FR3030025A1 - Methode de gestion de l'alimentation en liquide cryogenique d'un camion de transport de produits thermosensibles - Google Patents

Methode de gestion de l'alimentation en liquide cryogenique d'un camion de transport de produits thermosensibles Download PDF

Info

Publication number
FR3030025A1
FR3030025A1 FR1462191A FR1462191A FR3030025A1 FR 3030025 A1 FR3030025 A1 FR 3030025A1 FR 1462191 A FR1462191 A FR 1462191A FR 1462191 A FR1462191 A FR 1462191A FR 3030025 A1 FR3030025 A1 FR 3030025A1
Authority
FR
France
Prior art keywords
chamber
opening
temperature
truck
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1462191A
Other languages
English (en)
Other versions
FR3030025B1 (fr
Inventor
Cecile Clement
Patricia Privat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to FR1462191A priority Critical patent/FR3030025B1/fr
Priority to EP15808749.4A priority patent/EP3230663A1/fr
Priority to PCT/FR2015/053229 priority patent/WO2016092177A1/fr
Publication of FR3030025A1 publication Critical patent/FR3030025A1/fr
Application granted granted Critical
Publication of FR3030025B1 publication Critical patent/FR3030025B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/005Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour the refrigerant being a liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/001Arrangement or mounting of control or safety devices for cryogenic fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • F25D3/105Movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

L'invention concerne une méthode de gestion de l'alimentation en liquide cryogénique d'un camion (20) de transport de produits thermosensibles, camion mettant en œuvre un procédé du type dit à injection indirecte où le liquide est envoyé dans un système d'échangeur thermique (3) situé à l'intérieur du camion, se caractérisant en ce que lors de la mise en route du système frigorifique du camion, par exemple au démarrage d'une tournée ou après un arrêt prolongé du système frigorifique pour une raison quelconque, on adopte un mode de descente rapide en température d'au moins une des dites chambres de la manière suivante : on détermine la grandeur ΔT = Tint - Tcons (Tint : la température interne à la chambre, et Tcons : une valeur de consigne pour cette température interne) et dès que ΔT est inférieur à une valeur de consigne haute ΔTcons-H on ordonne la fermeture ou la diminution de l'ouverture d'une vanne proportionnelle située en aval du système d'échangeur de la chambre considérée, la valeur de consigne haute ΔTcons-H étant inférieure ou égale à 20°C, et préférentiellement inférieure ou égale à 15°C.

Description

1 La présente invention concerne le domaine du transport et de la distribution des produits thermosensibles, tels que les produits pharmaceutiques et les denrées alimentaires, en camions frigorifiques.
Elle s'intéresse plus particulièrement à l'une des techniques utilisées dans ce type de camions, dite « injection indirecte » (technologie dite « CTI »), qui met en oeuvre un ou plusieurs échangeur(s) de chaleur dans l'enceinte interne où sont transportés les produits (on parle aussi de « chambre », de « boîte », de « caisse » isotherme...), échangeur dans lequel circule un fluide cryogénique tel l'azote liquide ou le CO2 liquide. Ce fluide cryogénique est acheminé depuis un réservoir cryogénique embarqué, le plus souvent sous le camion frigorifique, jusqu'à un ou plusieurs échangeurs thermiques situés à l'intérieur des chambres froides du camion, échangeurs munis de moyen de circulation d'air. Ces échangeurs permettent le refroidissement de l'air interne de la chambre stockant les produits, air environnant les échangeurs, à la température désirée. La chaleur extraite de l'air permet, tout d'abord, une évaporation complète du fluide cryogénique circulant dans l'échangeur, puis une élévation de sa température jusqu'à une température proche de celle de l'enceinte. Le fluide cryogénique en sortie d'échangeur est alors rejeté à l'extérieur après avoir cédé un maximum d'énergie de refroidissement. De façon bien connue de l'homme du métier, des solutions existent aujourd'hui pour contrôler la température de l'air interne à la caisse stockant les produits transportés, On peut rappeler que le contrôle de procédé typiquement mis en oeuvre pour de tels camions fonctionnant en injection indirecte est le suivant : Lors de la mise en route du système frigorifique du camion (par exemple au démarrage d'une tournée ou après un arrêt prolongé du système frigorifique pour une raison quelconque) ou encore après une ouverture de porte, on adopte un mode de descente rapide en température (cette industrie nomme cette phase « pull-down ») ; 3030025 2 Une fois une température de consigne atteinte dans la chambre de stockage des produits, on adopte un mode de contrôle/régulation qui permet de maintenir la température de la chambre de stockage des produits à la valeur de la consigne (phase de « maintien »).
5 Les modes de régulation existants sont basés principalement sur des algorithmes de commande de l'ouverture/fermeture des vannes d'alimentation en fluide cryogénique du ou des échangeurs, ou encore sur la prise en compte des écarts de température entre la température d'entrée et de sortie du fluide 10 dans et de l'échangeur. Mais par ailleurs, une des préoccupations constantes de l'homme du métier de ce domaine est de réduire la consommation de cryogène, par exemple d'azote liquide, de tels camions réfrigérés cryogéniquement.
15 Un des objectifs de la présente invention est alors de proposer une nouvelle gestion de l'alimentation en cryogène d'un tel procédé d'injection indirecte, permettant notamment d'optimiser la quantité de cryogène (par exemple d'azote liquide) nécessaire à l'abaissement de la température de l'air 20 interne aux chambres au niveau ou en deçà d'une consigne requise, et au maintien de ces conditions durant les différentes phases requises du transport. Et comme on le verra plus en détail dans ce qui suit, la présente invention propose la mise en oeuvre, en sortie de circuit (en aval du ou des échangeurs) d'une ou de vannes proportionnelles, et le pilotage de cette ou 25 certaines de ces vannes proportionnelles de façon optimisée, pilotage qui, on le conçoit, a un impact direct sur la consommation de cryogène et sur le profil de température obtenu. Ces vannes peuvent être pilotées à l'aide de leur taux d'ouverture, taux d'ouverture qui peut varier selon une plage allant de 0 à 100% (100% 30 correspondant au taux maximum d'ouverture de la vanne). Et de façon remarquable, le pilotage recommandé ici selon l'invention propose, à certains moments et dans certaines conditions réunies, de volontairement dégrader les conditions de température dans l'espace de stockage et donc de volontairement 3030025 3 accepter de s'éloigner de la température de consigne initialement visée. On peut considérer alors que par rapport aux conditions de régulations traditionnellement pratiquées, telles qu'évoquées plus haut, l'invention met à la disposition de l'utilisateur/opérateur du camion un mode de régulation que l'on 5 peut qualifier de mode « ECO », de mode additionnel, et que l'opérateur ou le système peut mettre en oeuvre en remplacement du mode habituel (conforme à l'art antérieur) quand il le juge adéquat ou acceptable. L'invention concerne alors une méthode de gestion de l'alimentation en 10 liquide cryogénique d'un camion de transport de produits thermosensible, du type où le camion est muni : - d'au moins une chambre de stockage des produits, - d'une réserve d'un fluide cryogénique tel l'azote liquide, - d'un système d'échangeur(s) thermique(s) interne à ladite au moins 15 une chambre, dans lequel circule le fluide cryogénique, - d'un système de circulation d'air, par exemple de type ventilateurs, apte à mettre en contact l'air interne à la chambre avec les parois froides du système d'échangeur thermique, - de capteurs de température aptes à déterminer la température de 20 l'atmosphère interne à ladite au moins une chambre (Tint) ; - ainsi que d'une unité de gestion et de commande, apte à réguler la température interne Tint à une valeur de consigne Tcnns en ordonnant une fermeture ou ouverture, ou le degré de telles ouverture/fermeture, d'une vanne proportionnelle située en aval du système d'échangeur d'une chambre 2 5 considérée ; se caractérisant en ce que lors de la mise en route du système frigorifique du camion, par exemple au démarrage d'une tournée ou après un arrêt prolongé du système frigorifique pour une raison quelconque, ou encore après une ouverture de porte, on adopte un mode de descente rapide en 30 température d'au moins une desdites chambres de la manière suivante : - on détermine la grandeur AT = Tint - Tcons ; 3030025 4 - et en ce que dès que AT est inférieur à une valeur de consigne haute AT''_H on ordonne la fermeture ou la diminution de l'ouverture de ladite vanne située en aval du système d'échangeur de la chambre considérée, la valeur de consigne haute ATcons-H étant inférieure ou égale à 20°C, et préférentiellement 5 inférieure ou égale à 15°C. Selon un des modes de mise en oeuvre de l'invention, dans le cas de produits surgelés, dès que AT est inférieur à une valeur de consigne haute congélation ATcons-H-cong on ordonne la fermeture ou la diminution de l'ouverture 10 de ladite vanne située en aval du système d'échangeur de la chambre considérée, ATcons-H-cong étant supérieure ou égale à 10 °C , préférentiellement supérieure ou égale à 15°C, par exemple égale à 15°C ± 5°C. Selon un autre des modes de mise en oeuvre de l'invention, dans le cas 15 de produits frais, dès que AT est inférieur à une valeur de consigne haute frais ATcons-H-frais on ordonne la fermeture ou la diminution de l'ouverture de ladite vanne située en aval du système d'échangeur de la chambre considérée, ATcons-H-frais étant supérieure ou égale à 2 °C , préférentiellement supérieure ou égale à 5°C, par exemple égale à 5°C ± 3°C.
20 A titre illustratif pour mieux visualiser ce que propose l'invention, considérons le cas des produits congelés, pour lesquels la consigne demandée dans la chambre est généralement voisine de -20°C, on adopte une consigne haute congélation ATcons-H-cons de 15°C ± 5°C, et donc typiquement dès une 25 température interne voisine de -5°C (voire dès une température interne à la chambre voisine de 0°C) on accepte de diminuer le débit alimentant l'échangeur, sans attendre de se rapprocher davantage de -20°C (comme le fait l'art antérieur) et donc en acceptant la dégradation de température induite et notamment la dégradation de la cinétique de descente en température.
30 Toujours à titre illustratif pour mieux visualiser ce que propose l'invention, considérons le cas des produits frais, pour lesquels la consigne demandée dans la chambre est généralement voisine de 4°C, on adopte une consigne 3030025 5 haute frais ATcons-H-frais de 5°C ± 3°C, et donc typiquement dès 9°C (voire dès une température interne à la chambre voisine de 12°C) on accepte de diminuer le débit alimentant l'échangeur, sans attendre de se rapprocher davantage de 4°C (comme le fait l'art antérieur) et donc en acceptant la dégradation de 5 température induite et notamment la dégradation de la cinétique de descente en température. En pratique, on observe dans ce domaine des cinétiques de descente en température durant la phase de « pull down » de l'ordre de 0,6°C à 1,2°C/min.
10 Selon la présente invention, cette cinétique peut être dégradée au profit de la consommation. Comme on l'aura compris à la lecture de ce qui précède, le système applique donc, en deça de la valeur de consigne haute ATcons_H (qui est on l'a 15 compris élevée par rapport aux limites entrainant une réaction selon les modes de régulations anciennement pratiqués) un taux d'ouverture réduit, par rapport à ce qu'il était auparavant (Tauxo, en général le taux d'ouverture était après un tel évènement à son maximum ou proche de son maximum, par exemple dans la gamme de 80-100%) et donc on peut exprimer le nouveau taux (réduit) de la 20 façon suivante : - Taux 1= al AT Ou encore - Taux 1= a Tauxo 25 Pour illustrer ce qui précède, le tableau 1 ci-dessous donne un exemple de mise en oeuvre de l'invention en fournissant le nouveau taux d'ouverture Taux 1 de la vanne en fonction de AT avec un coefficient al qui est un coefficient fixe =100/15 : 3030025 6 AT (°c) Taux 1 15 100 14,5 96,7 14 93,3 13 86,7 12 80 11 73,3 10 66,7 9 60,0 a 53,3 7 46,7 6 40,0 5 33,3 4 26,7 3 20,0 2 13,3 1 6,7 0 0,0 Tableau 1 Selon un des modes de mise en oeuvre de l'invention, l'unité prend en 5 compte outre la grandeur AT = Tint - Tcons, une notion de durée de fonctionnement du système d'apport de froid entre la dernière ouverture des portes du camion et une nouvelle ouverture de ces portes. Pour cela, l'unité évalue par exemple le temps écoulé en position fermée, c'est-à-dire le temps écoulé entre la dernière ouverture des portes du camion et une nouvelle 10 ouverture de ces portes, par exemple par l'utilisation d'un « timer » (chronomètre, minuterie). Plus cette durée est élevée, plus le taux d'ouverture de la vanne sera réduit après la relance du système. Selon ce mode de mise en oeuvre, le système appliquera donc, en deçà de la valeur de consigne haute ATcons-H un taux d'ouverture réduit (Taux 1), par 15 rapport à ce qu'il était auparavant (Tauxo) s'exprimant de la façon suivante : - Taux 1= 131 a, AT Ou encore - Taux 1= 13 a Tauxo 3030025 7 le facteur [31 (ou [3) dépendant du temps écoulé tel qu'évoqué ci-dessus. Pour illustrer ce qui précède, le tableau 2 ci-dessous donne un exemple de mise en oeuvre de l'invention en fournissant les valeurs du coefficient [31 5 adoptées en fonction du temps écoulé (« timer » = TE) avec : = (1-(TE * 1/3)/100) Timen7E) 131 5 1 10 0.97 15 0.95 20 0.93 25 0.92 30 0.90 0.88 0.87 0.85 0.83 0.82 0,80 0.80 0,80 10 Tableau 2 On a adopté ici des conditions où l'on décide de restreindre le « timer » (TE) sur une plage de 10 à 60 minutes : en d'autres termes si TE>60 minutes 131 reste inchangé et égal à ce qu'il était à 60 minutes. On ne développera pas ici longuement la question de « remise à zéro » du « timer », question par ailleurs familière pour l'homme du métier des contrôles de procédés (remise à zéro par exemple automatiquement effectuée en phase d'arrêt prolongé du camion).
15 20 Selon un autre des modes de mise en oeuvre de l'invention, l'unité prend en compte outre la grandeur AT = Tint - Tcons, une notion de nombre 3030025 8 d'ouvertures de portes intervenues durant une période donnée (par exemple depuis la fin de la période précédente de « pull down » (descente rapide)). Selon ce mode de mise en oeuvre, le système appliquera donc, en deça de la valeur de consigne haute ATcons-H un taux d'ouverture réduit (Taux 1), par 5 rapport à ce qu'il était auparavant (Tauxo) s'exprimant de la façon suivante : - Taux 1=y1 a, AT Ou encore - Taux 1= y a Tauxo Ou bien, s'il prend en compte les deux aspects de temps écoulés entre 10 deux ouvertures de portes et de nombres d'ouvertures intervenues sur une période donnée : -Taux 1 = yl pl ai AT OU - Taux 1 = y P a Tauxo 15 On ne développera pas ici longuement le fait que l'homme du métier est par ailleurs familier des systèmes qui lui permettent de détecter une ouverture de portes sur de tels camions : - par exemple par un contacteur de porte (qui permet d'émettre un signal 20 et d'aller ainsi incrémenter un compteur de nombre d'ouvertures) ; - le système peut aussi comptabiliser le nombre d'ouvertures de porte en mesurant la remontée en température intérieure dans la caisse puis la descente en température de celle-ci lors de sa fermeture. Et l'identification d'un arrêt prolongé peut être effectuée par la différence de température entre la 25 température intérieure de la caisse et la température extérieure ; si cette différence avoisine par exemple 5 °C on peut considérer que l'on est dans le cas d'un arrêt prolongé et à partir de ce constat ordonner la remise à zéro du compteur.
30 Pour illustrer ce mode de réalisation, on donne dans ce qui suit un exemple de mise en oeuvre effectuée dans les conditions suivantes : 3030025 9 - on prend en compte un compteur d'ouverture de portes qui peut varier de 1 à 12 (au-delà de 12 ouvertures de portes la variable restera bloquée sur 12). - on limite la fermeture de la vanne de 2% par ouverture de porte, ce que 5 l'on illustre par le tableau 3 ci-dessous qui fournit les valeurs correspondantes du coefficient y1 (y1 = 1-(Compteur * 0,02), si Compteur>12 alors y1 reste à la valeur adoptée pour le compteur égal à 12). Compteur 1 0.98 2 0.96 3 0.94 0.92 7 0.90 6 0.88 0.86 8 0_84 9 0.82 10 0.80 11 0.78 12 0.76 10 Tableau 3 D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement dans la description suivante, donnée à titre illustratif mais nullement limitatif, faite en relation avec les dessins annexés pour lesquels : 15 la figure 1 est une représentation schématique partielle d'une installation CTI conforme à la pratique actuelle (art antérieur). - la figure 2 est une représentation schématique de la caisse interne à un camion de transport selon l'art antérieur, comportant ici deux chambres de stockage de produits, et permettant notamment de mieux visualiser le 20 fonctionnement des échangeurs et la position des sondes de température T1. - la figure 3 est une représentation schématique partielle d'une installation CTI conforme à la présente invention. - la figure 4 montre les courbes de température (différence de température AT = Tint - Tuis) et de consommation au cours du temps pour 3030025 10 deux modes de régulation différents, basées sur deux taux maximum d'ouverture de la vanne proportionnelle (Tmax1 < Tmax2). - la figure 5 présente le taux d'ouverture de la vanne - en % du taux maximum d'ouverture - en fonction du AT (différence de température entre la 5 température intérieure et la température de consigne), ceci pour deux valeurs différentes du taux maximum. La figure 1 ci-après annexée, est une représentation schématique partielle d'une installation d'injection indirecte conforme à la pratique actuelle 10 (art antérieur). La régulation de la quantité de cryogène, par exemple d'azote liquide, alimentant un tel procédé CTI (chambre 20 interne au camion, équipée d'échangeurs 3) se fait aujourd'hui à l'aide d'au moins deux vannes tout ou rien (TOR) 1 et 6, une en entrée et une en sortie, le procédé comprend alors au 15 moins les éléments suivants, vus dans l'ordre suivant : - un réservoir d'azote liquide (non représenté sur la figure 1), - une vanne TOR 1 en entrée, normalement fermée, qui autorise l'alimentation en cryogène, par exemple en azote, du circuit ; 20 - un moyen de répartition de l'azote liquide (par exemple de type clarinette, « 2 » sur la figure), - des échangeurs thermiques 3 internes au camion, - une clarinette 4 de collecte de l'azote gazeux sortant des échangeurs, 25 un capteur de pression 5, une vanne TOR 6 en sortie, normalement ouverte, une canalisation de diamètre donné qui relie ces éléments. Dans la chambre 20 on trouve de plus : 30 des systèmes de ventilations (non représentés sur la figure pour des raisons de clarté mais on les visualisera mieux dans le cadre de la figure 2 annexée) positionnés au niveau des échangeurs dont les débits sont régulés, permettant d'intensifier les échanges thermiques entre l'air ambiant de la 3030025 11 chambre et les échangeurs (en aspirant l'air au travers des échangeurs et en le forçant à être en contact avec les échangeurs) et d'homogénéiser la température de l'air interne à la chambre. Une sonde de température (T1) gère l'ouverture et la fermeture de la 5 vanne d'entrée TOR 1; elle est située par exemple en entrée du parcours de l'air dans les échangeurs et mesure la température de l'air de la chambre avant son refroidissement au sein des échangeurs. Pour chaque chambre supplémentaire, on ajoute un nouveau circuit d'alimentation comprenant par exemple une vanne TOR en entrée 10 normalement fermée, des échangeurs thermiques, une vanne TOR de sortie normalement ouverte etc.... (un exemple de situation à deux chambres et de position des sondes de température est illustré grâce à la figure 2 annexée). La réfrigération dans le mode TOR antérieur se déroule typiquement en 15 deux phases : 1- Au démarrage ou après une ouverture de porte, on adopte un mode de descente rapide en température. 2- Une fois la température de consigne atteinte (sonde T1 dans la chambre), on adopte un mode de contrôle/régulation qui permet de maintenir la 20 température de la chambre à la valeur de la consigne. Le fonctionnement du procédé CTI en ce mode TOR est typiquement le suivant : lorsque la température T1 mesurée est supérieure à la température de consigne la vanne d'entrée 1 s'ouvre (la vanne de sortie 6 étant par défaut déjà ouverte) permettant ainsi l'alimentation des échangeurs en cryogène. L'azote 25 liquide se transformant en gaz libère des frigories qui sont absorbées par l'air en contact avec ces échangeurs. Les ventilateurs récupèrent cet air refroidi pour le faire circuler dans la chambre. L'azote gazeux est ensuite rejeté à l'extérieur de la chambre dans l'atmosphère environnante. Lorsque la température T1 mesurée atteint la température de consigne, la vanne d'entrée 30 1 se ferme, arrêtant ainsi l'alimentation des échangeurs en cryogène et donc le refroidissement de l'air interne à la chambre. La réduction de la température de la chambre et son maintien sont obtenus par des cycles d'ouverture et de fermeture de la vanne 1. La fréquence et la durée d'ouverture de la vanne 1 3030025 12 seront plus élevées lors de la phase de descente rapide que lors de la phase de contrôle/régulation. Lorsque la vanne 1 s'ouvre, quelle que soit la phase considérée, le débit de cryogène introduit dans les échangeurs thermiques dépendra uniquement de la pression d'azote du réservoir et des pertes de 5 charge des différents composants de l'installation. Par conséquent, ce débit de cryogène est lié à la conception du système et est, pour une installation donnée, identique à chaque ouverture de vanne et ceci quelle que soit la phase du procédé. En d'autres termes, le débit d'azote n'étant pas ajustable, la quantité 10 d'azote n'est pas optimisée ; ce qui entraîne une surconsommation d'azote. Ce flux discontinu d'azote et le temps de réaction d'ouverture et de fermeture de la vanne conduisent également à une amplitude élevée de la température de l'air de la chambre ; ce qui n'est pas satisfaisant. De plus, lorsque la vanne d'entrée 1 est fermée, l'azote qui se trouve en 15 amont de cette vanne, se réchauffe et conduit à une augmentation de la pression du réservoir. Lorsque la vanne d'entrée s'ouvre de nouveau, une partie de l'azote va être utilisée pour refroidir la canalisation d'alimentation d'azote ; ce qui réduit le rendement thermique des évaporateurs.
20 La figure 2 permet quant à elle de mieux visualiser le détail d'un exemple actuel de caisse interne à un camion de transport (en vue de coté), comportant ici deux chambres de stockage de produits (par exemple une chambre pour des produits frais et une autre chambre pour des produits congelés), et permettant notamment de mieux visualiser le fonctionnement des échangeurs et la position 25 des sondes de température T1 pour le mode exemplifié ici. Pour chaque chambre on dispose en amont d'une vanne TOR en entrée, normalement fermée (« NF »), chaque chambre est munie d'échangeurs thermiques (verticaux pour la chambre 1, horizontaux en haut de caisse pour la chambre 2), où circule le cryogène en provenance du réservoir situé sous le 30 camion, les flux de gaz obtenus en sortie de chaque chambre sont envoyés vers une canalisation de rassemblement, munie ici d'une unique vanne TOR de sortie normalement ouverte (« NO »).
3030025 13 Et on visualise bien ici un mode de réalisation où dans chaque chambre on dispose d'une sonde de température (T1) qui gère l'ouverture et la fermeture de chaque vanne d'entrée TOR; elle est située : - pour la chambre 1 en entrée du parcours de l'air dans les échangeurs 5 (les ventilateurs 21 étant situés de l'autre coté des échangeurs et aspirant vers eux l'air au travers des échangeurs), la sonde mesurant donc la température de l'air de la chambre avant son refroidissement au sein des échangeurs ; - pour la chambre 2 ici encore en entrée du parcours de l'air dans les échangeurs considérés i.e. sensiblement au niveau des ventilateurs 21 qui ici 10 poussent l'air à l'intérieur des échangeurs. La figure 3 illustre quant à elle, en vue partielle un mode de réalisation conforme à l'invention, avec les éléments suivants : - un réservoir d'azote liquide (non représenté sur la figure 3), 15 - une vanne TOR 1 en entrée, normalement fermée, qui autorise l'alimentation en cryogène, par exemple en azote, du système d'échangeur 3 (constitué pour ce mode de réalisation de plusieurs échangeurs verticaux en parallèle, mais ceci n'est qu'une des nombreuses configurations d'échangeurs pratiquées couramment dans cette industrie) ; 20 - un moyen de répartition de l'azote liquide (par exemple de type clarinette, « 2 » sur la figure), - les évaporateurs 3 (ou échangeurs thermiques) internes au camion, - une clarinette 4 de collecte de l'azote gazeux sortant des 25 échangeurs, un capteur de pression 5, une vanne analogique proportionnelle 10, normalement ouverte, qui autorise l'ouverture, la fermeture et la régulation de l'alimentation des échangeurs 3 ; 30 une vanne TOR 11 en sortie (en aval de la vanne proportionnelle), normalement ouverte, vanne TOR en sortie qui n'est qu'optionnelle selon l'invention. - une canalisation de diamètre donné qui relie ces éléments.
3030025 14 On ne redétaillera pas ici les systèmes de ventilation positionnés au niveau des échangeurs ainsi que la présence de la sonde de température (Ti) apte à mesurer la température de l'air interne à la chambre de stockage des 5 produits. Conformément à l'invention, la gestion de l'alimentation est basée sur le pourcentage d'ouverture de la vanne proportionnelle 10, en fonction de la température de l'air de la chambre (Tint) et de la température de consigne 10 recherchée (Tuons). Lors d'une phase de remontée rapide en température (du fait d'une ouverture de porte par exemple), la température mesurée (Tint) est nettement supérieure à la consigne (Tuis), on ordonne alors à la vanne proportionnelle 15 10 de s'ouvrir (pourcentage d'ouverture qui est alors en général proche de 100%), les échangeurs 3 sont alors alimentés en azote avec un débit maximal et libère des frigories qui sont absorbées par l'air de la chambre (phase de « pull down » ou descente rapide). Puis, au fur et à mesure que Tint s'approche de Tuons, le système examine le positionnement de la grandeur AT = Tint - 20Tcons pour, dès que AT est inférieur à une valeur de consigne haute ATcons-H ordonner la fermeture ou la diminution de l'ouverture de la vanne 10 située en aval du système d'échangeur de la chambre considérée. Sans qu'il soit nécessaire de détailler plus avant, on utilise ici des moyens d'acquisition et de traitement de données (par exemple un 25 automate...), pour acquérir toutes les données nécessaires (et notamment les données de pression, de température interne à la chambre etc...) et pour retroagir en donnant des ordres au système, notamment pour fermer telle ou telle vanne, ou pour faire varier le taux d'ouverture de la vanne 10.
30 La figure 4 annexée montre les courbes de température (différence de température AT = Tint - Tuons) et de consommation au cours du temps (phase 3030025 15 de descente en température, puis stabilisation et ouverture de portes) pour deux modes de régulation différents, basées sur deux taux maximum d'ouverture de la vanne proportionnelle (Tmax1 et Tmax2, Tmax1 < Tmax2) : les courbes en trait grossi montrent l'observation du AT pour ces deux taux 5 d'ouverture de vanne tandis que les courbes en trait fin montrent les consommations de cryogène associées. On observe alors clairement une différence de profil de température ainsi qu'une différence de consommation (une diminution de consommation en l'occurrence), lorsque la régulation adopte un taux d'ouverture réduit (Tmax1 10 réduit par rapport à Tmax2). La figure 5 présente quant à elle le taux d'ouverture de la vanne - en % du taux maximum d'ouverture - en fonction du AT (différence de température entre la température intérieure et la température de consigne), ceci pour deux 15 valeurs différentes du taux maximum, Taux max 1 et Taux max 2, dans le cas de la régulation d'une chambre de stockage de produits frais. Il est à noter que sur ce graphique, on représente en abscisse la différence de température entre la température interne de la chambre et la température de consigne, différence que l'on ramène en % sachant que 100% 20 correspond à un delta de température de 15°C. On constate alors sur cette figure les points suivants : - dans le cas du taux maximum 1, Tmax1, la régulation n'est pas suffisamment ajustée pour permettre de réduire le débit (le taux 25 d'ouverture appliqué est toujours au taux maximum), - tandis qu'avec le taux maximum 2, Tmax2, la régulation a été modifiée pour permettre une variation du taux d'ouverture de la vanne et par conséquent une réduction de la consommation. 30

Claims (5)

  1. REVENDICATIONS1. Méthode de gestion de l'alimentation en liquide cryogénique d'un camion de transport de produits thermosensibles, du type où le camion est muni : - d'au moins une chambre (20) de stockage des produits, - d'une réserve d'un fluide cryogénique tel l'azote liquide, - d'un système d'échangeur thermique (3) interne à ladite au moins une chambre, dans lequel circule le fluide cryogénique, - d'un système de circulation d'air, par exemple de type ventilateurs (21), apte à mettre en contact l'air interne à la chambre avec les parois froides du système d'échangeur thermique, - de capteurs de température (T1) aptes à déterminer la température de l'atmosphère interne à ladite au moins une chambre (Tint) ; - ainsi que d'une unité de gestion et de commande, apte à réguler la température interne Tint à une valeur de consigne Tcnns en ordonnant une fermeture ou ouverture, ou le degré de telles ouverture/fermeture, d'une vanne proportionnelle (10) située en aval du système d'échangeur d'une chambre considérée ; se caractérisant en ce que lors de la mise en route du système frigorifique du camion, par exemple au démarrage d'une tournée ou après un arrêt prolongé du système frigorifique pour une raison quelconque, ou encore après une ouverture de porte, on adopte un mode de descente rapide en température d'au moins une des dites chambres de la manière suivante : - on détermine la grandeur AT = Tint - Tunis ; - et dès que AT est inférieur à une valeur de consigne haute AT'ns_Fi on ordonne la fermeture ou la diminution de l'ouverture de ladite vanne située en aval du système d'échangeur de la chambre considérée, la valeur de consigne haute AT'ns_Fi étant inférieure ou égale à 20°C, et préférentiellement inférieure ou égale à 15°C. 3030025 17
  2. 2. Méthode de gestion selon la revendication 1, se caractérisant en ce que la chambre considérée transporte des produits surgelés et en ce que dès que AT est inférieur à une valeur de consigne haute congélation ATcons_H_ cong on ordonne la fermeture ou la diminution de l'ouverture de ladite vanne 5 située en aval du système d'échangeur de la chambre considérée, ATcons-H-cong étant supérieure ou égale à 10 °C , préférentiellement supérieure ou égale à 15°C, par exemple égale à 15°C +/- 5°C.
  3. 3. Méthode de gestion selon la revendication 1, se caractérisant en 10 ce que la chambre considérée transporte des produits frais et en ce que dès que AT est inférieur à une valeur de consigne haute frais ATcons-H-frais on ordonne la fermeture ou la diminution de l'ouverture de ladite vanne située en aval du système d'échangeur de la chambre considérée, ATcons-H-frais étant supérieure ou égale à 2 °C , préférentiellement supérieure ou égale à 5°C, par 15 exemple égale à 5°C +/- 3°C.
  4. 4. Méthode de gestion selon l'une des revendications précédentes, se caractérisant en ce que l'unité prend en compte, outre la grandeur AT = Tint - Tcons, un paramètre de durée de fonctionnement de l'alimentation en fluide 20 cryogénique entre la dernière ouverture des portes du camion et une nouvelle ouverture de ces portes, par l'évaluation du temps écoulé en position fermée, c'est-à-dire le temps écoulé entre la dernière ouverture des portes du camion et une nouvelle ouverture de ces portes. 25
  5. 5. Méthode de gestion selon l'une des revendications précédentes, se caractérisant en ce que l'unité prend en compte de plus un paramètre de nombre d'ouvertures de portes intervenues durant une période donnée de la tournée du camion, par exemple depuis la fin de la période de descente rapide intervenue précédemment. 30
FR1462191A 2014-12-10 2014-12-10 Methode de gestion de l'alimentation en liquide cryogenique d'un camion de transport de produits thermosensibles Active FR3030025B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1462191A FR3030025B1 (fr) 2014-12-10 2014-12-10 Methode de gestion de l'alimentation en liquide cryogenique d'un camion de transport de produits thermosensibles
EP15808749.4A EP3230663A1 (fr) 2014-12-10 2015-11-26 Méthode de gestion de l'alimentation en liquide cryogénique d'un camion de transport de produits thermosensibles
PCT/FR2015/053229 WO2016092177A1 (fr) 2014-12-10 2015-11-26 Méthode de gestion de l'alimentation en liquide cryogénique d'un camion de transport de produits thermosensibles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1462191A FR3030025B1 (fr) 2014-12-10 2014-12-10 Methode de gestion de l'alimentation en liquide cryogenique d'un camion de transport de produits thermosensibles

Publications (2)

Publication Number Publication Date
FR3030025A1 true FR3030025A1 (fr) 2016-06-17
FR3030025B1 FR3030025B1 (fr) 2016-12-09

Family

ID=52692805

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1462191A Active FR3030025B1 (fr) 2014-12-10 2014-12-10 Methode de gestion de l'alimentation en liquide cryogenique d'un camion de transport de produits thermosensibles

Country Status (3)

Country Link
EP (1) EP3230663A1 (fr)
FR (1) FR3030025B1 (fr)
WO (1) WO2016092177A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3075708B1 (fr) * 2017-12-21 2019-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de gestion du fonctionnement d'un camion de transport frigorifique de produits thermosensibles du type a injection indirecte
CN110906667A (zh) * 2019-10-11 2020-03-24 合肥晶弘电器有限公司 一种降低食品冷冻损伤的速冻控制方法、速冻冰箱

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139982A (ja) * 1987-11-27 1989-06-01 Matsushita Refrig Co Ltd 冷蔵庫
FR2969061A1 (fr) * 2010-12-16 2012-06-22 Air Liquide Methode de gestion de l'alimentation en liquide cryogenique d'un camion de transport de produits thermosensibles fonctionnant en injection indirecte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006048993B4 (de) * 2005-10-17 2021-09-02 Thermo King Corp. Verfahren zum Betreiben einer Tieftemperatursteuereinrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139982A (ja) * 1987-11-27 1989-06-01 Matsushita Refrig Co Ltd 冷蔵庫
FR2969061A1 (fr) * 2010-12-16 2012-06-22 Air Liquide Methode de gestion de l'alimentation en liquide cryogenique d'un camion de transport de produits thermosensibles fonctionnant en injection indirecte

Also Published As

Publication number Publication date
FR3030025B1 (fr) 2016-12-09
WO2016092177A1 (fr) 2016-06-16
EP3230663A1 (fr) 2017-10-18

Similar Documents

Publication Publication Date Title
CA2874213C (fr) Procede et dispositif pour le transport refrigere utilisant une injection indirecte d&#39;un liquide cryogenique et apportant une solution de maintien en temperature dans le cas des temperatures exterieures tres basses
EP2986887B1 (fr) Procédé et installation d&#39;alimentation d&#39;au moins un poste d&#39;usinage en liquide cryogénique sous-refroidi
FR2951242A1 (fr) Procede et installation d&#39;alimentation d&#39;un poste utilisateur en liquide cryogenique sous-refroidi
FR3030025A1 (fr) Methode de gestion de l&#39;alimentation en liquide cryogenique d&#39;un camion de transport de produits thermosensibles
EP2652419A1 (fr) Méthode de gestion de l&#39;alimentation en liquide cryogénique d&#39;un camion de transport de produits thermosensibles fonctionnant en injection indirecte
EP2839227B1 (fr) Méthode de régulation de la température de la chambre de stockage des produits d&#39;un véhicule de transport de produits thermosensibles fonctionnant en injection indirecte
EP1490637B1 (fr) Tunnel cryogénique et procédé de conduite d&#39;un tel tunnel
WO2022258924A1 (fr) Systeme de stockage d&#39;hydrogene liquide et de distribution d&#39;hydrogene gazeux sous pression
EP3046788B1 (fr) Procédé de gestion du fonctionnement d&#39;un camion de transport frigorifique de produits thermosensibles par modulation de la puissance frigorifique
EP3501865B1 (fr) Procédé de gestion du fonctionnement d&#39;un camion de transport frigorifique de produits thermosensibles du type à injection indirecte
WO2013088303A1 (fr) Procédé de régulation d&#39;un système de refroidissement cryogénique
FR2977658A1 (fr) Procede et dispositif pour le transport refrigere utilisant une injection indirecte d’un liquide cryogenique et ameliorant la distribution du cryogene dans les echangeurs thermiques
FR3019275A1 (fr) Procede de degivrage predictif d&#39;echangeurs de transport frigorifique
FR3061274A1 (fr) &#34;procede de degivrage pour echangeur d&#39;un systeme de froid cryogenique&#34;
EP1152183A1 (fr) Installation de traitement d&#39;objets par un liquide cryogénique
FR3071194B1 (fr) Transport cryogenique de produits thermosensibles valorisant le fuel operant le moteur du vehicule a l&#39;aide d&#39;un module eutectique de stockage du froid
FR3139889A1 (fr) Installation frigorifique.
FR2940410A1 (fr) Installation frigorifique comprenant deux circuits en cascade.
FR2972608A1 (fr) Equipement de croutage cryogenique de produits alimentaires
FR2940411A1 (fr) Installation frigorifique comprenant deux condenseurs montes en serie et en parallele.

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160617

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10