FR3052245B1 - CRYOGENIC DEVICE WITH COMPACT EXCHANGER - Google Patents
CRYOGENIC DEVICE WITH COMPACT EXCHANGER Download PDFInfo
- Publication number
- FR3052245B1 FR3052245B1 FR1655128A FR1655128A FR3052245B1 FR 3052245 B1 FR3052245 B1 FR 3052245B1 FR 1655128 A FR1655128 A FR 1655128A FR 1655128 A FR1655128 A FR 1655128A FR 3052245 B1 FR3052245 B1 FR 3052245B1
- Authority
- FR
- France
- Prior art keywords
- pellets
- capillary
- mandrel
- porous
- generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000008188 pellet Substances 0.000 claims abstract description 31
- 239000012530 fluid Substances 0.000 claims abstract description 29
- 239000011148 porous material Substances 0.000 claims abstract description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 239000004332 silver Substances 0.000 claims description 9
- 125000006850 spacer group Chemical group 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 6
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- 238000005057 refrigeration Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002470 thermal conductor Substances 0.000 description 2
- KWGRBVOPPLSCSI-WPRPVWTQSA-N (-)-ephedrine Chemical compound CN[C@@H](C)[C@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WPRPVWTQSA-N 0.000 description 1
- 229920004933 Terylene® Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/37—Capillary tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/02—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/02—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
- F28D7/024—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/04—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/003—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/02—Gas cycle refrigeration machines using the Joule-Thompson effect
- F25B2309/022—Gas cycle refrigeration machines using the Joule-Thompson effect characterised by the expansion element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/06—Details of flow restrictors or expansion valves
- F25B2341/062—Capillary expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/05—Compression system with heat exchange between particular parts of the system
- F25B2400/052—Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Ce dispositif de génération de froid met en œuvre le principe de la détente de « Joule-Thomson ». Il comprend un échangeur thermique au sein duquel circule à contre-courant un fluide sous haute pression et sous basse pression. L'échangeur thermique est constitué de l'empilement de pastilles (5) réalisées en matériau poreux, et notamment fritté, constituant un mandrin cylindrique, à la périphérie et en contact duquel est enroulé un capillaire (10) au sein duquel circule le fluide haute pression, le fluide basse pression circulant à contre-courant à l'intérieur du mandrin poreux ainsi constitué..This cold generation device implements the "Joule-Thomson" relaxation principle. It comprises a heat exchanger in which circulates a countercurrent fluid under high pressure and under low pressure. The heat exchanger consists of the stack of pellets (5) made of porous material, and in particular sintered, constituting a cylindrical mandrel, at the periphery and in contact with which is wound a capillary (10) in which the high fluid circulates. pressure, the low pressure fluid flowing against the current inside the porous mandrel thus formed.
Description
DISPOSITIF CRYOGENIQUE A ECHANGEUR COMPACTCRYOGENIC DEVICE WITH COMPACT EXCHANGER
DOMAINE DE L’INVENTION L’invention se situe dans le domaine général des machines à froid, et plus particulièrement dans les dispositifs de génération de froid destinés à permettre le fonctionnement de certains types de détecteurs, et plus particulièrement des détecteurs infra-rouges du type refroidi, également dénommés détecteurs infra-rouges quantiques.FIELD OF THE INVENTION The invention lies in the general field of cold machines, and more particularly in cold generating devices intended to allow the operation of certain types of detectors, and more particularly infra-red detectors of the type cooled, also called quantum infra-red detectors.
Elle vise plus particulièrement des dispositifs du type en question mettant en œuvre comme source de froid, le principe de la détente dite « Joule-Thomson ».It is more particularly devices of the type in question implementing as a source of cold, the principle of relaxation called "Joule-Thomson".
