 % vol. de düsopropylamine + 1 % vol. de triéthylamine ou du chloroforme selon le solvant utilisé pour la mise en solution de l’élastomère. Le débit est de 0,7 ml/min, la température du système de 35°C et la durée d'analyse de 90 min. On utilise un jeu de quatre colonnes WATERS en série, de dénominations commerciales « STYRAGEL HMW7 », « STYRAGEL HMW6E » et deux « STYRAGEL HT6E ».
[0223] Le volume injecté de la solution de l'échantillon de l’élastomère est 100 iiL. Le détecteur est un réfractomètre différentiel « WATERS 2410 » de longueur d’onde 810 nm. Le logiciel d'exploitation des données chromatographiques est le système «WATERS EM POWER».
[0224] Les masses molaires moyennes calculées sont relatives à une courbe d'étalonnage réalisée à partir de polystyrènes étalons commerciaux « PSS READY CAL-KIT ».
[0225] Essai de traction :
[0226] Ces essais permettent de déterminer les contraintes d’élasticité et les propriétés à la rupture après cuisson. Sauf indication différente, ils sont effectués conformément à la norme française NF T 46-002 de septembre 1988. On mesure en première élongation (i.e., sans cycle d’accommodation) les modules sécants vrais (i.e., calculés en se ramenant à la section réelle de l’éprouvette), exprimés en MPa, à 100 % d’allongement (modules notés M100), à 300 % d’allongement (M300). Toutes ces mesures de traction sont effectuées dans les conditions normales de température et d’hygrométrie (23°C ± 2°C, 50 % ± 5 % d’humidité relative).
[0227] Les résultats sont indiqués en base 100 ; la valeur arbitraire 100 étant attribuée au témoin pour calculer et comparer ensuite M100 des différents échantillons testés. La valeur en base 100 pour l’échantillon à tester est calculée selon l’opération : (valeur de M100 de l’échantillon à tester/valeur de M100 du témoin) x 100. On effectue le même calcul pour M300 et pour le rapport M300/M100. On s'intéresse en particulier au rapport M300/M100, qui donne une indication des propriétés de renforcement. Plus la valeur du rapport M300/M100 est élevée, plus les propriétés de renforcement sont améliorées.
[0228] Propriétés dynamiques
[0229] Les propriétés dynamiques AG* et tan(ô)max sont mesurées sur un viscoanalyseur (Metravib VA4000), selon la norme ASTM D5992-96. On enregistre la réponse d’un échantillon de composition vulcanisée (éprouvette cylindrique de 4 mm d’épaisseur et de de 400 mm2 de section), soumis à une sollicitation sinusoïdale en cisaillement simple alterné, à la fréquence de 10Hz à 60°C. On effectue un balayage en amplitude de déformation de 0,1 % à 100 % (cycle aller) puis de 100 % à 0,1 % (cycle retour).
[0230] On effectue également ces mêmes mesures à une température de 100°C.
[0231] Les résultats exploités sont l’écart de module complexe de cisaillement dynamique entre les valeurs 0,1% et 100% de déformation à 60°C (AG*à6o°c retour ; effet Payne) et le facteur de perte tan(ô).
[0232] Pour le cycle aller, on indique la valeur maximale de tan(ô) à 60°C noté tan(ô)maxà6œc aiie,.. Pour le cycle retour, on indique la valeur maximale de tan(ô) à 100°C noté tan(ô) maxà ioo cretour· Les résultats sont indiques en base 100 ; la valeur arbitraire 100 étant attribuée au témoin pour calculer et comparer ensuite tan(ô)maxa6o«caiier des différents échantillons testés. La valeur en base 100 pour l’échantillon à tester est calculée selon l’opération : (valeur de tan(ô)maxa6o«caiier de l’échantillon à tester/valeur de tan(ô)maxa60 c aiier du témoin) xlOO. De cette façon, un résultat inférieur à 100 indique une diminution de l’hystérèse (donc une amélioration des propriétés hystérétiques) qui correspond à une amélioration de la performance de résistance au roulement.
[0233] Le même calcul est effectué pour les valeurs de tan(ô)max à iOo°c retour et (AG*àeo c retour) afin d’exprimer les résultats en base 100.
[0234] Un résultat inférieur à 100 pour AG*à6o°c retour indique une meilleure dispersion de la charge renforçante dans la composition de caoutchouc.
I-Synthèse des composés D et I
[0235] I-A/ Synthèse du composé D : Oxyde de
2-((2-oxo-1.3-dioxolan-4-vl)methoxv)-l-naphthonitrile
[Chem.f]
A rdt - 69 % pureté > 90 % mol
C02
Bu4NBr, EDTA-N%
1,4-dioxane
rdt =74% pureté» 9” % mol
D rdt = 88 % pureté = 91 % mol nh2oh/h2o
EtOH
NaOGI/HjO
CH2CI2
C rdt= 67 % pureté» 95 % mol
[0236]
[0237]
[0238]
[0239]
[0240]
L’oxyde de 2-((2-oxo-l,3-dioxolan-4-yl)méthoxy)-l-naphthonitrile est synthétisé en 4 étapes qui sont décrites ci-après. Tous les composés chimiques utilisés lors de cette synthèse proviennent de « Sigma Aldrich ».
Etape 1 : préparation du 2-(oxiran-2-ylméthoxy)-l-naphthaldéhyde (composé A) Une solution de 2-hydroxy-l-naphtaldéhyde (35,0 g ; 0,203 mol,) dans l’épichlorohydrine (270 ml ; 320,0 g ; 3,456 mol ; 17 Eq.) est chauffée pendant 3-5 minutes à une température de 130°C, puis, du chlorure de triméthylbenzylammonium (TMBAC ; 3,8 g ; 0,020 mol ; 0,1 Eq.) est ajouté. Le milieu réactionnel est chauffé jusqu’à ébullition (température du bain = 130-134°C) et agité à cette température pendant 15 minutes. Après cette période, la solution est refroidie à 30-40°C, puis 400 ml de chloroforme sont ajoutés. La solution organique est lavée 4 fois par 150 ml d’eau et la phase organique est séparée puis concentrée sous pression réduite (11 mbar, température du bain = 50°C) pour conduire à 76,58 g d’une huile. Ce résidu huileux est repris par 90 ml de 2-propanol et le mélange est agité pendant 5 à 10 min. La suspension obtenue est ensuite placée pendant 4-5 heures à -18°C. Le précipité obtenu est alors filtré et lavé sur le filtre par du 2-propanol froid (T = - 18°C) (3 fois 20 ml). Le produit est séché à température ambiante et sous pression atmosphérique.
