FR3031377A1 - GEARBOX FOR MOTOR VEHICLE - Google Patents
GEARBOX FOR MOTOR VEHICLE Download PDFInfo
- Publication number
- FR3031377A1 FR3031377A1 FR1550048A FR1550048A FR3031377A1 FR 3031377 A1 FR3031377 A1 FR 3031377A1 FR 1550048 A FR1550048 A FR 1550048A FR 1550048 A FR1550048 A FR 1550048A FR 3031377 A1 FR3031377 A1 FR 3031377A1
- Authority
- FR
- France
- Prior art keywords
- shaft
- barrel
- control
- hollow shaft
- gearbox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005422 blasting Methods 0.000 claims abstract description 13
- 238000006073 displacement reaction Methods 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 claims abstract description 10
- 238000005562 fading Methods 0.000 claims abstract description 4
- 230000005540 biological transmission Effects 0.000 claims 2
- 230000005032 impulse control Effects 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 230000000763 evoking effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/30—Constructional features of the final output mechanisms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/30—Constructional features of the final output mechanisms
- F16H2063/3093—Final output elements, i.e. the final elements to establish gear ratio, e.g. dog clutches or other means establishing coupling to shaft
- F16H2063/3096—Sliding keys as final output elements; Details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/08—Multiple final output mechanisms being moved by a single common final actuating mechanism
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gear-Shifting Mechanisms (AREA)
Abstract
Boîte de vitesses comprenant un arbre (200) et des pignons (300), ledit arbre (200) étant de plus creux, la boîte de vitesses comprenant de plus, concentrique audit arbre creux (200) et en son intérieur, un barillet de commande (100) mobile au moins en translation longitudinale vis-à-vis dudit arbre creux (200), pour agir en translation longitudinale sur des pions de commande traversant la paroi de l'arbre creux (200) pour commander la solidarisation des pignons (300) avec l'arbre creux (200), le barillet (100) étant maintenu en position vis-à-vis de l'arbre (200) par un billage (160), et commandé par une première tige entrainant le barillet lors d'un déplacement longitudinal relatif dans une première direction pour surmonter la force de maintien imposée par le billage et s'effaçant par l'effet d'une rampe du fait de ladite force de maintien lors d'un déplacement relatif dans la direction opposée.Gearbox comprising a shaft (200) and pinions (300), said shaft (200) being further hollow, the gearbox further comprising, concentric to said hollow shaft (200) and in its interior, a control cylinder (100) movable at least in longitudinal translation vis-à-vis said hollow shaft (200), to act in longitudinal translation on control pins passing through the wall of the hollow shaft (200) to control the fastening of the gears (300 ) with the hollow shaft (200), the cylinder (100) being held in position relative to the shaft (200) by a blasting (160), and controlled by a first rod driving the barrel during a relative longitudinal displacement in a first direction to overcome the holding force imposed by the blasting and fading by the effect of a ramp due to said holding force when moving relative in the opposite direction.
Description
BOITE DE VITESSES POUR VEHICULE A MOTEUR [0001] L'invention porte sur une boîte de vitesses pour véhicule à moteur, par exemple un véhicule automobile, dont le moteur peut être un moteur thermique. [0002] Les boîtes de vitesses pour véhicule à moteur comprennent typiquement deux arbres, l'un étant entrainé par le moteur et étant qualifié d'arbre primaire, et l'autre entrainant les axes des roues motrices et étant qualifié d'arbre secondaire. Les deux arbres sont reliés par autant de couples de pignons que la boîte offre de rapports de vitesse, un pignon de chaque couple étant fixe sur un des arbres et l'autre fou sur l'autre arbre. La sélection d'un pignon fou parmi les différents pignons fous et sa solidarisation avec l'arbre qui le porte permet l'engagement du rapport de vitesse, la rotation de l'arbre primaire étant alors transmise à l'arbre secondaire par le couple de pignons comprenant le pignon sélectionné. [0003] Dans les boîtes de vitesses connues, les pignons fous sont solidarisés à l'arbre qui les porte à l'aide de crabots ou de synchroniseurs. Ceux-ci sont actionnés par une fourchette qui approche l'arbre latéralement et dont les éléments de commande occupent un espace hors du plan défini par les deux arbres de la boîte. Il résulte de cette disposition que la boîte de vitesses est encombrante de par son épaisseur par rapport au plan des deux arbres. De plus le montage est complexe puisque pour commander le passage d'un rapport de vitesse il convient d'avoir un axe de commande en sélection et un axe de commande en passage, un barillet à côté des arbres, des leviers et des doigts de commande. [0004] On connait du document US7997159 un système dans lequel un arbre portant des pignons fous comprend, coaxial avec lui, un tube en rotation par rapport à l'arbre, qui commande la solidarisation des pignons fous. Mais la commande est complexe, et le système encombrant, avec des actions en rotation à l'extérieur du système d'arbres. [0005] L'invention vise à résoudre ces problèmes et proposer un système simple et peu encombrant en dehors du plan occupé par les arbres. [0006] Pour résoudre ces problèmes, il est proposé une boîte de vitesses pour véhicule à moteur comprenant un arbre et des pignons montés pour transmettre de la puissance avec un rapport de vitesse déterminé par le pignon sélectionné parmi lesdits pignons, la sélection du pignon se faisant par sa solidarisation avec l'arbre, ledit arbre étant de plus creux, caractérisée en ce que la boîte de vitesses comprend de plus, concentrique audit arbre creux et en son intérieur, un barillet de commande mobile au moins en translation longitudinale vis-à-vis dudit arbre creux, pour agir en translation longitudinale sur des pions de commande traversant la paroi de l'arbre creux pour commander la solidarisation ou la désolidarisation des pignons avec l'arbre creux, le barillet étant maintenu en position vis-à-vis de l'arbre par un billage, et commandé par une première tige entrainant le barillet, lors d'un déplacement longitudinal relatif dans une première direction pour surmonter la force de maintien imposée par le billage, et s'effaçant par l'effet d'une rampe du fait de ladite force de maintien lors d'un déplacement longitudinal relatif dans la direction opposée. [0007] Ces principes permettent de commander le barillet uniquement en translation ce qui est facilement réalisable même si l'ensemble tourne à la vitesse de l'arbre par rapport au carter. [0008] Grâce à ces principes, on met en oeuvre une commande de boîte de vitesses concentrique à un des arbres de la boîte, ce qui permet de gagner de l'espace autour des pignons, et de définir un carter de plus petite taille et moins lourd. Le nombre de pièce est réduit, et le système est donc plus solide. [0009] L'invention peut de plus comprendre les caractéristiques suivantes, qui sont avantageuses : - une deuxième tige commande de manière impulsionnelle le barillet en butant lors d'un déplacement longitudinal relatif dans la direction opposée et en s'effaçant par un effet de rampe lors d'un déplacement relatif dans la première direction ; - la commande du barillet étant assurée par au moins deux premières tiges symétriques par rapport à l'axe longitudinal du barillet ; - un engagement ou un désengagement de la première tige est contrôlé par un col de l'arbre, qui interagit avec une excroissance ou ergot sur la première tige pour la pousser vers l'axe longitudinal ou la laisser revenir vers la périphérie ; - la première tige est guidée en translation par un élément de commande externe avec un moyen pour ne pas transmettre le mouvement de rotation dudit arbre creux audit élément 30 de commande externe ; - la première tige entraine le barillet en agissant par appui dans ladite première direction entre plans parallèles perpendiculaires à l'axe longitudinal sur un bord d'une gorge