ETAT ANTERIEUR DE LA TECHNIQUEPRIOR STATE OF THE TECHNIQUE
Dans le cadre particulier des détecteurs infra-rouges, on souhaite pour une raison évidente d’encombrement, limiter le volume de la source cryogénique. De fait, les machines cryogéniques miniatures utilisent fréquemment le principe de détente de « Joule-Thomson », permettant ainsi de disposer d’une puissance cryogénique importante, et par conséquent d’un refroidissement rapide, notamment de détecteurs infra-rouges ou de composés électroniques nécessitant pour leur fonctionnement de fonctionner à des températures particulièrement basses.In the particular context of the infra-red detectors, it is desired for obvious reasons of space, to limit the volume of the cryogenic source. In fact, miniature cryogenic machines frequently use the "Joule-Thomson" relaxation principle, thus making it possible to have a large cryogenic power, and therefore a rapid cooling, in particular of infra-red detectors or electronic compounds. requiring for their operation to operate at particularly low temperatures.
Il est connu que la performance de telles machines cryogéniques dépend de l’efficacité de l’échange thermique qui intervient entre le fluide haute pression et le fluide basse pression avant que la détente du fluide n’intervienne. L’efficacité de l’échange thermique est donc primordiale. A cet effet, les dispositifs de l’art antérieur mettent en œuvre un échangeur à contre-courant du type Hampson, dans lequel le fluide haute pression circule dans un capillaire entourant un manchon ou mandrin cylindrique, obturé par une mousse isolante. L’échange thermique intervient à la périphérie du manchon, au niveau duquel circule à contre-courant le fluide basse pression.It is known that the performance of such cryogenic machines depends on the efficiency of the heat exchange that occurs between the high pressure fluid and the low pressure fluid before the expansion of the fluid intervenes. The efficiency of heat exchange is therefore essential. For this purpose, the devices of the prior art implement a Hampson type countercurrent exchanger, in which the high pressure fluid circulates in a capillary surrounding a cylindrical sleeve or mandrel, closed by an insulating foam. The heat exchange occurs at the periphery of the sleeve, at which the low-pressure fluid flows counter-currently.
Afin d’optimiser cet échange thermique, on a proposé d’augmenter la surface d’échanges entre le fluide haute pression et le fluide basse pression, en munissant le capillaire d’ailettes radiales. Si certes, la surface d’échange thermique s’en trouve augmentée, en revanche, la présence des ailettes, en raison de leur épaisseur, augmente l’écartement entre deux spires consécutives, et partant diminue le nombre de spires du capillaire pour une longueur donnée du mandrin, neutralisant à tout le moins partiellement l’optimisation recherchée de l’échange.In order to optimize this heat exchange, it has been proposed to increase the exchange surface between the high-pressure fluid and the low-pressure fluid, by providing the capillary with radial fins. While the heat exchange surface is increased, the presence of the fins, because of their thickness, increases the spacing between two consecutive turns, and therefore reduces the number of turns of the capillary for a length. given the chuck, neutralizing at least partially the desired optimization of the exchange.
Dans le même but, il a également été proposé d’accroître la longueur de l’échangeur, et plus particulièrement la longueur du capillaire. On se heurte alors à la problématique de l’encombrement dudit échangeur, et donc de la machine à froid.For the same purpose, it has also been proposed to increase the length of the exchanger, and more particularly the length of the capillary. One then comes up against the problem of congestion of said exchanger, and therefore the cold machine.
On a également proposé de réduire la conduction axiale dans l’échangeur, inhérente à la mise en œuvre du mandrin, et source de perte et d’efficacité. L’invention vise un dispositif du type en question permettant tout à la fois d’augmenter l’efficacité d’un tel dispositif, notamment en réduisant le TMF, c’est-à-dire le temps de mise en froid de l’installation, sans altérer l’encombrement des dispositifs existants ou au contraire, à TMF constant, à diminuer l’encombrement de tels dispositifs.It has also been proposed to reduce the axial conduction in the exchanger, inherent to the implementation of the chuck, and a source of loss and efficiency. The invention is aimed at a device of the type in question which makes it possible at the same time to increase the efficiency of such a device, in particular by reducing the TMF, that is to say the cooling time of the installation. without altering the size of the existing devices or conversely, at constant TMF, to reduce the size of such devices.
EXPOSE DE L’INVENTION A cet effet, l’invention propose un dispositif de génération de froid mettant en œuvre le principe de la détente de « Joule-Thomson », comprenant un échangeur au sein duquel circule à contre-courant un fluide sous haute pression et sous basse pression.SUMMARY OF THE INVENTION To this end, the invention proposes a cold generation device implementing the "Joule-Thomson" expansion principle, comprising an exchanger in which a fluid under high pressure circulates in countercurrent. and under low pressure.