Un solide blanc de point de fusion 94,0-97,5°C est obtenu avec un rendement de 69 % (32,13 g ; 0,141 mol). La pureté molaire est supérieure à 90 % (RMN 1H).
Le 2-hydroxy-l-naphtaldéhyde est commercial. Il peut par exemple être obtenu chez « Sigma Aldrich » (CAS 708-06-5).
Etape 2 : Synthèse du 2-((2-oxo-l,3-dioxolan-4-yl)méthoxy)-l-naphthaldéhyde (composé B)
[0241] Le composé A, 2-(oxiran-2-ylméthoxy)-l-naphthaldéhyde (16,5 g ; 72,3 mmol), est mélangé avec du bromure de tétrabutylammonium (1,17 g ; 3,61 mmol ; 0,05 Eq.) et de l’acide d’éthylènediaminetétraacétique dihydrate sodique (1,17 g ; 3,14 mmol ; 0,04 Eq.) dans 500 ml de 1,4-dioxane. Ce mélange est chauffé à 100°C (température bain) sous atmosphère de CO2 pendant 14-16 heures. Du CO2 est additionné périodiquement par barbotage du milieu pour garder la pression de CO2 constante. Après retour du mélange à température ambiante, le précipité est filtré et lavé sur filtre par du 1,4-dioxane (2 fois 10 ml). Le filtrat est concentré sous pression réduite (75 mbar, température bain 45°C) jusqu’à obtenir un résidu visqueux (41,23 g). De l’acétate d’éthyle (20 ml) et de l’éther de pétrole (30 ml) sont ajoutés (fraction volumique 40/60). Après 10-15 min d’agitation à température ambiante, le précipité obtenu est filtré et lavé sur filtre par un mélange d’acétate d’éthyle/éther de pétrole (2 fois par un mélange d’acétate d’éthyle/éther de pétrole : 5 ml/10 ml), puis par de l’eau (3 fois 10 ml) et enfin par de l’éther de pétrole (20 ml). Un solide blanc (16,85 g) est obtenu avec un rendement de 86 %.
[0242] Ce solide est ensuite dissous dans de l’alcool éthylique (100 ml). Après 10 min agitation à température d’ébullition puis retour à température ambiante (23°C), le milieu réactionnel est refroidi jusqu’à +4°C et conservé à cette température pendant 15-20 heures. Le précipité est filtré et lavé sur filtre par de l’éthanol (2 fois 10 ml) puis séché sous air à température ambiante. Le produit désiré (poudre blanche de point de fusion 158-159°C) est obtenu avec un rendement de 74 % (14,52 g ; 53,33 mmol) et une pureté molaire supérieure à 97 %.
[Chem.g]
[Tableaux 1]
N° | δΉ(ρρηι) | ô13C(ppm) |
1 | 10,68 | 190,8 |
2 | / | 116,0 |
3 | / | 130,5 |
4 | 9,04 | 123,9 |
5 | 7,60 | 129,8 |
6 | 7,43 | 124,9 |
7 | 7,90 | 128,5 |
8 | / | 128,4 |
9 | 8,25 | 137,9 |
10 | 7,52 | 114,5 |
11 | / | 162,6 |
12 | 4,49-4,59 | 69,1 |
13 | 5,23 | 74,6 |
14 | 4,50-4,63 | 66,1 |
15 | / | 154,7 |
[0243] Solvant : DMSO
[0244] Etape 3 : Synthèse de l’oxime
2-((2-oxo-1,3-dioxolan-4-yl)méthoxy)-1 -naphthaldéhyde (composé C)
[0245] A une solution du composé B,
2-((2-oxo-l,3-dioxolan-4-yl)méthoxy)-l-naphthaldéhyde (5,00 g ; 18,37 mmol), dans l’éthanol (50 ml) à 35°C (température bain) est ajoutée une solution d’hydroxylamine (50 % en solution dans l’eau ; 1,82 g ; 27,5 mmol ; 1,5 Eq.) dans l’éthanol (5 ml). Le milieu réactionnel est chauffé jusqu’à 40°C puis agité à cette température pendant 8 heures. Un deuxième ajout de solution d’hydroxylamine (50 % en solution dans l’eau ; 0,61 g ; 9,2 mmol ; 0,5 Eq.) dans l’éthanol (25 ml) est réalisé. Le milieu réactionnel est agité à 40°C pendant 7 heures. Après de refroidissement à température ambiante, le milieu réactionnel est dilué par addition d’eau à 0°C (450 ml) sur une période de 15-20 minutes. Après 10 minutes d’agitation, le précipité est filtré et lavé sur filtre par de l’eau (2 fois 10 ml).
[0246] Un solide blanc de point de fusion 182-183°C est obtenu avec un rendement de 67 % (3,52 g ; 12,25 mmol) et de pureté molaire supérieure à 95 %.
[Chem.h]
OH
[Tableaux2]
N° | ô'H(ppm) | ô13C(ppm) |
1 | 8,60 | 144,8 |
2 | / | 114,2 |
3 | / | 130,7 |
4 | 8,82 | 125,7 |
5 | 7,49 | 127,6 |
6 | 7,37 | 124, |
7 | 7,85 | 128,3 |
8 | / | 129,1 |
9 | 7,95 | 131,5 |
10 | 7,42 | 114,6 |
n | / | 154,9 |
12 | 4,36-4,46 | 69,0 |
13 | 5,17 | 74,8 |
14 | 4,41-4,62 | 65,9 |
15 | / | 154,7 |
[0247] Solvant : DMSO
[0248] Etape 4 : Synthèse de l’oxyde de
2-((2-oxo-l,3-dioxolan-4-yl)méthoxy)-l-naphthonitrile (composé D)
[0249] A une suspension d’oxime 2-((2-oxo-l,3-dioxolan-4-yl)méthoxy)-l-naphthaldéhyde (produit C) (3,42 g ; 11,91 mmol) dans le dichlorométhane (75 ml) à une température de +1°C est ajoutée au goutte à goutte une solution aqueuse de NaOCl dans l’eau (21,5 ml ; 19,05 mmol ; 1,6 Eq. ; solution en chlore actif > 4 %) pendant 3-5 minutes. Le milieu réactionnel est agité pendant 70-80 minutes à cette température. Le précipité est filtré et lavé sur filtre par du CH2C12 (10 ml), puis par de l’eau (2 fois 15 ml) et enfin par un mélange de dichlorométhane/éther de pétrole (fraction volumique 50/50) (10 ml/10 ml) Après séchage sous pression atmosphérique et à température ambiante, un solide blanc de point de fusion 157-158°C est obtenu avec un rendement de 88 % (2,976 g ; 10,43 mmol) et de pureté supérieure à 91 % molaire.
[Chem.i] o-
[Tableaux3]
N° | ô'H(ppm) | ô13C(ppm) |
1 | / | / |
2 | / | 95,6 |
3 | / | 133,2 |
4 | 7,87 | 123,3 |
5 | 7,64 | 129,1 |
6 | 7,47 | 125,2 |
7 | 7,96 | 128,7 |
8 | / | 128,3 |
9 | 8,14 | 133,3 |
10 | 7,53 | 114,2 |
11 | / | 159,9 |
12 | 4,49-4,60 | 68,9 |
13 | 5,19 | 74,6 |
14 | 4,41-4,62 | 65,8 |
15 | / | 154,6 |
[0250]
[0251]
Solvant DMSO
I-b/ Synthèse du composé I : oxyde de
2,4,6-triméthyl-3-((2-oxo-l,3-dioxolan-4-yl)méthoxy)benzonitrile —0
[Chem.j]
pureté — 94¼ mo·: puleîé = 99 H ùïôl
[0252] L’oxyde de 2,4,6-triméthyl-3-((2-oxo-l,3-dioxolan-4-yl)méthoxy)benzonitrile est synthétisé en 5 étapes décrites ci-après. Tous les composés chimiques utilisés lors de cette synthèse proviennent de chez « Sigma Aldrich ».
[0253] Etape 1 : Préparation du 3-hydroxy-2,4,6-triméthylbenzaldéhyde (composé E) [0254] Ce composé peut être obtenu à partir du mésitol et du dichlorométhyl méthyl éther (DCMME) selon une procédure décrite dans Γarticle suivante: Yakubov, A.P.; Tsyganov, D.V.; Belen’kii, L.I.; Krayushkin, M.M. Bulletin of the Academy of Sciences of the USSR, Division of the Chemical Science (English Translation); vol. 40; nb. 7.2; (1991); p. 1427-1432; Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya; nb. 7; (1991); p. 1609-1615.
[0255] Le composé E ayant un point de fusion de 108-109°C est obtenu avec un rendement de 83 % et une pureté molaire supérieure à 90 % (RMN Ή).
[0256] Le mésitol est commercial. Il peut être obtenu par exemple chez « Sigma-Aldrich » (CAS 527-60-6],
[0257] Etape 2 : Préparation du 2,4,6-triméthyl-3-(oxiran-2-ylméthoxy)benzaldéhyde (composé F)
[0258] Au mélange de composé E, le 3-hydroxy-2,4,6-triméthylbenzaldéhyde (30,00 g; 0,183 mol), et d’épichlorhydrine (42,3 g; 0,457 mol) dans racétonitrile (80 ml) est ajouté du potassium carbonate (37,9 g; 0,274 mol). Le milieu réactionnel est chauffé pendant 3 heures à la température de 60°C et ensuite pendant 2,5-3 heures à la température de 70°C. Après un refroidissement à une température de 40-50°C, le mélange réactionnel est dilué par un mélange d’eau (250 ml) et d’acétate d’éthyle (250 ml) et est agité pendant 10 minutes. La phase organique est séparée et lavée par d’eau (4 fois
100 ml). Le solvant est évaporé sous pression réduite (température bain = 40°C ; 12 mbar). Une huile jaune (39,116 g) est obtenue.
[0259] Après séparation par chromatographie sur colonne (SiO2; acétate d’éthyle (AE) : éther de pétrole (PE) = 1:4) et récupération des fractions du produit d’intérêt ; les solvants sont évaporés sous pression réduite (température bain = 40°C ; 11 mbar). L’éther de pétrole (150 ml) est ajouté au résidu obtenu après évaporation et ce mélange est placé à -18°C pendant 2 heures. Le précipité obtenu est filtré, lavé par l’éther de pétrole (3 fois 25 ml) et enfin séché à l’air.
[0260] Un solide blanc (21,916g) est obtenu avec un rendement de 55 %.
[0261] Etape 3 : Préparation du 2,4,6-triméthyl-3-((2-oxo-l,3-dioxolan-4-yl)méthoxy) benzaldéhyde (Composé G)
[0262] Le composé E, le 2,4,6-triméthyl-3-(oxiran-2-ylméthoxy)benzaldéhyde (5,00 g; 22,70 mmol) est mélangé avec du bromure de tétra-n-butylammonium (TBAB ; 0,366 g; 1,135 mmol) et Na2EDTA dihydrate (0,422 g; 1,135 mmol) dans 100 ml de 1,4-dioxane à une température bain égale à 110°C sous atmosphère de CO2. Du CO2 est additionné périodiquement par barbotage du milieu pendant 7-8 heures pour garder la pression de CO2 constante. La pression interne est maintenue par un ballon. Une conversion de 60-65% est atteinte au bout de 14 heures. Après refroidissement à une température de 60°C, le précipité est filtré et lavé par 1,4-dioxane (2 fois 5 ml). Le filtrat est concentré sous pression réduite (température bain = 50°C ; 30 mbar) pour conduire à 5,323 g d’une huile brune.
[0263] Après séparation par chromatographie sur colonne (SiO2; acétate d’éthyle/éther de pétrole = 1:1) et récupération des fractions du produit d’intérêt, les solvants sont évaporés sous pression réduite (température bain = 40°C ; 20 mbar). L’éther de pétrole (5 ml) est ajouté pour provoquer une précipitation rapide. Le précipité est filtré, lavé par l’éther de pétrole (2 fois 5 ml) et enfin séché à l’air.
[0264] Un solide blanc (1,835 g) est obtenu avec un rendement de 31 %. La pureté molaire est supérieure à 98% (RMN Ή).
[Chem.k]
[Tableaux4]
N° | δ Ή (ppm) | ô13C (ppm) |
1 | 10,38 | 193,7 |
2 | / | 131,5 |
3 | / | 136,3 |
4 | 2,41 | 19,3 |
5 | 6,96 | 131,7 |
6 | / | 136,3 |
7 | 2,20 | 16,1 |
8 | / | 152,7 |
9 | / | 133,1 |
10 | 2,39 | 11,7 |
11 | 3,92 | 71,3 |
12 | 5,07 | 75,3 |
13 | 4,41-4,60 | 65,8 |
14 | / | 154,8 |
[0265] Solvant DMSO
[0266] Etape 4 : Préparation de l’oxime
2,4,6-triméthyl-3-((2-oxo-l,3-dioxolan-4-yl)méthoxy) benzaldéhyde (composé H) [0267] A une suspension de composé G, le
2,4,6-triméthyl-3-((2-oxo-l,3-dioxolan-4-yl)méthoxy) benzaldéhyde (1,200g; 4,54 mmol), dans de l’éthanol (50 ml), on ajoute, à température ambiante, une solution d’acétate de sodium (0,559 g; 6,81 mmol) et d’hydrochlorure d’hydroxylamine (0,473 g; 6,81 mmol) dans d’eau (50 ml). Le mélange réactionnel est agité pendant 3 heures à température ambiante. Ensuite, on ajoute un volume d’eau à 0°C (50 ml) et on laisse agiter pendant 15 minutes supplémentaires. Le précipité obtenu est filtré, lavé par d’eau (3 fois 30 ml) et séché à l’air.
[0268] Un solide blanc (1,161 g) ayant un point de fusion de 144-145°C est obtenu avec un rendement de 92 %. La pureté molaire est supérieure à 98 % (RMN Ή).
[Chem.l]
[Tableaux5]
N° | ô'H(ppm) | ô13C(ppm) |
1 | 8,31 | 147,4 |
2 | / | 129,4 |
3 | / | 132,4 |
4 | 2,19 | 20,12 |
5 | 6,87 | 130,5 |
6 | / | 130,4 |
7 | 2,15 | 15,7 |
8 | / | 152,4 |
9 | / | 129,4 |
10 | 2,18 | 13,0 |
11 | 3,89 | 71,1 |
12 | 5,05 | 75,4 |
13 | 4,40-4,59 | 65,8 |
14 | / | 154,8 |
Solvant DMSO
[0269]
[0270]
[0271]
Etape 5 : synthèse de l’oxyde
2,4,6-trimethyl-3-((2-oxo-l,3-dioxolan-4-yl)methoxy)benzonitrile (composé I) A une suspension du composé H, l’oxime
2,4,6-triméthyl-3-((2-oxo-l,3-dioxolan-4-yl)méthoxy) benzaldéhyde (1,01 g; 3,62 mmol) dans CHC13 (50 ml) refroidie jusqu’à 0-2°C, on ajoute de TEA (0,476 g; 4,70 mmol) en une fois et du N-chlorosucinimide (NCS , 0,531 g; 3,98 mmol) par portions pendant 1-2 minutes. Le mélange réactionnel est agité entre 0-3°C pendant 1 heure. Puis la phase organique est lavée par de l’eau (4 fois 100 ml) et concentrée sous pression réduite (température bain = 25°C ; 10 mbar) pour obtenir d’une huile jaune (1,606 g). Ensuite on ajoute du méthyl tert-bytul éther (MTBE, 5 ml). Le précipité obtenu est filtré, lavé par MTBE : éther de pétrole = 1:1 (2 fois 5 ml) et séché à l’air.
[0272] Un solide blanc (0,912 g) de point de fusion 128-129°C est obtenu avec un rendement de 91 %. La pureté molaire est supérieure à 94 % (RMN Ή). [Chem.m]
[Tableaux6]
N° | ô'H(ppm) | ô13C(ppm) |
1 | / | / |
2 | / | 112,3 |
3 | / | 137,3 |
4 | 2,28 | 19,7 |
5 | 7,03 | 130,3 |
6 | / | 134,4 |
7 | 2,18 | 15,9 |
8 | / | 152,3 |
9 | / | 134,1 |
10 | 2,27 | 14,3 |
11 | 3,94 | 65,7 |
12 | 5,06 | 75,2 |
13 | 4,39-4,58 | 71,3 |
14 | / | 154,8 |
[0273] Solvant : DMSO
II- Composition de caoutchouc
11-1/ Préparation des compositions de caoutchouc
[0274] Cet essai a pour but de démontrer les performances améliorées de compositions de caoutchouc comprenant un polymère greffé portant des fonctions carbonate cycliques pendantes conformément à l’invention comparée à une composition de caoutchouc comprenant un polymère non greffé et comparée à une composition de caoutchouc comprenant un polymère portant des fonctions carbonate cycliques pendantes obtenu par voie radicalaire (polymère de l’art antérieur).
[0275] On prépare ainsi trois compositions selon le procédé décrit ci-dessous, à base d’un élastomère SBR, renforcées majoritairement par de la silice ; ces compositions se distinguent les unes des autre comme suit :
• La composition témoin Tl, non conforme à l’invention comprenant un élastomère A qui est un SBR non greffé (non modifié) contenant 26,5 % en poids de styrène par au poids total de l’élastomère, et 24% en poids d’unités butadiène 1,2 par rapport au poids de la partie butadiènique ; de Mn= 120 000 g/mol et d’indice de polydispersité Ip = 1,22 et ayant une Tg = -48°C;
• La composition Cl, non conforme à l’invention, comprend un élastomère B possédant des fonctions carbonate cycliques pendantes, obtenu par polymérisation radicalaire ; le taux molaire de fonctions carbonate cyclique dans cet élastomère est de 2,6 % ;
• La composition C2, conforme à l’invention, comprenant l’élastomère C possédant des fonctions carbonate cycliques pendantes, obtenu par greffage du composé D.
