FR3029970A1 - EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE - Google Patents

EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE Download PDF

Info

Publication number
FR3029970A1
FR3029970A1 FR1462170A FR1462170A FR3029970A1 FR 3029970 A1 FR3029970 A1 FR 3029970A1 FR 1462170 A FR1462170 A FR 1462170A FR 1462170 A FR1462170 A FR 1462170A FR 3029970 A1 FR3029970 A1 FR 3029970A1
Authority
FR
France
Prior art keywords
nox
ammonia
scr
catalyst
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1462170A
Other languages
French (fr)
Other versions
FR3029970B1 (en
Inventor
Nils Matthess
Thierry Bertin
Jean Florent Genies
Tallec Thomas Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Auto Sas Fr
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Priority to FR1462170A priority Critical patent/FR3029970B1/en
Publication of FR3029970A1 publication Critical patent/FR3029970A1/en
Application granted granted Critical
Publication of FR3029970B1 publication Critical patent/FR3029970B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/14Combinations of different methods of purification absorption or adsorption, and filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • F01N2570/145Dinitrogen oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention porte sur un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion (1) caractérisé en ce qu'il comporte, d'amont en aval : • un organe catalyseur d'oxydation DOC (3) ; • une embouchure (41) d'un moyen d'introduction (4) de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR ; • un organe catalyseur de réduction catalytique sélective SCR des oxydes d'azote NOx (6) ; • un organe filtre à particules (7) muni d'un revêtement catalyseur de réduction catalytique sélective SCRF des oxydes d'azote NOx ; • un organe de traitement des fuites d'ammoniac (8) ; ledit organe catalyseur de réduction catalytique sélective des oxydes d'azote (6) étant d'une longueur (L1) comprise entre 45 mm et 80 mm, notamment entre 50 et 75 mm.The invention relates to a device for post-treatment of the exhaust gases of a combustion engine (1), characterized in that it comprises, from upstream to downstream: • a DOC oxidation catalyst element (3) ; • a mouth (41) of means (4) for introducing a reducing agent or precursor of a reducing agent for the selective catalytic reduction of SCR nitrogen oxides; A catalytic selective catalytic reduction unit SCR of NOx nitrogen oxides (6); A particulate filter member (7) provided with a SCRF selective catalytic reduction catalyst coating of NOx nitrogen oxides; • an ammonia leak treatment unit (8); said catalyst member for selective catalytic reduction of nitrogen oxides (6) being of a length (L1) of between 45 mm and 80 mm, in particular between 50 and 75 mm.

Description

1 DISPOSITIF DE POST-TRAITEMENT DES GAZ D'ECHAPPEMENT D'UN MOTEUR A COMBUSTION [001] L'invention est relative à des moyens de traitement des polluants des gaz d'échappement des moteurs à combustion. [2] Les émissions polluantes des moteurs à combustion équipant les véhicules automobiles sont réglementées par des normes. Les polluants réglementés sont, selon la technologie de moteur à combustion considérée, le monoxyde de carbone (CO), les hydrocarbures imbrûlés (HC), les oxydes d'azotes (NOx, c'est-à-dire NO et NO2) et les particules (PM), qui sont formés lors de la combustion du carburant dans la chambre de combustion puis émis à l'échappement. [3] Il est connu d'employer un certain nombre de moyens de dépollution dans la ligne d'échappement des moteurs à combustion pour en limiter les émissions de polluants réglementés. On désigne de manière générale ce type de dispositif par le terme de dispositif de « post-traitement » des gaz d'échappement. [4] Un catalyseur d'oxydation permet le traitement du monoxyde de carbone, des hydrocarbures imbrûlés, et dans certaines conditions des oxydes d'azote (par stockage des NOx) ; un filtre à particules peut être employé pour le traitement des particules de 20 suie. [5] Pour satisfaire aux normes anti-pollution sur les émissions d'oxydes d'azote (NOx), un système spécifique de post-traitement peut être introduit dans la ligne d'échappement des véhicules, notamment des véhicules équipés de moteurs Diesel. Pour le traitement des oxydes d'azote (NOx), on connaît des technologies de réduction 25 catalytique sélective, ou « SCR » pour « Selective Catalytic Reduction » en anglais, qui consistent à réduire les NOx par introduction d'un agent réducteur (ou d'un précurseur d'un tel agent réducteur) dans les gaz d'échappement par réactions catalysées. Il peut par exemple s'agir d'une solution d'urée, dont la décomposition va permettre l'obtention d'ammoniac qui servira d'agent réducteur, mais également d'un réducteur ou d'un 30 précurseur d'un tel réducteur sous forme gazeuse. On parlera dans la suite du présent document d'une manière générale de « réducteur » pour désigner un agent réducteur ou un précurseur d'agent réducteur. 3029970 2 [6] L'agent réducteur généré permet de réduire les oxydes d'azotes par réaction dans un catalyseur SCR, c'est-à-dire un substrat portant une imprégnation catalytique apte à favoriser la réduction des NOx par l'agent réducteur. [7] Les normes européennes, notamment, tendent à devenir de plus en plus sévères.BACKGROUND OF THE INVENTION The invention relates to means for treating pollutants from the exhaust gases of combustion engines. [2] Pollutant emissions from combustion engines in motor vehicles are regulated by standards. Regulated pollutants are, depending on the combustion engine technology considered, carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx, that is NO and NO2), and particles (PM), which are formed during combustion of the fuel in the combustion chamber and then emitted to the exhaust. [3] It is known to employ a number of means of pollution in the exhaust line of combustion engines to limit the emissions of regulated pollutants. This type of device is generally referred to as the "after-treatment" device for the exhaust gases. [4] An oxidation catalyst allows the treatment of carbon monoxide, unburned hydrocarbons, and under certain conditions nitrogen oxides (by storage of NOx); a particulate filter may be employed for the treatment of soot particles. [5] To meet pollution control standards for nitrogen oxide (NOx) emissions, a specific post-treatment system can be introduced into the exhaust system of vehicles, including vehicles equipped with diesel engines. For the treatment of nitrogen oxides (NOx), selective catalytic reduction (SCR) technologies for "Selective Catalytic Reduction" in English are known which consist of reducing NOx by introducing a reducing agent (or a precursor of such a reducing agent) in the exhaust gas by catalyzed reactions. It may for example be a urea solution, the decomposition of which will make it possible to obtain ammonia which will serve as a reducing agent, but also of a reducing agent or precursor of such a reducing agent. in gaseous form. In the remainder of the present document, a "reducing agent" will generally be used to designate a reducing agent or a reducing agent precursor. [6] The reducing agent generated makes it possible to reduce the nitrogen oxides by reaction in an SCR catalyst, that is to say a substrate carrying a catalytic impregnation able to promote the reduction of NOx by the reducing agent. . [7] European standards, in particular, tend to become more and more severe.

5 Et les solutions pour réduire les émissions de polluants en sortie de ligne d'échappement pour respecter les normes actuelles se révéleront insuffisantes au vu des évolutions de normes prévues au-delà de 2017. [8] En effet, la première étape de la norme, Euro 6b (entrée en vigueur en septembre 2014) a conduit les constructeurs automobiles à choisir entre différentes options pour 10 réduire plus spécifiquement les émissions de NOx : - la réduction des NOx « à la source », au niveau du fonctionnement même du moteur, via des technologies de type recyclage des gaz d'échappement dans le moteur, recyclage appelé aussi EGR selon l'acronyme du terme anglais correspondant à « Exhaust Gas Recirculation » haute et basse pression, par exemple ; - la réduction des NOx au niveau de la ligne d'échappement via une technologie 15 de traitement catalytique séquentiel appelée « piège à NOx » ; - la réduction des NOx au niveau de la ligne d'échappement également, via une technologie de traitement continu appelée « réduction catalytique sélective » telle que brièvement décrite plus haut (SCR) ; voire en cumulant plusieurs de ces solutions. [9] Si ces solutions permettent de satisfaire cette première étape dans l'évolution de la norme (Euro6b), elles ne sont pas forcément capables de satisfaire la seconde étape qui s'annonce encore plus sévère (Euro 6c, entrée en vigueur prévue en septembre 2017), avec des mesures de polluants sur un nouveau cycle de roulage dit « WLTC » (pour « Worldwide Harmonized Light vehicles Test Cycle » en anglais, soit cycle de test harmonisé pour véhicules légers en français), contenant plus de phases transitoires que le cycle d'homologation actuel (dit « MVEG » pour Motor Vehicle Emissions Group en anglais, soit groupe d'émissions pour véhicules motorisés en français), mais aussi des mesures hors cycle (appelées « RDE » pour Real Driving Emissions ou émissions en conditions réelles de conduite) devraient être instaurées. [0010] Pour répondre notamment aux risques d'émissions trop élevées de NOx hors cycle, différentes solutions technologiques et architectures peuvent être envisagées. Elles ont leurs avantages et leurs inconvénients. Mais la technologie de traitement des oxydes d'azote la plus efficace est la réduction catalytique sélective (SCR) car elle est efficace dans des plages de température et de débit de gaz plus étendues que celles d'un piège à NOx, l'autre solution de post-traitement. 3029970 3 [0011] Par ailleurs, s'ajoutent des contraintes d'implantation du dispositif de post-traitement. En effet, de façon générale, les systèmes catalytiques utilisés sont d'autant plus efficaces que la température des gaz d'échappement qui les traversent est élevée (jusqu'à un certain point). Ils s'amorceront alors d'autant plus vite après le démarrage du 5 moteur que la température des gaz d'échappement augmentera rapidement. On a donc intérêt à implanter les dispositifs de post-traitement au plus près du moteur, c'est-à-dire au plus près du collecteur des gaz d'échappement, sous capot, alors même que cet environnement est en général très encombré. Les dispositifs de post-traitement se doivent donc d'être aussi compacts que possible sans nuire à leurs performances. 10 [0012] Dans tout le présent texte, on comprend les termes « amont » et « aval » en fonction de la direction générale d'écoulement des gaz d'échappement dans la ligne d'échappement intégrant les organes de post-traitement, depuis le moteur jusqu'à la canule d'extrémité de la ligne d'échappement. [0013] Il est, par exemple, connu de la demande de brevet WO 2011/089330 un 15 dispositif de post-traitement regroupant dans une même enveloppe plusieurs organes qui vont être successivement traversés par les gaz d'échappement. Il y est proposé, notamment, une série d'organes comprenant d'amont en aval : - un catalyseur d'oxydation, - un injecteur d'agent réducteur de type urée, - un mélangeur dont le rôle est de mélanger intimement les gouttelettes d'urée injectées dans l'enveloppe traversée par 20 les gaz, de façon à se décomposer en ammoniac de manière aussi homogène que possible sur toute la section droite de l'enveloppe, - un organe SCR, - un filtre à particules (appelé FAP par la suite). Il y est également proposé une alternative, consistant à remplacer l'organe SCR et le FAP, par un FAP qui est imprégné d'un catalyseur de réduction des NOx et qui remplit ainsi à la fois la fonction de filtre des suies et de réduction 25 des NOx (appelé SCRF par la suite). [0014] Cependant, un organe dédié SCR comme décrit dans ce document peut ne pas s'amorcer suffisamment tôt pour des raisons de thermique non favorable, notamment dans des conditions de roulage urbain pendant lesquelles les températures dans la ligne d'échappement sont assez basses. Or, c'est justement pendant ce type de roulage urbain 30 que les évolutions de la norme européenne (notamment) vont devenir contraignantes en termes de réduction des émissions de NOx. [0015] Et la variante intégrant le catalyseur SCR dans le filtre à particules (SCRF) n'est pas non plus assez performante en conditions de roulage urbain, du fait de l'inertie thermique importante du substrat spécifique aux filtres à particules, même s'il est positionné de façon très proche du moteur. En effet, le substrat qui assure la filtration des 3029970 4 particules et qui est imprégné du revêtement de catalyseur (revêtement d'imprégnation appelé en anglais « washcoat ») est une céramique poreuse qui consomme beaucoup de chaleur pour monter en température (inertie thermique importante). L'amorçage de la phase SCR ne pourrait ainsi se faire qu'au bout d'un certain temps, rendant difficile le 5 respect des futures évolutions de la norme. [0016] En outre, des contraintes supplémentaires apparaissent quand le véhicule automobile est un véhicule dit « lourd » (plus de 1500 kg), qu'il soit un véhicule pour particulier ou de type utilitaire. En effet, dans les mêmes conditions de roulage qu'un véhicule moins lourd, le véhicule « lourd » aura des conditions de température plus 10 élevées à l'échappement à gérer, et des quantités plus importantes à traiter de NOx générés dans le moteur. Pour compenser ces émissions de NOx plus élevées, les quantités d'agent réducteur à injecter dans la ligne d'échappement (par exemple de l'urée se décomposant en ammoniac) devront être plus importantes aussi, puisque ces quantités sont dictées par la stoechiométrie des réactions de NOx par l'ammoniac. Les températures 15 plus élevées des gaz en sortie moteur favorisent par ailleurs la thermo-désorption de l'ammoniac stocké dans les organes SCR (et/ou SCRF), et peuvent en outre contribuer à la dégradation de leurs phases catalytiques actives pouvant induire une diminution de leur capacité de stockage en ammoniac. La conjugaison de températures plus élevées et d'une quantité plus importante d'urée (ou d'ammoniac) à injecter sur la ligne induit un risque 20 accru d'émissions d'ammoniac qui n'aurait pas réagi en bout de ligne d'échappement. Or les fuites d'ammoniac en bout de ligne d'échappement sont malodorantes, et peuvent incommoder, notamment si le véhicule est dans un espace confiné de type parking fermé. [0017] L'invention a alors pour but de concevoir un post-traitement des gaz d'échappement de moteur thermique qui remédie aux inconvénients précités. Elle a 25 notamment pour but d'améliorer les dispositifs existants pour permettre de respecter des normes plus sévères en matière d'émissions de polluants, et plus particulièrement concernant les émissions de NOx dans des conditions de roulage non stabilisées du type roulage urbain et/ou dans une plage de températures élargies, tout en limitant au maximum d'éventuelles fuites d'agent réducteur des NOx non réagi en bout de ligne 30 d'échappement. Avantageusement, elle a aussi pour but d'obtenir un dispositif de post- traitement plus performant et qui reste, en outre, compact. [0018] L'invention a tout d'abord pour objet un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion, qui comporte, d'amont en aval : - un organe catalyseur d'oxydation (appelé aussi DOC) ; 3029970 5 une embouchure d'un moyen d'introduction de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR ; - un organe catalyseur de réduction catalytique sélective SCR des oxydes d'azote NOx ; 5 - un organe filtre à particules muni d'un revêtement catalyseur de réduction catalytique sélective SCRF des oxydes d'azote NOx ; un organe de traitement des fuites d'ammoniac ; ledit organe catalyseur de réduction catalytique sélective des oxydes d'azote (6) étant d'une longueur comprise entre 45 mm et 80 mm, notamment entre 50 et 75 10 mm. [0019] De préférence, ledit organe catalyseur de réduction catalytique sélective des oxydes d'azote est choisi d'une longueur au moins deux fois plus petite, notamment au moins 2, 1 ou au moins 2,2 à 3 fois plus petite que la longueur du filtre à particules. [0020] De préférence, le système de dépollution ne comprend que les organes 15 énumérés plus haut (hormis d'éventuels dispositifs supplémentaires ne participant pas directement à la dépollution, mais plutôt à sa mesure, comme des capteurs par exemple). [0021] Cette architecture de dispositif de post-traitement s'est avérée extrêmement favorable sur plusieurs aspects. [0022] Elle permet d'améliorer les performances du dispositif, notamment en ce qui 20 concerne la réduction des NOx dans les conditions les moins favorables, à savoir, comme évoqué plus haut, dans des conditions de roulage urbain (où la température des gaz d'échappement reste inférieure à un roulage de type route ou autoroute); voire des conditions de type conduite agressive, avec de forts débits de gaz d'échappement à traiter. 25 [0023] Et ces résultats très intéressants ont été obtenus par la combinaison de deux organes SCR : l'un dédié à cette fonction, l'autre intégré dans le filtre à particules, avec un ratio entre les longueurs des deux organes très spécifique correspondant à un organe SCR bien plus petit que le filtre à particules. Ainsi, on « répartit » la fonction de réduction des NOx sur deux organes successifs, avec un organe SCR dédié qui est petit, et de fait 30 nettement plus efficace thermiquement que la phase catalytique qui imprègne le filtre à particules (SCRF). On peut ainsi considérer que l'organe SCR assure la majorité de la réduction des NOx du dispositif, notamment dans des conditions de roulage défavorables 3029970 6 comme les basses températures et que le SCRF voit sa contribution à la réduction des NOx s'élever avec la température et la quantité de NOx à traiter (les fortes charges notamment requièrent le SCRF, l'organe SCR n'étant pas suffisant pour traiter toutes les émissions de NOx). En évitant d'utiliser un SCRF seul, non seulement le dispositif de 5 l'invention s'amorce mieux thermiquement, mais il atténue l'impact d'une éventuelle dégradation du revêtement catalytique du FAP qui pourrait intervenir lors de régénérations qui feraient atteindre dans le FAP des températures excessives (plus de 1000°C, pour donner un ordre de grandeur). [0024] Il a été également montré que cette architecture permettait de limiter au maximum 10 les rejets/fuites d'ammoniac en bout de ligne d'échappement (ce qu'on désigne également en anglais sous le terme de « NH3 slip »), rejets d'ammoniac provenant de l'agent réducteur injecté en amont de l'organe porteur du catalyseur SCR mais n'ayant pas réagi), ceci grâce à l'ajout d'un organe de traitement de ces fuites d'ammoniac. C'est très avantageux, tout particulièrement pour les véhicules lourds qui nécessitent l'injection d'une 15 quantité plus importante d'agent réducteur, avec donc un risque accru de relargage d'ammoniac en bout de ligne. [0025] Le dispositif selon l'invention va traiter les polluants gazeux et particulaires au fur et à mesure qu'ils traversent les organes de dépollution : ils pénètrent donc d'abord dans la première « brique » constituée du catalyseur d'oxydation, où le CO et les HC sont 20 oxydés en eau (H20) et en dioxyde de carbone (002). [0026] Sortent de cette première brique DOC, les produits de l'oxydation du CO et des HC à savoir H20 et 002, ainsi que les oxydes d'azote et les particules. Ces composés cheminent ensuite à travers la brique de catalyseur SCR (très courte/petite comme détaillée plus loin), qui réduit les NOx en azote (N2) suivant différentes réactions qui seront 25 détaillées plus loin. [0027] Restent en sortie du catalyseur SCR des NOx résiduels, l'excès de l'ammoniac (NH3) provenant du catalyseur (explicité ultérieurement) et des particules. Ces composés rentrent dans la brique SCRF, qui va terminer la réduction des NOx par NH3 et éliminer les particules en les stockant avant de les brûler lors des régénérations. 30 [0028] De préférence, l'organe catalyseur de réduction catalytique sélective des oxydes d'azote présente une longueur de par exemple environ 50 ou 60 mm. Il s'agit donc vraiment d'un organe SCR très petit, qu'on peut désigner sous le terme de « tranche » SCR, qui s'est avéré remplir parfaitement son rôle alors qu'on aurait pu craindre qu'une si 3029970 7 faible longueur/épaisseur le rendrait finalement peu performant (notamment du fait d'un temps de contact raccourci entre le catalyseur et les gaz d'échappement). [0029] De préférence, la longueur de l'organe SCRF est d'au moins 100 mm, notamment comprise entre 100 et 175 mm, notamment d'environ 120 à 130 mm. 5 [0030] De préférence, la longueur totale de l'organe catalyseur de réduction catalytique sélective des oxydes d'azote et du filtre à particules, y compris l'espace éventuel entre eux, est d'au plus 250 mm, notamment d'au plus 190 mm, de préférence compris entre 170 et 180 mm. L'invention maintient donc un encombrement modéré par rapport à une solution utilisant seulement un organe SCRF : elle ne vient pas rallonger notablement le 10 dispositif de post-traitement, et préserve donc la compacité de l'ensemble. [0031] De préférence, la longueur totale entre l'entrée de l'organe catalyseur d'oxydation et la sortie du filtre à particules est d'au plus 450 mm, notamment d'au plus 400 mm, de préférence comprise entre 280 et 380 mm. [0032] Enfin, l'excès éventuel en ammoniac est traité par l'organe de traitement ad hoc, 15 à l'extrémité aval du dispositif de post -traitement. [0033] Selon une première variante, l'organe catalyseur d'oxydation DOC, l'embouchure, l'organe catalyseur de réduction sélective SCR des NOx, et l'organe filtre à particules muni d'un revêtement catalyseur de réduction catalytique sélective SCRF des oxydes d'azote NOx sont regroupés dans une enveloppe unique, et l'organe de traitement des fuites 20 d'ammoniac est disposé en dehors de ladite enveloppe unique. [0034] On peut ainsi répartir les différents organes du dispositif de post-traitement, en fonction de l'espace disponible sous capot : ainsi, les organes sauf celui traitant la fuite d'ammoniac restent groupés en sortie moteur sous capot, tandis que l'organe de traitement des fuites en ammoniac peut être déporté plus en aval sur la ligne 25 d'échappement, et se trouver ainsi dans la zone sous caisse du véhicule. [0035] Optionnellement, l'action de l'organe de traitement des fuites d'ammoniac est complétée (ou même remplacée) par un revêtement de traitement des fuites d'ammoniac intégré au filtre à particules, de préférence dans sa partie aval. [0036] Selon une autre variante, lesdits organes et embouchure sont regroupés dans 30 une enveloppe unique. [0037] Cette architecture préserve la compacité de l'ensemble, qui est contenu dans une enveloppe unique, et qui pourra ainsi être avantageusement logé au plus près du 3029970 8 collecteur des gaz d'échappement en sortie moteur sur la ligne d'échappement, et notamment sous capot. [0038] De préférence, l'organe de traitement des fuites d'ammoniac est un catalyseur de traitement des fuites d'ammoniac par oxydation de l'ammoniac en NOx puis la réduction 5 desdits NOx en azote, que l'on pourra dans la suite du présent texte désigner sous le terme ASC. « ASC » est l'acronyme en anglais du terme « Ammonia Slip Catalyst » ou catalyseur des fuites en ammoniac en français. [0039] Alternativement, l'organe de traitement des fuites d'ammoniac peut être un catalyseur de nettoyage des fuites d'ammoniac par oxydation de l'ammoniac, que l'on 10 pourra dans la suite du présent texte désigner sous le terme CUC. « CUC » est l'acronyme en anglais du terme « Clean-Up Catalyst » ou catalyseur de nettoyage pour le traitement des fuites en ammoniac. Ce type de catalyseur oxyde seulement l'ammoniac en le transformant en NOx. [0040] Avantageusement, l'organe catalyseur d'oxydation peut aussi comprendre un 15 matériau adsorbeur d'oxydes d'azote, appelé PNA qui est l'acronyme pour « Passive NOx Adsorber » en anglais. [0041] Le rôle d'un matériau de type PNA est de pouvoir stocker lors des phases froides les oxydes d'azote émis par le moteur, tant que les organes catalysant la réduction des NOx (l'organe SCR et le filtre à particules avec revêtement catalytique SCRF) ne sont pas 20 encore fonctionnels. En effet, il faut attendre 180 à 200°C pour pouvoir injecter le réducteur (urée) dans la ligne d'échappement et former l'ammoniac qui convertira ensuite les NOx. Avec du NH3 « pré-stocké » dans le revêtement SCR, la conversion des NOx peut s'opérer quelques dizaines de degrés avant (aux environs de 140°C). Le PNA fonctionne en stockant les NOx « à froid » (grâce, notamment, à l'ajout, dans 25 l'imprégnation « classique » d'un catalyseur d'oxydation, d'oxydes simples ou mixtes à caractère basique tels que, par exemple, les oxydes de cérium ou de baryum) avant de les restituer à plus haute température quand la SCR est pleinement opérationnelle (entre 200 et 300°C). Pour assurer un fonctionnement correct da PNA, on prévoit des phases de purges pour nettoyer sa surface qui s'est sulfatée au fur et à mesure du temps, de façon 30 connue. [0042] De préférence, le dispositif de post-traitement selon l'invention comprend un organe mélangeur pour le mélange des gaz d'échappement et du réducteur et/ou la conversion du précurseur en réducteur entre l'embouchure du moyen d'introduction de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des 3029970 9 oxydes d'azote SCR et l'organe catalyseur de réduction catalytique sélective des oxydes d'azote. [0043] Le dispositif de post-traitement peut aussi comporter un capteur de NOx entre l'organe filtre à particules muni d'un revêtement catalyseur de réduction catalytique 5 sélective SCRF des oxydes d'azote NOx et l'organe de traitement des fuites d'ammoniac, et éventuellement un autre capteur de NOx en amont de l'organe catalyseur d'oxydation DOC et/ou un autre capteur de NOx en aval de l'organe de traitement des fuites d'ammoniac. Le capteur « amont », en amont du catalyseur DOC, peut aussi être remplacé par une modélisation le cas échéant. 10 [0044] De préférence, l'organe catalyseur d'oxydation présente un catalyseur dont la quantité de métaux nobles est ajustée de façon à obtenir en sortie de l'organe des gaz d'échappement dont le ratio NO2/NOx est égal ou voisin de 0,5 (on comprend par « voisin » une variation de par exemple +/- 15% autour de cette valeur). [0045] Il a en effet été observé que, notamment quand le matériau du revêtement SCR 15 de l'organe SCR était choisi à base de zéolithes échangées au fer, on maximisait son efficacité en ménageant un ratio NO2/NOx proche de 0,5 en entrée de l'organe SCR. L'organe avec des zéolithes échangées au fer fonctionne mieux à basse température qu'avec des zéolithes échangées au cuivre, et aussi bien à plus haute température. Les zéolithes échangées au cuivre offre en revanche l'avantage d'être moins sensibles à ce 20 ratio NO2/NOx à basse température. [0046] Ce ratio peut être ajusté autour de cette valeur en ajustant la composition du catalyseur d'oxydation. La formulation de ce type de catalyseur contient généralement majoritairement de l'alumine A1203 dopée, des zéolithes de type aluminosilicates hydratés (connues également sous l'abréviation ZSM5) et non échangées afin de piéger les HC à 25 froid, et des métaux précieux comme le Platine (Pt) et le Palladium (Pd), avec un ratio défini. En effet, en fonction de ce ratio Pt/Pd, le catalyseur d'oxydation sera plus ou moins apte à oxyder le monoxyde de carbone (CO) et les hydrocarbures imbrûlés (HC) : Plus le catalyseur contient de Platine, plus sa capacité à oxyder NO en NO2 sera grande. A noter qu'en sortie moteur, et donc à l'entrée de l'organe catalyseur d'oxydation, les émissions de 30 NOx sont majoritairement composées de NO (>90%). Le catalyseur d'oxydation va donc oxyder efficacement NO en NO2 pour ajuster le ratio NO2/NOx à la valeur voulue. [0047] De préférence, le catalyseur de l'organe catalyseur de réduction catalytique sélective est à base de zéolithe(s) échangée(s) au fer. 3029970 10 [0048] En effet, les revêtements d'imprégnation à base de zéolithes échangées au Fer (Fe) présentent un amorçage à plus basse température que ceux à base de zéolithes échangées au Cuivre (Cu), dès lors que le ratio NO2/NOx est proche de 0,5. Quand cette condition est satisfaite, un revêtement à base de zéolithes échangées au Fer permet de 5 convertir les NOx dès 150°C. [0049] De préférence, le catalyseur du filtre à particules est à base de zéolithe(s) échangée(s) au cuivre. [0050] En effet, cette nature de catalyseur est particulièrement adaptée pour imprégner un filtre à particules : - il présente une meilleure résistance thermique qu'un catalyseur à 10 base de zéolithes échangées au Fer (il doit en effet subir sans dégradation d'éventuelles régénérations périodiques du filtre à très haute température), - la combustion des suies par NO2 (effet appelé « CRT » acronyme anglais pour Coutinuously Regenerating Trap », soit piège à régénération continue en français) à des températures proches de 250°C à 350°C tend à réduire le ratio NO2/NOx, les formulations à base de zéolithes échangées au 15 Cuivre (Cu) étant également mieux adaptées car moins sensibles à basse température à ce ratio que celles échangées au fer, - il présente aussi une capacité de stockage de NH3 plus élevée. Cette dernière caractéristique est particulièrement intéressante, car le faible volume (la faible longueur pour une section inchangée) de l'organe SCR peut être à l'origine de fuites de NH3. Il est donc très utile que ces fuites d'ammoniac puissent être 20 « captées » correctement dans la brique SCRF en aval de l'organe SCR. [0051] A noter que les zéolithes échangées au Cuivre proposées pour le SCRF et/ou échangées au fer pour le catalyseur de l'organe catalyseur de réduction catalytique SCR sont par exemple à base de zéolithes de type chabazite, ferriérite ou aluminosilicates hydratés (ZMSS), et peuvent contenir également au moins un des oxydes suivants : oxyde 25 de cérium (Ce), de zirconium (Zr), ou encore au moins un des métaux suivants : du niobium (Nb), du tungstène (W), du titane (Ti). [0052] Selon un mode de réalisation, le support de l'organe catalyseur d'oxydation et/ou celui de l'organe catalyseur de réduction catalytique sélective est métallique, et optionnellement équipé(s) de moyens chauffants, par exemple de type résistances 30 électriques. On réduit ainsi leur durée de montée en température, et donc le temps à partir duquel ils s'amorcent. [0053] Alternativement, on peut utiliser pour l'un et/ou l'autre de ces organes un matériau de type céramique comme la cordiérite. 3029970 11 [0054] Le support du filtre à particules SCRF peut être, par exemple, en carbure de silicium (SiC), en cordiérite ou en titanate d'aluminium. [0055] Avantageusement, le dispositif de post-traitement selon l'invention comprend également un organe mélangeur des gaz d'échappement et du réducteur et/ou du 5 précurseur du réducteur entre l'embouchure du moyen d'introduction de réducteur et/ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR et l'organe catalyseur de réduction catalytique sélective des oxydes d'azote. [0056] Ce mélangeur a pour fonction de mélanger aussi bien que possible les gaz d'échappement avec le réducteur ou le précurseur de réducteur, cela étant notamment 10 très utile quand le précurseur est de type liquide, comme de l'urée en phase aqueuse. [0057] L'invention s'applique également à l'injection directe du gaz réducteur, comme de l'ammoniac, qui vient alimenter la ligne d'échappement à partir d'une ou plusieurs cartouches de sel (notamment de type SrCl2) apte à adsorber l'ammoniac et à le relarguer par activation thermique, de façon connue (technologie appelée communément SCR 15 « solide »), et, dans ce cas-là, le mélangeur est moins nécessaire. [0058] De préférence, le mélangeur est d'un type présentant une longueur de parcours pour des gaz le traversant au moins deux fois supérieure à la longueur qu'il occupe longitudinalement dans l'enveloppe. Le but du mélangeur est d'homogénéiser le mélange entre les gaz d'échappement et le réducteur, et, si l'on introduit un précurseur d'un agent 20 réducteur, de favoriser la décomposition du précurseur de réducteur en agent réducteur. L'emploi d'un mélangeur imposant au gaz d'échappement un parcours relativement long comparativement à la longueur du mélangeur, par exemple d'un type imposant au gaz un cheminement sensiblement hélicoïdal avec impacteur, est particulièrement adapté à l'invention. Il permet, par l'obtention d'une distance de parcours des gaz d'échappement 25 supérieure à ses propres dimensions, l'emploi dans un dispositif compact d'une solution à base d'urée en tant que précurseur d'ammoniac, alors même que la thermolyse de l'urée (correspondant à la transformation sous l'action de la chaleur de l'urée en acide isocyanique HNCO et en ammoniac NH3) dans les gaz d'échappement nécessite un temps non négligeable. Le mélangeur peut être aussi, par exemple, un mélangeur en T 30 utilisant la recirculation des gaz aval catalyseur d'oxydation dans une double enveloppe autour du catalyseur d'oxydation avec une injection sur la face de sortie du catalyseur d'oxydation. [0059] De préférence, l'enveloppe unique est sensiblement en forme de cylindre muni d'un divergent d'entrée et d'un convergent de sortie (en forme de tronçons de cône), d'une 3029970 12 longueur totale d'au plus 450 mm, notamment d'au plus 400 mm, de préférence comprise entre 280 et 380 mm, et elle présente donc une compacité tout-à-fait compatible avec une implantation dans un sous-capot moteur d'un véhicule automobile. [0060] De préférence, le moyen d'introduction de l'agent réducteur est un injecteur du 5 type à actionneur par solénoïde ou piézoélectrique ou mécanique ou hydropneumatique. [0061] Le conduit entre le collecteur d'échappement et le dispositif selon l'invention peut en outre comporter une ou plusieurs turbines de turbocompresseur dans le cadre d'un moteur suralimenté, et, en particulier, le dispositif selon l'invention peut être raccordé directement au carter d'un turbocompresseur, à la sortie d'une turbine. 10 [0062] L'invention a également pour objet une ligne d'échappement qui comporte le dispositif de post-traitement décrit précédemment. [0063] L'invention a également pour objet, dans un premier mode de réalisation, un véhicule automobile délimitant un espace sous capot, qui contient ce qu'on désigne usuellement par le terme compartiment moteur, et un espace sous caisse, et comportant 15 un moteur thermique raccordé à la ligne d'échappement précédente, tel que le moteur et le dispositif de post-traitement de la ligne d'échappement sont disposés dans l'espace sous capot. On a ainsi tous les organes de dépollution groupés, de façon compacte, au plus près du moteur. [0064] L'invention a également pour objet, dans un deuxième mode de réalisation, un 20 véhicule automobile délimitant un espace sous capot et un espace sous caisse, et comportant un moteur thermique raccordé à la ligne d'échappement précédente, tel que le moteur, l'organe catalyseur d'oxydation DOC, l'embouchure, l'organe catalyseur de réduction sélective SCR des NOx, l'organe filtre à particules muni d'un revêtement catalyseur de réduction catalytique sélective SCRF des oxydes d'azote NOx et 25 l'embouchure du dispositif de post-traitement de la ligne d'échappement sont disposés dans l'espace sous capot, et tel que l'organe de traitement des fuites d'ammoniac est disposé dans l'espace sous caisse. On regroupe ainsi au plus près du moteur les organes de dépollution ayant besoin d'une température de gaz d'échappement élevée, et on éloigne du moteur l'organe de traitement des fuites d'ammoniac pour le préserver de 30 conditions thermiques trop sévères. [0065] L'invention est décrite plus en détail ci-après en référence aux figures relatives à un mode de réalisation non limitatif se rapportant à un dispositif de post-traitement des gaz d'échappement d'un moteur diesel : 3029970 13 - la figure 1 représente schématiquement un moteur et sa ligne d'échappement d'un véhicule automobile comportant le dispositif de post-traitement selon un exemple 1 de l'invention ; - la figure 2 est un graphe représentant l'évolution de la capacité de stockage d'ammoniac 5 dans un ensemble SCR/ SCRF en fonction de la température ; - la figure 3 représente un schéma de fonctionnement du catalyseur de traitement des fuites en ammoniac du dispositif de post-traitement de la figure 1. [0066] Les références reprises d'une figure à l'autre désignent des mêmes composants, et les différents composants représentés ne sont pas nécessairement à l'échelle. Les 10 figures restent très schématiques pour en faciliter la lecture. [0067] Dans l'invention, et tel que représenté sur la figure 1, on propose un dispositif de traitement des gaz d'échappement d'un moteur 1 selon un exemple 1. Ce dispositif est intégré à la ligne d'échappement raccordée au collecteur (non représenté) des gaz d'échappement du moteur 1. Il comporte, dans une même enveloppe 2 (que l'on peut 15 également désigner par le terme anglophone de « canning ») et, selon le sens d'écoulement des gaz d'échappement (d'amont en aval donc) un organe catalyseur d'oxydation 3, une embouchure 41 d'un moyen d'introduction 4 de réducteur (ou d'un précurseur d'agent réducteur), un mélangeur 5, un organe catalyseur SCR 6 (catalyseur de réduction catalytique sélective des oxydes d'azote), un filtre à particules SCRF muni 20 d'un revêtement d'imprégnation SCR 7 et un catalyseur de traitement des fuites d'ammoniac 8. On prévoit également au moins un capteur de NOx 9 entre le filtre 7 et le catalyseur de traitement d'ammoniac 8. [0068] L'enveloppe 2 est située au plus près du collecteur des gaz d'échappement, notamment à environ 350 mm de sa sortie (par exemple d'au plus 500 mm de sa sortie).5 And the solutions to reduce pollutant emissions at the end of the exhaust line to meet the current standards will prove insufficient in view of the changes in standards expected beyond 2017. [8] Indeed, the first stage of the standard Euro 6b (entry into force in September 2014) led car manufacturers to choose between different options to reduce NOx emissions more specifically: - reduction of NOx "at the source", at the level of the actual operation of the engine, via technologies of the exhaust gas recycling type in the engine, recycling also called EGR according to the acronym of the English term corresponding to "Exhaust Gas Recirculation" high and low pressure, for example; the reduction of NOx at the exhaust line via a sequential catalytic processing technology called NOx trap; the reduction of NOx at the level of the exhaust line also, via a continuous treatment technology called "selective catalytic reduction" as briefly described above (SCR); even by cumulating many of these solutions. [9] While these solutions can satisfy this first step in the evolution of the standard (Euro6b), they are not necessarily capable of satisfying the second stage, which promises to be even more severe (Euro 6c, entry into force foreseen in September 2017), with pollutant measurements on a new rolling cycle called "WLTC" (for "Worldwide Harmonized Light Vehicle Test Cycle" in English, or harmonized test cycle for light vehicles in French), containing more transient phases than the current approval cycle (known as "MVEG" for the Motor Vehicle Emissions Group), but also out-of-cycle measures (known as "RDEs" for Real Driving Emissions or emissions in conditions driving practices) should be introduced. [0010] In particular, to meet the risks of excessively high NOx emissions outside the cycle, various technological solutions and architectures can be envisaged. They have their advantages and disadvantages. But the most efficient nitrogen oxide treatment technology is selective catalytic reduction (SCR) because it is efficient in more extended temperature and gas flow ranges than a NOx trap, the other solution post-processing. In addition, there are additional constraints on the implantation of the post-processing device. In fact, in general, the catalytic systems used are all the more effective as the temperature of the exhaust gases passing through them is high (to a certain extent). They will then start all the faster after starting the engine as the temperature of the exhaust gas will increase rapidly. It is therefore advantageous to implement the after-treatment devices as close to the engine, that is to say closer to the exhaust manifold, under hood, even though this environment is generally very crowded. The post-processing devices must therefore be as compact as possible without affecting their performance. Throughout the present text, the terms "upstream" and "downstream" are understood as a function of the general direction of flow of the exhaust gases in the exhaust line integrating the post-processing units, since the engine to the end cannula of the exhaust line. It is, for example, known from the patent application WO 2011/089330 a post-processing device grouping in the same envelope several bodies that will be successively traversed by the exhaust gas. It is proposed, in particular, a series of organs comprising upstream downstream: - an oxidation catalyst, - a urea reducing agent injector, - a mixer whose role is to intimately mix the droplets of urea injected into the casing through which the gases pass, so as to decompose into ammonia as homogeneously as possible over the entire cross section of the casing, - an organ SCR, - a particulate filter (called FAP by the following). It also proposes an alternative, consisting of replacing the SCR member and the FAP, by a FAP which is impregnated with a NOx reduction catalyst and which thus fulfills both the soot filter and the reduction function. NOx (called SCRF later). However, a dedicated member SCR as described in this document may not start early enough for reasons of adverse thermal, especially in urban driving conditions during which the temperatures in the exhaust line are quite low . However, it is precisely during this type of urban driving 30 that the evolutions of the European standard (in particular) will become binding in terms of reduction of NOx emissions. And the variant incorporating the SCR catalyst in the particulate filter (SCRF) is also not good enough in urban driving conditions, because of the significant thermal inertia of the particulate filter-specific substrate, even if it is positioned very close to the engine. Indeed, the substrate which ensures the filtration of the particles and which is impregnated with the catalyst coating (impregnation coating known in English as "washcoat") is a porous ceramic that consumes a lot of heat to increase in temperature (significant thermal inertia ). The start of the SCR phase could thus be done only after a certain time, making it difficult to respect the future evolutions of the standard. In addition, additional constraints arise when the motor vehicle is a vehicle called "heavy" (more than 1500 kg), whether a vehicle for private or utility type. In fact, under the same driving conditions as a lighter vehicle, the "heavy" vehicle will have higher temperature conditions at the exhaust to be managed, and larger quantities to process NOx generated in the engine. To compensate for these higher NOx emissions, the amounts of reducing agent to be injected into the exhaust line (for example urea decomposing to ammonia) will have to be larger also, since these quantities are dictated by the stoichiometry of the NOx reactions with ammonia. The higher temperatures of the gases at the engine outlet also favor the thermo-desorption of the ammonia stored in the SCR (and / or SCRF) members, and may furthermore contribute to the degradation of their active catalytic phases which can induce a decrease. their ammonia storage capacity. The conjugation of higher temperatures and a larger amount of urea (or ammonia) to be injected onto the line induces an increased risk of ammonia emissions that would not have reacted in the end. exhaust. Ammonia leaks at the end of the exhaust line are smelly, and can be inconvenient, especially if the vehicle is in a confined space of closed parking type. The invention therefore aims to design a post-treatment of engine exhaust gas that overcomes the aforementioned drawbacks. Its purpose is, in particular, to improve the existing devices to enable stricter standards for pollutant emissions to be observed, and more particularly for NOx emissions under unstabilized rolling conditions of the urban rolling type and / or in a wider temperature range, while minimizing possible NOx leakage agent leakage at the end of the exhaust line. Advantageously, it is also intended to obtain a post-processing device that is more efficient and that remains, in addition, compact. The invention firstly relates to a device for post-treatment of the exhaust gas of a combustion engine, which comprises, from upstream to downstream: - an oxidation catalyst member (also called DOC); A mouth of a reducing agent introducing means or reducing agent precursor for the selective catalytic reduction of SCR nitrogen oxides; a catalyst element for selective catalytic reduction SCR of NOx nitrogen oxides; A particulate filter member provided with a catalytic selective catalytic reduction coating SCRF of NOx nitrogen oxides; an ammonia leak treatment unit; said catalyst member for selective catalytic reduction of nitrogen oxides (6) being between 45 mm and 80 mm in length, in particular between 50 and 75 mm. Preferably, said catalytic selective catalytic reduction member of the nitrogen oxides is chosen to be at least twice as long, in particular at least 2, 1 or at least 2.2 to 3 times smaller than the length of the particulate filter. Preferably, the pollution control system comprises only the organs 15 listed above (except for any additional devices not directly involved in the depollution, but rather to its extent, such as sensors for example). This post-processing device architecture has proved extremely favorable in several aspects. [0022] It makes it possible to improve the performance of the device, in particular as regards the reduction of NOx under the least favorable conditions, namely, as mentioned above, in urban taxi conditions (where the temperature of the gases exhaust remains lower than a road or highway type taxi); even conditions of aggressive driving type, with high flow rates of exhaust gas to be treated. [0023] And these very interesting results were obtained by the combination of two SCR organs: one dedicated to this function, the other integrated in the particle filter, with a ratio between the lengths of the two very specific corresponding bodies. to a SCR organ much smaller than the particulate filter. Thus, the NOx reduction function is "distributed" over two successive members, with a dedicated SCR member that is small, and in fact much more thermally efficient than the catalytic phase that impregnates the particulate filter (SCRF). It can thus be considered that the SCR member provides the majority of the NOx reduction of the device, especially under unfavorable driving conditions 3029970 6 as low temperatures and that the SCRF sees its contribution to the reduction of NOx rise with the temperature and the amount of NOx to be treated (the heavy loads in particular require the SCRF, the organ SCR not being sufficient to treat all the emissions of NOx). By avoiding the use of a single SCRF, not only does the device of the invention better thermally primer, but it also attenuates the impact of a possible degradation of the catalytic coating of the FAP which could occur during regenerations which would cause the FAP excessive temperatures (over 1000 ° C, to give an order of magnitude). It has also been shown that this architecture made it possible to limit at most 10 the ammonia discharges / leaks at the end of the exhaust line (also referred to in English as "NH3 slip"), discharges of ammonia from the reducing agent injected upstream of the SCR catalyst carrying member but unreacted), this through the addition of a body for treating these ammonia leaks. This is very advantageous, especially for heavy vehicles which require the injection of a larger amount of reducing agent, thus with an increased risk of ammonia release at the end of the line. The device according to the invention will treat the gaseous and particulate pollutants as they pass through the depollution organs: they thus first enter the first "brick" consisting of the oxidation catalyst, where CO and HC are oxidized to water (H2O) and carbon dioxide (002). Out of this first DOC brick, products of the oxidation of CO and HC namely H20 and 002, as well as nitrogen oxides and particles. These compounds then travel through the SCR catalyst brick (very short / small as detailed below), which reduces NOx to nitrogen (N2) according to various reactions which will be detailed later. Remaining at the outlet of the SCR catalyst residual NOx, the excess of ammonia (NH3) from the catalyst (explained later) and particles. These compounds enter the SCRF brick, which will complete the reduction of NOx by NH3 and remove the particles by storing them before burning them during regenerations. [0028] Preferably, the catalyst element for the selective catalytic reduction of nitrogen oxides has a length of, for example, approximately 50 or 60 mm. So it's really a very small SCR organ, which can be referred to as the SCR "slice", which has been perfectly fulfilling its role when it might have been feared that it would be a 3029970 7 The short length / thickness would ultimately make it inefficient (in particular because of a shortened contact time between the catalyst and the exhaust gases). Preferably, the length of the SCRF member is at least 100 mm, in particular between 100 and 175 mm, in particular about 120 to 130 mm. [0030] Preferably, the total length of the selective catalytic reduction catalytic reduction unit of the nitrogen oxides and of the particulate filter, including any space between them, is at most 250 mm, in particular at most 190 mm, preferably between 170 and 180 mm. The invention therefore maintains a moderate size compared to a solution using only one SCRF member: it does not significantly lengthen the post-treatment device, and thus preserves the compactness of the assembly. Preferably, the total length between the inlet of the oxidation catalyst member and the outlet of the particulate filter is at most 450 mm, in particular at most 400 mm, preferably between 280 and 380 mm. [0032] Finally, the possible excess of ammonia is treated by the ad hoc treatment member 15 at the downstream end of the post-treatment device. According to a first variant, the DOC oxidation catalyst member, the mouthpiece, the selective NOx SCR reduction catalyst member, and the particulate filter member provided with a SCRF catalytic selective reduction catalyst coating. NOx nitrogen oxides are combined in a single envelope, and the ammonia leak treatment member is disposed outside of said single envelope. It is thus possible to distribute the various organs of the post-processing device, depending on the space available under the hood: thus, the bodies except the one treating the ammonia leak remain grouped under the engine output hood, while the The ammonia leak treatment unit can be deported further downstream on the exhaust line and thus be in the underbody area of the vehicle. Optionally, the action of the ammonia leak treatment member is completed (or even replaced) by an ammonia leak treatment coating integrated with the particulate filter, preferably in its downstream portion. According to another variant, said organs and mouthpiece are grouped together in a single envelope. This architecture preserves the compactness of the assembly, which is contained in a single envelope, and which can thus be advantageously housed as close to the exhaust manifold 3029970 8 engine output on the exhaust line, and especially under hood. Preferably, the ammonia leak treatment unit is a catalyst for treating ammonia leakage by oxidation of ammonia to NOx and then reducing said NOx to nitrogen, which can be used in the process. continued from this text refer to ASC. "ASC" is the acronym in English for the term "Ammonia Slip Catalyst" or catalyst for ammonia leaks in French. Alternatively, the ammonia leak treatment unit may be a catalyst for cleaning ammonia leaks by oxidation of ammonia, which may be referred to below as CUC in the following text. . "CUC" is the English acronym for "Clean-Up Catalyst" or cleaning catalyst for the treatment of ammonia leaks. This type of catalyst only oxidizes ammonia to NOx. Advantageously, the oxidation catalyst member may also comprise an adsorber material of nitrogen oxides, called PNA, which is the acronym for "Passive NOx Adsorber" in English. The role of a PNA type material is to be able to store during the cold phases the nitrogen oxides emitted by the engine, as the bodies catalyzing the reduction of NOx (the SCR member and the particulate filter with SCRF catalytic coating) are not yet functional. Indeed, it is necessary to wait 180 to 200 ° C to be able to inject the reducer (urea) in the exhaust line and form the ammonia which will then convert the NOx. With NH3 "pre-stored" in the SCR coating, the conversion of NOx can take place a few tens of degrees before (at about 140 ° C). The NAP works by storing NOx "cold" (thanks, in particular, to the addition, in the "classical" impregnation of an oxidation catalyst, of simple or mixed oxides with a basic character such as, for example, for example, cerium or barium oxides) before returning them to a higher temperature when the SCR is fully operational (between 200 and 300 ° C). To ensure proper operation of the PNA, purge steps are provided to clean its surface which has been sulfated over time in a known manner. Preferably, the post-treatment device according to the invention comprises a mixing device for mixing the exhaust gas and the reducing agent and / or converting the precursor into a reducer between the mouth of the means for introducing the reductant or precursor of a reducing agent for the selective catalytic reduction of SCR nitrogen oxides and the selective catalytic reduction catalyst of nitrogen oxides. The post-treatment device may also comprise a NOx sensor between the particulate filter element provided with a catalytic selective catalytic reduction coating SCRF of NOx nitrogen oxides and the treatment organ for leaks. ammonia, and optionally another NOx sensor upstream of the DOC oxidation catalyst member and / or another NOx sensor downstream of the ammonia leak treatment unit. The "upstream" sensor, upstream of the DOC catalyst, can also be replaced by modeling if necessary. Preferably, the oxidation catalyst member has a catalyst whose quantity of noble metals is adjusted so as to obtain at the outlet of the organ exhaust gas whose NO2 / NOx ratio is equal or similar. of 0.5 (we understand by "neighbor" a variation of for example +/- 15% around this value). It has indeed been observed that, especially when the SCR coating material 15 of the SCR member was selected based on zeolites exchanged with iron, its efficiency was maximized by having a NO2 / NOx ratio close to 0.5. at the input of the SCR organ. The organ with zeolites exchanged with iron works better at low temperature than zeolites exchanged with copper, and also at higher temperatures. On the other hand, zeolites exchanged with copper offer the advantage of being less sensitive to this low NO2 / NOx ratio. This ratio can be adjusted around this value by adjusting the composition of the oxidation catalyst. The formulation of this type of catalyst generally contains predominantly Al 2 O 3 doped alumina, hydrated aluminosilicate zeolites (also known by the abbreviation ZSM5) and not exchanged to trap cold HC, and precious metals such as Platinum (Pt) and Palladium (Pd), with a defined ratio. Indeed, depending on this Pt / Pd ratio, the oxidation catalyst will be more or less able to oxidize carbon monoxide (CO) and unburned hydrocarbons (HC): The more the catalyst contains platinum, the more its capacity to to oxidize NO to NO2 will be great. It should be noted that at the engine outlet, and therefore at the inlet of the oxidation catalyst member, the emissions of 30 NOx are mainly composed of NO (> 90%). The oxidation catalyst will therefore efficiently oxidize NO to NO2 to adjust the NO2 / NOx ratio to the desired value. Preferably, the catalyst of the selective catalytic reduction catalyst member is based on zeolite (s) exchanged (s) iron. In fact, the impregnation coatings based on zeolites exchanged with Fe (Fe) have a lower temperature initiation than those based on zeolites exchanged with Cu (Cu), since the ratio NO 2 / NOx is close to 0.5. When this condition is satisfied, an iron-exchanged zeolite coating can convert NOx as early as 150 ° C. Preferably, the catalyst of the particulate filter is based on zeolite (s) exchanged (s) copper. Indeed, this type of catalyst is particularly suitable for impregnating a particulate filter: it has a better thermal resistance than a catalyst based on zeolites exchanged with iron (it must indeed undergo without degradation of any periodic regeneration of the filter at very high temperature), - the combustion of soot by NO2 (effect called "CRT" (acronym for Coutinuously Regenerating Trap), ie trap with continuous regeneration in French) at temperatures close to 250 ° C to 350 ° C tends to reduce the NO2 / NOx ratio, the formulations based on zeolites exchanged with Copper (Cu) being also better adapted because less sensitive to low temperature at this ratio than those exchanged with iron, - it also has a storage capacity higher NH3. This last characteristic is particularly interesting because the small volume (the small length for an unchanged section) of the SCR organ can cause NH3 leakage. It is therefore very useful that these ammonia leaks can be "captured" properly in the SCRF brick downstream of the SCR member. It should be noted that the copper exchanged zeolites proposed for the SCRF and / or exchanged with iron for the catalyst of the catalytic reduction catalyst member SCR are for example based on zeolites of the chabazite, ferrierite or hydrated aluminosilicate type (ZMSS). ), and may also contain at least one of the following oxides: cerium (Ce) oxide, zirconium (Zr), or at least one of the following metals: niobium (Nb), tungsten (W), titanium (Ti). According to one embodiment, the support of the oxidation catalyst member and / or that of the selective catalytic reduction catalyst member is metallic, and optionally equipped with heating means, for example of resistors type 30 electric. This reduces their duration of temperature rise, and therefore the time from which they begin. Alternatively, one can use for one and / or the other of these bodies a ceramic-type material such as cordierite. The support of the SCRF particulate filter may be, for example, silicon carbide (SiC), cordierite or aluminum titanate. Advantageously, the after-treatment device according to the invention also comprises an exhaust gas mixing device and the gearbox and / or precursor of the gearbox between the mouth of the gearbox introduction means and / or of a reducing agent precursor for the selective catalytic reduction of nitrogen oxides SCR and the selective catalytic reduction catalyst member of nitrogen oxides. This mixer has the function of mixing as well as possible the exhaust gas with the reducing agent or the reducing agent precursor, this being especially very useful when the precursor is of the liquid type, such as urea in aqueous phase. . The invention also applies to the direct injection of the reducing gas, such as ammonia, which feeds the exhaust line from one or more salt cartridges (including SrCl2 type) suitable adsorbing ammonia and releasing it by thermal activation, in a known manner (technology commonly called SCR "solid"), and in this case, the mixer is less necessary. Preferably, the mixer is of a type having a path length for gases passing through it at least twice the length it occupies longitudinally in the envelope. The purpose of the mixer is to homogenize the mixture between the exhaust gas and the reducing agent and, if a precursor of a reducing agent is introduced, to promote the decomposition of the reducing agent precursor into a reducing agent. The use of a mixer imposing on the exhaust gas a relatively long path compared to the length of the mixer, for example of a type imposing gas a substantially helical path with impactor, is particularly suitable for the invention. It makes it possible, by obtaining an exhaust gas travel distance greater than its own dimensions, to use in a compact device a solution based on urea as an ammonia precursor, then The fact that the thermolysis of urea (corresponding to the transformation under the action of heat of urea into isocyanic acid HNCO and ammonia NH3) in the exhaust gases requires a significant time. The mixer may also be, for example, a T-blender using the recirculation of the downstream oxidation catalyst gas in a jacket around the oxidation catalyst with an injection on the exit side of the oxidation catalyst. Preferably, the single envelope is substantially cylinder-shaped provided with an inlet divergent and an outlet convergent (in the form of cone sections), of a total length of at least 30.degree. more than 450 mm, especially at most 400 mm, preferably between 280 and 380 mm, and it therefore has a compactness quite compatible with an implantation in a sub-bonnet of a motor vehicle. [0060] Preferably, the means for introducing the reducing agent is a solenoid or piezoelectric or mechanical or hydropneumatic actuator type injector. The duct between the exhaust manifold and the device according to the invention may further comprise one or more turbocharger turbines in the context of a supercharged engine, and, in particular, the device according to the invention may be connected directly to the casing of a turbocharger, at the outlet of a turbine. The invention also relates to an exhaust line which comprises the post-processing device described above. The invention also relates, in a first embodiment, to a motor vehicle defining a space under the hood, which contains what is usually referred to as the engine compartment, and a space under the box, and comprising 15 a heat engine connected to the previous exhaust line, such that the engine and the aftertreatment device of the exhaust line are arranged in the space under the hood. In this way, all the depollution units are grouped compactly close to the engine. The invention also relates, in a second embodiment, to a motor vehicle defining a space under the hood and an underbody space, and comprising a heat engine connected to the preceding exhaust line, such as the engine, the DOC oxidation catalyst member, the mouthpiece, the NOx SCR selective reduction catalyst member, the particulate filter member provided with a SCRF catalytic selective reduction catalyst coating of the nitrogen oxides NOx and The mouth of the aftertreatment device of the exhaust line are arranged in the space under the hood, and such that the ammonia leak treatment unit is disposed in the underbody space. Thus, the engine is made up of the pollution control members needing a high exhaust gas temperature, and the ammonia leak treatment unit is removed from the engine in order to protect it from too severe thermal conditions. The invention is described in more detail below with reference to the figures relating to a non-limiting embodiment relating to a device for the after-treatment of the exhaust gases of a diesel engine: ## EQU1 ## FIG. 1 schematically represents a motor and its exhaust line of a motor vehicle comprising the post-processing device according to an example 1 of the invention; FIG. 2 is a graph showing the evolution of the ammonia storage capacity in a SCR / SCRF assembly as a function of the temperature; FIG. 3 represents an operating diagram of the ammonia leak treatment catalyst of the post-processing device of FIG. 1. The references taken from one figure to the other designate the same components, and the different components. Components shown are not necessarily scaled. The 10 figures are very schematic for easy reading. In the invention, and as shown in Figure 1, there is provided a device for treating the exhaust gas of a motor 1 according to an example 1. This device is integrated into the exhaust line connected to the manifold (not shown) of the exhaust gases of the engine 1. It comprises, in the same envelope 2 (which may also be referred to as the English term "canning") and, depending on the direction of flow of the gases exhaust (from upstream to downstream, therefore), an oxidation catalyst member 3, a mouth 41 of a reducing agent introducing means 4 (or a reducing agent precursor), a mixer 5, an organ catalyst SCR 6 (selective catalytic reduction catalyst of nitrogen oxides), a SCRF particulate filter provided with an SCR 7 impregnating coating and an ammonia leak treatment catalyst 8. At least one NOx sensor 9 between the filter 7 and the ammonia treatment catalyst 8. [0068 ] The casing 2 is located closer to the exhaust manifold, in particular about 350 mm from its outlet (for example at most 500 mm from its outlet).

25 Elle est disposée, dans le véhicule automobile, dans l'espace sous-capot accueillant le moteur 1. [0069] Les données dimensionnelles/géométriques sont les suivantes : L'enveloppe 2 est de section cylindrique et permet de loger les différents organes 3, 6,7 et 8, également de formes extérieures sensiblement cylindriques et de sections d'environ 175 cm2 (ou 150 30 mm de diamètre). Les extrémités de l'enveloppe 2 sont en forme de tronçons de cône, afin d'en permettre le raccordement au reste de la ligne d'échappement de section nettement plus petite. La longueur L1 de l'organe SCR 6 est entre 50 et 75 mm, par exemple de 60 mm. La longueur L2 du filtre à particules 7 est compris entre 4 et 6 pouces, soit entre 101,6 et 152,4 mm, par exemple ici de 5 pouces, soit 127 mm. La longueur L12 mesurée 3029970 14 depuis la face amont de l'organe SCR 6 jusqu'à la face aval du filtre à particules 7 est, sachant qu'ils sont séparés, d'environ 4 mm, ici de 191 mm. [0070] La longueur L3 de l'organe catalyseur d'oxydation est d'environ 70 mm. [0071] La longueur LO depuis la face amont du catalyseur d'oxydation 3 jusqu'à la face 5 aval de l'organe 8 est entre 280 et 380 mm. [0072] La longueur de l'organe de traitement 8 du NH3 est comprise entre 50 et 75 à 80 mm. La longueur LO correspond substantiellement à la longueur de la portion cylindrique de l'enveloppe 2. La longueur totale LT de l'enveloppe 2, incluant les deux cônes de raccordement, est donc un peu supérieure à LO. 10 [0073] La première « brique » de ce dispositif de post-traitement est le catalyseur d'oxydation 3, qui oxyde les espèces réductrices que sont le monoxyde de carbone (CO) et les hydrocarbures imbrûlés (HC). Les réactions qu'il favorise sont les suivantes : CO + 1/2 02 CO2 (R1) Réaction d'oxydation du monoxyde de carbone 15 CxHy + (x+y/4) 02 x CO2 + (y/2) H2O (R2) Réaction d'oxydation des hydrocarbures imbrûlés [0074] Il est constitué d'un support en nid d'abeille de type cordiérite sur lequel est déposée une phase active catalytique (« washcoat »). Cette phase comporte des oxydes tels que l'alumine dopée par différents stabilisants (lanthane, cérium, zirconium, titane, 20 silicium, etc...). Sur ces oxydes, des métaux précieux (platine, palladium) sont déposés afin de catalyser les réactions d'oxydation à basse température. Des composés acides tels que des zéolithes sont aussi ajoutés. Leur aptitude au stockage des hydrocarbures à basse température et leur déstockage à haute température permet d'améliorer le traitement des HC lors des phases froides. On peut ajouter à ces fonctions (oxydation du 25 monoxyde de carbone et des hydrocarbures imbrûlés et stockage de ces derniers à basse température) une fonction de stockage des oxydes d'azote, NOx également à basse température. Cette fonction de stockage est assurée par l'introduction de matériaux de type oxydes simples ou mixtes à caractère basique tels que par exemple, les oxydes de cérium ou de baryum entre autres. 30 [0075] On ne décrit pas en détails ici l'injecteur 4 d'urée, ni le mélangeur 5 (appelé aussi boîte de mélange), déjà décrits et connus, notamment de la demande de brevet WO 2011/089330 précitée. On rappelle juste que la boîte de mélange 5 alimentée par un 3029970 15 injecteur 4, lui-même alimenté par un module jauge-pompe qui puise de l'urée en solution aqueuse dans un réservoir d'environ 20 litres (il peut en contenir moins car le volume d'urée embarquée dépend de la stratégie de consommation adoptée), assure un mélange entre les gouttes d'urée et les gaz d'échappement suffisant pour que la réaction (R3) de 5 thermolyse se fasse totalement et que la réaction (R4) d'hydrolyse se fasse en partie avant d'être « terminée » sur l'organe SCR 6. Les réactions (R3) et (R4) sont explicitées plus loin. [0076] L'organe SCR 6 et le filtre à particules SCRF 7 traitent les oxydes d'azote. Le principe de la réduction de ces NOx par SCR (que ce soit par l'organe 6 dédié ou par le 10 revêtement du filtre à particules 7) peut se décomposer en deux grandes étapes : 1 > Formation du réducteur (NH3) à partir d'Adblue ® qui est un mélange d'urée à 32,5% et d'eau (NH2)2C0 NH3 + HNCO (R3) thermolyse de l'urée HNCO + H2O NH3 + CO2 (R4) hydrolyse de l'acide isocyanique 15 [0077] La décomposition de l'urée, injectée par l'injecteur 4 dans la boîte de mélange 5, se fait en deux étapes : une première appelée « thermolyse » qui forme une molécule de NH3 et une molécule d'acide isocyanique (HNCO) et une seconde qui forme la seconde molécule de NH3 à partir de l'hydrolyse de l'acide isocyanique. Ces deux étapes, mais surtout la vaporisation de l'eau contenue dans le mélange, nécessitent des températures 20 d'au moins 180 à 200°C, d'où l'intérêt que l'injecteur et la boîte de mélange gaz-liquide (urée) soient proche de la sortie du moteur 1. Cette étape permet de former le réducteur indispensable au fonctionnement de la réduction SCR. 2 > Réduction catalytique sélective des NOx par NH3 par les revêtements SCR des organes 6 et 7: 25 4 NO + 02+ 4 NH3 4 N2 + 6 H2O (R5) SCR standard NO + NO2 + 2 NH3 2 N2 + 3 H2O (R6) SCR à cinétique rapide 6 NO2 + 8 NH3 7 N2 + 12 H2O (R7) SCR à cinétique lente [0078] Plusieurs réactions peuvent avoir lieu (R5 à R7), mais la conversion optimale et recherchée des NOx est obtenue grâce à la réaction (R6) dont la cinétique est la plus 30 rapide mais dont la stoechiométrie impose un ratio NO2/NOx proche de 0,5, surtout aux basses températures (c'est-à-dire d'au plus 250°C). 3029970 16 [0079] Le catalyseur de l'organe SCR 6 est à base de zéolithes échangées au fer, comme les zéolithes [3, la fer-ferriérite, la ZSM5, et le catalyseur SCR du filtre à particules 7 est à base de zéolithes au cuivre, comme la chabazite, la zéolithe [3, la cuferriérite, la ZSM5... Comme déjà mentionné plus haut, c'est le meilleur choix, 5 notamment pour que le catalyseur SCR 6 s'amorce le plus rapidement possible, à « basse » température quand le ratio NO2/NOx des gaz d'échappement est proche de 0,5 en entrée de l'organe SCR 6, et pour que le catalyseur du filtre à particules reste efficace même après des régénération sévères et qu'il soit moins sensible au ratio NO2/NOx non idéal du fait de l'oxydation des suies par NO2. Le substrat de l'organe SCR 6 est plutôt en 10 cordiérite, tandis que le support poreux du filtre 7 est plutôt en carbure de silicium SiC. [0080] On obtient avec l'architecture de l'exemple 1 selon l'invention des conditions thermiques favorables, ce qui se traduit par une grande efficacité dans le traitement des NOx : on a mesuré sur un cycle WLTC en sortie de ligne d'échappement un niveau de 40mg/km de NOx pour une norme à 80mg/km. : 15 [0081] On obtient donc avec l'invention un niveau très faible de rejets de NOx à l'atmosphère, tout en préservant la compacité de l'ensemble du dispositif de post-traitement. [0082] Le filtre à particules SCRF 7 situé en aval (environ 8 millimètres derrière) joue aussi un rôle important, puisque cette brique assure l'élimination des particules et réalise 20 le traitement des NOx qui n'auraient pas été réduits dans l'organe SCR 6, lors des fortes charges moteur, par exemple. [0083] Revenons maintenant au fonctionnement du catalyseur de traitement des fuites en ammoniac 8. Dans l'exemple 1 discuté, on a choisi un organe catalyseur 8 de type ASC, dont le principe de fonctionnement et la structure sont illustrés à la figure 3. Il 25 présente deux couches d'imprégnation : une couche C2 qui assure la fonction d'oxydation du NH3 en NOx et une couche Cl qui assure la fonction de réduction des NOx par NH3. [0084] La composition de l'organe ASC 8 est ainsi la suivante : la couche supérieure Cl (celle qui est en contact avec les gaz d'échappement) correspond à un revêtement catalytique de type SCR et la couche inférieure C2 (celle qui est en contact avec les parois 30 du substrat catalytique ) contient des métaux précieux (de préférence du palladium en très faible quantité, entre 0,5 et 5 g/ft3 , soit entre 0,5 et 5g par volume de 38,48 cm3, idéalement de 1 à 2) déposés sur Alumine. Le fonctionnement de l'organe 8 ASC est le suivant : l'ammoniac résiduel pénètre dans la couche Cl et se stocke dans cette couche en partie. Le reste de l'ammoniac traverse cette couche Cl et pénètre dans la couche C2 3029970 17 dont les métaux précieux (Pd) favorisent l'oxydation de l'ammoniac NH3 en NOx. Lorsque les NOx ressortent du revêtement catalytique d'oxydation de la couche C2, ils repassent nécessairement par la couche Cl où est stocké le NH3. La réaction de réduction des NOx par le NH3 peut alors avoir lieu. Les NOx sont ainsi convertis en azote (N2) avant de 5 ressortir de ce catalyseur 8. [0085] En sortie de la ligne d'échappement, on n'a donc pas, ou quasiment pas, de risque d'émissions d'ammoniac dans l'atmosphère grâce à ce catalyseur 8, même si le moteur équipe un véhicule de type utilitaire avec un besoin fort en traitement des NOx, comme expliqué ci-dessous : 10 [0086] Si on reprend l'ensemble des réactions R3 à R7 explicitées plus haut, on comprend ainsi qu'il existe une phase de stockage du NH3 dans les revêtements catalytiques SCR 6 et SCRF 7, préalablement à la conversion des NOx en N2 grâce à ce même NH3 généré par la décomposition de l'urée. Ce stockage d'ammoniac représenté par un critère appelé « capacité de stockage de NH3 » évolue suivant différents 15 paramètres comme les caractéristiques intrinsèques du revêtement catalytique, son état (neuf ou vieilli), la température intra-catalyseur voire, dans une moindre mesure, le temps de séjour des gaz dans le catalyseur... [0087] Il existe, ainsi, des revêtements catalytiques SCR qui présentent des capacités de stockage de NH3 plus ou moins grande : la capacité de stockage d'ammoniac des 20 revêtements SCR à base de Cuivre est, par exemple, supérieure à celle des revêtements SCR à base de Fer. [0088] Pour un revêtement catalytique SCR donné, son état de vieillissement va intervenir : plus le revêtement sera vieilli, plus sa capacité de stockage diminuera. Pour un revêtement catalytique SCR et un état de vieillissement donné, la capacité de stockage va 25 évoluer en fonction de la température intra-SCR ou intra-SCRF, comme cela est montré en figure 2. Cette figure représente un graphe, avec, en abscisse, la température en degrés C, et, en ordonnée, la masse de NH3 stocké par un revêtement SCR en milligrammes/litres de catalyseur. On observe, à la lecture de ce graphe, une baisse de la capacité de stockage avec la température, baisse liée au phénomène de thermo- 30 désorption de l'ammoniac. On peut enfin noter que l'oxydation du NH3 en NOx qui n'est donc pas favorable à la réduction de ces derniers se produit sur ce revêtement SCR vieilli à partir de 450 à 500°C environ. [0089] On comprend ainsi qu'il existe des phases où des émissions de NH3 à la canule (c'est-à-dire à l'extrémité aval de la ligne d'échappement) peuvent apparaître : - le NH3 3029970 18 peut se déstocker du revêtement SCR de l'organe 6 ou 7, du fait des conditions thermiques rencontrées, sans réagir avec les NOx ; - le NH3 peut ne plus se stocker pour des raisons de saturation des sites de stockage (notamment si le revêtement SCR qui a vieilli thermiquement a perdu de sa capacité de stockage) ; - ou si les quantités de NH3 5 sont trop importantes par rapport à sa capacité de stockage. [0090] Les systèmes de dépollution sont généralement contrôlés en efficacité par des outils de diagnostic embarqués dans les véhicules, connus sous l'acronyme anglais de « OBD » pour « On Board Diagnosis » tout au long de la vie du véhicule. Aussi existe-t-il différentes procédures qui permettent de vérifier si les systèmes de dépollution sont en 10 état de marche : - en sous-injectant de l'urée et donc de l'ammoniac, le système doit être capable de détecter une moindre efficacité de traitement des NOx ; - ou, au contraire, en sur-injectant de l'urée et en créant spécifiquement des émissions de NH3 en aval du système SCR 6, 7, le système doit être capable de les détecter. Dans ce dernier cas, le diagnostic du système est réalisé grâce au capteur de NOx 9 situé en aval du système 15 SCR 6, 7. La présente invention élimine ces fuites d'ammoniac en aval, grâce à l'ajout de l'organe 8 du traitement de l'ammoniac, et donc à la canule, à l'extrémité de la ligne d'échappement du véhicule. [0091] Plus le véhicule est lourd, plus ces phases à risques (quantités injectées d'urée très importantes pour « répondre » aux quantités de NOx produites par le moteur, capacité 20 de stockage de NH3 réduite du fait des conditions thermiques élevées, etc..) peuvent se produire et être responsables d'émissions de NH3 à la canule, même avec une ligne de dépollution aussi efficace que celle citée précédemment. [0092] Alternativement à l'organe de traitement de l'ammoniac 8 de type ASC, on peut utiliser un catalyseur de type CUC, qui présente une fonction unique d'oxydation du NH3 25 en NOx, grâce à un revêtement catalytique contenant du platine (la charge en Pt n'étant pas nécessairement importante : 10 à 20g/ft3, soit de 10 à 20 g par volume de 30,48 cm3, pouvant suffire). C'est une solution simple mais moins performante que la précédente, puisqu'elle va recréer des NOx en bout de ligne d'échappement. Il est alors nécessaire de veiller à ce que la somme des NOx non traités par les systèmes SCR 6,7 et des émissions 30 résiduelles de NH3 se transformant en NOx par l'action d'un tel catalyseur de type CUC ne dépasse pas la limite d'émission NOx réglementaire. [0093] Selon une autre variante, on positionne le catalyseur de traitement des fuites d'ammoniac 8 plus en aval sur la ligne d'échappement : il n'est plus dans l'enveloppe commune, au plus près du moteur dans l'espace sous capot, mais en aval dans l'espace 35 sous caisse, dans une enveloppe dédiée plus loin sur la ligne. Cette implantation est 3029970 19 intéressante pour éviter un vieillissement thermique prématuré du catalyseur de traitement des fuites d'ammoniac 8. [0094] En conclusion, grâce au dispositif de post-traitement de l'invention, il est non seulement possible de répondre aux exigences croissantes des futures normes, 5 notamment en ce qui concerne les niveaux d'émission de NOx, mais il est également possible de réduire la consommation de carburant en déplaçant, via le contrôle commande du moteur thermique, le compromis CO2/NOx vers des stratégies « bas CO2 », tout en réduisant au maximum les risques de rejets d'ammoniac en bout de ligne d'échappement. 10It is arranged, in the motor vehicle, in the under-hood space accommodating the engine 1. The dimensional / geometric data are as follows: The casing 2 has a cylindrical section and accommodates the various members 3 , 6,7 and 8, also of substantially cylindrical outer shapes and sections of about 175 cm 2 (or 150 mm diameter). The ends of the casing 2 are in the form of cone sections, to allow connection to the rest of the exhaust line of much smaller section. The length L1 of the SCR member 6 is between 50 and 75 mm, for example 60 mm. The length L 2 of the particle filter 7 is between 4 and 6 inches, ie between 101.6 and 152.4 mm, for example here 5 inches or 127 mm. The length L12 measured 3029970 14 from the upstream face of the SCR member 6 to the downstream face of the particle filter 7 is, knowing that they are separated, about 4 mm, here 191 mm. The length L3 of the oxidation catalyst member is about 70 mm. The length LO from the upstream face of the oxidation catalyst 3 to the downstream face 5 of the member 8 is between 280 and 380 mm. The length of the treatment member 8 of NH3 is between 50 and 75 to 80 mm. The length LO corresponds substantially to the length of the cylindrical portion of the casing 2. The total length LT of the casing 2, including the two connecting cones, is therefore a little greater than LO. The first "brick" of this post-treatment device is the oxidation catalyst 3, which oxidizes the reducing species that are carbon monoxide (CO) and unburned hydrocarbons (HC). The reactions it favors are as follows: CO + 1/2 02 CO2 (R1) Oxidation reaction of carbon monoxide CxHy + (x + y / 4) 02 x CO2 + (y / 2) H2O (R2 Reaction of oxidation of unburned hydrocarbons It consists of a cordierite-type honeycomb support on which a catalytic active phase ("washcoat") is deposited. This phase comprises oxides such as alumina doped with various stabilizers (lanthanum, cerium, zirconium, titanium, silicon, etc.). On these oxides, precious metals (platinum, palladium) are deposited in order to catalyze low temperature oxidation reactions. Acidic compounds such as zeolites are also added. Their ability to store hydrocarbons at low temperatures and remove them from storage at high temperatures can improve the treatment of HC during cold phases. To these functions (oxidation of carbon monoxide and unburned hydrocarbons and storage of these at low temperature) can be added a storage function for nitrogen oxides, NOx also at low temperature. This storage function is ensured by the introduction of materials of simple or mixed oxides type basic type such as, for example, cerium oxides or barium among others. [0075] The urea injector 4 and the mixer 5 (also known as a mixing box), already described and known, are described in detail here, in particular from the aforementioned patent application WO 2011/089330. Just remember that the mixing box 5 fed by an injector 4, itself fed by a gauge-pump module that draws urea in aqueous solution in a tank of about 20 liters (it can contain less since the volume of urea embedded depends on the consumption strategy adopted), ensures a mixture between the drops of urea and the exhaust gas sufficient for the reaction (R3) to be completely thermolyzed and that the reaction ( R4) is partially carried out before being "completed" on the SCR member 6. The reactions (R3) and (R4) are explained below. The SCR member 6 and the SCRF particle filter 7 treat the nitrogen oxides. The principle of the reduction of these NOx by SCR (whether by the dedicated member 6 or by the coating of the particulate filter 7) can be broken down into two main steps: 1> Formation of the reducing agent (NH 3) from Adblue ® which is a mixture of 32.5% urea and water (NH2) 2CO NH3 + HNCO (R3) thermolysis of urea HNCO + H2O NH3 + CO2 (R4) hydrolysis of isocyanic acid 15 The decomposition of the urea, injected by the injector 4 into the mixing box 5, is in two steps: a first called "thermolysis" which forms a molecule of NH3 and a molecule of isocyanic acid (HNCO ) and a second which forms the second molecule of NH3 from the hydrolysis of isocyanic acid. These two steps, but especially the vaporization of the water contained in the mixture, require temperatures of at least 180 to 200 ° C, hence the interest that the injector and the gas-liquid mixing box ( urea) are close to the output of the motor 1. This step makes it possible to form the reducer essential for the operation of the SCR reduction. 2> Selective Catalytic Reduction of NOx by NH3 by SCR Coatings of Organ 6 and 7: 25 4 NO + 02+ 4 NH3 4 N2 + 6 H2O (R5) Standard SCR NO + NO2 + 2 NH3 2 N2 + 3 H2O (R6 ) Fast kinetic SCR 6 NO2 + 8 NH3 7 N2 + 12 H2O (R7) SCR with slow kinetics Several reactions can take place (R5 to R7), but the optimal and sought conversion of NOx is obtained thanks to the reaction (R6) whose kinetics is the fastest but whose stoichiometry imposes a NO2 / NOx ratio close to 0.5, especially at low temperatures (that is to say at most 250 ° C). The catalyst of the organ SCR 6 is based on zeolites exchanged with iron, such as zeolites [3, fer-ferrierite, ZSM5, and the SCR catalyst of the particle filter 7 is based on zeolites. to copper, such as chabazite, zeolite [3, cuferriérite, ZSM5 ... As already mentioned above, it is the best choice, in particular for the catalyst SCR 6 to start as quickly as possible, to "Low" temperature when the NO2 / NOx ratio of the exhaust gas is close to 0.5 at the inlet of the SCR member 6, and so that the catalyst of the particulate filter remains effective even after severe regeneration and that is less sensitive to the non-ideal NO2 / NOx ratio due to the oxidation of soot by NO2. The substrate of the SCR member 6 is rather cordierite, while the porous support of the filter 7 is rather of SiC silicon carbide. With the architecture of example 1 according to the invention, favorable thermal conditions are obtained, which results in a high efficiency in the treatment of NOx: it was measured on a WLTC cycle at the output of the line. exhaust a level of 40mg / km of NOx for a standard at 80mg / km. Thus, with the invention, a very low level of NOx emissions to the atmosphere is obtained, while preserving the compactness of the entire post-treatment device. The SCRF particle filter 7 located downstream (approximately 8 millimeters behind) also plays an important role, since this brick ensures the removal of particles and performs the treatment of NOx which would not have been reduced in the SCR member 6, during heavy engine loads, for example. Let us return now to the operation of the ammonia leakage treatment catalyst 8. In Example 1 discussed, we chose a catalyst member 8 of ASC type, whose operating principle and structure are illustrated in Figure 3. It has two impregnation layers: a layer C2 which performs the oxidation function of NH3 to NOx and a layer C1 which performs the NOx reduction function by NH3. The composition of the ASC 8 member is thus as follows: the upper layer C1 (that which is in contact with the exhaust gas) corresponds to a catalytic coating of SCR type and the lower layer C2 (the one which is in contact with the walls 30 of the catalytic substrate) contains precious metals (preferably palladium in a very small amount, between 0.5 and 5 g / ft 3, ie between 0.5 and 5 g per volume of 38.48 cm 3, ideally from 1 to 2) deposited on Alumina. The operation of the ASC member 8 is as follows: the residual ammonia enters the layer C1 and stores in this layer in part. The remainder of the ammonia passes through this layer C1 and enters the layer C2 whose precious metals (Pd) promote the oxidation of ammonia NH3 to NOx. When the NOx emerge from the catalytic oxidation coating of the layer C2, they necessarily pass through the layer C1 where the NH3 is stored. The NOx reduction reaction with NH3 can then take place. The NOx are thus converted to nitrogen (N2) before emerging from this catalyst 8. [0085] At the outlet of the exhaust line, there is therefore no or almost no risk of ammonia emissions in the atmosphere thanks to this catalyst 8, even if the engine equips a utility vehicle with a strong need for NOx treatment, as explained below: [0086] If we take up all the reactions R3 to R7 Explained above, it is thus understood that there is a storage phase of NH3 in the catalytic coatings SCR 6 and SCRF 7, prior to the conversion of NOx to N2 through the same NH3 generated by the decomposition of urea. This ammonia storage, represented by a criterion called "NH3 storage capacity", varies according to various parameters, such as the intrinsic characteristics of the catalytic coating, its state (new or aged), the intra-catalyst temperature or, to a lesser extent, the residence time of the gases in the catalyst ... There are, for example, SCR catalytic coatings which have more or less NH3 storage capacities: the ammonia storage capacity of the SCR coatings based on for example copper is greater than that of the SCR coatings based on iron. For a given SCR catalytic coating, its state of aging will intervene: the older the coating, the more its storage capacity will decrease. For an SCR catalytic coating and a given aging state, the storage capacity will change as a function of the intra-SCR or intra-SCRF temperature, as shown in FIG. 2. This figure represents a graph with, as abscissa , the temperature in degrees C, and, on the ordinate, the mass of NH3 stored by a SCR coating in milligrams / liter of catalyst. This graph shows a decrease in storage capacity with temperature, a decrease due to the phenomenon of thermodisorption of ammonia. Finally, it can be noted that the oxidation of NH 3 to NO x which is not favorable to the reduction of these latter occurs on this aged SCR coating from 450 to 500 ° C. It is thus understood that there are phases where emissions of NH3 to the cannula (that is to say at the downstream end of the exhaust line) can appear: - the NH3 3029970 18 can be destock the SCR coating of the organ 6 or 7, because of the thermal conditions encountered, without reacting with the NOx; - NH3 may no longer be stored for reasons of saturation of the storage sites (especially if the SCR coating which has aged thermally has lost its storage capacity); - or if the amounts of NH3 5 are too large relative to its storage capacity. The pollution control systems are generally controlled in efficiency by on-board diagnostic tools known as "OBD" for "On Board Diagnosis" throughout the life of the vehicle. Thus, there are various procedures that make it possible to verify whether the pollution control systems are in working order: by under-injecting urea and therefore ammonia, the system must be able to detect a lower efficiency NOx treatment; or, on the contrary, by over-injecting urea and specifically creating NH3 emissions downstream of the SCR system 6, 7, the system must be able to detect them. In the latter case, the system is diagnosed by means of the NOx sensor 9 located downstream of the SCR system 6, 7. The present invention eliminates these ammonia leaks downstream, by the addition of the organ 8 ammonia treatment, and thus to the cannula, at the end of the vehicle exhaust line. The more the vehicle is heavy, the more these phases at risk (injected amounts of urea very important to "respond" to the amounts of NOx produced by the engine, storage capacity of NH3 reduced because of the high thermal conditions, etc. ..) can occur and be responsible for NH3 emissions to the cannula, even with a line of clearance as effective as mentioned above. Alternatively to the ammonia treatment unit 8 of the ASC type, it is possible to use a CUC type catalyst, which has a single function of oxidation of NH 3 to NOx, by means of a catalytic coating containing platinum. (The Pt load is not necessarily important: 10 to 20g / ft3, or 10 to 20 g per volume of 30.48 cm3, which may be sufficient). It is a simple solution but less efficient than the previous one, since it will recreate NOx at the end of the exhaust line. It is then necessary to ensure that the sum of NOx not treated by the SCR systems 6.7 and residual emissions of NH3 converting to NOx by the action of such a CUC type catalyst does not exceed the limit. NOx emission regulations. According to another variant, the catalyst for treating ammonia leaks 8 is positioned further downstream on the exhaust line: it is no longer in the common envelope, closer to the engine in space. under hood, but downstream in the space 35 under crate, in a dedicated envelope further on the line. This implantation is of interest to avoid premature thermal aging of the catalyst for treating ammonia leaks 8. [0094] In conclusion, thanks to the post-treatment device of the invention, it is not only possible to meet the requirements increasing standards, particularly with regard to NOx emission levels, but it is also possible to reduce fuel consumption by displacing, through the control of the heat engine, the CO2 / NOx compromise towards strategies " low CO2 ", while minimizing the risk of ammonia emissions at the end of the exhaust line. 10

Claims (12)

REVENDICATIONS1. Dispositif de post-traitement des gaz d'échappement d'un moteur à combustion (1) caractérisé en ce qu'il comporte, d'amont en aval : - un organe catalyseur d'oxydation DOC (3) ; - une embouchure (41) d'un moyen d'introduction (4) de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR ; - un organe catalyseur de réduction catalytique sélective SCR des oxydes d'azote NOx (6) ; - un organe filtre à particules (7) muni d'un revêtement catalyseur de réduction catalytique sélective SCRF des oxydes d'azote NON ; - un organe de traitement des fuites d'ammoniac (8) ; - ledit organe catalyseur de réduction catalytique sélective des oxydes d'azote (6) étant d'une longueur (L1) comprise entre 45 mm et 80 mm, notamment entre 50 et 75 mm.REVENDICATIONS1. Device for the aftertreatment of the exhaust gases of a combustion engine (1), characterized in that it comprises, from upstream to downstream: a DOC oxidation catalyst element (3); a mouth (41) of means for introducing (4) reducing agent or precursor of a reducing agent for the selective catalytic reduction of SCR nitrogen oxides; a catalytic selective catalytic reduction member SCR of NOx nitrogen oxides (6); a particulate filter member (7) provided with a catalytic selective catalytic reduction coating SCRF of nitrogen oxides NO; an ammonia leak treatment unit (8); said catalyst member for catalytic selective reduction of nitrogen oxides (6) being of a length (L1) of between 45 mm and 80 mm, in particular between 50 and 75 mm. 2. Dispositif de post-traitement selon la revendication précédente, caractérisé en ce que l'organe catalyseur d'oxydation DOC (3), l'embouchure (41), l'organe catalyseur de réduction sélective SCR (6) des NOx, l'organe filtre à particules (7) muni d'un revêtement catalyseur de réduction catalytique sélective SCRF des oxydes d'azote NOx et l'embouchure (41) sont regroupés dans une enveloppe (2) unique, et en ce que l'organe de traitement des fuites d'ammoniac (8) est disposé en dehors de ladite enveloppe unique.2. post-treatment device according to the preceding claim, characterized in that the DOC oxidation catalyst member (3), the mouth (41), the selective reduction catalyst element SCR (6) NOx, l particulate filter member (7) provided with a catalytic selective catalytic reduction coating SCRF of NOx nitrogen oxides and the mouth (41) are grouped together in a single envelope (2), and in that the ammonia leakage treatment (8) is disposed outside said single envelope. 3. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce que l'action de l'organe de traitement des fuites d'ammoniac (8) est complétée par un revêtement de traitement des fuites d'ammoniac intégré au filtre à particules (7), de préférence dans sa partie aval.3. post-treatment device according to one of the preceding claims, characterized in that the action of the ammonia leak treatment member (8) is completed by an ammonia leak treatment coating integrated in the particle filter (7), preferably in its downstream part. 4. Dispositif de post-traitement selon la revendication 1, caractérisé en ce que lesdits organes et embouchure sont regroupés dans une enveloppe (2) unique.4. post-treatment device according to claim 1, characterized in that said organs and mouthpiece are grouped in a single envelope (2). 5. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce que l'organe de traitement des fuites d'ammoniac (8) est un catalyseur de traitement des fuites d'ammoniac ASC par oxydation de l'ammoniac en NOx puis la réduction desdits NOx en azote. 3029970 215. post-treatment device according to one of the preceding claims, characterized in that the ammonia leak treatment member (8) is a catalyst for treating ammonium ammonia leakage by ammonia oxidation in ammonia. NOx then the reduction of said NOx into nitrogen. 3029970 21 6. Dispositif de post-traitement selon l'une des revendications 1 à 4, caractérisé en ce que l'organe de traitement des fuites d'ammoniac (8) est un catalyseur de nettoyage des fuites d'ammoniac CUC par oxydation de l'ammoniac en NOx.6. post-treatment device according to one of claims 1 to 4, characterized in that the ammonia leak treatment member (8) is a catalyst for cleaning CUC ammonia leaks by oxidation of the ammonia to NOx. 7. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé 5 en ce que l'organe catalyseur d'oxydation (3) comprend un matériau adsorbeur d'oxydes d'azote PNA.7. A post-treatment device according to one of the preceding claims, characterized in that the oxidation catalyst member (3) comprises a nitrogen oxide adsorber material PNA. 8. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un organe mélangeur (5) pour le mélange des gaz d'échappement et du réducteur et/ou la conversion du précurseur en réducteur entre 10 l'embouchure (41) du moyen d'introduction (4) de réducteur ou de précurseur d'un réducteur pour la réduction catalytique sélective des oxydes d'azote SCR et l'organe catalyseur de réduction catalytique sélective des oxydes d'azote (6).8. post-treatment device according to one of the preceding claims, characterized in that it comprises a mixing member (5) for mixing the exhaust gas and the reducing agent and / or the conversion of the precursor to a reducing agent between 10 the mouth (41) of the reducing agent or precursor introduction means (4) of a reducing agent for the selective catalytic reduction of the nitrogen oxides SCR and the catalyst element for the selective catalytic reduction of the nitrogen oxides (6). ). 9. Dispositif de post-traitement selon l'une des revendications précédentes, caractérisé en ce qu'il comporte un capteur de NOx entre l'organe filtre à particules (7) muni d'un 15 revêtement catalyseur de réduction catalytique sélective SCRF des oxydes d'azote NOx et l'organe de traitement des fuites d'ammoniac (8), et éventuellement un autre capteur de NOx en amont de l'organe catalyseur d'oxydation DOC (3) et/ou un autre capteur de NOx en aval de l'organe de traitement des fuites d'ammoniac (8).9. post-treatment device according to one of the preceding claims, characterized in that it comprises a NOx sensor between the particulate filter member (7) provided with a catalytic coating catalytic selective reduction SCRF oxides NOx nitrogen and the ammonia leak treatment member (8), and optionally another NOx sensor upstream of the DOC oxidation catalyst member (3) and / or another downstream NOx sensor the ammonia leak treatment unit (8). 10. Ligne d'échappement, caractérisée en ce qu'elle comporte le dispositif de post- 20 traitement selon l'une des revendications précédentes.10. Exhaust line, characterized in that it comprises the after-treatment device according to one of the preceding claims. 11 Véhicule automobile délimitant un espace sous capot et un espace sous caisse, et comportant un moteur thermique raccordé à la ligne d'échappement selon la revendication précédente, caractérisé en ce que le moteur et le dispositif de post-traitement de la ligne d'échappement sont disposés dans l'espace sous capot. 2511 Motor vehicle delimiting a space under the hood and a space underbody, and having a heat engine connected to the exhaust line according to the preceding claim, characterized in that the engine and the after-treatment device of the exhaust line are arranged in the space under hood. 25 12. Véhicule automobile délimitant un espace sous capot et un espace sous caisse, et comportant un moteur thermique raccordé à la ligne d'échappement selon la revendication 10, caractérisé en ce que le moteur, l'organe catalyseur d'oxydation DOC (3), l'embouchure (41), l'organe catalyseur de réduction sélective SCR (6) des NOx, l'organe filtre à particules (7) muni d'un revêtement catalyseur de réduction 30 catalytique sélective SCRF des oxydes d'azote NOx et l'embouchure (41) du dispositif de post-traitement de la ligne d'échappement sont disposés dans l'espace sous capot, et en ce que l'organe de traitement des fuites d'ammoniac (8) est disposé dans l'espace sous caisse.12. A motor vehicle delimiting a space under the hood and a space under the body, and comprising a heat engine connected to the exhaust line according to claim 10, characterized in that the engine, the oxidation catalyst member DOC (3) , the mouthpiece (41), the NOx selective reduction catalyst member SCR (6), the particulate filter member (7) provided with a SCRF selective catalytic reduction catalyst coating of NOx nitrogen oxides and the mouth (41) of the aftertreatment device of the exhaust line are arranged in the space under the hood, and in that the ammonia leak treatment unit (8) is arranged in the space under cash.
FR1462170A 2014-12-10 2014-12-10 EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE Active FR3029970B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1462170A FR3029970B1 (en) 2014-12-10 2014-12-10 EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1462170 2014-12-10
FR1462170A FR3029970B1 (en) 2014-12-10 2014-12-10 EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
FR3029970A1 true FR3029970A1 (en) 2016-06-17
FR3029970B1 FR3029970B1 (en) 2018-01-12

Family

ID=52589587

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1462170A Active FR3029970B1 (en) 2014-12-10 2014-12-10 EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE

Country Status (1)

Country Link
FR (1) FR3029970B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081921A1 (en) * 2018-05-29 2019-12-06 Psa Automobiles Sa HEAT ENGINE EXHAUST SYSTEM COMPRISING AN UPSTREAM HEATING ELEMENT
FR3098854A1 (en) * 2019-07-15 2021-01-22 Faurecia Systemes D'echappement Exhaust gas depollution system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010108083A1 (en) * 2009-03-20 2010-09-23 Basf Catalysts Llc EMISSIONS TREATMENT SYSTEM WITH LEAN NOx TRAP
EP2290204A1 (en) * 2008-06-03 2011-03-02 Isuzu Motors Limited Exhaust gas purifier and system for exhaust gas purification
US20110138776A1 (en) * 2010-09-02 2011-06-16 Ford Global Technologies, Llc Diesel engine exhaust treatment system
DE102011079785A1 (en) * 2010-07-30 2012-02-02 Ford Global Technologies, Llc SYNERGISTIC SCR / DOC CONFIGURATIONS FOR REDUCING DIESEL EMISSIONS
EP2590730A1 (en) * 2011-05-31 2013-05-15 Johnson Matthey Public Limited Company Dual function catalytic filter
JP2013199913A (en) * 2012-03-26 2013-10-03 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290204A1 (en) * 2008-06-03 2011-03-02 Isuzu Motors Limited Exhaust gas purifier and system for exhaust gas purification
WO2010108083A1 (en) * 2009-03-20 2010-09-23 Basf Catalysts Llc EMISSIONS TREATMENT SYSTEM WITH LEAN NOx TRAP
DE102011079785A1 (en) * 2010-07-30 2012-02-02 Ford Global Technologies, Llc SYNERGISTIC SCR / DOC CONFIGURATIONS FOR REDUCING DIESEL EMISSIONS
US20110138776A1 (en) * 2010-09-02 2011-06-16 Ford Global Technologies, Llc Diesel engine exhaust treatment system
EP2590730A1 (en) * 2011-05-31 2013-05-15 Johnson Matthey Public Limited Company Dual function catalytic filter
JP2013199913A (en) * 2012-03-26 2013-10-03 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081921A1 (en) * 2018-05-29 2019-12-06 Psa Automobiles Sa HEAT ENGINE EXHAUST SYSTEM COMPRISING AN UPSTREAM HEATING ELEMENT
FR3098854A1 (en) * 2019-07-15 2021-01-22 Faurecia Systemes D'echappement Exhaust gas depollution system

Also Published As

Publication number Publication date
FR3029970B1 (en) 2018-01-12

Similar Documents

Publication Publication Date Title
EP3230564B1 (en) Exhaust gas aftertreatment device for internal combustion engine
EP3230563B1 (en) Exhaust gas aftertreatment device for internal combustion engine
EP2426326A1 (en) Particle filter with three catalytic coatings
EP2529091B1 (en) Exhaust gas aftertreatment device of an internal combustion engine
WO2007048961A2 (en) Device for treating nitrogen oxides of motor vehicle exhaust gases
EP3153677B1 (en) Device for after-treatment of exhaust gases from a combustion engine
EP3149300B1 (en) Exhaust gas after-treatment device for an internal combustion engine
FR3057020A1 (en) DEVICE FOR POST-PROCESSING EXHAUST GASES OF A THERMAL ENGINE
EP1581728B1 (en) System for the regeneration of a particle filter of an exhaust line
FR3029970A1 (en) EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE
FR3081921A1 (en) HEAT ENGINE EXHAUST SYSTEM COMPRISING AN UPSTREAM HEATING ELEMENT
FR3100839A1 (en) Set comprising an internal combustion engine with an electric compressor and a heating element
FR3037101A1 (en) EXHAUST LINE OF A THERMAL ENGINE
FR3041032A1 (en) EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE
EP3369905A1 (en) Vehicle integrating post-treatment system for internal combustion engine exhaust gas
FR2873158A1 (en) EXHAUST LINE OF INTERNAL COMBUSTION ENGINE, AND EXHAUST GAS PURIFYING SYSTEM COMPRISING SAME
FR3043430B1 (en) DEVICE FOR POST-PROCESSING EXHAUST GASES OF A THERMAL ENGINE
FR3120094A1 (en) THERMAL ENGINE EXHAUST LINE COMPRISING HEATING ELEMENTS
FR2955612A1 (en) Device for post-treatment of pollutants e.g. carbon monoxide, of exhaust gas in assembly of engine compartment of motor vehicle, has mixer and selective catalytic reduction catalyst that are gathered in single envelope
FR3066541A1 (en) EXHAUST GAS POST-PROCESSING SYSTEM OF AN INTERNAL COMBUSTION ENGINE
FR3007792A1 (en) EXHAUST GAS LINE OF A HEAT ENGINE
WO2011104451A1 (en) Method for controlling a system for the treatment of the exhaust gases of an internal combustion engine
FR2960593A1 (en) Exhaust gases post-treating device for diesel engine in motor vehicle, has mixer provided for mixing exhaust gases and reducer and/or for converting precursor into reducer, where constituent elements of device are grouped together in casing
FR3042813A1 (en) EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE
FR3088958A1 (en) OPTIMIZED SYSTEM FOR AFTER-TREATMENT OF THE EXHAUST GASES OF A THERMAL ENGINE

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160617

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

CA Change of address

Effective date: 20180312

CD Change of name or company name

Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR

Effective date: 20180312

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

CD Change of name or company name

Owner name: STELLANTIS AUTO SAS, FR

Effective date: 20240423