du barillet, le barillet comprenant une gorge pour chaque rapport de vitesse, et la première tige a une tête comportant une rampe pour s'effacer quand elle rencontre un bord de la gorge dans ladite direction opposée ; - un élément de commande externe incluant un élément de rappel pour provoquer un retour en position d'un levier à actionner par un utilisateur dans un sens pour effectuer un passage de vitesse montant et dans un autre sens pour effectuer un passage de vitesse descendant. [0010] La boîte de vitesses peut de plus être une boîte séquentielle. [0011] La boîte de vitesses peut de plus être une boîte à commande impulsionnelle. [0012] L'arbre creux peut être l'arbre primaire ou l'arbre secondaire. [0013] L'invention concerne de plus être un véhicule automobile comprenant une boîte de vitesses telle qu'évoquée. [0014] L'invention sera mieux comprise, et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement dans la description explicative qui va suivre faite en référence aux dessins annexés donnés uniquement à titre d'exemple illustrant un mode de réalisation de l'invention et dans lesquels : - la figure 1 présente un barillet d'une boîte de vitesses selon un mode de réalisation de l'invention ; - la figure 2 présente un développé des pistes du barillet de la figure 1 ; - la figure 3 présente une vue en coupe d'un arbre d'une boîte de vitesses selon un mode de réalisation de l'invention ; - la figure 4 présente une vue du même arbre, dans une autre coupe, après divers déplacements du barillet - la figure 5 est une vue d'un élément particulier de la boîte de vitesses selon un mode de réalisation de l'invention - la figure 6 est une vue du même élément particulier lors d'un passage de rapport de vitesse. [0015] En référence à la figure 1 on a représenté un barillet de commande 100 utilisé dans l'invention. [0016] Ce barillet 100 a une forme générale de cylindre de révolution possédant un axe longitudinal. Des pistes de commande 110, 120 et 130 sont visibles sur la surface extérieure du barillet de commande 100. Ces pistes de commande 110, 120 et 130 sont séparées les unes des autres et réparties sur trois sections consécutives du barillet de commande 100, se succédant le long de l'axe longitudinal. Chacune des pistes 110, 120 et 130 constitue une gorge dans la matière du barillet de commande 100 débouchant à la surface, délimitée par des murs et un fond. Les gorges sont adaptées à recevoir des pions dirigés radialement depuis l'extérieur du barillet de commande 100, et à agir sur ceux-ci pour les déplacer parallèlement à l'axe longitudinal en les poussant avec les murs. Chacune des pistes 110, 120 et 130 constitue de plus globalement une hélicoïde le long de la surface du barillet 100, effectuant un tour ou plus d'un tour de celui-ci tout en progressant parallèlement à l'axe longitudinal. [0017] Toujours visible sur la figure 1 on remarque à l'une des extrémités du barillet 100, visible sur la section de celui-ci qui est une section droite, l'embouchure d'un alésage 140 interne au barillet 100. On distingue sur la surface interne de cet alésage 140, des éléments d'une vis à billes 150 disposée dans une gorge interne formée sur la surface interne de l'alésage 140. [0018] En figure 2 on a représenté un développé des pistes 110, 120 et 130. La piste 110, par exemple est adaptée au passage du quatrième rapport de vitesse et du cinquième rapport de vitesse. La piste 120 est quant à elle adaptée au passage du deuxième rapport de vitesse et du troisième rapport de vitesse. La piste 130 est quant à elle adaptée au passage du premier rapport de vitesse, du point mort (N) et de la marche arrière (R). [0019] Chacune de ces pistes comporte sur une majeure partie de la piste une section de non engagement du pion. Cette section de non engagement du pion est inclinée par rapport à une section droite du barillet 100, d'un angle X° définissant une hélicoïde, comme déjà mentionné. [0020] De plus, les pistes 110, 120 et 130 comportent des sections adaptées au déplacement du pion correspondant pour l'engagement des rapports de vitesse évoqués. Ces sections d'engagement sont inclinées par rapport à la section principale de non engagement, d'un côté ou de l'autre. Les positions correspondant aux rapports de vitesse R, 1, 2, 3, 4 et 5 sont toutes des positions stables. [0021] On note que la piste 110 est prévue pour, dès le désengagement du quatrième rapport de vitesse, procéder à l'engagement du cinquième rapport de vitesse, sans qu'une position stable ne soit prévue entre les deux engagements. De la même manière la piste 120 est adaptée pour, dès le désengagement du deuxième rapport de vitesse, provoquer l'engagement du troisième rapport de vitesse. A l'inverse, la piste 130 est configurée pour ménager un passage au point mort stable entre le premier rapport de vitesse et la marche arrière. [0022] En figure 3 on a représenté, en coupe longitudinale, un arbre d'une boîte de vitesses selon l'invention. Cet arbre creux 200, de forme générale correspondant à un cylindre de révolution, porte des pignons fous coopérant avec des pignons fixes d'un autre arbre de la boîte de vitesses (non représentés). Par simplicité on n'a représenté qu'un seul pignon fou, référencé 300. Les pignons fous sont solidarisés avec l'arbre creux 200 à l'aide de synchroniseurs, dont on a représenté les manchons 310, 312 et 314. Le manchon 314 est celui d'un synchroniseur qui est appliqué au pignon fou 300. Les synchroniseurs sont actionnés par des pions 320, 322 et 324, agissant respectivement sur les manchons 310, 312 et 314. Les pions 320, 322 et 324 traversent la paroi de l'arbre creux 200 et sont commandés depuis l'intérieur de celui-ci par le barillet 100 qui occupe la cavité interne cylindrique de l'arbre creux 200. Plus précisément, les pions 320, 322 et 324 traversent l'arbre creux 200 par des lumières leur permettant à chacun d'agir sur le synchroniseur correspondant dans la direction longitudinale dans un sens ou dans le sens opposé. [0023] Le barillet 100 est présent dans la cavité interne de l'arbre creux 200, le barillet et l'arbre étant positionnés de manière coaxiale. Un élément de liaison longitudinal 210 obture la section terminale de l'arbre creux 200. Il comporte une extension cylindrique 211 coaxiale avec le barillet 100 et l'arbre creux 200, dirigée à l'intérieur de l'arbre creux 200.The invention relates to a gearbox for a motor vehicle, for example a motor vehicle, the engine of which can be a heat engine. [0002] Gearboxes for a motor vehicle typically comprise two shafts, one being driven by the motor and being described as a primary shaft, and the other driving the axes of the driving wheels and being described as a secondary shaft. The two shafts are connected by as many pairs of gears as the gearbox offers gear ratios, one gear of each pair being fixed on one of the shafts and the other on the other shaft. The selection of an idler gear among the various idle gears and its securing with the shaft which carries it allows the engagement of the gear ratio, the rotation of the primary shaft then being transmitted to the secondary shaft by the torque of gears including the selected gear. In known gearboxes, the idle gears are secured to the shaft that carries them using claws or synchronizers. These are actuated by a fork that approaches the shaft laterally and whose control elements occupy a space outside the plane defined by the two shafts of the box. It follows from this provision that the gearbox is cumbersome in its thickness relative to the plane of the two shafts. Moreover, the assembly is complex since to control the passage of a gear ratio it is necessary to have a control shaft in selection and a control axis in passing, a barrel beside the shafts, levers and control fingers . Document US7997159 discloses a system in which a shaft carrying idle gears comprises, coaxial with it, a tube rotated relative to the shaft, which controls the fastening of the idler gears. But the order is complex, and the system bulky, with actions rotating outside the tree system. The invention aims to solve these problems and provide a simple and compact system outside the plane occupied by trees. To solve these problems, it is proposed a gearbox for a motor vehicle comprising a shaft and mounted gears for transmitting power with a gear ratio determined by the gear selected from said gears, the selection of the gear is by making it integral with the shaft, said shaft being further hollow, characterized in that the gearbox further comprises, concentric to said hollow shaft and in its interior, a control cylinder movable at least in longitudinal translation vis-à-vis -vis of said hollow shaft, to act in longitudinal translation on control pins passing through the wall of the hollow shaft to control the joining or disconnection of the pinions with the hollow shaft, the cylinder being held in position vis-à-vis of the tree by a blasting, and controlled by a first rod driving the barrel, during a relative longitudinal movement in a first direction for on mounting the holding force imposed by the blasting, and disappearing by the effect of a ramp due to said holding force during a relative longitudinal movement in the opposite direction. These principles allow to control the cylinder only in translation which is easily achievable even if the assembly rotates at the speed of the shaft relative to the housing. With these principles, it implements a gearbox control concentric to one of the shafts of the box, which saves space around the gears, and to define a sump of smaller size and less heavy. The number of rooms is reduced, and the system is therefore more solid. The invention may further comprise the following characteristics, which are advantageous: a second rod impulsively controls the barrel while abutting during a relative longitudinal displacement in the opposite direction and fading away by a damping effect; ramps during relative movement in the first direction; the control of the barrel being ensured by at least two first rods symmetrical with respect to the longitudinal axis of the barrel; - An engagement or disengagement of the first rod is controlled by a neck of the shaft, which interacts with an outgrowth or lug on the first rod to push it towards the longitudinal axis or let it return to the periphery; the first rod is guided in translation by an external control element with means for not transmitting the rotational movement of said hollow shaft to said external control element; the first rod drives the barrel acting by bearing in said first direction between parallel planes perpendicular to the longitudinal axis on an edge of a barrel groove, the barrel comprising a groove for each gear ratio, and the first rod a head having a ramp to fade when it meets an edge of the groove in said opposite direction; - An external control element including a biasing element to cause a return to position of a lever to be actuated by a user in one direction to make a rising speed passage and in another direction to perform a downward passage of speed. The gearbox may further be a sequential gearbox. The gearbox may further be a pulse control box. The hollow shaft may be the primary shaft or the secondary shaft. The invention further relates to a motor vehicle comprising a gearbox as evoked. The invention will be better understood, and other objects, features, details and advantages thereof will appear more clearly in the explanatory description which follows with reference to the accompanying drawings given solely by way of example illustrating a embodiment of the invention and in which: - Figure 1 shows a cylinder of a gearbox according to one embodiment of the invention; - Figure 2 shows a developed tracks of the barrel of Figure 1; - Figure 3 shows a sectional view of a shaft of a gearbox according to one embodiment of the invention; - Figure 4 shows a view of the same shaft, in another section, after various movements of the barrel - Figure 5 is a view of a particular element of the gearbox according to one embodiment of the invention - the figure 6 is a view of the same particular element during a gearshift. Referring to Figure 1 there is shown a control cylinder 100 used in the invention. This cylinder 100 has a general shape of a cylinder of revolution having a longitudinal axis. Control tracks 110, 120 and 130 are visible on the outer surface of the control cylinder 100. These control tracks 110, 120 and 130 are separated from each other and distributed over three consecutive sections of the control cylinder 100, succeeding one another. along the longitudinal axis. Each of the tracks 110, 120 and 130 constitutes a groove in the material of the control cylinder 100 opening to the surface, delimited by walls and a bottom. The grooves are adapted to receive pins directed radially from outside the control cylinder 100, and to act on them to move them parallel to the longitudinal axis by pushing them with the walls. Each of the tracks 110, 120 and 130 is more generally a helicoid along the surface of the barrel 100, rotating one turn or more than one turn thereof while progressing parallel to the longitudinal axis. Always visible in Figure 1 we see at one end of the barrel 100, visible on the section thereof which is a straight section, the mouth of a bore 140 internal barrel 100. We distinguish on the inner surface of this bore 140, elements of a ball screw 150 disposed in an internal groove formed on the inner surface of the bore 140. [0018] FIG. 2 shows a development of the tracks 110, 120 and 130. The track 110, for example is adapted to the passage of the fourth gear ratio and the fifth gear ratio. The track 120 is adapted to the passage of the second gear ratio and the third gear ratio. The track 130 is adapted to the passage of the first gear ratio, neutral (N) and reverse (R). Each of these tracks comprises on a major part of the track a non-engagement section of the pawn. This non-engagement section of the pin is inclined relative to a straight section of the barrel 100, an angle X ° defining a helicoid, as already mentioned. In addition, the tracks 110, 120 and 130 comprise sections adapted to the displacement of the corresponding pin for the engagement of evoked speed ratios. These engagement sections are inclined relative to the main non-engagement section on one side or the other. The positions corresponding to the speed ratios R 1, 2, 3, 4 and 5 are all stable positions. It is noted that the track 110 is provided for, upon disengagement of the fourth speed ratio, proceed to the commitment of the fifth gear ratio, without a stable position is provided between the two commitments. In the same way the track 120 is adapted for, upon disengagement of the second gear ratio, cause the engagement of the third gear ratio. Conversely, the track 130 is configured to provide a stable stall transition between the first gear ratio and the reverse gear. In Figure 3 there is shown in longitudinal section, a shaft of a gearbox according to the invention. This hollow shaft 200, of general shape corresponding to a cylinder of revolution, carries idle gears cooperating with fixed gears of another shaft of the gearbox (not shown). For simplicity has been shown only one idle gear, referenced 300. The idle gears are secured to the hollow shaft 200 using synchronizers, which has been shown the sleeves 310, 312 and 314. The sleeve 314 is that of a synchronizer which is applied to the idler gear 300. The synchronizers are actuated by pins 320, 322 and 324, respectively acting on the sleeves 310, 312 and 314. The pins 320, 322 and 324 pass through the wall of the hollow shaft 200 and are controlled from the inside thereof by the cylinder 100 which occupies the cylindrical internal cavity of the hollow shaft 200. More specifically, the pins 320, 322 and 324 pass through the hollow shaft 200 by means of lights allowing them to act on the corresponding synchronizer in the longitudinal direction in one direction or in the opposite direction. The barrel 100 is present in the internal cavity of the hollow shaft 200, the barrel and the shaft being positioned coaxially. A longitudinal connecting element 210 closes the end section of the hollow shaft 200. It comprises a cylindrical extension 211 coaxial with the barrel 100 and the hollow shaft 200, directed inside the hollow shaft 200.
Cette extension cylindrique 211 porte à sa surface des gorges ayant pour objet de créer un système fileté ou de type vis à billes réalisant un mouvement hélicoïdal avec une forme complémentaire du barillet 100. Cette forme complémentaire est l'alésage 140 cylindrique intérieur au barillet 100, également coaxial avec l'extension cylindrique 211 et l'arbre creux 200. La vis à billes 150 permet ainsi la mise en liaison hélicoïdale entre l'élément de liaison longitudinal 210 et le barillet 100. L'élément de liaison longitudinal 210 étant fixé par encastrement à l'arbre creux 200, il en résulte que le barillet 100 évolue en liaison hélicoïdale vis-à-vis de l'arbre creux 200. [0024] Un billage 160 dirigé radialement et s'appuyant sur le corps du barillet 100 assure la stabilisation de celui-ci vis-à-vis de l'arbre creux 200 en appuyant sa tête sur une piste de billage 220 de la surface interne de l'arbre creux 200 et en appliquant ainsi une force de maintien. [0025] Les pions 320, 322 et 324 sont introduits respectivement dans les gorges 110, 120 et 130, et sont guidés par celles-ci. Ces pistes ont en moyenne l'angle d'inclinaison X° sur le barillet 100 par rapport à une section droite de celui-ci pour compenser la translation que subit le barillet 100 lors d'une rotation du fait de la liaison hélicoïdale créée par la vis à billes 150 et ne déplacer chaque pion 320, 322 ou 324 que quand le rapport de vitesse correspondant doit être actionné, auquel cas, sur la section correspondante de la piste 110, 120 ou 130, celle-ci s'écarte de l'angle d'inclinaison moyen X° d'un côté ou de l'autre, comme cela a été montré sur le développé de la figure 2. [0026] Une commande 400 est introduite depuis l'extérieur du système par une embouchure 201 ouverte de l'arbre creux 200, opposée à l'élément de liaison longitudinal 210, et par une embouchure 101 correspondante d'une zone interne du barillet 100, disposée dans la continuité de l'embouchure 201 ouverte de l'arbre creux 200. La commande 400 interagit avec le barillet 100 dans cette zone interne qui est allongée sur l'axe longitudinal et qui comprend une succession de gorges internes 170. Précisément, sept gorges successives, parallèles les unes aux autres, et séparées par des bords de gorges sont présentes dans la succession 170. Les bords de gorges définissent un petit diamètre. [0027] La gorge dans laquelle la commande interagit avec le barillet dans la vue de la figure 3 est la sixième gorge en partant de l'embouchure 201 de l'arbre creux 200. [0028] En figure 4 on a représenté le système représenté à la figure 3, après déplacement réciproque du barillet 100 et de l'arbre creux 200. La vue est une vue en coupe longitudinale décalée d'un angle de 90° par !apport à la vue de la figure 3. On visualise ainsi la piste de billage 220 formée sur la surface interne de l'arbre creux 200 et sur laquelle le billage 160 appui sa tête, pour stabiliser le positionnement réciproque du barillet 100 et de l'arbre creux 200, dans une position choisie parmi plusieurs, qui correspondent chacune à un rapport de vitesse. [0029] Par rapport à la vue de la figure 3, on constate que le barillet 100 s'est déplacé vers l'élément de liaison longitudinale 210 et, à l'inverse, s'est écarté de l'embouchure 201 ouverte de l'arbre creux 200 par laquelle pénètre la commande 400. On constate également que l'élément de commande 400 interagit avec le barillet 100 au niveau de l'entrée de la succession de gorges internes 170 (plus précisément dans la première gorge) alors que dans la position de la figure 3 la commande 400 interagit avec le barillet 100 à un niveau plus profond de la succession de gorges internes 170 (dans la sixième gorge), plus éloigné de l'embouchure 101. [0030] Le barillet 100 a progressé le long de l'extension cylindrique 211 de l'élément de liaison longitudinal 210, suivant le mouvement hélicoïdal défini à l'aide de la vis à billes 150. L'extension cylindrique 211 pénètre plus profondément dans l'alésage 140. [0031] L'une des pistes 110, 120 ou 130 a actionné l'un des pions 320, 322 et 324 (non visibles sur cette figure), et l'un des synchroniseurs, comme par exemple le synchroniseur utilisant le manchon 314, a solidarisé un pignon fou, comme par exemple le pignon fou 300. [0032] On précise qu'un passage de rapport de vitesse peut être effectué en répartissant un effort de passage sur plusieurs pions (variante non représentée). Ceci est rendu possible car les pistes sont inclinées d'un angle X° par rapport à une section droite du barillet 100, et cela permet de réaliser plusieurs pistes ou sections de piste parallèles pour répartir l'effort, pour le passage d'un rapport, sur plusieurs pions. [0033] De plus, comme le diamètre du barillet 100 est petit par rapport aux barillets de commande habituels, qui ne sont pas à intégrer dans un arbre, contrairement au barillet 100, il est nécessaire d'incliner de manière conséquente les sections des pistes s'écartant de l'inclinaison X° moyenne pour provoquer le passage d'un rapport de vitesse, sans quoi le pion correspondant ne peut pas être mis dans la piste qui ne serait pas assez large. [0034] Enfin, suivant le dimensionnement, il peut être réalisé plusieurs rotations du barillet 100 pour obtenir un passage de l'ensemble des rapports de vitesse, du point mort au cinquième rapport. Cela permet de mettre en place des angles optimum pour les pentes des sections des pistes pour améliorer le rendement du barillet. [0035] En figures 5 et 6 on a représenté le fonctionnement de la commande 400. Il est fait remarquer que la figure 6 est une vue dans une coupe décalée de 900 par rapport à la coupe de la figure 5. [0036] La commande 400 est constituée de quatre branches de même longueur fixées les unes aux autres au niveau de leur base qui est commune. Ces branches sont parallèles les unes aux autres et flexibles au niveau de la base. Elles se font face deux à deux définissant ainsi deux paires de branches, ou pinces, chaque pince constituant un U très allongé. Les deux plans dans lesquels les deux pinces se situent sont perpendiculaires l'un à l'autre et se coupent sur l'axe longitudinal. Les branches sont chacune disposées au repos parallèlement à l'axe longitudinal. [0037] La succession de gorges internes 170 comprend, sur la figure, trois gorges visibles, numérotées 171, 172 et 173, depuis l'embouchure 201 l'arbre creux 200 par lequel est introduit la commande 400, via l'embouchure 101 du barillet. Ces gorges sont parallèles, droites par rapport à l'axe longitudinal et concentriques. Elles ont chacune le même diamètre et les mêmes caractéristiques géométriques. Elles ont un bord amont (à l'opposé de l'embouchure 201 de l'arbre creux 200), par exemple référencé 1711 pour la gorge 171, et un bord aval (du côté de l'embouchure 201 de l'arbre creux 200), par exemple référencé 1712 pour la gorge 171. [0038] Chacune des branches de la commande 400 comprend, à l'opposé de la base de la commande 400, une tête qui fait saillie vers l'extérieur, à l'opposé de l'axe longitudinal. [0039] Une première branche 410 (visible en figure 5 et invisible en figure 6) de la commande 400 dispose d'une tête 412 qui comprend une surface plate 4122 configurée pour buter plan sur plan contre le bord amont de la gorge dans laquelle la tête est insérée, ici le bord 1711 de la gorge 171, lors d'un déplacement de la branche 410 dans le sens de l'introduction de celle-ci dans l'arbre creux 200. Cette rencontre en butée se fait dans un plan perpendiculaire à l'axe longitudinal. [0040] La tête 412 comporte, à l'opposé, sur sa face disposée du côté de la base de la commande 400, une rampe 4121 qui permet, en cas de déplacement de la branche 410 vis-à-vis de l'arbre creux 200 dans la direction du désengagement de la branche de l'arbre creux 200, de produire par un effet de rampe contre le bord aval de la gorge, ici le bord 1712 de la gorge 171, une légère rotation de la première branche 410 autour de sa jonction avec les autres branches au niveau de la base de la commande 400, vers l'axe longitudinal, en sorte de permettre l'effacement de la tête 412 vers l'axe et le passage de celle-ci à côté du bord aval de la gorge, ici toujours le bord 1712 de la gorge 171. [0041] Une deuxième branche 420 de la commande 400, disposée à 900 par rapport à la première branche 410 à côté de celle-ci, comporte une tête 422 dont les deux faces sont disposées à l'inverse de celle de la tête 412 (voir en figure 6 pour une vue dans le plan des branches 420 et de la branche symétrique 440). Ainsi, la tête 422 dispose d'une rampe 4221 à l'opposé de la base de la commande 400 et d'une surface de butée 4222, perpendiculaire à l'axe longitudinal en direction de la base de la commande 400. [0042] En cas de déplacement de la deuxième branche 420 dans le sens de l'engagement avec l'arbre creux 200, la tête 422, de par l'effet de sa rampe 4221, est amenée à s'écarter du bord de la gorge 171 et à passer à côté de celle-ci. A l'inverse, en cas de déplacement pour extraire la branche 420 de l'arbre creux 200, la face 4222 de la tête 422 faisant butée rencontre le bord 1712 de la gorge 171, provoquant l'arrêt du déplacement. [0043] La troisième branche 430 qui fait face à la première branche 410 est configurée de manière symétrique à celle-ci et présente donc une face de butée opérant lors d'un mouvement relatif de la branche 430 vers l'intérieur de l'arbre creux 200, et une rampe permettant l'écartement de la tête 432 lors d'un mouvement relatif pour l'extraction de la branche 430 hors de l'arbre creux 200. [0044] La quatrième branche 440 (non représentée en figure 5, mais visible en figure 6) est symétrique à la deuxième branche 420. [0045] L'ensemble des quatre têtes est dimensionné pour que les quatre têtes engagent la gorge dans laquelle elles sont placées quand la commande 400 est centrée sur l'axe longitudinal. [0046] L'embouchure 201 de l'arbre creux 200 par laquelle la commande 400 est introduite comprend un col 240. Ce col constitue une portion de cylindre coupé droit concentrique aux autres cylindres du dispositif autour de l'axe longitudinal. Depuis l'embouchure 201 de l'arbre creux 200, le col 240 est disposé à l'intérieur de celui-ci. Le col 240 dispose d'une rampe amont 241 et d'une rampe aval 242 à ses deux extrémités sur sa surface interne. La longueur du col 240 entre ces deux rampes constitue un goulot d'étranglement par lequel les quatre branches de la commande 400 sont introduites. [0047] Les première et troisième branches 410 et 430 comprennent des ergots 411 et 431 (ou excroissances) disposés radialement vers l'extérieur, à distance à la fois des têtes 412 et 432 et de la base de la commande 400. De la même manière, les deuxième branche et quatrième branche 420 et 440 disposent d'ergots 421 et 441 (voir figure 6 notamment) dirigés radialement vers l'extérieur à distance des têtes correspondantes et de la base de la commande 400. [0048] Les ergots 411 et 431 sont disposés à la même hauteur des branches correspondantes et les ergots 421 et 441 portés par les deuxième et quatrième branches sont également disposés à la même hauteur sur ces deux branches. [0049] Par contre les ergots ne sont pas disposés à la même hauteur sur les deux couples de branches. Les ergots 411 et 431 sont disposés en sorte d'interagir avec la rampe amont 241 alors que les ergots 421 et 441 des deuxième et quatrième branches sont disposés pour interagir avec la rampe aval 242. Il résulte de cette disposition qu'un déplacement relatif de la commande 400 et de l'arbre creux 200 pour l'introduction de la commande 400 vers l'intérieur de l'arbre creux 200 provoque un effet de rampe sur les ergots 421 et 441 (excroissances) des deuxième et quatrième branches, via la rampe aval 242. Les branches 420 et 440 sont poussées vers l'axe longitudinal. [0050] Cet effet de rampe induit la fermeture de la pince définie par les deuxième et quatrième branches 420 et 440 et l'effacement contrôlé des têtes 422 et 442 de ces deux branches, qui ne peuvent plus interagir, en conséquence, avec les bords de gorges de la succession de gorges internes 170. Ainsi les branches 420 et 440 sont désengagées d'avec le barillet 100. [0051] A l'inverse, un déplacement de la commande 400 vers l'extérieur de l'arbre creux 200 provoque la fermeture contrôlée de la pince définie par les première et troisième branches 410 et 430, par l'action de la rampe amont 241 sur les ergots 411 et 431. Il en résulte alors que les têtes 412 et 432 s'effacent et ne peuvent plus interagir avec les bords des gorges de la succession de gorges internes 170. Les branches 410 et 430 sont poussées vers l'axe longitudinal et sont désengagées d'avec le barillet 100. [0052] Il résulte de ces principes qu'une commande impulsionnelle et séquentielle peut être mise en place pour le déplacement du barillet 100 dans l'intérieur de l'arbre creux 200. Une séquence va être présentée par la suite. [0053] Par rapport à la position représentée dans la figure 5, la commande 400 est, dans cette séquence, déplacée vers l'extérieur de l'arbre creux 200. Il en résulte la fermeture contrôlée de la pince définie par les première branche et troisième branche 410 et 430, par interaction des ergots 411 et 431 avec la rampe 241. Mais par contre, la pince définie par les deuxième et quatrième branches 420 et 440 est en butée contre le bord de la gorge dans laquelle les têtes sont positionnées et tire le barillet 100 dans la direction de l'embouchure 201 de l'arbre 200. [0054] Si l'effort appliqué par la commande 400 surmonte la résistance opposée par le billage 160 (voir figures 3 et 4), le barillet 100 suit alors un mouvement hélicoïdal comme défini par le système de vis à billes 150 (voir figures 1, 3 et 4). Une des pistes 110, 120 ou 130 (figures précédentes) impose alors un mouvement de translation longitudinal à un des pions 320, 322 et 324 (figures 3 et 4) et un rapport de vitesse est alors engagé, et/ou un rapport qui était engagé est désengagé. Le billage 160 stabilise le barillet 100 dans une nouvelle position correspondant à ce nouveau rapport de vitesse enclenché ou au point mort. Par exemple, il s'agit d'un rapport de vitesse supérieur. [0055] La commande 400 peut alors être relâchée. Elle peut être ramenée vers sa position initiale vis-à-vis de l'arbre 200 à l'aide d'un ressort (non représenté), ou d'un autre élément de rappel. La pince définie par les branches 410 et 430 étant fermée au début de ce mouvement, elle n'empêche pas l'ensemble des têtes de passer à l'intérieur du petit diamètre défini par le bord de la gorge dans laquelle les têtes étaient jusqu'alors placées. [0056] La pince définie par les deuxième et quatrième branches 420 et 440 se referme quant à elle alors par action des rampes (en particulier la rampe 4221) portées par les têtes correspondantes qui rencontrent le bord amont de la gorge (en particulier le bord amont 1711). L'ensemble des têtes est en mesure de passer le petit diamètre et les têtes se retrouvent alors dans une gorge suivante de la succession de gorges internes 170, plus éloignée de l'embouchure 201 de l'arbre creux 200 que la gorge dans laquelle les têtes étaient présentes jusqu'alors. La structure est ainsi représentée en figure 6, en mouvement juste après que les têtes aient quittées la gorge 171 et avant que les têtes ne s'insèrent dans la gorge 172. Une fois la gorge 172 atteinte par les têtes, les pinces s'ouvrent à nouveau du fait de l'élasticité de la matière au niveau de la base de la commande 400, le col 240 permettant en particulier de laisser les branches 410 et 430 revenir vers la périphérie, dans leurs conformations initiales, puisque les ergots 411 et 431 descendent la rampe 241. Les têtes engagent alors la gorge 172. [0057] On va maintenant décrire le mouvement inverse, correspondant, dans l'hypothèse considérée, au passage d'un rapport de vitesse inférieur. Celui-ci est induit par une action de la commande 400 vers l'intérieur de l'arbre creux 200. Cette action induit une pression exercée par les têtes 412 et 432, qui surmonte l'effort de stabilisation exercé par le billage 160. Le barillet 100 suit alors un mouvement hélicoïdal dans l'intérieur de l'arbre creux 200, en s'éloignant de l'embouchure 201 de l'arbre creux 200. Le barillet 100 provoque l'engagement d'un rapport de vitesse par action sur un pion par l'intermédiaire d'une des pistes 110, 120 ou 130. [0058] Par ailleurs, les ergots 421 et 441 provoquent, par leur rencontre de la rampe 242, la fermeture contrôlée de la pince constituée par les branches 420 et 440, les branches 420 et 440 étant poussées vers l'axe longitudinal par la pente 242. [0059] La commande 400 est ensuite relâchée, et comme la pince définie par les branches 420 et 440 est fermée, et comme celle définie par les branches 410 et 430 rencontre le bord amont de la gorge via les rampes des têtes 412 et 432, les têtes sont en mesure de dépasser le bord de de la gorge et de s'insérer dans la gorge suivante, en direction de l'embouchure 101. [0060] Les ergots 421 et 441 descendent la pente 242 et les branches 420 et 440 reviennent vers la périphérie. Les têtes engagent la gorge suivante. [0061] L'arbre 200 peut être l'arbre secondaire de la boîte de vitesses, ou l'un des arbres secondaires si elle en comporte deux, auquel cas, chaque arbre secondaire comporte un barillet 100. Alternativement, le barillet 100 peut être incorporé dans l'arbre primaire. [0062] La commande est séquentielle, les rapports étant engagés dans l'ordre, et impulsionnelle, car l'utilisateur n'a qu'a donner une instruction sous la forme d'une impulsion pour faire des passages montants ou descendants. [0063] La commande externe à la boîte inclut par exemple un élément de rappel pour provoquer un retour en position d'un levier à actionner par un utilisateur dans un sens pour effectuer un passage de vitesse montant et dans un autre sens pour effectuer un passage de vitesse descendant. [0064] Les tiges et toute la commande 400 peuvent être guidées en translation longitudinale par un élément de commande externe avec un moyen pour ne pas transmettre le mouvement de rotation de l'arbre creux 200 audit élément de commande externe. [0065] L'invention n'est pas limitée au mode de réalisation présenté mais s'étend à toutes les variantes dans le cadre de la portée des revendications.10This cylindrical extension 211 carries on its surface grooves for the purpose of creating a threaded system or ball screw type performing a helical movement with a complementary shape of the cylinder 100. This complementary shape is the cylindrical bore 140 inside the barrel 100, also coaxial with the cylindrical extension 211 and the hollow shaft 200. The ball screw 150 thus allows the helical connection between the longitudinal connecting element 210 and the barrel 100. The longitudinal connecting element 210 being fixed by recessed in the hollow shaft 200, it follows that the barrel 100 evolves in helical connection vis-à-vis the hollow shaft 200. A blasting 160 directed radially and supported on the barrel body 100 ensures stabilizing it against the hollow shaft 200 by pressing its head on a blasting track 220 of the inner surface of the hollow shaft 200 and thereby applying a holding force. The pins 320, 322 and 324 are respectively introduced into the grooves 110, 120 and 130, and are guided by them. These tracks have on average the angle of inclination X ° on the barrel 100 with respect to a cross section thereof to compensate for the translation that the barrel 100 undergoes during a rotation due to the helical connection created by the ball screw 150 and move each pin 320, 322 or 324 only when the corresponding speed ratio is to be actuated, in which case, on the corresponding section of the track 110, 120 or 130, it departs from the average angle of inclination X ° from one side or the other, as has been shown in the diagram of FIG. 2. A command 400 is introduced from outside the system through an open mouth 201 of the hollow shaft 200, opposite to the longitudinal connecting element 210, and by a corresponding mouth 101 of an inner zone of the barrel 100, disposed in the continuity of the mouth 201 open of the hollow shaft 200. The order 400 interacts with the barrel 100 in this inner zone which is elongate on the longitudinal axis and which comprises a succession of internal grooves 170. Precisely, seven successive grooves, parallel to each other, and separated by groove edges are present in the succession 170. The edges of grooves define a small diameter. The groove in which the control interacts with the barrel in the view of Figure 3 is the sixth groove from the mouth 201 of the hollow shaft 200. In Figure 4 there is shown the system shown 3, after mutual displacement of the barrel 100 and the hollow shaft 200. The view is a longitudinal sectional view offset by an angle of 90 ° to the view of FIG. 3. blasting track 220 formed on the inner surface of the hollow shaft 200 and on which the blasting 160 supports its head, to stabilize the mutual positioning of the barrel 100 and the hollow shaft 200, in a position selected from among several, which correspond each at a speed ratio. Compared to the view of Figure 3, we see that the barrel 100 has moved to the longitudinal connecting member 210 and, conversely, has departed from the mouth 201 open the hollow shaft 200 through which the control 400 enters. It is also noted that the control element 400 interacts with the barrel 100 at the inlet of the succession of internal grooves 170 (more precisely in the first groove) whereas in the position of FIG. 3 the control 400 interacts with the barrel 100 at a deeper level of the succession of internal grooves 170 (in the sixth groove), farther from the mouth 101. [0038] The barrel 100 has progressed the along the cylindrical extension 211 of the longitudinal connecting element 210, according to the helical movement defined by means of the ball screw 150. The cylindrical extension 211 penetrates deeper into the bore 140. [0031] one of the tracks 110, 120 or 130 actuated the one of the pins 320, 322 and 324 (not visible in this figure), and one of the synchronizers, such as the synchronizer using the sleeve 314, has secured an idle gear, such as for example the idler gear 300. [0032] It is specified that a shift in speed ratio can be performed by distributing a crossing force over several pins (variant not shown). This is made possible because the tracks are inclined at an angle X ° with respect to a cross section of the barrel 100, and this makes it possible to produce several tracks or parallel track sections for distributing the force, for the passage of a report. , on several pawns. In addition, as the diameter of the barrel 100 is small compared to the usual control barrels, which are not to be integrated in a tree, unlike the barrel 100, it is necessary to incline the sections of the tracks accordingly. deviating from the average inclination X ° to cause the passage of a speed ratio, without which the corresponding pawn can not be put in the track which would not be wide enough. Finally, according to the sizing, it can be achieved several rotations of the barrel 100 to obtain a passage of all speed reports, from the neutral to fifth gear. This makes it possible to set up optimum angles for the slopes of the sections of the tracks to improve the efficiency of the cylinder. In Figures 5 and 6 there is shown the operation of the control 400. It is pointed out that Figure 6 is a view in a sectional offset of 900 with respect to the section of Figure 5. [0036] The order 400 consists of four branches of the same length attached to each other at their base which is common. These branches are parallel to each other and flexible at the base. They face two by two thus defining two pairs of branches, or clamps, each clamp constituting a very elongated U. The two planes in which the two clamps are located are perpendicular to each other and intersect on the longitudinal axis. The branches are each arranged at rest parallel to the longitudinal axis. The succession of inner grooves 170 comprises, in the figure, three visible grooves, numbered 171, 172 and 173, from the mouth 201 the hollow shaft 200 through which is introduced the command 400, via the mouth 101 of the barrel. These grooves are parallel, straight with respect to the longitudinal axis and concentric. They each have the same diameter and the same geometric characteristics. They have an upstream edge (opposite the mouth 201 of the hollow shaft 200), for example referenced 1711 for the groove 171, and a downstream edge (on the side of the mouth 201 of the hollow shaft 200 ), for example referenced 1712 for the groove 171. Each of the branches of the control 400 comprises, opposite the base of the control 400, a head which protrudes outwards, in opposition to the longitudinal axis. A first branch 410 (visible in Figure 5 and invisible in Figure 6) of the control 400 has a head 412 which comprises a flat surface 4122 configured to abut plan on the upstream edge of the groove in which the head is inserted, here the edge 1711 of the groove 171, during a movement of the branch 410 in the direction of the introduction thereof into the hollow shaft 200. This abutment is in a perpendicular plane to the longitudinal axis. The head 412 comprises, on the opposite side, on its side disposed on the side of the base of the control 400, a ramp 4121 which allows, in case of movement of the branch 410 vis-à-vis the shaft hollow 200 in the direction of the disengagement of the branch of the hollow shaft 200, to produce by a ramp effect against the downstream edge of the groove, here the edge 1712 of the groove 171, a slight rotation of the first branch 410 around its junction with the other branches at the base of the control 400, towards the longitudinal axis, so as to allow the deletion of the head 412 to the axis and the passage thereof next to the downstream edge of the groove, here always the edge 1712 of the groove 171. [0041] A second branch 420 of the control 400, arranged at 900 relative to the first branch 410 next to it, comprises a head 422, the two of which faces are arranged opposite that of the head 412 (see Figure 6 for a view in the plane of the branches 420 and the symmetrical branch 440). Thus, the head 422 has a ramp 4221 opposite the base of the control 400 and an abutment surface 4222, perpendicular to the longitudinal axis towards the base of the control 400. [0042] In case of displacement of the second branch 420 in the direction of engagement with the hollow shaft 200, the head 422, due to the effect of its ramp 4221, is caused to deviate from the edge of the groove 171 and to miss this one. Conversely, in case of displacement to extract the branch 420 of the hollow shaft 200, the face 4222 of the head 422 abutting encounters the edge 1712 of the groove 171, causing the stop displacement. The third branch 430 which faces the first branch 410 is symmetrically configured thereto and therefore has a stop face operating during a relative movement of the branch 430 towards the inside of the shaft 200, and a ramp for spacing the head 432 during a relative movement for the extraction of the branch 430 from the hollow shaft 200. The fourth branch 440 (not shown in Figure 5, but visible in Figure 6) is symmetrical to the second branch 420. The set of four heads is sized so that the four heads engage the groove in which they are placed when the control 400 is centered on the longitudinal axis. The mouth 201 of the hollow shaft 200 by which the control 400 is introduced comprises a neck 240. This neck is a straight cut cylinder portion concentric with the other cylinders of the device about the longitudinal axis. From the mouth 201 of the hollow shaft 200, the neck 240 is disposed inside thereof. The neck 240 has an upstream ramp 241 and a downstream ramp 242 at both ends on its inner surface. The length of the neck 240 between these two ramps constitutes a bottleneck through which the four branches of the control 400 are introduced. The first and third branches 410 and 430 comprise lugs 411 and 431 (or protuberances) arranged radially outward, at a distance from both the heads 412 and 432 and the base of the control 400. Of the same In a manner, the second and fourth branches 420 and 440 have lugs 421 and 441 (see FIG. 6 in particular) directed radially outwardly away from the corresponding heads and from the base of the control 400. The lugs 411 and 431 are arranged at the same height of the corresponding branches and the lugs 421 and 441 carried by the second and fourth branches are also arranged at the same height on these two branches. By against the lugs are not arranged at the same height on the two pairs of branches. The lugs 411 and 431 are arranged so as to interact with the upstream ramp 241 while the lugs 421 and 441 of the second and fourth branches are arranged to interact with the downstream ramp 242. It follows from this provision that a relative displacement of the control 400 and the hollow shaft 200 for the introduction of the control 400 towards the inside of the hollow shaft 200 causes a ramping effect on the lugs 421 and 441 (protuberances) of the second and fourth branches, via the downstream ramp 242. The branches 420 and 440 are pushed towards the longitudinal axis. This ramp effect induces the closure of the clamp defined by the second and fourth branches 420 and 440 and the controlled erasure heads 422 and 442 of these two branches, which can not interact, therefore, with the edges grooves of the succession of internal grooves 170. Thus the branches 420 and 440 are disengaged from the barrel 100. Conversely, a displacement of the control 400 towards the outside of the hollow shaft 200 causes the controlled closure of the clamp defined by the first and third branches 410 and 430, by the action of the upstream ramp 241 on the pins 411 and 431. It follows then that the heads 412 and 432 are erased and can no longer interacting with the edges of the grooves of the succession of inner grooves 170. The branches 410 and 430 are pushed towards the longitudinal axis and are disengaged from the barrel 100. [0052] It follows from these principles that an impulse command and sequential can be m ise in place for the displacement of the barrel 100 in the interior of the hollow shaft 200. A sequence will be presented later. With respect to the position shown in FIG. 5, the control 400 is, in this sequence, displaced towards the outside of the hollow shaft 200. This results in the controlled closure of the clamp defined by the first branch and third branch 410 and 430, by interaction of the pins 411 and 431 with the ramp 241. But against the clamp defined by the second and fourth branches 420 and 440 is in abutment against the edge of the groove in which the heads are positioned and pulls the barrel 100 in the direction of the mouth 201 of the shaft 200. [0054] If the force applied by the control 400 overcomes the resistance opposed by the blasting 160 (see FIGS. 3 and 4), the barrel 100 follows then a helical movement as defined by the ball screw system 150 (see Figures 1, 3 and 4). One of the tracks 110, 120 or 130 (previous figures) then imposes a longitudinal translation movement to one of the pins 320, 322 and 324 (Figures 3 and 4) and a gear ratio is then engaged, and / or a report that was engaged is disengaged. The blasting 160 stabilizes the barrel 100 in a new position corresponding to this new speed gear engaged or in neutral. For example, it is a higher gear ratio. The command 400 can then be released. It can be returned to its initial position with respect to the shaft 200 by means of a spring (not shown), or another return element. The clamp defined by the branches 410 and 430 being closed at the beginning of this movement, it does not prevent the set of heads to pass inside the small diameter defined by the edge of the groove in which the heads were until then placed. The clamp defined by the second and fourth branches 420 and 440 closes as for it then by action of the ramps (in particular the ramp 4221) carried by the corresponding heads which meet the upstream edge of the groove (in particular the edge upstream 1711). The set of heads is able to pass the small diameter and the heads are then found in a subsequent groove of the succession of inner grooves 170, further from the mouth 201 of the hollow shaft 200 that the groove in which the heads were present until then. The structure is thus represented in FIG. 6, moving just after the heads have left the groove 171 and before the heads fit into the groove 172. Once the groove 172 has been reached by the heads, the clamps open. again because of the elasticity of the material at the base of the control 400, the neck 240 allowing in particular to let the branches 410 and 430 return to the periphery, in their initial conformations, since the pins 411 and 431 down the ramp 241. The heads then engage the groove 172. We will now describe the reverse movement, corresponding, in the case considered, the passage of a lower gear ratio. This is induced by an action of the control 400 towards the inside of the hollow shaft 200. This action induces a pressure exerted by the heads 412 and 432, which overcomes the stabilization effort exerted by the blasting 160. barrel 100 then follows a helical movement in the interior of the hollow shaft 200, away from the mouth 201 of the hollow shaft 200. The barrel 100 causes the commitment of a speed ratio by action on a pin through one of the tracks 110, 120 or 130. Moreover, the lugs 421 and 441 cause, by their meeting of the ramp 242, the controlled closure of the clamp constituted by the branches 420 and 440, the branches 420 and 440 being pushed towards the longitudinal axis by the slope 242. The control 400 is then released, and as the clamp defined by the branches 420 and 440 is closed, and as defined by the branches 410 and 430 meet the upstream edge of the throat via the head ramps s 412 and 432, the heads are able to pass the edge of the groove and to insert into the next groove, towards the mouth 101. The lugs 421 and 441 descend the slope 242 and the branches 420 and 440 return to the periphery. The heads engage the next throat. The shaft 200 may be the secondary shaft of the gearbox, or one of the secondary shafts if it has two, in which case each secondary shaft has a cylinder 100. Alternatively, the cylinder 100 may be incorporated in the primary shaft. The control is sequential, the reports being engaged in the order, and impulse, because the user has only to give an instruction in the form of a pulse to make upward or downward passages. The control external to the box includes for example a return element to cause a return in position of a lever to be actuated by a user in one direction to perform a rising speed passage and in another direction to make a passage speed down. The rods and the entire control 400 may be guided in longitudinal translation by an external control element with a means for not transmitting the rotational movement of the hollow shaft 200 to said external control element. The invention is not limited to the embodiment shown but extends to all variants within the scope of the claims.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1550048A FR3031377B1 (en) | 2015-01-06 | 2015-01-06 | GEARBOX FOR MOTOR VEHICLE |
PCT/FR2015/053505 WO2016110626A1 (en) | 2015-01-06 | 2015-12-15 | Motor vehicle gearbox |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1550048A FR3031377B1 (en) | 2015-01-06 | 2015-01-06 | GEARBOX FOR MOTOR VEHICLE |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3031377A1 true FR3031377A1 (en) | 2016-07-08 |
FR3031377B1 FR3031377B1 (en) | 2017-07-21 |
Family
ID=52807954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1550048A Active FR3031377B1 (en) | 2015-01-06 | 2015-01-06 | GEARBOX FOR MOTOR VEHICLE |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3031377B1 (en) |
WO (1) | WO2016110626A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5689998A (en) * | 1994-03-31 | 1997-11-25 | The Anchored Corporation | Continuous-torque variable-speed transmission |
US20100218630A1 (en) * | 2009-02-27 | 2010-09-02 | Shinya Matsumoto | Arrangement structure of shifting actuator of internal combustion engine mounted on motorcycle |
US7997159B2 (en) * | 2006-10-26 | 2011-08-16 | Schaeffler Kg | Gear selection assembly with nested differentially rotatable tube |
US20140053671A1 (en) * | 2012-08-23 | 2014-02-27 | Honda Motor Co., Ltd. | Shift drive mechanism for multi-speed transmission |
-
2015
- 2015-01-06 FR FR1550048A patent/FR3031377B1/en active Active
- 2015-12-15 WO PCT/FR2015/053505 patent/WO2016110626A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5689998A (en) * | 1994-03-31 | 1997-11-25 | The Anchored Corporation | Continuous-torque variable-speed transmission |
US7997159B2 (en) * | 2006-10-26 | 2011-08-16 | Schaeffler Kg | Gear selection assembly with nested differentially rotatable tube |
US20100218630A1 (en) * | 2009-02-27 | 2010-09-02 | Shinya Matsumoto | Arrangement structure of shifting actuator of internal combustion engine mounted on motorcycle |
US20140053671A1 (en) * | 2012-08-23 | 2014-02-27 | Honda Motor Co., Ltd. | Shift drive mechanism for multi-speed transmission |
Also Published As
Publication number | Publication date |
---|---|
WO2016110626A1 (en) | 2016-07-14 |
FR3031377B1 (en) | 2017-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2258537B1 (en) | Bulging die device for clips or a machine for making sockets on the ends of pipes made from plastic or composite material. | |
EP2021647B1 (en) | Under travel actuator, particularly for an automobile clutch | |
FR2618510A1 (en) | DEVICE FOR BRAKING THE GEAR OF A GEARBOX OF A MOTOR VEHICLE | |
FR3000775A1 (en) | GEARBOX FOR MOTOR VEHICLE, SUCH AS LAWN MOWER | |
CA2645088A1 (en) | Sprung anti-backing-off device | |
WO2016110622A1 (en) | Motor vehicle gearbox | |
FR3031377A1 (en) | GEARBOX FOR MOTOR VEHICLE | |
FR2959544A1 (en) | Synchronization device for dog gearbox with different speed ratios in motor vehicle, has elastic unit exerting thrust on ring gear in direction of hub during speed coupling phase, and sleeve sliding on hub in direction of idle pinion | |
FR2803891A1 (en) | BARREL TYPE SPEED TRANSMISSION DEVICE, PARTICULARLY FOR FITTING A ROBOTIC GEARBOX | |
FR2997054A1 (en) | TRANSMISSION ASSEMBLY FOR A MOTOR VEHICLE, OF THE POSITIONABLE TYPE BETWEEN THE PRIMARY MOTOR SHAFT AND THE WHEELS OF THE SAME | |
EP0459859B1 (en) | Device for braking gears in a gearbox of a motor vehicle | |
FR2822517A1 (en) | Mechanism for changing ratios of a gearbox in semi-automatic and automatic vehicle gearboxes, uses position sensor to control operation of rotary drive for gear selection actuator | |
FR2940386A1 (en) | MANUAL GEARBOX WITH TRANSLATION PASSAGE AND ROTATION SELECTION COMPRISING A REVERSE BRAKE USING A FRONT MOTION SYNCHRONIZER | |
FR2844570A1 (en) | Gear selection and changing mechanism for motor vehicle gearbox has forks with selectors that provide for radial movement of locking pins | |
FR2749909A1 (en) | SAFETY DEVICE FOR MECHANICAL GEARBOX | |
EP0434614B1 (en) | Automatic stopping device for an electric motor after a given number of revolutions | |
FR3031378A1 (en) | GEARBOX CONTROL | |
EP3572184B1 (en) | Tool for cold expansion of a bore through a part | |
EP1471292B1 (en) | Device for control of changing speed in an automatized gearshift transmission and shifting method | |
EP1489302B1 (en) | Variable capacity low pressure hydraulic pump, e.g. for a hydraulic driven bicycle | |
WO2015150692A1 (en) | Valve with easy assembly of a coupling in a cam | |
EP3126719A1 (en) | Valve with facilitated attachment of a torsion spring | |
WO2022018335A1 (en) | Gear box and self-propelled wheeled vehicle equipped with a gear box | |
EP1022495A1 (en) | Gearbox with synchronized reverse gear | |
FR2914724A1 (en) | Gear box locking device for motor vehicle, has pinions freely rotating around drive shaft, and floating clutch engaged in clutching window and permitting to couple tilters in groove of sleeve by displacement of sleeve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20160708 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
CA | Change of address |
Effective date: 20180312 |
|
CD | Change of name or company name |
Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR Effective date: 20180312 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |
|
CD | Change of name or company name |
Owner name: STELLANTIS AUTO SAS, FR Effective date: 20240423 |