[0276] Obtention de l’élastomère B (non conforme à l’invention)
[0277] La synthèse du terpolymère de styrène, butadiène et de méthacrylate de 4-(hydroxyméthyl)-l,3-dioxolan-2-one (CCMA) par polymérisation radicalaire à froid s’effectue conformément à l’exemple II-2 et II-3 du document WO2018015646 (essai n°l). Ce protocole est repris ci-dessous.
[0278] Préparation au préalable des charges suivantes :
• Suspension dans l’eau de Na2LeP2O7 à 0,0627 mol/1 : le PeSO4, 7H2O et le Na4 P2O7 sont dilués dans de l’eau barbotée, puis le mélange est chauffé à 60°C pendant 45 minutes en agitant régulièrement, • Préparation d’une solution d’hydroperoxyde de cumène dans le styrène à 0,079 mol/1, • Préparation d’une solution de mercaptan (R-SH) dans le styrène à 0,223 mol/1, • Préparation d’une solution de Ν,Ν-diéthylhydroxylamine dans l’eau à 10 g/1.
[0279] On charge le réacteur selon les opérations suivantes :
• introduire l’eau barbotée pendant une demi-heure à 25°C (volume final 22,3 ml), • puis le dodécylsulfate de sodium (SDS) sous azote à 25°C suivi d’un balayage à l’azote de 10 min (0,3 g), • injecter la charge de styrène contenant le R-SH à 25°C sous azote (1 ml de
[0280]
[0281]
[0282]
[0283]
[0284] solution à 0,223 mol/1), • refroidir le réacteur pour atteindre 5°C, • quand le réacteur atteint environ 12°C, injecter le reste de styrène (1,815 ml ; 1,65 g) et le CCMA (0,39 ml ; 0,56g), sous azote, • injecter alors la charge de butadiène (9,88 ml ; 6,42 g), • laisser refroidir le réacteur jusqu’à 5°C, puis injecter la solution de Na2EeP2O7 (1,7 mL de solution à 0,0627 mol/L) • attendre 5 minutes, puis injecter l’amorceur, la solution d’hydroperoxyde de cumène dans le styrène (0,5 mL).
La fin de l’ajout de l’amorceur marque le début de la polymérisation (soit t=0 min).
L’agitation est maintenue à 5°C durant 7 heures 15 min pour atteindre environ 63 % de conversion finale.
Enfin, une solution de stoppage de Ν,Ν-diéthylhydroxylamine dans l’eau est préparée. Le latex est alors stoppé par transvasement par pression résiduelle des monomères sur cette solution de stoppage. Le latex est ensuite coagulé par addition de 50 ml d’acétone. Le coagulum est séché sous vide partiel et sous balayage d’azote pendant 48 heures à 40°C.
Les conditions opératoires pour cet essai sont répertoriées dans le tableau suivant. [Tableaux7]
Eau | 22,3 ml | |
SDS | 3 pce | 0,3 g |
RSH | 0,16 pce | 0,016 g |
EeSO4, 7H2O | 0,28 pce | 0,028 g |
Na4P2O7 | 0,266 pce | 0,026 g |
% massique Styrène (% mol) | 30,14 % (19%) | 3,014 g |
% massique Butadiène (% mol) | 64.23 % (79%) | 6,42 g |
% massique CCMA (% mol) | 5,63 % (2%) | 0,56 g |
Hydroperoxide de cumène | 0,17 pce | 0,017 g |
N, N-diéthylhydroxylamine | 0,1 pce | 0,01g |
Les caractéristiques de l’élastomère obtenu sont reportées dans le tableau suivant. La détermination du taux de macrogel est effectué conformément à la méthode décrite page 15 dans le document WO2018/015646. La caractérisation RMN de cet élastomère est effectuée conformément au protocole décrit en pages 15 et 16 dans le document
WO2018/015646.
[Tableaux8]
Caractérisations SEC | Caractérisation DSC | ||||||
Mn (Kg/mol) | ip | Taux de gel (%) | CCMA% molaire | Styrène% molaire | Butadièn e%molair e | Tg en °C | |
Elastomère B | 83 | 3,9 | <0.3 | 2,6 | 16,2 | 81,2 | -48 |
[0285] Obtention de l’élastomère C greffé (conforme à l’invention)
[0286] On incorpore de l’oxyde de 2-((2-oxo-l,3-dioxolan-4-yl)méthoxy)-l-naphthonitrile (6,908 g ; 24,2 mmol ; 92 % molaire de pureté) à 50 g de SBR (élastomère A) sur outil à cylindres (mélangeur externe à 23°C). Le mélange est homogénéisé en 15 passes portefeuille. Cette phase de mélangeage est suivie d’un traitement thermique à 120°C pendant 10 minutes sous presse à 10 bars de pression.
[0287] L’analyse par RMN Ή a permis de démontrer un taux molaire de greffage de l’oxyde de 2-((2-oxo-l,3-dioxolan-4-yl)méthoxy)-l-naphthonitrile qui est égal à 2,6 % et un rendement molaire de greffage qui est égal à 94 %.
[0288] L’oxyde de 2-((2-oxo-l,3-dioxolan-4-yl)méthoxy)-l-naphthonitrile est le composé D dont le protocole de synthèse a été décrit ci-dessus.
[0289] Préparation des compositions de caoutchouc
[0290] On introduit dans un mélangeur interne Polylab de 85 cm3 dont le taux de remplissage final environ 70% en volume et dont la température initiale de cuve est d’environ 100°C, successivement l’élastomère greffé ou non greffé ou l’élastomère obtenu par polymérisation radicalaire, la charge renforçante et les autres additifs à l’exception du système de vulcanisation. On conduit alors un travail thermomécanique (phase non-productive) en une étape (durée totale du malaxage égale à environ 5 min), jusqu'à atteindre une température maximale de « tombée » allant de 145 à 165°C. On récupère le mélange ainsi obtenu, on le refroidit puis on ajoute le système de vulcanisation sur un mélangeur externe pour y réaliser une seconde phase de travail mécanique à environ 80°C pendant environ 5 à 6 min.
[0291] Les compositions ainsi obtenus sont ensuite calandrées soit sous la forme de plaques d’épaisseur de 2 à 3 mm ou de feuilles fines de caoutchouc pour la mesure de leurs propriétés physiques ou mécaniques.
[0292] La formulation des compositions de caoutchouc est donnée dans le tableau suivant et leurs propriétés après cuisson (environ 60 min à 150°C) sont présentées dans le tableau ci-après. Les quantités sont exprimées en parties pour 100 parties en poids d‘élastomère (pce). [Tableaux9]
Composition | Tl | Cl | C2 |
Élastomère A | 100 | (-) | (-) |
Élastomère B | (-) | 100 | (-) |
Élastomère C | (-) | (-) | 100 |
Noir de carbone(l) | 1 | 1 | 1 |
Silice (2) | 67 | 67 | 67 |
Résine plastifiante(3) | 31 | 31 | 31 |
Antioxydant (4) | 3 | 3 | 3 |
Paraffine | 1 | 1 | 1 |
Agent de recouvrement (5) | 5,36 | 5,36 | 5,36 |
Diphénylguanidine (6) | 2,5 | 2,5 | 2,5 |
Acide stéarique (7) | 3 | 3 | 3 |
ZnO (8) | 0,9 | 0,9 | 0,9 |
Soufre | 2,3 | 2,3 | 2,3 |
CBS (9) | 1 | 1 | 1 |
1. Noir de carbone de grade ASTM N234 commercialisé par Cabot ;
2. Silice « Zeosil 1165 MP » de la société Solvay de surface spécifique BET est de 160 m1 2 3 4 5 6 7 8 9/g ;
3. Résine dicyclopentadiène/C9 hydrogénée « E5600 BR » commercialisée par Exxon Mobil ;
4. 1,3-diméthylbutyl-N-phényl-para-phénylènediamine (« Santoflex 6-PPD » commercialisée par la société Flexsys ;
5. Triméthoxy(octyl)silane commercialisé par Sigma Aldrich ;
6. Diphénylguanidine (« Perkacit » DPG de la société Flexsys) ;
7. Stéarine (« Pristerene 4931 » - société Uniqema) ;
8. Oxyde de zinc (grade industriel - société Umicore) ;
9. N-cyclohexyl-2-benzothiazyl-sulfénamide (« Santocure CBS » société Flexys).
[Tableaux 10]
Tl | Cl | C2 | |
AG* à 60“ C retour | 100 | 66 | 18 |
Tan(Ô)max à 60“C aller | 100 | 86 | 68 |
Tan(Ô)max à 100“C retour | 100 | n.m | 44 |
M100à23°C | 100 | 193 | 277 |
M300 à 23°C | 100 | 282 | 613 |
M300/M100 à 23°C | 100 | 147 | 221 |
[0293] n.m : non mesuré
[0294] Au vu du tableau ci-dessus, on constate, comme attendu, que la composition Cl non conforme à l’invention, comprenant un élastomère possédant des fonctions carbonate cycliques pendantes obtenu par voie radicalaire, présente une diminution de l’hystérèse (Tan(ô)maxà6œc aiier) par rapport à la composition Tl témoin, donc des propriétés hystérétiques améliorées par rapport à la composition Tl témoin qui ne comprend pas d’élastomère modifié. La composition Cl non conforme présente également des propriétés de renforcement améliorées (augmentation du rapport M300/M100) par rapport à la composition témoin Tl.
[0295] De manière surprenante, la composition C2, conforme à l’invention, comprenant un élastomère possédant des fonctions carbonate cycliques pendantes obtenu par greffage post-polymérisation présente des propriétés hystérétiques et des propriétés de renforcement significativement améliorées par rapport à la composition témoin Tl et à la composition Cl non conforme à l’invention.
Claims (1)
- Revendications [Revendication 1] Composition de caoutchouc à base d’au moins un élastomère diénique, au moins une charge renforçante, au moins un agent de réticulation et au moins un composé de formule (I), éventuellement déjà greffé sur ledit élastomère [Chem.I]
r3 / ' I ' n ° \ 0 \ E---A---Q (D dans laquelle : - Q représente un dipôle comprenant au moins un atome d’azote ; - A représente un cycle arènediyle, éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes ; - E représente un groupe de liaison divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ; - RI, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et - n est un entier ayant une valeur supérieure ou égale à 1. [Revendication 2] Composition de caoutchouc selon la revendication 1, dans laquelle Γ élastomère diénique est choisi dans le groupe constitué par les copolymères d’éthylène-propylène-monomère diène, le caoutchouc butyle, le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène, les copolymères d’isoprène et les mélanges de ces élastomères. [Revendication 3] Composition de caoutchouc selon l’une quelconque des revendications précédentes, dans laquelle le groupement Q est un groupe de formule (II), (III) ou (IV) [Chem II, III, IV] [Revendication 4] [Revendication 5] (il) dans lesquelles :- le symbole * représente le rattachement de Q à A ; et - R4, R5 et R6 sont choisis indépendamment parmi un atome d’hydrogène, un alkyle en C1-C20 linéaire ou ramifié, un cycloalkyle en C3-C30 éventuellement substitué par une chaîne hydrocarbonée, un aryle en C6-C20 éventuellement substitué par une chaîne hydrocarbonée.Composition de caoutchouc selon l’une quelconque des revendications précédentes, dans laquelle le groupement A est un cycle arènediyle en C6-C14 éventuellement substitué par une ou plusieurs chaînes hydrocarbonées, identiques ou différentes, indépendantes les unes des autres, éventuellement substituées ou interrompues par un ou plusieurs hétéroatomes.Composition de caoutchouc selon l’une quelconque des revendications 1 à 4, dans laquelle le composé de formule (I) est choisi parmi les composés de formule (la) et (Ib) [Chem la, Ib]dans lesquelles :— le groupement Q est tel que défini selon l’une quelconque des revendications 1 à 4 ;— un groupement choisi parmi R7 à RI 1 de la formule (la) et un groupement choisi parmi R7 à R13 de la formule (Ib) désigne le groupe de formule (V) suivante : [Chem V](V) [Revendication 6] dans laquelle n, E, RI, R2 et R3 sont tels que définis à la revendication 1, —les quatre autres groupements de la formule (la) et les six autres groupements de la formule (Ib), identiques ou différents, représentent indépendamment les uns les autres, un atome d’hydrogène ou une chaîne hydrocarbonée, linéaire ou ramifiée, de préférence saturée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes. Composition de caoutchouc selon l’une quelconque des revendications 3 à 5, dans laquelle le composé de formule (I) dont le groupement Q est un oxyde de nitrile est choisi parmi les composés de formule (VI) [Chem VI] dans laquelle :- A est tel que défini à l’une quelconque des revendications 3 à 5,- E représente un groupe de liaison divalent hydrocarboné pouvant éventuellement contenir un ou plusieurs hétéroatomes ;- RI, R2 et R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou une chaîne hydrocarbonée éventuellement substituée ou interrompue par un ou plusieurs hétéroatomes ; et -n est un entier ayant une valeur supérieure ou égale à 1.[Revendication 7] Composition de caoutchouc selon l’une quelconque des revendications précédentes, dans laquelle n= 1, 2, 3 ou 4, préférentiellement n=l ou 2, plus préférentiellement n=l.[Revendication 8] Composition de caoutchouc selon l’une quelconque des revendications précédentes, dans lequel le groupement E est choisi parmi une chaîne hydrocarbonée linéaire ou ramifiée en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6 éventuellement interrompue par un ou plusieurs atomes d’azote, de soufre ou d’oxygène. [Revendication 9] Composition de caoutchouc selon l’une quelconque des revendications précédentes, dans laquelle le groupement E est choisi dans le groupe constitué par -R- et -OR- où R est un alkylène, linéaire ou ramifié, en C1-C24, de préférence en C1-C10, plus préférentiellement en C1-C6. [Revendication 10] Composition de caoutchouc selon l’une quelconque des revendications précédentes, dans laquelle les groupes RI, R2, R3 représentent, indépendamment les uns des autres, un atome d’hydrogène ou un alkyle linéaire ou ramifié en C1-C24, préférentiellement en Cl-CIO, plus préférentiellement en C1-C6. [Revendication 11] Composition de caoutchouc selon la revendication 10, dans laquelle les groupes RI, R2, R3 représentent un atome d’hydrogène. [Revendication 12] Composition de caoutchouc selon l’une quelconque des revendications précédentes, dans laquelle le composé de formule (I) est choisi dans le groupe constitué par le composé de formule (VII) et le composé de formule (VIII) [Chem VII] (VII) [Chem. VIII]Q-[Revendication 13] [Revendication 14] [Revendication 15]Composition de caoutchouc selon l’un quelconque des revendications précédentes, dans laquelle la charge renforçante est choisie parmi le noir de carbone, une charge renforçante inorganique et leurs mélanges. Article semi-fini pour pneumatique comprenant au moins une composition de caoutchouc telle que définie à l’une quelconque des revendications 1 à 13.Pneumatique comprenant au moins une composition de caoutchouc telle que définie à l’une quelconque des revendications 1 à 13.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1874238A FR3091289A3 (fr) | 2018-12-27 | 2018-12-27 | Compositions de caoutchouc à base d’au moins un composé portant des fonctions carbonate cycliques |
FR1874238 | 2018-12-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3091288A1 true FR3091288A1 (fr) | 2020-07-03 |
FR3091288B1 FR3091288B1 (fr) | 2020-12-04 |
Family
ID=69591665
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1874238A Pending FR3091289A3 (fr) | 2018-12-27 | 2018-12-27 | Compositions de caoutchouc à base d’au moins un composé portant des fonctions carbonate cycliques |
FR1900845A Active FR3091288B1 (fr) | 2018-12-27 | 2019-01-30 | Compositions de caoutchouc à base d’au moins un composé portant des fonctions carbonate cycliques |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1874238A Pending FR3091289A3 (fr) | 2018-12-27 | 2018-12-27 | Compositions de caoutchouc à base d’au moins un composé portant des fonctions carbonate cycliques |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN113227155B (fr) |
FR (2) | FR3091289A3 (fr) |
WO (1) | WO2020136332A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3131318B1 (fr) * | 2021-12-23 | 2023-11-17 | Michelin & Cie | Polymère portant des groupes pendants fonctionnels particuliers époxy. |
FR3131324B1 (fr) * | 2021-12-23 | 2023-11-17 | Michelin & Cie | Composition élastomérique à base d’au moins un composé oxyde de nitrile comprenant un groupe époxy. |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997036724A2 (fr) | 1996-04-01 | 1997-10-09 | Cabot Corporation | Nouveaux materiaux composites elastomeres, et procede et appareil s'y rapportant |
WO1999016600A1 (fr) | 1997-09-30 | 1999-04-08 | Cabot Corporation | Melanges composites a base d'elastomere et procedes d'elaboration |
WO2002010269A2 (fr) | 2000-07-31 | 2002-02-07 | Societe De Technologie Michelin | Bande de roulement pour pneumatique |
WO2003016215A1 (fr) | 2001-08-13 | 2003-02-27 | Rhodia Chimie | Procede de preparation de silices, silices a distribution granulometrique et/ou repartition poreuse particulieres et leurs utilisations, notamment pour le renforcement de polymeres |
WO2003016387A1 (fr) | 2001-08-13 | 2003-02-27 | Societe De Technologie Michelin | Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante |
WO2012007441A1 (fr) | 2010-07-13 | 2012-01-19 | Societe De Technologie Michelin | Polymere greffe par des molecules associatives azotees |
WO2018015646A1 (fr) | 2016-07-18 | 2018-01-25 | Compagnie Generale Des Etablissements Michelin | Composition de caoutchouc comprenant un élastomère dienique comprenant des fonctions carbonates |
WO2018015645A1 (fr) * | 2016-07-18 | 2018-01-25 | Compagnie Generale Des Etablissements Michelin | Élastomère dienique comprenant des fonctions carbonates pendantes |
WO2018109396A1 (fr) * | 2016-12-15 | 2018-06-21 | Compagnie Generale Des Etablissements Michelin | Compose 1,3-dipolaire portant une double liaison carbone-carbone conjuguée |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2999472B1 (fr) * | 2012-12-13 | 2015-01-16 | Michelin & Cie | Pneumatique poids-lourd comportant une bande de roulement a base d'un polyisoprene modifie, son procede de preparation |
FR3012451B1 (fr) * | 2013-10-25 | 2016-11-11 | Michelin & Cie | Compose 1,3-dipolaire portant une fonction imidazole |
FR3021320B1 (fr) * | 2014-05-23 | 2016-09-30 | Michelin & Cie | Procede de greffage de fonction ester d'acide carboxylique sur un polymere insature. |
FR3023843B1 (fr) * | 2014-07-21 | 2016-07-22 | Michelin & Cie | Polymere modifie le long de la chaine et son procede de synthese |
FR3038607A1 (fr) * | 2015-07-10 | 2017-01-13 | Michelin & Cie | Compose 1,3-dipolaire portant un groupe phosphore et un dipole contenant un atome d'azote. |
FR3044315B1 (fr) * | 2015-11-27 | 2017-12-08 | Michelin & Cie | Composition de caoutchouc |
FR3044316B1 (fr) * | 2015-11-27 | 2017-12-08 | Michelin & Cie | Composition de caoutchouc |
-
2018
- 2018-12-27 FR FR1874238A patent/FR3091289A3/fr active Pending
-
2019
- 2019-01-30 FR FR1900845A patent/FR3091288B1/fr active Active
- 2019-12-19 WO PCT/FR2019/053190 patent/WO2020136332A1/fr active Application Filing
- 2019-12-19 CN CN201980086381.0A patent/CN113227155B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997036724A2 (fr) | 1996-04-01 | 1997-10-09 | Cabot Corporation | Nouveaux materiaux composites elastomeres, et procede et appareil s'y rapportant |
WO1999016600A1 (fr) | 1997-09-30 | 1999-04-08 | Cabot Corporation | Melanges composites a base d'elastomere et procedes d'elaboration |
WO2002010269A2 (fr) | 2000-07-31 | 2002-02-07 | Societe De Technologie Michelin | Bande de roulement pour pneumatique |
WO2003016215A1 (fr) | 2001-08-13 | 2003-02-27 | Rhodia Chimie | Procede de preparation de silices, silices a distribution granulometrique et/ou repartition poreuse particulieres et leurs utilisations, notamment pour le renforcement de polymeres |
WO2003016387A1 (fr) | 2001-08-13 | 2003-02-27 | Societe De Technologie Michelin | Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante |
WO2012007441A1 (fr) | 2010-07-13 | 2012-01-19 | Societe De Technologie Michelin | Polymere greffe par des molecules associatives azotees |
WO2018015646A1 (fr) | 2016-07-18 | 2018-01-25 | Compagnie Generale Des Etablissements Michelin | Composition de caoutchouc comprenant un élastomère dienique comprenant des fonctions carbonates |
WO2018015645A1 (fr) * | 2016-07-18 | 2018-01-25 | Compagnie Generale Des Etablissements Michelin | Élastomère dienique comprenant des fonctions carbonates pendantes |
WO2018109396A1 (fr) * | 2016-12-15 | 2018-06-21 | Compagnie Generale Des Etablissements Michelin | Compose 1,3-dipolaire portant une double liaison carbone-carbone conjuguée |
Non-Patent Citations (4)
Title |
---|
"Izvestiya Akademii Nauk SSSR", SERIYA KHIMI-CHESKAYA, 1991, pages 1609 - 1615 |
SOOS L ET AL: "Anionic Bulk Oligomerization of Ethylene and Propylene Carbonate Initiated by Bisphenol-A/Base Systems", JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC, US, vol. 37, no. 5, 1 March 1999 (1999-03-01), pages 545 - 550, XP002763772, ISSN: 0887-624X, [retrieved on 20000121], DOI: 10.1002/(SICI)1099-0518(19990301)37:5<545::AID-POLA4>3.0.CO;2-T * |
THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, February 1938 (1938-02-01), pages 309 |
YAKUBOV, A.P.TSYGANOV, D.V.BELEN'KII, L.I.KRAYUSHKIN, M.M., BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR, DIVISION OF THE CHEMICAL SCIENCE, vol. 40, no. 7.2, 1991, pages 1427 - 1432 |
Also Published As
Publication number | Publication date |
---|---|
FR3091288B1 (fr) | 2020-12-04 |
CN113227155A (zh) | 2021-08-06 |
WO2020136332A1 (fr) | 2020-07-02 |
CN113227155B (zh) | 2023-04-18 |
FR3091289A3 (fr) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2593486B1 (fr) | Composition de caoutchouc contenant un elastomere modifie, son procede de preparation et pneumatique la contenant | |
EP2547728B1 (fr) | Pneumatique et composition de caoutchouc contenant un polymere greffe | |
EP3060585A1 (fr) | Composition de caoutchouc comprenant un élastomère diénique portant des fonctions imidazole reparties de façon aléatoire le long de la chaîne | |
EP3060413A1 (fr) | Composition de caoutchouc comprenant un additif compose 1,3-dipolaire portant une fonction imidazole | |
EP3648988B1 (fr) | Composition à base d'au moins un composé polyaromatique particulier | |
EP3691918A1 (fr) | Compositions de caoutchouc comprenant une combinaison spécifique d'un agent de couplage et d'une résine hydrocarbonée | |
EP4010380B1 (fr) | Composition a base d'au moins un compose ayant une fonction imidazolidinone n-substituée | |
WO2020136332A1 (fr) | Compositions de caoutchouc à base d'au moins un composé portant des fonctions carbonate cycliques | |
EP3484720A1 (fr) | Composition de caoutchouc comprenant un élastomère dienique comprenant des fonctions carbonates | |
FR3068041B1 (fr) | Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement | |
EP4208355B1 (fr) | Composition de caoutchouc a base d'elastomere dienique fortement sature | |
EP3902791B1 (fr) | Nouveaux composes dipolaires azotes comprenant des fonctions carbonate cycliques | |
EP4208354B1 (fr) | Composition de caoutchouc a base d'elastomere dienique fortement sature | |
EP4172151A1 (fr) | Composition de caoutchouc a base d'au moins un compose oxyde de nitrile portant un cycle epoxyde | |
WO2023117843A1 (fr) | Composition élastomérique à base d'au moins un composé oxyde de nitrile comprenant un groupe epoxy | |
WO2023117840A1 (fr) | Polymère portant des groupes pendants fonctionnels particuliers époxy | |
WO2020136331A1 (fr) | Polymère greffé portant des groupes pendants fonctionnels carbonates cycliques | |
WO2024126508A1 (fr) | Composition de caoutchouc comprenant un élastomère diénique fortement saturé | |
FR3143613A1 (fr) | Composition de caoutchouc comprenant un élastomère diénique fortement saturé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20200703 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |