FR3090840A1 - Régénérateur et procédé de fabrication d’un tel régénérateur - Google Patents

Régénérateur et procédé de fabrication d’un tel régénérateur Download PDF

Info

Publication number
FR3090840A1
FR3090840A1 FR1873559A FR1873559A FR3090840A1 FR 3090840 A1 FR3090840 A1 FR 3090840A1 FR 1873559 A FR1873559 A FR 1873559A FR 1873559 A FR1873559 A FR 1873559A FR 3090840 A1 FR3090840 A1 FR 3090840A1
Authority
FR
France
Prior art keywords
regenerator
porosity
portions
cells
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1873559A
Other languages
English (en)
Other versions
FR3090840B1 (fr
Inventor
Steve DJETEL-GOTHE
Mathieu DOUBS
Mohamed Said KAHALERAS
François LANZETTA
Guillaume LAYES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Franche-Comte
Original Assignee
Universite de Franche-Comte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1873559A priority Critical patent/FR3090840B1/fr
Application filed by Universite de Franche-Comte filed Critical Universite de Franche-Comte
Priority to CN201980092522.XA priority patent/CN113454324A/zh
Priority to EP19823911.3A priority patent/EP3899235A1/fr
Priority to CN201980089649.6A priority patent/CN113330207A/zh
Priority to BR112021011943-4A priority patent/BR112021011943A2/pt
Priority to CA3124288A priority patent/CA3124288A1/fr
Priority to PCT/EP2019/085696 priority patent/WO2020127300A1/fr
Priority to CA3124292A priority patent/CA3124292A1/fr
Priority to BR112021011926-4A priority patent/BR112021011926A2/pt
Priority to PCT/EP2019/085691 priority patent/WO2020127295A1/fr
Priority to EP19823914.7A priority patent/EP3899237A1/fr
Priority to US17/415,587 priority patent/US11952960B2/en
Priority to US17/415,583 priority patent/US20220057147A1/en
Priority to EP19823912.1A priority patent/EP3899236A1/fr
Priority to PCT/EP2019/085687 priority patent/WO2020127292A1/fr
Publication of FR3090840A1 publication Critical patent/FR3090840A1/fr
Application granted granted Critical
Publication of FR3090840B1 publication Critical patent/FR3090840B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1115Making porous workpieces or articles with particular physical characteristics comprising complex forms, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/057Regenerators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Régénérateur et procédé de fabrication d’un tel régénérateur L’invention se rapporte à un régénérateur monobloc 1 comprenant au moins deux portions 3 au moins une des portions présente une porosité différente d’une porosité d’une portion voisine et chacune des portions du régénérateur est réalisée dans un matériau rigide poreux présentant une porosité donnée. Figure pour l’abrégé : Fig. 1

Description

Description
Titre de l'invention : Régénérateur et procédé de fabrication d’un tel régénérateur
Domaine technique
[0001] La présente invention se rapporte au domaine des régénérateurs pour dispositifs à apport de chaleur externe et machines frigorifiques.
[0002] La présente invention concerne en particulier un régénérateur destiné à être utilisé dans un moteur ou dans une machine frigorifique à cycle de Stirling.
Etat de la technique antérieure
[0003] On connaît dans l’état de la technique antérieure des régénérateurs composés d’un assemblage par empilement de disques poreux, tels que des treillis métalliques, placés au contact les uns des autres. L’assemblage est inséré dans un support, généralement un tube, et les éléments sont enserrés et maintenus pressés dans le support de sorte à former le régénérateur.
[0004] On connaît également dans l’état de la technique des régénérateurs réalisés à partir de matériaux fibreux micrométriques ou nanométriques, tels que du graphite pyrolytique ou des mailles métalliques. Ces matériaux fibreux sont introduits dans un tube puis compressés à l’intérieur de celui-ci par application d’une pression donnée.
[0005] Les régénérateurs de l’état de la technique présentent l’inconvénient de voir leur porosité et leur diamètre hydraulique varier au cours du temps. La pression exercée par les gaz et les dilatations successives du matériau poreux, dues aux températures élevées des gaz, entraînent des modifications structurelles et géométriques de l’assemblage. De plus, lorsque les régénérateurs de l’état de la technique assurent un bon échange thermique avec le gaz, ils présentent des diamètres hydrauliques faibles entraînant des pertes de charge conséquentes lors de la circulation du gaz dans le régénérateur.
[0006] Un but de l’invention est notamment de :
- proposer un régénérateur dont la porosité ne varie pas au fil des passages successifs des gaz, et/ou
- proposer un régénérateur dont le diamètre hydraulique ne varie pas au fil des passages successifs des gaz, et/ou
- proposer un régénérateur dont les pertes de charge sont faibles comparées aux pertes de charges des régénérateurs de l’état de la technique, et/ou
- proposer un régénérateur dont les pertes par conduction thermique dans le sens de circulation des gaz sont limitées.
Présentation de l’invention
[0007] A cet effet, selon un premier aspect de l’invention, il est proposé un régénérateur monobloc comprenant au moins deux portions. Au moins une des portions présente une porosité différente d’une porosité d’une portion voisine et chacune des portions du régénérateur est réalisée dans un matériau rigide poreux présentant une porosité donnée.
[0008] Le régénérateur peut comprendre uniquement deux portions.
[0009] Une portion peut être entendue comme une partie du régénérateur. Une portion peut être entendue comme un volume d’une partie du régénérateur.
[0010] Le terme « voisine » peut être entendu comme contiguë.
[0011] Les portions du régénérateur peuvent être réalisées dans des matériaux différents.
[0012] Les portions du régénérateur peuvent être réalisées dans un même matériau.
[0013] Par « monobloc », il est entendu d’un seul tenant.
[0014] Le régénérateur monobloc peut être obtenu par assemblage de portions entre elles.
[0015] De manière préférée, le régénérateur monobloc peut être obtenu au cours d’une même étape de fabrication.
[0016] De manière préférée, le régénérateur monobloc peut être fabriqué par impression 3D.
[0017] De manière préférée, le régénérateur monobloc peut être fabriqué d’un seul tenant dans un même matériau par impression 3D.
[0018] Par matériau rigide, il est entendu un matériau qui se déforme peu sous la pression exercée par des gaz le traversant.
[0019] Le matériau peut présenter un module d’Young compris entre 20 GPa et 500 GPa.
[0020] Les porosités des portions peuvent varier de manière alternée ou séquentielle.
[0021] La porosité peut varier selon une direction d’écoulement des gaz et/ou selon une direction normale à la direction d’écoulement des gaz.
[0022] La porosité peut varier selon une direction comprise entre la direction d’écoulement des gaz et la direction normale à la direction d’écoulement des gaz.
[0023] Etant entendu que l’écoulement des gaz au sein du régénérateur s’effectue dans un sens puis dans l’autre au cours d’un même cycle, d’une partie chaude vers une partie froid d’un dispositif dans lequel est intégré le régénérateur puis de la partie froide vers la partie chaude dudit dispositif, une direction d’écoulement des gaz s’entend uniquement en regard de la direction sans considération du sens d’écoulement.
[0024] Une portion s’étend entre deux sections du régénérateur, chacune des sections étant normales à une direction reliant une extrémité à l’autre du régénérateur.
[0025] Une section est entendue comme étant l’intersection d’un volume par un plan.
[0026] La direction reliant une extrémité à l’autre du régénérateur peut être identique à la direction d’écoulement des gaz.
[0027] La direction reliant une extrémité à l’autre du régénérateur peut être différente de la direction d’écoulement des gaz.
[0028] Des portions du régénérateur situées aux extrémités du régénérateur, dites portions d’extrémités, peuvent présenter une ou des porosités inférieures à une porosité, ou respectivement des porosités, d’une portion, ou respectivement de portions, située entre les portions d’extrémités.
[0029] Les portions d’extrémités peuvent présenter chacune une porosité inférieure à une porosité d’une portion quelconque située entre les portions d’extrémités.
[0030] Une portion présentant la porosité la plus élevée du régénérateur peut être située entre les portions d’extrémités du régénérateur.
[0031] Les porosités des portions du régénérateur peuvent augmenter depuis un plan central du régénérateur vers les extrémités du régénérateur, ledit plan central passant par le centre du régénérateur et étant perpendiculaire à la direction d’écoulement des gaz.
[0032] Les portions du régénérateur peuvent être agencées de manière symétrique par rapport au plan central du régénérateur.
[0033] Le plan central du régénérateur peut être compris dans la portion dont la porosité est la plus forte du régénérateur.
[0034] La portion dont la porosité est la plus forte du régénérateur peut présenter une porosité égale à 1.
[0035] Plusieurs portions du régénérateur peuvent présenter une porosité égale à 1.
[0036] La porosité peut être comprise entre 0 et 1 par unité de volume et/ou entre 0 et 1 par unité de longueur. Le rapport entre les porosités de portions voisines peut être supérieur à 1.
[0037] Le matériau rigide poreux peut être composé d’un ensemble de cellules contiguës agencées spatialement les unes par rapport aux autres, une ou chacune parmi des surfaces de contact de chacune des cellules avec le gaz forment un angle compris entre 5° et 85° par rapport à la direction d’écoulement des gaz.
[0038] Etant donné que le régénérateur est monobloc, il est entendu par cellule, une structure identifiable du régénérateur.
[0039] La structure peut être identifiable par sa géométrie.
[0040] Dans ce cas, le terme « contiguës » est entendu comme accolées.
[0041] L’angle que forme la ou chacune des surfaces de contact de chacune des cellules avec le gaz par rapport à la direction d’écoulement des gaz peut varier le long de la ou de chacune des surfaces.
[0042] La ou chacune des surfaces de contact de chacune des cellules avec le gaz peuvent former un angle compris entre 20° et 70°, de préférence entre 30° et 60°, par rapport à la direction d’écoulement des gaz.
[0043] La ou chacune des surfaces de contact de chacune des cellules avec le gaz peuvent former un angle de 45° par rapport à la direction d’écoulement des gaz.
[0044] Des portions du régénérateur peuvent ne pas contenir de cellules.
[0045] Chaque cellule peut comprendre au moins quatre éléments oblongs s’étendant depuis le centre de la cellule, chacun des éléments formant un angle compris entre 5° et 85° par rapport à la direction d’écoulement des gaz.
[0046] Les éléments oblongs peuvent constituer la ou chacune des surfaces de contact de chacune des cellules avec le gaz.
[0047] La ou chacune des surfaces de contact de chacun des éléments oblongs avec le gaz peuvent former un angle compris entre 20° et 70°, de préférence entre 30° et 60°, par rapport à la direction d’écoulement des gaz.
[0048] La ou chacune des surfaces de contact de chacun des éléments oblongs avec le gaz peuvent former un angle de 45° par rapport à la direction d’écoulement des gaz.
[0049] Deux cellules contiguës peuvent être physiquement reliées ensemble :
- par au moins un de leurs éléments oblongs, ou
- par une couche de matériau à laquelle est relié au moins un de leurs éléments oblongs.
[0050] Une cellule peut être reliée à au moins deux cellules contiguës.
[0051] Un élément oblong peut être relié à plusieurs cellules contiguës.
[0052] La couche de matériau peut séparer deux cellules contiguës.
[0053] La couche de matériau peut être plane et continue.
[0054] De préférence, la couche de matériau s’étend selon la direction d’écoulement des gaz.
[0055] De préférence, deux cellules contiguës peuvent être physiquement reliées ensemble : - par au moins deux de leurs éléments oblongs, - par une couche de matériau à laquelle est relié au moins deux de leurs éléments oblongs.
[0056] Le régénérateur peut comprendre deux couches de matériaux.
[0057] De préférence, chacune des couches de matériau s’étend selon la direction d’écoulement des gaz.
[0058] Le régénérateur peut comprendre plus de deux couches de matériau.
[0059] Lorsque le régénérateur comprend deux couches de matériau, les deux couches peuvent être perpendiculaires entre elles.
[0060] Les éléments oblongs peuvent être, à titre d’exemple non limitatif, une tige, un cône ou encore un triangle.
[0061] Les éléments oblongs des cellules peuvent être symétriques deux à deux par rapport à un ou plusieurs plans de symétrie comprenant le centre de la cellule.
[0062] Chaque cellule peut comprendre un seul plan par rapport auquel tous les éléments oblongs sont symétriques deux à deux.
[0063] Au sein d’une même cellule, au moins deux éléments oblongs peuvent s’étendre d’un côté et au moins deux autres éléments oblongs peuvent s’étendre de l’autre côté d’un plan comprenant le centre de la cellule et étant normal à la direction d’écoulement des gaz.
[0064] Une ou plusieurs cellules peuvent comprendre deux éléments oblongs s’étendant d’un côté et deux autres éléments oblongs s’étendant de l’autre côté d’un plan comprenant le centre de la cellule et étant normal à la direction d’écoulement des gaz. Dans ce cas, la ou les cellules peuvent comprendre uniquement quatre éléments oblongs.
[0065] Toutes les cellules du régénérateur peuvent être identiques.
[0066] Une ou des cellules du régénérateur peuvent comprendre huit tiges formant chacune un angle de 45° par rapport à la direction d’écoulement des gaz et formant un angle de 90° entre elles au sein d’une même cellule.
[0067] Le matériau rigide poreux peut être un métal, un alliage ou un plastique.
[0068] Il est également proposé un procédé de fabrication d’un dispositif selon le premier aspect de l’invention par impression 3D.
[0069] Le procédé de fabrication peut être un procédé d’impression 3D par fusion de poudres.
[0070] Le procédé de fabrication peut être un procédé d’impression 3D par fusion de poudres métalliques.
[0071] Le procédé de fabrication peut être un procédé d’impression 3D par frittage laser de poudres métalliques.
Description des figures
[0072] D’autres avantages et particularités de l’invention apparaîtront à la lecture de la description détaillée de mises en œuvre et de modes de réalisation nullement limitatifs, et des dessins annexés suivants :
[0073] [fig.l] la FIGURE 1 est une représentation schématique d’une vue de profil d’un régénérateur comportant trois portions,
[0074] [fig-2] la FIGURE 2 est une représentation schématique d’une vue de profil d’un régénérateur comportant six portions,
[0075] [fig-3] la FIGURE 3 est une représentation schématique d’une cellule selon l’invention,
[0076] [fig-4] la FIGURE 4 est une représentation schématique d’un agencement de cellules contiguës selon une direction,
[0077] [fig.5] la FIGURE 5 est une représentation schématique d’un volume du régénérateur comprenant des cellules contiguës reliées par une couche de matériau,
[0078] [fig.6] la FIGURE 6 est une représentation schématique d’une vue de profil d’un régénérateur comprenant une alternance de portions de porosités différentes,
[0079] [fig-7] la FIGURE 7 est une représentation d’une vue de profil d’un régénérateur comprenant une alternance de portions contenant des cellules contiguës les unes aux autres et de portions ne contenant pas de cellules.
Description des modes de réalisation
[0080] Les modes de réalisation décrits ci-après étant nullement limitatifs, on pourra notamment considérer des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites, isolées des autres caractéristiques décrites (même si cette sélection est isolée au sein d'une phrase comprenant ces autres caractéristiques), si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieure. Cette sélection comprend au moins une caractéristique, de préférence fonctionnelle sans détails structurels, ou avec seulement une partie des détails structurels si cette partie uniquement est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieure.
[0081] Les régénérateurs sont destinés à être utilisées au sein de dispositifs dans lesquels une circulation de gaz entre une zone chaude et une zone froide intervient. Les propriétés structurelles du régénérateur sont adaptées aux conditions d’utilisation du régénérateur 1, telles que le type de gaz le traversant, la température du gaz chaud et froid le traversant, la pression du gaz ainsi que les contraintes dimensionnelles imposées par le dispositif dans lequel il doit être intégré.
[0082] De manière générale, les performances du régénérateur 1 sont liées à sa capacité à : - stocker de la chaleur provenant d’un gaz chaud le traversant dans un sens donné 4 pendant que ce dernier voit sa température et sa pression diminuer lors de la traversée, - restituer, ou déstocker, la chaleur emmagasinée à un gaz froid le traversant en sens opposé 5 pendant que ce dernier voit sa température augmenter et sa pression diminuer lors de la traversée.
[0083] Les échanges thermiques instationnaires entre le régénérateur 1 et le gaz le traversant sont donc améliorés lorsque la surface d’échange du régénérateur 1 augmente. En pratique, les dimensions du régénérateur 1 étant fixées, la surface d’échange du régénérateur peut être augmentée en diminuant la porosité du régénérateur 1.
[0084] Néanmoins, la diminution de la porosité résulte en une augmentation des pertes de charge, c’est-à-dire des frottements entre le gaz et la surface d’échange du régénérateur 1. Ces pertes ne peuvent être compensées que par une augmentation de la pression à laquelle le gaz chaud est injecté dans le régénérateur 1. Ces pertes résultent en une baisse de l’efficacité thermodynamique du dispositif.
[0085] Aussi, afin d’améliorer les échanges thermiques instationnaires sans augmenter les pertes de charge, il est proposé un régénérateur monobloc 1 comprenant des volumes de porosités différentes agencés le long de la direction d’écoulement des gaz. En référence à la FIGURE 1, il est décrit, dans un premier aspect de l’invention, un régénérateur monobloc 1 comprenant trois portions Pl, P2 et P3 présentant des valeurs de porosités PO1, PO2 et PO3. Selon le premier aspect de l’invention, le régénérateur 1, c’est-à-dire les parois 2 et le matériau poreux 9 composant les portions 3 (des exemples de portions sont illustrées sur les FIGURES 3 à 7) est d’un seul tenant. Le matériau utilisé est rigide et choisi en fonction de l’application visée. Il présente un module d’Young compris entre 20 et 500 GPa. Il doit généralement être étanche et non réactif chimiquement au type de gaz circulant dans le régénérateur et supporter des contraintes thermomécaniques conséquentes. La portion PI est située du côté de la zone de froide du dispositif et P3 du côté de la zone chaude. Au cours d’un cycle thermodynamique, les gaz circulent depuis la zone chaude vers la zone froide et inversement. Aussi, la notion de direction d’écoulement n’implique pas de notion de sens dans la présente demande.
[0086] Le fait que le régénérateur 1 soit monobloc assure une conservation de la porosité globale et de la surface d’échange du régénérateur au cours du temps. Les fortes contraintes, en particulier en termes de pressions et de températures des gaz traversant le régénérateur 1, auxquelles est soumis le régénérateur 1 entraînent une modification de la porosité et de la surface d’échange des régénérateurs de l’état de l’art au cours du temps. Les dilatations et les forces exercées par le gaz chaud sous pression au cours des cycles successifs modifient peu à peu la structure des régénérateurs de l’état de l’art. Cela aboutit à une diminution des performances dans le temps des régénérateurs de l’état de l’art et du dispositif dont ils font partie. Le caractère monobloc du régénérateur 1 selon l’invention permet de s’affranchir de ces effets, ce qui lui permet de conserver une porosité et une surface d’échange constante au cours du temps. Ses performances dans le temps sont donc améliorées.
[0087] Le régénérateur 1 peut être utilisé dans tout type de dispositif à apport de chaleur externe qu’il soit moteur, pour la production d’électricité par exemple, ou réfrigérateur pour la production de froid. Les caractéristiques du régénérateur 1 sont intimement liées aux conditions d’utilisation pour lesquelles il est conçu.
[0088] Pour améliorer l’efficacité du stockage/déstockage de chaleur, le régénérateur 1 est agencé de sorte que les extrémités Pl, P3 présentent les plus faibles valeurs de porosités de sorte à maximiser les échanges thermique aux extrémités du régénérateur 1. Cela permet également de maximiser le stockage/déstockage de chaleur dans le matériau rigide poreux 9 constituant les parties PI et P3. Cela permet en outre de stocker la majorité de la chaleur dans la partie du régénérateur 1 située du côté de la zone chaude du dispositif.
[0089] De manière conjointe, l’introduction d’une partie centrale P2 présentant une valeur de porosité PO2 supérieure aux valeurs de porosités PO1, PO3 des extrémités Pl, P3 du régénérateur 1, permet de diminuer considérable la conduction thermique du régénérateur 1 dans le sens de l’écoulement des gaz. En effet, un des objectifs du régénérateur 1 est de limiter la transmission, par le gaz, de chaleur depuis la partie chaude vers la partie froide et inversement. La limitation de la conduction thermique du régénérateur 1 dans le sens de l’écoulement des gaz améliore ainsi les performances du régénérateur 1 et le rendement du dispositif dans lequel le régénérateur 1 est destiné à être intégré. Cela permet également de diminuer les pertes de charges et ainsi d’améliorer encore l’efficacité du régénérateur 1.
[0090] Selon une première variante, la valeur de porosité de PO1 est différente de la valeur de porosité PO3. Dans ce cas, PO2 peut être égale à PO3 ou à PO1, ou être différente de PO3 et PO1. De manière avantageuse, la valeur de porosité PO3 est inférieure à la valeur de porosité PO1 qui est inférieure à PO2.
[0091] La différence de porosité entre PO1 et PO3 peut, en outre, permettre d’introduire, et de contrôler et/ou moduler, un déphasage entre la pression et un débit de gaz, et/ou un profil de vitesse d’écoulement des gaz.
[0092] Selon une deuxième variante particulièrement adaptée au cas des régénérateurs utilisés dans les machines Stirling, fonctionnant en mode moteur ou récepteur, la valeur de porosité PO1 est égale à PO3, dans ce cas la valeur de porosité PO2 est différente de la valeur PO1 et PO3.
[0093] Afin d’améliorer encore les performances du régénérateur 1, il est décrit, en référence à la LIGURE 2, dans une troisième variante, un régénérateur monobloc 1 comprenant six compartiments PI à P7 présentant des valeurs de porosités respectives PO1 à PO7. Hormis le nombre de compartiments détaillés dans les premières et deuxièmes variantes, l’ensemble des caractéristiques du régénérateur selon le premier aspect de l’invention sont partagées avec la troisième variante.
[0094] Cette troisième variante permet d’améliorer encore les performances du régénérateur 1 en faisant varier les valeurs de porosités d’une portion du régénérateur 1 à l’autre. En effet, comme évoquée précédemment, la limitation de la conduction thermique du régénérateur 1 dans le sens de l’écoulement des gaz améliore les performances du régénérateur 1 et le rendement du dispositif dans lequel le régénérateur 1 est destiné à être intégré. De plus, cette alternance de portions à forte et faible porosité vise à augmenter le diamètre hydraulique global du régénérateur 1 de sorte à diminuer les pertes de charge globale tout en conservant une surface d’échange équivalente. A cet effet, dans la troisième variante, les portions PI et P7 présentent des valeurs de porosité PO1 et PO7 élevées et supérieures aux valeurs de porosités PO2 et PO6 des portions P2 et P6. Les autres valeurs de porosité PO3, PO4 et PO5 des portions P3, P4 et P5 respectives sont définies en fonction de l’application et des paramètres de fonctionnement du dispositif dans lequel le régénérateur 1 sera intégré.
[0095] Dans un premier mode préféré de la troisième variante, la valeur de porosité PO1 est égale à PO7 et la valeur de porosité PO2 est égale à PO6. A titre d’exemple, les valeurs de porosités PO3, PO4 et PO5 peuvent être égales entre elles, et supérieures, ou inférieures, aux valeurs de porosités PO2 et PO6.
[0096] Dans un deuxième mode préféré de la troisième variante, une portion P; donnée du régénérateur 1 ayant une valeur de porosité PO; voit sa ou ses portions voisines Pi+i et/ ou Pu présenter une ou des valeurs de porosités POi+i et/ou PC), । inférieure(s) ou supérieure(s) à PO;.
[0097] Dans ce deuxième mode préféré de la troisième variante, les valeurs de porosités PO1, PO3, PO5 et PO7 sont égales entre elles et inférieures aux valeurs de porosités PO2, PO4 et PO6 qui sont égales entre elles.
[0098] Dans ce deuxième mode préféré de la troisième variante, les valeurs de porosités PO1, PO3, PO5 et PO7 sont égales entre elles et inférieures aux valeurs de porosités PO2, PO4 et PO6 qui peuvent être égales à 1. Dans ce cas, les portions Pl, P4 et P6 ne comportent pas de matériau poreux 9.
[0099] Les valeurs de porosités des portions sont définies en fonction des paramètres de fonctionnement liés à l’utilisation pour laquelle le régénérateur 1 est prévu. Ces paramètres de fonctionnement comprennent, entre autres, le type de gaz, les pressions et températures des gaz ainsi que la fréquence de fonctionnement du dispositif dans lequel le régénérateur est destiné à être intégré. Aussi, en fonction de la puissance thermique à échanger requise, la surface d’échange minimale requise sera connue. Dès lors, la taille du régénérateur 1, le nombre de portions, les tailles et agencements des portions ainsi que les porosités des portions seront agencées de sorte que le diamètre hydraulique, et donc les pertes de charges, soient minimaux. En particulier, le diamètre hydraulique des canaux d’écoulements présents dans les portions dont la porosité est inférieure à 1, s’étendant le long du régénérateur 1 doivent être diminués pour maximiser les échanges thermiques entre le gaz et le régénérateur 1 mais suffisamment faible pour ne pas introduire de pertes de charges trop élevées. En pratique, le diamètre hydraulique des canaux d’écoulements est supérieur ou égal à l’épaisseur de la couche limite thermique. Le diamètre hydraulique des canaux d’écoulements est inférieur à quelques fois l’épaisseur de la couche limite thermique. Le diamètre hydraulique des canaux d’écoulements est de préférence inférieur ou égal à dix fois, de préférence encore inférieur ou égal à cinq fois, et de manière d’avantage préférée inférieur ou égal à deux fois l’épaisseur de la couche limite thermique.
[0100] Ces paramètres sont extrêmement variables selon l’utilisation, aussi selon le premier aspect de l’invention, les valeurs de porosités PO1 à PO3, ou PO1 à PO7, des portions Pl à P3, ou Pl à P7, respectives pourrons varier entre 0 et 1. De préférence, la valeur de porosités des portions présentant une valeur de porosité élevée sera comprise entre
0,8 et XI alors que la valeur de porosité des portions présentant une faible valeur de porosité sera comprise entre 0,let 0,3.
[0101] La porosité peut être comprise entre 0 et 1 par unité de volume et/ou entre 0 et 1 par unité de longueur. Le rapport entre les porosités de portions voisines peut être supérieur à 1.
[0102] De manière d’avantage préférée, l’ensemble du régénérateur 1, c’est-à-dire les parois 2 et le matériau composant les portions 3 (voir LIGURES 3 à 7), est réalisé d’un seul bloc par fusion de poudres métalliques et en particulier par frittage laser de poudres métalliques. Le régénérateur 1 est fabriqué d’un seul tenant au cours d’un prototypage 3D. Le régénérateur 1 peut être réalisé dans différents matériaux métalliques ou non. A la différence des régénérateurs dans lesquels les parties sont formées séparément puis assemblées entre elles, l’homogénéité et le contrôle de la porosité du régénérateur 1 selon l’invention, réalisé d’un seul bloc par prototypage 3D, sont substantiellement améliorés. De plus, la réalisation du régénérateur 1 d’un seul tenant, durant un même procédé de fabrication, améliore également les performances thermiques et mécaniques du régénérateur L
[0103] Selon un deuxième aspect de l’invention, en référence aux FIGURES 3, 4 et 5, il est décrit une géométrie particulière du matériau rigide poreux 9 constituant les portions 3, dont la porosité est inférieure à 1, du régénérateur monobloc 1. Comme déjà évoqué, certaines portions 3 du régénérateur 1 peuvent ne pas contenir de matériau poreux 9, dans ce cas la porosité des portions 3 en question est égale à 1. La géométrie du matériau rigide poreux 9 du régénérateur 1 est adaptée, en particulier, en fonction de la fréquence de fonctionnement du régénérateur 1. Aussi, la géométrie sera définie de sorte à ce que chaque portion 3 présente une valeur de porosité donnée et un diamètre hydraulique le plus faible possible. En pratique le nombre de portions, les tailles et agencements des portions 3 ainsi que les porosités des portions 3 sont définies en fonction de la géométrie et des autres paramètres de fonctionnement.
[0104] Aussi, le second aspect de l’invention concernera, en particulier, un régénérateur 1 destiné à être intégré dans une machine Stirling (motrice ou réceptrice). La machine Stirling 1 pourra relever d’une architecture de type Alpha, Bêta ou Gamma, voir une combinaison de ces architectures. Dans le cas de régénérateurs 1, ces derniers doivent présenter une longueur minimale Ll permettant de séparer suffisamment la partie froide de la partie chaude de la machine Stirling. Les dimensions du régénérateur 1 sont donc définies en fonction du dimensionnement de la machine Stirling. Le régénérateur 1 pour moteur Stirling Bêta selon le mode de réalisation présente une longueur Ll de 10 cm au maximum. La fréquence de fonctionnement du moteur Stirling Bêta est de 50 Hz au maximum. Les pressions de services des gaz sont de l’ordre de 120 bars et la température du gaz chaud de l’ordre de 900 °C. Aucune modi fication de la porosité ni de la résistance hydraulique du régénérateur 1 n’est observée au cours du temps.
[0105] La géométrie particulière du matériau rigide poreux 9 présentée, en particulier sur la FIGURE 5, dans le second aspect de l’invention pourra évidemment convenir aux autres utilisations pour lesquelles un régénérateur 1 peut être utilisé.
[0106] Selon le second aspect de l’invention, le matériau rigide poreux 9 des portions 3 dont la porosité est inférieure à 1 est constitué d’un ensemble de cellules de base 6 contiguës les unes aux autres. L’ensemble des cellules 6 d’une portion 3 sont formées d’un seul tenant par fusion de poudres métalliques au cours du même procédé de prototypage 3D, illustré en particulier sur laFIGURE 4. A titre d’exemple, selon le second aspect de l’invention, le régénérateur 1 est de préférence réalisé en INOX 316L pour son étanchéité à l’hélium, sa résistance aux pressions, aux températures élevées, à la fatigue et à la corrosion.
[0107] Chaque cellule 6 du régénérateur 1 comprend huit tiges 7 s’étendant à partir du centre de la cellule 6. Chaque tige 7 d’une cellule 6 forme un angle de 45° par rapport à la direction d’écoulement des gaz. Les tiges 7 d’une cellule 6 forment un angle de 90° entre elles. Ainsi, chacune des tiges 7 de chacune des cellules 6 forme un angle de 45° par rapport à la direction d’écoulement des gaz. De manière avantageuse, au sein d’une même portion 3, la taille des cellules 6 est identique. La porosité de chaque portion 3 comprenant ΓΙΝΟΧ 316L poreux 9 est modulée en modifiant la taille des cellules 6 composant la portion 3 en question et en modifiant la longueur de la portion 3 en question.
[0108] De manière préférée, une couche 8 plane d’INOX 316L est introduite entre deux cellules 6 contiguës. Chaque cellule 6 est circonscrite entre six couches 8 d’INOX 316L parallèles deux à deux et formant un carré dans lequel la cellule 6 en question est inscrite. Chacune des couches 8 d’INOX 316L s’étend selon la direction d’écoulement des gaz et selon une des deux directions perpendiculaires à la direction d’écoulement des gaz. Aucun angle n’est formé entre la direction d’écoulement des gaz et les couches 8 d’INOX 316L. Au sein de la structure poreuse 9 d’INOX 316L des portions 3 dont du régénérateur 1 dont la porosité est inférieure à 1, chacune des quatre parties terminales de quatre tiges 7 adjacentes d’une même cellule 6 sont reliées à la même couche 8 d’INOX 316L. Chaque partie terminale d’une tige 7 d’une cellule 6 est reliée à trois couches d’INOX 316L perpendiculaires entre elles. Au sein d’une même cellule 6, chacune des deux parties terminales de deux tiges 7 opposées par rapport au centre de la cellule 6 en question sont reliées à deux couches 8 parallèles en vis-à-vis.
[0109] En référence à la FIGURE 6, il est décrit un régénérateur monobloc 1 contenant sept portions 3. Chaque portion 3 comprend de ΓΙΝΟΧ 316L poreux 9 selon le deuxième aspect de l’invention. La porosité de chaque portion 3 comprenant ΓΙΝΟΧ 316L poreux 9 est modulée en modifiant la taille des cellules 6 composant la portion 3. Les portions 3 Pl, P3, P5 et P7 présentent une porosité comprise entre 0,3 et 0,7. Les cellules 6 des portions 3 Pl, P3, P5 et P7 présentent une longueur identique comprise entre 5 mm à 15 mm. Les portions 3 P2, P4 et P6 présentent une porosité comprise entre 0,5 et 0,9. Les cellules 6 des portions 3 P2, P4 et P6 présentent une longueur identique comprise entre 5 mm et 15 mm. Les portions 3 Pl, P3, P5 et P7 présentent une porosité inférieure à celles des portions 3 P2, P4 et P6 et des longueurs pouvant être identiques.
[0110] En référence à la LIGURE 7, il est décrit un régénérateur monobloc 1 contenant sept portions 3. Seules les portions 3 Pl, P3, P5 et P7 comprennent de ΓΙΝΟΧ 316L poreux 9 selon le deuxième aspect de l’invention. Les portions 3 P2, P4 et P6 ne comprennent pas d’INOX 316L poreux 9, leur porosité est égale à 1. La porosité des portions 3 Pl, P3, P5 et P7 comprenant ΓΙΝΟΧ 316L poreux 9 est modulée en modifiant la taille des cellules 6 composant la portion 3. Les portions 3 Pl, P3, P5 et P7 présentent une porosité comprise entre 0,3 et 0,9. Les cellules 6 des portions 3 Pl, P3, P5 et P7 présentent une longueur identique comprise entre 5 mm et 15 mm. Les cellules 6 des portions 3 P2, P4 et P6 présentent une longueur identique comprise entre 5 mm et 15 mm..
[0111] Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention.
[0112] Ainsi, dans des variantes combinables entre elles des modes de réalisation précédemment décrits :
- la porosité du régénérateur 1 varie selon une direction normale à la direction d’écoulement des gaz, et/ou
- la porosité du régénérateur 1 varie selon une direction comprise entre la direction d’écoulement des gaz et la direction normale à la direction d’écoulement des gaz, et/ou
- les portions du régénérateur 1 dont les valeurs de porosités sont les plus fortes décrivent un serpentin s’étendant entre une extrémité et l’autre du régénérateur 1, et/ou - une portion du régénérateur 1 dont la valeur de porosité est la plus élevée s’étend en serpentant depuis une extrémité à l’autre du régénérateur 1, et/ou
- les cellules 6 sont réalisées individuellement de manière séparée et liées entre elles au cours d’un procédé d’assemblage subséquent, et/ou
- les portions 3 sont réalisées individuellement de manière séparée au et liées entre elles au cours d’un procédé d’assemblage subséquent.
[0113] De plus, les différentes caractéristiques, formes, variantes et modes de réalisation de l’invention peuvent être associés les uns avec les autres selon diverses combinaisons dans la mesure où ils ne sont pas incompatibles ou exclusifs les uns des autres.

Claims (1)

  1. Revendications [Revendication 1] Régénérateur monobloc (1) comprenant au moins deux portions (3) au moins une des portions présente une porosité différente d’une porosité d’une portion voisine et chacune des portions du régénérateur est réalisée dans un matériau rigide poreux (9) présentant une porosité donnée. [Revendication 2] Régénérateur (1) selon la revendication 1, dans lequel les porosités des portions (3) varient de manière alternée ou séquentielle. [Revendication 3] Régénérateur (1) selon la revendication 1 ou 2, dans lequel la porosité varie selon une direction d’écoulement des gaz (4, 5) et/ou selon une normale à la direction d’écoulement des gaz. [Revendication 4] Régénérateur (1) selon l’une quelconque des revendications précédentes, dans lequel une portion (3) s’étend entre deux sections du régénérateur, chacune des sections étant normales à la direction reliant une entrée à une sortie du générateur. [Revendication 5] Régénérateur (1) selon l’une quelconque des revendications précédentes, dans lequel des portions (3) du régénérateur situées aux extrémités du régénérateur, dites portions d’extrémités, présentent une ou des porosités inférieures à une porosité, ou respectivement des porosités, d’une portion, ou respectivement de portions, située entre les portions d’extrémités. [Revendication 6] Régénérateur (1) selon la revendication 5, dans lequel les portions (3) d’extrémités présentent chacune une porosité inférieure à une porosité d’une portion quelconque située entre les portions d’extrémités. [Revendication 7] Régénérateur (1) selon l’une quelconque des revendications précédentes, dans lequel les porosités des portions (3) du régénérateur augmentent depuis un plan central du régénérateur vers les extrémités du régénérateur, ledit plan central passant par le centre du régénérateur et étant perpendiculaire à la direction d’écoulement des gaz (4, 5). [Revendication 8] Régénérateur (1) selon la revendication 7, dans lequel les portions (3) du régénérateur sont agencées de manière symétrique par rapport au plan central du régénérateur. [Revendication 9] Régénérateur (1) selon l’une quelconque des revendications précédentes, dans lequel la portion (3) dont la porosité est la plus forte du régénérateur présente une porosité égale à 1. [Revendication 10] Régénérateur (1) selon l’une quelconque des revendications précédentes, dans lequel la porosité est comprise entre 0 et 1 par unité de
    volume et/ou entre 0 et 1 par unité de longueur. [Revendication 11] Régénérateur (1) selon l’une quelconque des revendications précédentes, dans lequel le matériau rigide poreux (9) est composé d’un ensemble de cellules (6) contiguës agencées spatialement les unes par rapport aux autres, une ou chacune parmi des surfaces de contact de chacune des cellules avec le gaz forment un angle compris entre 5° et 85° par rapport à la direction d’écoulement des gaz (4, 5). [Revendication 12] Régénérateur (1) selon la revendication 11, dans lequel chaque cellule (6) comprend au moins quatre éléments oblongs (7) s’étendant depuis un centre de la cellule, chacun des éléments formant un angle compris entre 5° et 85° par rapport à la direction d’écoulement des gaz (4, 5). [Revendication 13] Régénérateur (1) selon la revendication 12, dans lequel deux cellules (6) contiguës sont physiquement reliées ensemble : - par au moins un de leurs éléments oblongs (7), ou - par une couche de matériau (8) à laquelle est relié au moins un de leurs éléments oblongs. [Revendication 14] Régénérateur (1) selon la revendication 12 ou 13, dans lequel les éléments oblongs (7) des cellules (6) sont symétriques deux à deux par rapport à un ou plusieurs plans de symétrie comprenant le centre de la cellule. [Revendication 15] Régénérateur (1) l’une quelconque des revendications 12 à 14, dans lequel, au sein d’une même cellule (6), au moins deux éléments oblongs (7) s’étendent d’un côté et au moins deux autres éléments oblongs s’étendent de l’autre côté d’un plan comprenant le centre de la cellule et étant normal à la direction d’écoulement des gaz (4, 5). [Revendication 16] Procédé de fabrication du dispositif selon l’une quelconque des revendications 1 à 14 par impression 3D.
    1/2
FR1873559A 2018-12-20 2018-12-20 Régénérateur et procédé de fabrication d’un tel régénérateur Active FR3090840B1 (fr)

Priority Applications (15)

Application Number Priority Date Filing Date Title
FR1873559A FR3090840B1 (fr) 2018-12-20 2018-12-20 Régénérateur et procédé de fabrication d’un tel régénérateur
EP19823914.7A EP3899237A1 (fr) 2018-12-20 2019-12-17 Regenerateur et procede de fabrication d'un tel regenerateur
CN201980089649.6A CN113330207A (zh) 2018-12-20 2019-12-17 蓄热器及其制造方法
BR112021011943-4A BR112021011943A2 (pt) 2018-12-20 2019-12-17 Máquina stirling do tipo beta
CA3124288A CA3124288A1 (fr) 2018-12-20 2019-12-17 Machine stirling de type beta
PCT/EP2019/085696 WO2020127300A1 (fr) 2018-12-20 2019-12-17 Regenerateur et procede de fabrication d'un tel regenerateur
CA3124292A CA3124292A1 (fr) 2018-12-20 2019-12-17 Regenerateur et procede de fabrication d'un tel regenerateur
BR112021011926-4A BR112021011926A2 (pt) 2018-12-20 2019-12-17 Regenerador e método para fabricar tal regenerador
CN201980092522.XA CN113454324A (zh) 2018-12-20 2019-12-17 β型斯特林机
EP19823911.3A EP3899235A1 (fr) 2018-12-20 2019-12-17 Machine stirling de type beta
US17/415,587 US11952960B2 (en) 2018-12-20 2019-12-17 Beta-type Stirling machine
US17/415,583 US20220057147A1 (en) 2018-12-20 2019-12-17 Regenerator and method for manufacturing such a regenerator
EP19823912.1A EP3899236A1 (fr) 2018-12-20 2019-12-17 Machine stirling de type beta
PCT/EP2019/085687 WO2020127292A1 (fr) 2018-12-20 2019-12-17 Machine stirling de type beta
PCT/EP2019/085691 WO2020127295A1 (fr) 2018-12-20 2019-12-17 Machine stirling de type beta

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1873559A FR3090840B1 (fr) 2018-12-20 2018-12-20 Régénérateur et procédé de fabrication d’un tel régénérateur

Publications (2)

Publication Number Publication Date
FR3090840A1 true FR3090840A1 (fr) 2020-06-26
FR3090840B1 FR3090840B1 (fr) 2021-01-08

Family

ID=66530285

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1873559A Active FR3090840B1 (fr) 2018-12-20 2018-12-20 Régénérateur et procédé de fabrication d’un tel régénérateur

Country Status (7)

Country Link
US (1) US20220057147A1 (fr)
EP (1) EP3899237A1 (fr)
CN (1) CN113330207A (fr)
BR (1) BR112021011926A2 (fr)
CA (1) CA3124292A1 (fr)
FR (1) FR3090840B1 (fr)
WO (1) WO2020127300A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090840B1 (fr) * 2018-12-20 2021-01-08 Univ Franche Comte Régénérateur et procédé de fabrication d’un tel régénérateur
FI20225229A1 (en) * 2022-03-15 2023-09-16 Teknologian Tutkimuskeskus Vtt Oy Die for a heat exchanger, heat exchanger and method of producing a heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404676A1 (de) * 1994-02-15 1995-08-17 Peter Maeckel Wärmeübertrager und Regenerator mit regelbar veränderlichen Porositäten für Maschinen nach dem Stirlingprozeß
DE29520864U1 (de) * 1995-02-18 1996-05-23 Inst Luft Kaeltetech Gem Gmbh Regenerator
DE19547030A1 (de) * 1995-12-15 1997-06-19 Leybold Ag Tieftemperatur-Refrigerator mit einem Kaltkopf sowie Verfahren zur Optimierung des Kaltkopfes für einen gewünschten Temperaturbereich

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2586250A (en) * 1949-09-12 1952-02-19 H I Thompson Company Heat exchanger
US3692099A (en) * 1968-06-20 1972-09-19 Gen Electric Ultra low temperature thermal regenerator
US4359872A (en) * 1981-09-15 1982-11-23 North American Philips Corporation Low temperature regenerators for cryogenic coolers
DD265570A1 (de) * 1987-11-02 1989-03-08 Hochvakuum Dresden Veb Matrixmaterial fuer regeneratoren und verfahren zur herstellung eines feinmaschigen bleimantelsiebes
US5749226A (en) * 1993-02-12 1998-05-12 Ohio University Microminiature stirling cycle cryocoolers and engines
US5429177A (en) * 1993-07-09 1995-07-04 Sierra Regenators, Inc. Foil regenerator
US5326504A (en) * 1993-08-16 1994-07-05 The Boc Group, Inc. Ordered packing
DE4401246A1 (de) * 1994-01-18 1995-07-20 Bosch Gmbh Robert Regenerator
US6131644A (en) * 1998-03-31 2000-10-17 Advanced Mobile Telecommunication Technology Inc. Heat exchanger and method of producing the same
US6854509B2 (en) * 2001-07-10 2005-02-15 Matthew P. Mitchell Foil structures for regenerators
US7003977B2 (en) * 2003-07-18 2006-02-28 General Electric Company Cryogenic cooling system and method with cold storage device
US7137251B2 (en) * 2005-02-11 2006-11-21 Infinia Corporation Channelized stratified regenerator with integrated heat exchangers system and method
JP4468851B2 (ja) * 2005-03-31 2010-05-26 住友重機械工業株式会社 パルス管冷凍機
US7871578B2 (en) * 2005-05-02 2011-01-18 United Technologies Corporation Micro heat exchanger with thermally conductive porous network
CN102652249B (zh) * 2009-12-11 2014-11-12 日本碍子株式会社 热交换器
ES2408381B1 (es) * 2011-10-14 2014-05-07 Consejo Superior De Investigaciones Científicas (Csic) Medio de regeneración apto para su uso en intercambiadores de calor y procedimiento asociado a dicho medio.
CN102679637A (zh) * 2012-04-05 2012-09-19 上海理工大学 一种蚀刻金属薄片轴向填充式回热器及其装配方法
EP2711163A1 (fr) * 2012-09-21 2014-03-26 Hirschberg Engineering Corps de formage tridimensionnel
US10421127B2 (en) * 2014-09-03 2019-09-24 Raytheon Company Method for forming lanthanide nanoparticles
FR3045226B1 (fr) * 2015-12-15 2017-12-22 Schneider Electric Ind Sas Dispositif de refroidissement de gaz chauds dans un appareillage haute tension
DE202016106860U1 (de) * 2016-12-08 2018-03-09 Pressure Wave Systems Gmbh Regenerator für Kryo-Kühler mit Helium als Arbeitsgas
US20180195775A1 (en) * 2017-01-11 2018-07-12 Haier Us Appliance Solutions, Inc. Method for forming a caloric regenerator
TWI670166B (zh) * 2018-09-26 2019-09-01 國立成功大學 具備梯度變化孔隙之孔質材料的積層式製造方法
FR3090840B1 (fr) * 2018-12-20 2021-01-08 Univ Franche Comte Régénérateur et procédé de fabrication d’un tel régénérateur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404676A1 (de) * 1994-02-15 1995-08-17 Peter Maeckel Wärmeübertrager und Regenerator mit regelbar veränderlichen Porositäten für Maschinen nach dem Stirlingprozeß
DE29520864U1 (de) * 1995-02-18 1996-05-23 Inst Luft Kaeltetech Gem Gmbh Regenerator
DE19547030A1 (de) * 1995-12-15 1997-06-19 Leybold Ag Tieftemperatur-Refrigerator mit einem Kaltkopf sowie Verfahren zur Optimierung des Kaltkopfes für einen gewünschten Temperaturbereich

Also Published As

Publication number Publication date
CN113330207A (zh) 2021-08-31
FR3090840B1 (fr) 2021-01-08
EP3899237A1 (fr) 2021-10-27
US20220057147A1 (en) 2022-02-24
CA3124292A1 (fr) 2020-06-25
BR112021011926A2 (pt) 2021-08-31
WO2020127300A1 (fr) 2020-06-25

Similar Documents

Publication Publication Date Title
EP2399087B1 (fr) Generateur thermique magnetocalorique
EP2580534B1 (fr) Absorbeur pour recepteur solaire et recepteur solaire comportant au moins un tel absorbeur
WO2020127300A1 (fr) Regenerateur et procede de fabrication d'un tel regenerateur
FR2669966A1 (fr) Procede de fabrication de paroi de chambre de combustion, notamment pour moteur-fusee, et chambre de combustion obtenue par ce procede.
EP2577678B2 (fr) Emballage pour le transport et/ou entreposage de matières radioactives, comprenant des moyens de conduction thermique améliorés
EP1745206B1 (fr) Unite de transmission de puissance acoustique pour systemes thermoacoustiques
FR2738625A3 (fr) Echangeur de chaleur, en particulier pour vehicule automobile
EP2052200A1 (fr) Echangeur thermique
FR2942304A1 (fr) Generateur thermique magnetocalorique
EP0057637B1 (fr) Nouvelle structure composite et procédé et matrice destinés à la fabrication d'une telle structure
EP0518747B1 (fr) Résistance électrique chauffante utilisant des éléments résistifs en matériau composite carbone/carbone
EP4033193A1 (fr) Echangeur thermique comprenant un corps d echangeur en gyroïde
WO2022112391A1 (fr) Machine magnetocalorique
FR3052547A1 (fr) Dispositif de centrage dans un volume
EP0803687B1 (fr) Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat
FR3098288A1 (fr) Système de stockage et de récupération de chaleur à l’axe horizontal
WO2013001223A1 (fr) Regenerateur de chaleur
FR3099564A1 (fr) Module d’échangeur de chaleur à deux circuits de fluides, notamment échangeur de chaleur de réacteur nucléaire
FR2812828A1 (fr) Procede de fabrication de dispositif d'echange thermique et dispositif d'echange thermique obtenu par ce procede
WO2023088841A1 (fr) Titre : cellule thermoacoustique comprenant une enveloppe en matériau composite
EP4166308A2 (fr) Structure composite pourvue d'un dispositif de protection thermique à fibres creuses, en particulier pour un réservoir à hydrogène liquide
EP0275724A1 (fr) Echangeur de chaleur à circuits d'échange en spirale; plaque nervurée pour un tel échangeur
FR3032965A1 (fr) Procede de fabrication d’un corps poreux en materiau composite a matrice ceramique, et attenuateur acoustique comprenant un tel corps poreux
EP2672492B1 (fr) Support mécanique de systèmes thermiques ou électriques
WO2024008644A1 (fr) Dispositif de regulation thermique, notamment de refroidissement

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20200626

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6