Selon l’invention, l’échangeur thermique est constitué de l’empilement de pastilles réalisées en matériau poreux, et notamment fritté, constituant un mandrin cylindrique, au contact duquel est enroulé un capillaire au sein duquel circule le fluide haute pression, le fluide basse pression circulant à contre-courant à l’intérieur du mandrin poreux ainsi constitué..According to the invention, the heat exchanger consists of the stack of pellets made of porous material, and in particular sintered, constituting a cylindrical mandrel, in contact with which is wound a capillary in which the high pressure fluid circulates, the low fluid pressure circulating against the current inside the porous mandrel thus formed.
En d’autres termes, l’invention consiste fondamentalement à remplacer le mandrin et les ailettes de l’art antérieur par un empilement de matériau fritté et poreux, favorisant l’échange thermique du fluide basse pression avec le fluide haute pression circulant dans le capillaire périphérique en contact avec ledit matériau.In other words, the invention basically consists in replacing the mandrel and fins of the prior art with a stack of sintered and porous material, favoring the heat exchange of the low-pressure fluid with the high-pressure fluid circulating in the capillary. peripheral in contact with said material.
Cette optimisation de l’échange résulte de la nature du matériau constitutif du mandrin, et permet en outre de s’affranchir des ailettes optimisant l’échange thermique de l’art antérieur, et par voie de conséquence, permet d’optimiser la concentration en spires du capillaire au sein duquel circule le fluide haute pression, et par voie de conséquence permet d’optimiser la compacité du dispositif générateur de froid.This optimization of the exchange results from the nature of the material constituting the mandrel, and also makes it possible to dispense with the fins optimizing the heat exchange of the prior art, and consequently, makes it possible to optimize the concentration of turns of the capillary in which circulates the high pressure fluid, and consequently allows to optimize the compactness of the cold generating device.
Avantageusement, on intercale entre chacune des pastilles réalisées en matériau fritté, un tissu poreux isolant thermique, typiquement réalisé en fibres de verre. L’intercalation de tels éléments en fibres de verre, donc non conducteur de la chaleur, réduit la conduction axiale et corolairement optimise le fonctionnement du dispositif de générateur de froid.Advantageously, there is interposed between each of the pellets made of sintered material, a porous thermal insulating fabric, typically made of glass fibers. The interposition of such glass fiber elements, thus non-heat conducting, reduces the axial conduction and corollary optimizes the operation of the cold generator device.
Avantageusement, les pastilles sont réalisées à base de fritté d’argent ou de fritté de cuivre.Advantageously, the pellets are made from sintered silver or sintered copper.
Le capillaire est quant à lui réalisé en métal typiquement en cuivre, en acier inoxydable, voire en alliage cupronickel.The capillary is meanwhile made of metal typically copper, stainless steel or even cupronickel alloy.
Selon une caractéristique avantageuse de l’invention, les spires du capillaire ne sont pas en contact Tune avec l’autre. A cet effet, on enroule concomitamment avec ledit capillaire, un fil isolant, typiquement en fibre de verre faisant fonction d’espaceur.According to an advantageous characteristic of the invention, the turns of the capillary are not in contact with each other. For this purpose, an insulating wire, typically made of glass fiber acting as a spacer, is coiled with the said capillary.
BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES
La manière de réaliser l’invention et les avantages qui en découlent, ressortiront mieux de la description qui suit, donnée à titre indicatif et non limitatif à l’appui des figures annexées. la figure 1 est un schéma illustrant le principe de la détente « Joule-Thomson » mise en œuvre au niveau du dispositif générateur de froid, la figure 2 est une représentation schématique du dispositif de l’invention, la figure 3 est une vue analogue à la figure 2 illustrant le circuit respectif du fluide haute pression et basse pression ; la figure 4 est une représentation schématique d’un cryostat ; la figure 5 est une représentation schématique en section sagittale partielle deThe manner of carrying out the invention and the advantages which result therefrom will emerge more clearly from the description which follows, given by way of indication and not by way of limitation, in support of the appended figures. FIG. 1 is a diagram illustrating the "Joule-Thomson" expansion principle implemented at the level of the cold generating device, FIG. 2 is a schematic representation of the device of the invention, FIG. 3 is a view similar to FIG. FIG. 2 illustrating the respective circuit of the high pressure and low pressure fluid; Figure 4 is a schematic representation of a cryostat; FIG. 5 is a schematic representation in partial sagittal section of
Tune des partie du cryostat de la figure 4.One of the cryostat parts of Figure 4.
DESCRIPTION DETAILLEE DE L’INVENTIONDETAILED DESCRIPTION OF THE INVENTION
On a donc représenté en relation avec la figure 1 le schéma de fonctionnement d’un dispositif mettant en œuvre la détente de « Joule-Thomson ». Ce schéma fait apparaître la source de fluide haute pression HP, ce fluide pouvant être un gaz typiquement argon, azote ou air, et le retour dudit fluide après détente.FIG. 1 therefore shows the operating diagram of a device implementing the "Joule-Thomson" trigger. This diagram shows the source of high pressure fluid HP, this fluid can be a typically argon gas, nitrogen or air, and the return of said fluid after expansion.
On a représenté par le double serpentin (1), l’échangeur thermique à contre-courant entre le fluide haute pression émanant de la source haute pression HP, et le fluide basse pression, après détente au niveau de l’évaporateur (2), une valve de détente (3) étant montée avant l’évaporateur. L’ensemble est intégré au sein d’une enceinte à vide (4).The double coil (1) shows the countercurrent heat exchanger between the high pressure fluid emanating from the high pressure source HP and the low pressure fluid after expansion at the evaporator (2). an expansion valve (3) being mounted before the evaporator. The assembly is integrated within a vacuum chamber (4).
On a représenté au sein de la figure 2 le cœur de l’échangeur conforme à l’invention. Celui-ci est constitué par l’empilement de pastilles (5), réalisées en matériau poreux, et notamment en fritté à base d’argent. L’argent est en effet un très bon conducteur thermique et en outre s’avère facile à fritter. On pourrait également envisager d’utiliser du cuivre en remplacement de l’argent.FIG. 2 shows the heart of the exchanger according to the invention. This is constituted by the stack of pellets (5), made of porous material, and in particular sintered silver base. Silver is indeed a very good thermal conductor and is also easy to sinter. One could also consider using copper instead of silver.
Typiquement, la porosité de ces pastilles est voisine de 100 nanomètres. En d’autres termes, les orifices générés par le frittage des pastilles présentent un diamètre typique de 100 nanomètres.Typically, the porosity of these pellets is close to 100 nanometers. In other words, the orifices generated by the sintering of the pellets have a typical diameter of 100 nanometers.
Ces pastilles (5), de forme globalement cylindrique, sont par exemple assemblées les unes aux autres au moyen de tiges de fixation (6), émanant du connecteur haute pression (7), et munies d’écrous (8) à leur base inférieure. Alternativement, les pastilles peuvent être collées entre elles.These pellets (5), of generally cylindrical shape, are for example assembled to each other by means of fixing rods (6) emanating from the high-pressure connector (7) and provided with nuts (8) at their lower base. . Alternatively, the pellets can be glued together.
Selon une caractéristique avantageuse de l’invention, ces pastilles (5) sont séparées les unes des autres par un intercalaire (9), réalisé en un matériau poreux non conducteur, typiquement constitué d’un tissé en fibres de verre. Ces intercalaires présentent une épaisseur typique de 0,3 millimètre. La mise en œuvre de tels intercalaires tend à s’opposer à toute conduction thermique axiale. L’ensemble ainsi constitué par les pastilles et les intercalaires constitue un mandrin cylindrique, an contact duquel est enroulé un capillaire (10) au sein duquel circule le fluide haute pression. Ce capillaire est par exemple réalisé en cuivre, en acier inoxydable ou en un alliage cupro-nickel. Il présente typiquement un diamètre externe de 0,5 millimètre et un diamètre interne de 0,3 millimètre.According to an advantageous characteristic of the invention, these pellets (5) are separated from each other by a spacer (9), made of a non-conductive porous material, typically consisting of a woven fiberglass. These spacers have a typical thickness of 0.3 millimeters. The implementation of such spacers tends to oppose any axial thermal conduction. The assembly thus constituted by the pellets and the spacers constitutes a cylindrical mandrel, in contact with which is wound a capillary (10) in which the high pressure fluid circulates. This capillary is for example made of copper, stainless steel or a cupro-nickel alloy. It typically has an outer diameter of 0.5 millimeters and an inner diameter of 0.3 millimeters.
En raison du caractère poreux des pastilles (5), le fluide basse pression les traverse et les refroidit. A leur tour, eu fait de leur caractère bon conducteur thermique, les pastilles refroidissent le fluide haute pression qui circule dans le capillaire. De fait, un bon contact thermique est nécessaire entre le capillaire et les pastilles..Due to the porous nature of the pellets (5), the low pressure fluid passes through them and cools them. In turn, having made their character as a good thermal conductor, the pellets cool the high pressure fluid that circulates in the capillary. In fact, a good thermal contact is necessary between the capillary and the pellets.
La réalisation d’un tel dispositif peut être effectuée de la manière suivante.The realization of such a device can be performed in the following manner.
En premier lieu, on réalise les pastilles (5) à l’aide d’un moule conformé en fonction de la forme souhaitée desdites pastilles. La poudre d’argent est versée dans le moule, et on élève la température du moule à une température inférieure à la température de fusion de l’argent, afin d’obtenir un simple frittage sans engendrer la fusion de la poudre.In the first place, the pellets (5) are produced using a mold shaped according to the desired shape of said pellets. The silver powder is poured into the mold, and the temperature of the mold is raised to a temperature below the melting temperature of the silver, in order to obtain a simple sintering without causing the melting of the powder.
Après réalisation des pastilles, on procède à leur empilement en intercalant les éléments isolant thermiques (9), ces derniers présentant un diamètre externe inférieur ou égal à celui des pastilles (5), de telle sorte qu’ils ne puissent entrer en contact avec le capillaire (10).After completion of the pellets, their stacking is carried out by intercalating the thermal insulating elements (9), the latter having an external diameter less than or equal to that of the pellets (5), so that they can not come into contact with the capillary (10).
Ces pastilles et les intercalaires sont enfilés sur les tiges de maintien (6), par exemple filetées, et bloqués au moyen des écrous (8). Lin mandrin est donc de facto constitué.These pellets and the spacers are threaded onto the holding rods (6), for example threaded, and locked by means of the nuts (8). Lin mandrin is de facto constituted.
Le capillaire, par exemple réalisé en alliage cupro-nickel subit un traitement constitué par un dépôt d’argent, par exemple par électrolyse, si les pastilles sont réalisées en fritté d’argent. Ce dépôt a pour vocation de favoriser le contact ultérieur avec les pastilles (5), notamment lorsque l’on procède à la fixation dudit capillaire par soudure ou par brasure. Ainsi, après enroulement du capillaire (10) autour du mandrin, l’ensemble est placé dans un four pour engendrer le phénomène de brasure.The capillary, for example made of cupro-nickel alloy undergoes treatment consisting of a silver deposit, for example by electrolysis, if the pellets are made of silver sintered. This deposit is intended to promote subsequent contact with the pellets (5), especially when proceeding to the fixing of said capillary by welding or solder. Thus, after winding the capillary (10) around the mandrel, the assembly is placed in an oven to generate the soldering phenomenon.
Alternativement, il peut être envisagé de consolider l’ensemble ainsi constitué par un liant conducteur thermique, par exemple constitué d’un film de colle type « solgel » chargée en poudre métallique, badigeonné dans la zone capillaire/pastille.Alternatively, it may be envisaged to consolidate the assembly thus constituted by a thermal conductive binder, for example consisting of a type of "solgel" type of glue film loaded with metal powder, whitewashed in the capillary / pellet area.
Selon une caractéristique avantageuse de l’invention, on cherche à éviter tout contact entre les spires consécutives du capillaire, afin d’éviter tout pont thermique entre elles. A cet effet, il convient de rappeler que le dispositif de l’invention a vocation à être intégré dans un puits cylindrique d’un cryostat, tel qu’illustré au sein de la figure 4. Un tel cryostat (11) est traditionnellement maintenu sous vide. Il reçoit au sein de l’enceinte qu’il définit un détecteur infra rouge (12), positionné à l’aplomb d’une fenêtre (13) transparente au rayonnement à détecter. Enfin, il comporte deux puits (14), au sein desquels sont insérés dans chacun d’eux un dispositif conforme à l’invention, afin de générer le froid nécessaire au fonctionnement dudit détecteur.According to an advantageous characteristic of the invention, it is sought to avoid any contact between the consecutive turns of the capillary, in order to avoid any thermal bridge between them. For this purpose, it should be recalled that the device of the invention is intended to be integrated in a cylindrical well of a cryostat, as shown in FIG. 4. Such a cryostat (11) is traditionally maintained under empty. It receives within the enclosure that defines an infrared detector (12), positioned vertically above a window (13) transparent to the radiation to be detected. Finally, it comprises two wells (14), within which are inserted in each of them a device according to the invention, in order to generate the cold necessary for the operation of said detector.
On a représenté au sein de la figure 5, une vue schématique en section sagittale partielle de l’un des puits (14) muni du dispositif de l’invention.FIG. 5 shows a schematic view in partial sagittal section of one of the wells (14) provided with the device of the invention.
Ainsi, afin de forcer le fluide basse pression, et notamment le gaz basse pression à traverser les pastilles poreuses (5), on positionne un fil (15) en matériau isolant, par exemple réalisé en fibres de verre ou en fibres de polyester tel que commercialisées sous la marque déposée terylène®, venant prendre appui entre deux spires consécutives du capillaire (10), c’est-à-dire dans l’intervalle séparant lesdites spires, et contre la paroi interne du puits cylindrique (14). Le fil (15) est ainsi enroulé le long du mandrin, puis fixé à ses deux extrémités, typiquement par collage.Thus, in order to force the low-pressure fluid, and in particular the low-pressure gas to pass through the porous pellets (5), a wire (15) is positioned in an insulating material, for example made of glass fibers or polyester fibers such as sold under the trademark terylene®, coming to bear between two consecutive turns of the capillary (10), that is to say in the interval between said turns, and against the inner wall of the cylindrical well (14). The wire (15) is thus wound along the mandrel and then fixed at its two ends, typically by gluing.
Ainsi, avec la mise en place de ce fil (15), on s’affranchit de tout pont thermique entre les spires d’une part, et entre les spires et le puits (14).Thus, with the introduction of this wire (15), it avoids any thermal bridge between the turns on the one hand, and between the turns and the well (14).
Le dispositif conforme à l’invention permet d’augmenter considérablement la surface d’échange thermique en comparaison avec les dispositifs de l’art antérieur, du type comprenant un capillaire à ailettes, typiquement de 1000 fois à encombrement constant. On conçoit dès lors aisément que l’efficacité d’une telle machine à froid est elle-même augmentée, ou que l’encombrement d’une telle machine à froid peut être significativement réduit, tout en conservant les mêmes performances que les dispositifs de l’art antérieur. Ces résultats sont particulièrement appréciables dans le cadre des détecteurs infrarouges refroidis.The device according to the invention makes it possible to considerably increase the heat exchange area in comparison with the devices of the prior art, of the type comprising a finned capillary, typically 1000 times with constant bulk. It is therefore easily conceivable that the efficiency of such a cold machine is itself increased, or that the size of such a cold machine can be significantly reduced, while maintaining the same performance as the devices of the machine. prior art. These results are particularly significant in the context of cooled infrared detectors.
Claims (8)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1655128A FR3052245B1 (en) | 2016-06-06 | 2016-06-06 | CRYOGENIC DEVICE WITH COMPACT EXCHANGER |
US16/094,328 US20190120529A1 (en) | 2016-06-06 | 2017-06-02 | Cryogenic device with compact exchanger |
SI201730180T SI3465030T1 (en) | 2016-06-06 | 2017-06-02 | Cryogenic device with compact exchanger |
CN201780025154.8A CN109073293B (en) | 2016-06-06 | 2017-06-02 | Refrigerating device implementing joule-thomson expansion principle |
KR1020187030498A KR102260700B1 (en) | 2016-06-06 | 2017-06-02 | Cryogenic unit with compact exchanger |
EP17735183.0A EP3465030B1 (en) | 2016-06-06 | 2017-06-02 | Cryogenic device with compact exchanger |
PCT/FR2017/051390 WO2017212148A1 (en) | 2016-06-06 | 2017-06-02 | Cryogenic device with compact exchanger |
IL262395A IL262395B (en) | 2016-06-06 | 2018-10-15 | Cryogenic device with compact exchanger |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1655128 | 2016-06-06 | ||
FR1655128A FR3052245B1 (en) | 2016-06-06 | 2016-06-06 | CRYOGENIC DEVICE WITH COMPACT EXCHANGER |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3052245A1 FR3052245A1 (en) | 2017-12-08 |
FR3052245B1 true FR3052245B1 (en) | 2019-06-14 |
Family
ID=57233543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1655128A Active FR3052245B1 (en) | 2016-06-06 | 2016-06-06 | CRYOGENIC DEVICE WITH COMPACT EXCHANGER |
Country Status (8)
Country | Link |
---|---|
US (1) | US20190120529A1 (en) |
EP (1) | EP3465030B1 (en) |
KR (1) | KR102260700B1 (en) |
CN (1) | CN109073293B (en) |
FR (1) | FR3052245B1 (en) |
IL (1) | IL262395B (en) |
SI (1) | SI3465030T1 (en) |
WO (1) | WO2017212148A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111912132A (en) * | 2020-06-05 | 2020-11-10 | 中国空间技术研究院 | Joule-Thomson refrigerating device and preparation method thereof |
CN114087810B (en) * | 2021-11-16 | 2022-08-05 | 西安交通大学 | Throttling refrigerator |
CN114754507A (en) * | 2022-03-11 | 2022-07-15 | 上海铂钺制冷科技有限公司 | Composite low-temperature negative-pressure dividing wall type heat exchanger for extremely-low-temperature region refrigerator |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB945223A (en) * | 1961-09-22 | 1963-12-23 | Atomic Energy Authority Uk | Improvements in or relating to refrigerators |
FR2477406A1 (en) * | 1980-03-06 | 1981-09-11 | Commissariat Energie Atomique | Surgical cryoprobe for destroying diseased cell tissue esp. cancer - can fit inside endoscope for internal surgery |
SU903667A1 (en) * | 1980-05-12 | 1982-02-07 | Предприятие П/Я М-5727 | Microcooler |
JPH0684852B2 (en) * | 1986-01-20 | 1994-10-26 | 株式会社東芝 | Cryogenic refrigerator |
US4781033A (en) * | 1987-07-16 | 1988-11-01 | Apd Cryogenics | Heat exchanger for a fast cooldown cryostat |
JP3674791B2 (en) * | 1994-07-14 | 2005-07-20 | アイシン精機株式会社 | Cooling system |
US20010030040A1 (en) * | 1999-12-23 | 2001-10-18 | Jia Hua Xiao | Miniature cryogenic heat exchanger |
US7404295B2 (en) * | 2002-03-22 | 2008-07-29 | Sumitomo Heavy Industries, Ltd. | Ultra-low temperature regenerator and refrigerator |
US7160291B2 (en) * | 2003-06-25 | 2007-01-09 | Endocare, Inc. | Detachable cryosurgical probe |
JP2005342280A (en) * | 2004-06-04 | 2005-12-15 | Mie Kagaku Kogyo Kk | Warming bag body |
ES2587724T3 (en) * | 2009-09-02 | 2016-10-26 | Invensor Gmbh | Feeding and distribution of surface refrigerant for a heat exchanger in sorption machines |
CN103423911B (en) * | 2012-06-25 | 2015-10-28 | 上海理工大学 | Refrigerator |
CN103615823B (en) * | 2013-12-09 | 2015-11-25 | 武汉高芯科技有限公司 | A kind of can the Stirling-throttling composite refrigerator of fast-refrigerating |
US20170146268A1 (en) * | 2015-11-24 | 2017-05-25 | General Electric Company | Water Chiller Apparatus |
-
2016
- 2016-06-06 FR FR1655128A patent/FR3052245B1/en active Active
-
2017
- 2017-06-02 CN CN201780025154.8A patent/CN109073293B/en active Active
- 2017-06-02 WO PCT/FR2017/051390 patent/WO2017212148A1/en unknown
- 2017-06-02 KR KR1020187030498A patent/KR102260700B1/en active IP Right Grant
- 2017-06-02 US US16/094,328 patent/US20190120529A1/en not_active Abandoned
- 2017-06-02 SI SI201730180T patent/SI3465030T1/en unknown
- 2017-06-02 EP EP17735183.0A patent/EP3465030B1/en active Active
-
2018
- 2018-10-15 IL IL262395A patent/IL262395B/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
IL262395A (en) | 2018-12-31 |
US20190120529A1 (en) | 2019-04-25 |
CN109073293A (en) | 2018-12-21 |
WO2017212148A1 (en) | 2017-12-14 |
SI3465030T1 (en) | 2020-03-31 |
FR3052245A1 (en) | 2017-12-08 |
CN109073293B (en) | 2020-07-03 |
EP3465030A1 (en) | 2019-04-10 |
KR20190015202A (en) | 2019-02-13 |
KR102260700B1 (en) | 2021-06-03 |
IL262395B (en) | 2020-10-29 |
EP3465030B1 (en) | 2020-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3052245B1 (en) | CRYOGENIC DEVICE WITH COMPACT EXCHANGER | |
EP2181301B1 (en) | Thermal regulation passive device with fluid micro loop and capillary pumping | |
FR2925254A1 (en) | DEVICE FOR COOLING AN ELECTRONIC CARD BY CONDUCTION USING CALODUCES, AND METHOD OF MANUFACTURING THE SAME. | |
FR2560421A1 (en) | Cooling device for superconducting windings | |
EP2179240A1 (en) | Passive device with fluid micro loop and capillary pumping | |
EP3671065A1 (en) | Cooling device comprising a paramagnetic garnet ceramic | |
CA1092200A (en) | Frequency electric furnace | |
CA2155401C (en) | Superconducting electrical connection | |
FR2873488A1 (en) | Superconductor cable with niobium-tin phase has bronze core surrounded by sleeve of niobium-tin filaments in bronze matrix | |
CA2055809C (en) | Process for refrigerating a busway for very low temperature electrical material and device for carrying such | |
EP0325873B1 (en) | Liquefied gas transfer line having at least one vapour derivation | |
FR2678432A1 (en) | METHOD OF BONDING BETWEEN A HIGH CRITICAL TEMPERATURE SUPERCONDUCTIVE CERAMIC AND A SUPERCONDUCTIVE CONDUCTOR BASED ON NIOBIUM-TITANIUM. | |
FR2813662A1 (en) | Capillary evaporator, for thermal transfer loop, comprises a housing made of material with low thermal conductivity | |
EP3196947A1 (en) | Cooling device comprising an improved cold finger | |
EP0258093B1 (en) | Joule-thomson cooler and cryostat provided with this cooler | |
EP0449736A1 (en) | Thermal buckler | |
FR2972890A1 (en) | INDUCTIVE SYSTEM THAT CAN SERVE COLD CUP | |
EP0520374B1 (en) | Structure for conducting electric current to an installation working at a very low temperature | |
FR2630535A1 (en) | POROUS MASS FOR HEAT EXCHANGER AND ITS APPLICATION TO JOULE-THOMSON COOLER | |
FR3119675A1 (en) | ELECTROMAGNETIC RADIATION DETECTION SYSTEM AND COOLING METHOD | |
FR2568350A1 (en) | Neck for a tank containing cryogenic liquid, and tank comprising such a neck | |
FR2886721A1 (en) | Heat pipe tube manufacturing method for e.g. heat conductor block, involves distributing, in tube, sintered metallic powder in shape of half-moon, where height of half-moon is variable along longitudinal axis of heat pipe | |
EP0537073A1 (en) | Current lead for cryogenic use and for a cryogenic device | |
WO2009102184A1 (en) | Electrical superconductor system | |
FR2621439A1 (en) | Resonant cavity, coupling device, particle acclerator and travelling-wave tube including such cavities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20171208 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |