FR3008483A1 - ASSEMBLY OF A THERMODYNAMIC MACHINE - Google Patents

ASSEMBLY OF A THERMODYNAMIC MACHINE Download PDF

Info

Publication number
FR3008483A1
FR3008483A1 FR1356816A FR1356816A FR3008483A1 FR 3008483 A1 FR3008483 A1 FR 3008483A1 FR 1356816 A FR1356816 A FR 1356816A FR 1356816 A FR1356816 A FR 1356816A FR 3008483 A1 FR3008483 A1 FR 3008483A1
Authority
FR
France
Prior art keywords
cap
base
cold stage
machine according
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR1356816A
Other languages
French (fr)
Inventor
Remi Pitiot
Francis Cambronero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecumseh Europe Sales and Logistics SAS
Original Assignee
Tecumseh Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecumseh Europe SA filed Critical Tecumseh Europe SA
Priority to FR1356816A priority Critical patent/FR3008483A1/en
Priority to EP14736799.9A priority patent/EP3019796B1/en
Priority to PCT/EP2014/064538 priority patent/WO2015004101A1/en
Publication of FR3008483A1 publication Critical patent/FR3008483A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • F24H9/146Connecting elements of a heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne l'assemblage d'une machine thermodynamique. L'invention trouve une utilité particulière dans un chauffe-eau thermodynamique. La machine thermodynamique comprend un étage froid, comprenant plusieurs composants (14, 15, 16, 20, 28) dont un évaporateur (14) au travers duquel une circulation d'air est établie lors du fonctionnement de la machine. Selon l'invention, la machine comprend en outre un socle (25) et une coiffe (26) formant chacun une pièce monobloc. Des composants (14, 20) de l'étage froid sont supportés entre le socle (25) et la coiffe (26). La circulation d'air est guidée entre le socle (25) et la coiffe (26). Le socle (25) et la coiffe (26) assurent conjointement une étanchéité de la circulation d'air.The invention relates to the assembly of a thermodynamic machine. The invention finds particular utility in a thermodynamic water heater. The thermodynamic machine comprises a cold stage, comprising a plurality of components (14, 15, 16, 20, 28) including an evaporator (14) through which an air flow is established during operation of the machine. According to the invention, the machine further comprises a base (25) and a cap (26) each forming a single piece. Components (14, 20) of the cold stage are supported between the base (25) and the cap (26). The air flow is guided between the base (25) and the cap (26). The base (25) and the cap (26) jointly seal the air flow.

Description

Assemblage d'une machine thermodynamique L'invention concerne l'assemblage d'une machine thermodynamique. L'invention trouve une utilité particulière dans un chauffe-eau thermodynamique. Ce type de chauffe-eau peut être mis en oeuvre pour produire de l'eau chaude sanitaire notamment dans l'habitat individuel. Ce type de chauffe-eau permet de réaliser des économies d'énergie importantes notamment par rapport à un chauffe-eau électrique. Il est connu de réaliser un chauffe-eau thermodynamique autour d'une machine thermodynamique prélevant de la chaleur dans l'air ambiant pour réchauffer de l'eau située dans un ballon calorifugé. L'eau ainsi chauffée est directement utilisée comme eau chaude sanitaire. Le chauffe-eau comprend généralement deux compartiments dont l'un est formé autour d'un évaporateur souvent appelé compartiment ou étage froid et dont l'autre est formé autour d'un condenseur souvent appelé compartiment ou étage chaud. Le condenseur réchauffe l'eau du ballon et l'air ambiant est refroidi en circulant dans l'évaporateur. Le transfert de chaleur entre l'air et l'eau est réalisé au moyen d'un fluide frigorifigène circulant en circuit fermé. Plus précisément, le fluide frigorigène circule dans l'évaporateur à basse pression. En sortie de l'évaporateur un compresseur comprime le fluide qui circule à haute pression dans le condenseur. Par échange thermique avec l'eau du ballon dans le condenseur, le fluide se refroidit et se condense avant de traverser un détendeur pour abaisser sa pression. En sortie du détendeur, le fluide entre de nouveau dans l'évaporateur pour s'évaporer et se réchauffer à nouveau. L'énergie calorifique est en grande partie échangée par le fluide au moyen des changements de phase au moyen de l'énergie latente de transformation associée à ces changements de phase. L'étage froid comprend bien entendu l'évaporateur et on peut y placer d'autres composants de la machine thermodynamique tels que le compresseur et le détendeur. L'étage froid peut également comprendre un ventilateur permettant de forcer une circulation d'air au travers de l'évaporateur. L'assemblage des différents composants de l'étage froid se fait au moyen de pièces mécaniques assurant chacune une fonction dans l'assemblage. A titre d'exemple on trouve notamment une platine support sur laquelle sont fixés les différents composants, deux guides d'air, un amenant l'air ambiant vers l'évaporateur et un autre guidant l'air sortant de l'évaporateur. On peut également trouver un capot recouvrant l'ensemble des composants et assurant une protection mécanique de ceux-ci. L'assemblage des différents composants et des pièces mécaniques associées nécessite des accessoires de fixation tels que des vis, des brides ou des colliers. Le nombre de pièces mécaniques et d'accessoires ainsi que le temps de montage nécessaire tend à augmenter le prix de revient d'une machine thermodynamique. Par ailleurs, plus le nombre de composants et d'accessoires augmente et plus la fiabilité globale de la machine se dégrade.The invention relates to the assembly of a thermodynamic machine. The invention finds particular utility in a thermodynamic water heater. This type of water heater can be used to produce domestic hot water especially in the individual housing. This type of water heater can achieve significant energy savings especially compared to an electric water heater. It is known to make a thermodynamic water heater around a thermodynamic machine taking heat from the ambient air to heat water located in a heat-insulated flask. The heated water is used directly as domestic hot water. The water heater generally comprises two compartments, one of which is formed around an evaporator often called compartment or cold stage and the other is formed around a condenser often called compartment or hot stage. The condenser heats the water of the flask and the ambient air is cooled while circulating in the evaporator. The transfer of heat between air and water is carried out by means of a refrigerant circulating in a closed circuit. Specifically, the refrigerant flows in the low pressure evaporator. At the outlet of the evaporator, a compressor compresses the fluid that circulates at high pressure in the condenser. By heat exchange with the balloon water in the condenser, the fluid cools and condenses before passing through a pressure reducer to lower its pressure. At the outlet of the regulator, the fluid enters the evaporator again to evaporate and reheat. The heat energy is largely exchanged by the fluid through phase changes by the latent energy of transformation associated with these phase changes. The cold stage naturally includes the evaporator and can be placed other components of the thermodynamic machine such as the compressor and the expander. The cold stage may also include a fan for forcing a flow of air through the evaporator. The assembly of the different components of the cold stage is done by means of mechanical parts each ensuring a function in the assembly. By way of example there is in particular a support plate on which are fixed the various components, two air guides, one bringing the ambient air to the evaporator and another guiding the air leaving the evaporator. One can also find a cover covering all components and providing mechanical protection thereof. The assembly of the various components and associated mechanical parts requires fastening accessories such as screws, flanges or clamps. The number of mechanical parts and accessories and the necessary assembly time tends to increase the cost of a thermodynamic machine. Moreover, the more the number of components and accessories increases and the overall reliability of the machine is degraded.

L'invention vise à simplifier l'assemblage d'une machine thermodynamique en réduisant le nombre de pièces mécaniques nécessaires. L'invention vise aussi à simplifier la réalisation des pièces mécaniques mises en oeuvre dans l'assemblage de la machine thermodynamique. L'invention s'intéresse plus particulièrement à l'assemblage de l'étage froid de la machine thermodynamique. A cet effet, l'invention a pour objet une machine thermodynamique comprenant un étage froid, comprenant plusieurs composants dont un évaporateur au travers duquel une circulation d'air est établie lors du fonctionnement de la machine, caractérisée en ce qu'elle comprend en outre un socle et une coiffe formant chacun une pièce monobloc, en ce que des composants de l'étage froid sont supportés entre le socle et la coiffe, en ce que la circulation d'air est guidée entre le socle et la coiffe et en ce que le socle et la coiffe assurent conjointement une étanchéité de la circulation d'air.The invention aims to simplify the assembly of a thermodynamic machine by reducing the number of mechanical parts required. The invention also aims at simplifying the production of the mechanical parts used in the assembly of the thermodynamic machine. The invention is more particularly concerned with the assembly of the cold stage of the thermodynamic machine. For this purpose, the subject of the invention is a thermodynamic machine comprising a cold stage, comprising several components including an evaporator through which an air flow is established during operation of the machine, characterized in that it also comprises a base and a cap each forming a single piece, in that components of the cold stage are supported between the base and the cap, in that the air flow is guided between the base and the cap and in that the base and the cap together provide a seal of the air flow.

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel : la figure 1 représente schématiquement un chauffe-eau 30 thermodynamique dans lequel l'invention peut être mise en oeuvre ; la figure 2 représente en vue éclatée un étage froid du chauffe-eau de la figure 1 ; les figures 3 et 4 représentent en perspective deux pièces mécaniques formant une enceinte de l'étage froid ; 35 la figure 5 représente l'étage froid en vue de dessus ; les figures 6, 7 et 8 représentent des vues en coupe de l'étage froid, vues définies sur la figure 5. Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment given by way of example, a description illustrated by the attached drawing in which: FIG. 1 schematically represents a water heater Thermodynamics in which the invention can be implemented; Figure 2 shows an exploded view of a cold stage of the water heater of Figure 1; Figures 3 and 4 show in perspective two mechanical parts forming an enclosure of the cold stage; Figure 5 shows the cold stage in plan view; Figures 6, 7 and 8 show sectional views of the cold stage, views defined in Figure 5. For the sake of clarity, the same elements will bear the same references in the different figures.

La figure 1 représente schématiquement un chauffe-eau thermodynamique 10 destiné à produire de l'eau chaude sanitaire. Le chauffe-eau met en oeuvre une machine thermodynamique ou pompe à chaleur air-eau. La source froide est constituée par l'air ambiant et la source chaude est constituée par un réservoir d'eau dont le contenu est directement utilisable comme eau chaude sanitaire. Il est bien entendu que l'invention n'est pas limitée à un chauffe-eau et peut être mise en oeuvre dans toute machine thermodynamique dont on cherche à simplifier l'assemblage. La source froide peut par exemple être de l'eau prélevée dans un puits ou circulant dans un serpentin enterré dans le sol. La source chaude peut être l'air ambiant situé à l'intérieur d'une habitation. Par ailleurs, dans un chauffe-eau l'utilisation finale est l'eau sanitaire formant la source chaude de la machine thermodynamique. A noter qu'il est possible de mettre en oeuvre l'invention dans une machine thermodynamique dont l'objet est de refroidir l'air par exemple pour une climatisation. Le chauffe-eau thermodynamique 10 représenté sur la figure 1 comprend un étage chaud 11 et un étage froid 12. Un circuit thermodynamique circule entre les deux étages. Plus précisément, L'étage chaud 11 comprend essentiellement un condenseur 13 et l'étage froid 12 comprend essentiellement un évaporateur 14. La machine thermodynamique comprend en outre dans son circuit un compresseur 15 et un détendeur 16. Un fluide caloporteur circule en circuit fermé dans le circuit thermodynamique. Le fluide caloporteur circule dans l'évaporateur 14 à basse pression. En sortie de l'évaporateur 14, le compresseur 15 comprime le fluide qui, en sortie du compresseur 15 circule dans le condenseur 13 avant de traverser le détendeur 16 qui abaisse sa pression avant de retourner dans l'évaporateur 14. Le condenseur 13 est disposé dans ou autour d'un réservoir d'eau 17. Le condenseur 13 est un échangeur qui permet de réchauffer l'eau du 35 réservoir 17 au contact du fluide caloporteur traversant le condenseur 13. De même l'évaporateur 14 est traversé par une circulation d'air représenté par les flèches 18 et 19. L'évaporateur 14 est un échangeur qui prélève de l'énergie calorifique dans la circulation d'air pour réchauffer le fluide caloporteur traversant l'évaporateur 14.Figure 1 schematically shows a thermodynamic water heater 10 for producing domestic hot water. The water heater uses a thermodynamic machine or air-water heat pump. The cold source is constituted by the ambient air and the hot source is constituted by a water tank whose content is directly usable as domestic hot water. It is understood that the invention is not limited to a water heater and can be implemented in any thermodynamic machine which is to simplify the assembly. The cold source may for example be water taken from a well or circulating in a coil buried in the ground. The hot source can be the ambient air located inside a dwelling. Moreover, in a water heater the final use is the sanitary water forming the hot source of the thermodynamic machine. Note that it is possible to implement the invention in a thermodynamic machine whose object is to cool the air for example for air conditioning. The thermodynamic water heater 10 shown in FIG. 1 comprises a hot stage 11 and a cold stage 12. A thermodynamic circuit circulates between the two stages. More specifically, the hot stage 11 essentially comprises a condenser 13 and the cold stage 12 essentially comprises an evaporator 14. The thermodynamic machine further comprises in its circuit a compressor 15 and a pressure reducer 16. A coolant circulates in a closed circuit in the thermodynamic circuit. The heat transfer fluid circulates in the evaporator 14 at low pressure. At the outlet of the evaporator 14, the compressor 15 compresses the fluid which, at the outlet of the compressor 15, flows in the condenser 13 before passing through the expander 16 which lowers its pressure before returning to the evaporator 14. The condenser 13 is arranged 17. The condenser 13 is an exchanger for heating the water of the tank 17 in contact with the coolant passing through the condenser 13. Similarly, the evaporator 14 is traversed by a circulation of air represented by the arrows 18 and 19. The evaporator 14 is an exchanger which takes heat energy in the air flow to heat the heat transfer fluid passing through the evaporator 14.

La circulation d'air est avantageusement forcée par un ventilateur 20 disposé dans l'étage froid 12 à proximité de l'évaporateur 14. L'air ambiant extérieur à la machine thermodynamique 10 pénètre dans l'étage froid 12 par un orifice 21. L'entrée de l'air dans l'étage froid 12 est représentée par la flèche 18. Après avoir traversé l'évaporateur 14, l'air sort de l'étage froid 12 par un orifice 22. La sortie de l'air de l'étage froid 12 est représentée par la flèche 19. Avantageusement, le ventilateur 20 est disposé en aval de l'évaporateur 14 dans la circulation de l'air du fait du volume massique de l'air qui y est plus faible. Alternativement, il serait possible de placer le ventilateur en amont de l'évaporateur 14.The circulation of air is advantageously forced by a fan 20 disposed in the cold stage 12 near the evaporator 14. The ambient air outside the thermodynamic machine 10 enters the cold stage 12 through a hole 21. L The air inlet in the cold stage 12 is represented by the arrow 18. After having passed through the evaporator 14, the air leaves the cold stage 12 via an orifice 22. The air outlet of the The cold stage 12 is represented by the arrow 19. Advantageously, the fan 20 is disposed downstream of the evaporator 14 in the air circulation because of the lower air mass volume. Alternatively, it would be possible to place the fan upstream of the evaporator 14.

Le chauffe-eau 10 peut être capoté pour obtenir une forme extérieure sensiblement cylindrique. Dans l'exemple représenté sur la figure 1, le chauffe-eau 10 s'étend selon un axe vertical 23. En partie basse se trouve l'étage chaud 11 au dessus duquel se situe l'étage froid 12. Le compresseur 15 et le détendeur 16 sont disposés dans l'étage froid 12. Ces deux composants forment aussi la jonction entre une partie basse pression du circuit thermodynamique formée essentiellement par l'évaporateur 14 et une partie haute pression formée essentiellement par le condenseur 13. Le compresseur 15 et le détendeur 16 peuvent alternativement être disposés dans l'étage chaud 11.The water heater 10 can be tilted to obtain a substantially cylindrical outer shape. In the example shown in Figure 1, the water heater 10 extends along a vertical axis 23. In the lower part is the hot stage 11 above which is the cold stage 12. The compressor 15 and the Expander 16 are arranged in the cold stage 12. These two components also form the junction between a low-pressure part of the thermodynamic circuit formed essentially by the evaporator 14 and a high-pressure part formed essentially by the condenser 13. The compressor 15 and the Expander 16 may alternatively be arranged in the hot stage 11.

L'invention permet d'améliorer l'assemblage d'une machine thermodynamique et plus précisément de son étage froid 12. L'invention optimise le montage de composants situés dans l'étage froid 12. Pour profiter au mieux des avantages de l'invention, on place le maximum de composants dans l'étage froid 12 d'où la présence du compresseur 15 et du détendeur 16 dans l'étage froid 12. Il est bien entendu que si pour d'autres raisons on souhaite placer le compresseur 15 et/ou le détendeur 16 dans l'étage chaud 11, l'invention présente déjà de l'intérêt. La figure 2 représente en vue éclatée l'étage froid 12 du chauffe-35 eau 10 qui comprend un socle 25 et une coiffe 26 formant chacun une pièce monobloc. Les composants de l'étage froid 12 sont supportés entre le socle 25 et la coiffe 26. Parmi ces composants on retrouve l'évaporateur 14, le compresseur 15, le détendeur 16 et le ventilateur 20. D'autres composants peuvent appartenir à l'étage froid 12 tel que par exemple une bouteille anti- coup de liquide 28. Dans le circuit thermodynamique, on peut placer la bouteille 28 entre l'évaporateur 14 et le compresseur 15 pour protéger le compresseur 15 d'une éventuelle entrée de fluide à l'état liquide dans le compresseur 15. Une telle entrée de liquide dans le compresseur 15 y causerait des dégâts irréversibles. La bouteille 28 permet de piéger le liquide encore contenu dans le circuit en sortie de l'évaporateur 14. La bouteille 28 peut également permettre l'évaporation du liquide piégé afin de permettre l'admission en phase gazeuse dans le compresseur 15. Avantageusement, le socle 25 et la coiffe 26 forment une enceinte dans laquelle sont situés les composants de l'étage froid 12. La coiffe 26 recouvre le socle 25. On a vu précédemment que le chauffe-eau 10 peut avoir une forme extérieure sensiblement cylindrique. Après mise en place de la coiffe 26 sur le socle 25, l'enceinte participe à cette forme cylindrique suivant l'axe 23. Les composants de l'étage froid 12 sont disposés dans un volume intérieur formé entre le socle 25 et la coiffe 26. Les deux orifices 21 et 22 sont réalisés dans la coiffe 26 pour permettre la circulation d'air au travers de l'évaporateur 14. Le socle 25 est traversé par des canaux du circuit thermodynamique afin d'atteindre le condenseur 13 disposé dans l'étage chaud 11. Des câbles électriques traversent l'enceinte afin d'alimenter le compresseur 15 et le ventilateur 20 et éventuellement pour raccorder des capteurs utiles au fonctionnement de la machine thermodynamique. Il peut s'agir de capteurs de température du fluide caloporteur ou de l'air traversant l'évaporateur 14 et de capteurs de pression du fluide caloporteur. Les câbles, non représentés sur la figure 2 peuvent traverser le socle 25 pour atteindre un boîtier de raccordement du chauffe-eau 10 par exemple disposé dans l'étage chaud 11. Avantageusement, l'enceinte, formée par le socle 25 et la coiffe 26, assure une atténuation acoustique d'ondes sonores émises par le compresseur 15. Cette atténuation est obtenue par les matériaux choisis 35 pour réaliser le socle 25 et la coiffe 26 ainsi que par le nombre réduits d'orifices réalisés dans l'enceinte. Avantageusement, le socle 25 et/ou la coiffe 26 sont réalisés dans un matériau possédant des porosités plus importantes en interne qu'en surface. Les porosités internes contribuent à améliorer l'atténuation acoustique et la réduction des porosités en surface 5 permet de maintenir une bonne étanchéité de la circulation d'air interne à l'étage froid 12 par rapport à l'extérieur. Cette caractéristique peut être obtenue avec certains matériaux plastiques expansés obtenus par moulage. La structure expansée assure des porosités et la réalisation dans un moule permet de lisser la surface des pièces mécaniques ainsi obtenue et donc de 10 réduire la porosité de la peau des pièces. Le nombre d'orifices est réduit au besoin fonctionnel de la machine thermodynamique, à savoir les entrées et sorties aérauliques pour la source chaude, les canaux du circuit thermodynamique vers l'étage chaud et le câbles électriques. La jonction entre la coiffe 26 et le socle 25 est 15 également adaptée pour éviter toute fuite acoustique. On peut par exemple réaliser un ajustement légèrement serré entre une partie cylindrique 29 réalisée dans le socle 25 et un alésage 30 réalisé dans la coiffe 26. Cet ajustement a également pour fonction le maintien mécanique en position de la coiffe 26 sur le socle 25. 20 La figure 3 représente en perspective le socle 25 seul sans les composants qui y prennent place. De même la figure 4 représente en perspective la coiffe 26 sans composant. Le socle 25 et le coiffe 26 sont des pièces monoblocs par exemple obtenue par moulage, ce qui permet de réaliser des formes complexes. 25 D'autres procédés de réalisation sont également possibles tel que l'usinage. L'avantage du moulage est que le coût de réalisation de formes complexes intervient essentiellement lors de la réalisation du moule. Lors de la fabrication en série, les formes complexes n'interviennent plus sauf en cas de tiroir nécessaire dans le moule. A cet effet, la définition du socle 25 et de 30 la coiffe 26 peut être faite de façon à éviter tout tiroir, ou tout au moins à en limiter le nombre. A cet effet, le socle 25 et de la coiffe 26 comprennent des formes permettant d'accueillir différents composants de l'étage froid 12. Ces formes s'ouvrent dans une direction commune, direction portée par l'axe 23. Autrement dit, le socle 25 et la coiffe 26 sont défini pour que leur plan de joint 35 soit perpendiculaire à l'axe 23. Le plan de joint peut bien entendu être brisé et comprendre des zones inclinées par rapport à un plan strictement perpendiculaire à l'axe 23. Néanmoins les formes du socle 25 et de la coiffe possèdent des sections s'élargissant en direction du plan de joint afin de permettre l'ouverture des moules utilisés uniquement dans la direction 23 sans mécanisme complémentaire devant s'ouvrir dans une direction distinct de la direction 23 avant l'ouverture du moule. On rappelle que ce type de mécanisme est appelé « tiroir » dans le domaine du moulage. Sur la figure 3 on distingue plusieurs formes en creux réalisées dans le socle 25 et permettant d'accueillir les composants de l'étage froid 12.The invention makes it possible to improve the assembly of a thermodynamic machine and more precisely of its cold stage 12. The invention optimizes the assembly of components located in the cold stage 12. To take advantage of the advantages of the invention the maximum number of components is placed in the cold stage 12, hence the presence of the compressor 15 and the expander 16 in the cold stage 12. It is understood that if for other reasons it is desired to place the compressor 15 and or the expander 16 in the hot stage 11, the invention is already of interest. Figure 2 shows an exploded view the cold stage 12 of the water heater 10 which comprises a base 25 and a cap 26 each forming a single piece. The components of the cold stage 12 are supported between the base 25 and the cap 26. Among these components are the evaporator 14, the compressor 15, the expander 16 and the fan 20. Other components may belong to the cold stage 12 such as, for example, an anti-liquid bottle 28. In the thermodynamic circuit, the bottle 28 can be placed between the evaporator 14 and the compressor 15 to protect the compressor 15 from a possible fluid inlet at the same time. This liquid inlet in the compressor 15 would cause irreversible damage. The bottle 28 makes it possible to trap the liquid still contained in the circuit at the outlet of the evaporator 14. The bottle 28 can also allow the evaporation of the trapped liquid to allow admission into the gas phase in the compressor 15. Advantageously, the base 25 and the cap 26 form an enclosure in which are located the components of the cold stage 12. The cap 26 covers the base 25. It has been seen previously that the water heater 10 may have a substantially cylindrical outer shape. After placing the cap 26 on the base 25, the chamber participates in this cylindrical shape along the axis 23. The components of the cold stage 12 are arranged in an interior volume formed between the base 25 and the cap 26 The two orifices 21 and 22 are made in the cap 26 to allow the flow of air through the evaporator 14. The base 25 is traversed by channels of the thermodynamic circuit to reach the condenser 13 disposed in the Hot stage 11. Electrical cables pass through the enclosure in order to supply the compressor 15 and the fan 20 and possibly to connect sensors that are useful for the operation of the thermodynamic machine. It may be temperature sensors of the heat transfer fluid or of the air passing through the evaporator 14 and of the heat transfer fluid pressure sensors. The cables, not shown in Figure 2 can pass through the base 25 to reach a connection box of the water heater 10 for example disposed in the hot stage 11. Advantageously, the enclosure, formed by the base 25 and the cap 26 , this provides attenuation of sound waves emitted by the compressor 15. This attenuation is obtained by the materials chosen to produce the base 25 and the cap 26 as well as by the reduced number of orifices made in the enclosure. Advantageously, the base 25 and / or the cap 26 are made of a material having larger porosities internally than on the surface. The internal porosity contributes to improving the acoustic attenuation and the reduction of the surface porosity 5 makes it possible to maintain a good seal of the internal air circulation at the cold stage 12 with respect to the outside. This characteristic can be obtained with certain expanded plastic materials obtained by molding. The expanded structure ensures porosities and the realization in a mold makes it possible to smooth the surface of the mechanical parts thus obtained and thus to reduce the porosity of the skin of the parts. The number of orifices is reduced to the functional requirements of the thermodynamic machine, namely the airflow inlets and outlets for the hot source, the channels of the thermodynamic circuit to the hot stage and the electric cables. The junction between the cap 26 and the base 25 is also adapted to prevent any acoustic leakage. For example, a slightly tight fit can be made between a cylindrical part 29 made in the base 25 and a bore 30 made in the cap 26. This adjustment also serves to maintain the position of the cap 26 on the base 25 in position. Figure 3 shows in perspective the base 25 alone without the components that take place there. Similarly, Figure 4 shows in perspective the cap 26 without component. The base 25 and the cap 26 are single-piece pieces, for example obtained by molding, which makes it possible to produce complex shapes. Other methods of realization are also possible such as machining. The advantage of the molding is that the cost of producing complex shapes occurs essentially during the production of the mold. In series production, complex shapes are no longer involved except in the case of the necessary drawer in the mold. For this purpose, the definition of the base 25 and the cap 26 can be made to avoid any drawer, or at least to limit the number. For this purpose, the base 25 and the cap 26 comprise shapes for accommodating different components of the cold stage 12. These forms open in a common direction, direction carried by the axis 23. In other words, the base 25 and the cap 26 are defined so that their joint plane 35 is perpendicular to the axis 23. The joint plane can of course be broken and include areas inclined relative to a plane strictly perpendicular to the axis 23. Nevertheless, the shapes of the base 25 and the cap have sections widening in the direction of the joint plane to allow the opening of the molds used only in the direction 23 without complementary mechanism to open in a direction different from the direction 23 before opening the mold. It is recalled that this type of mechanism is called "drawer" in the field of molding. In Figure 3 there are several recessed shapes made in the base 25 and for accommodating the components of the cold stage 12.

Une forme 31 permet de positionner le compresseur 15. La forme 31 est par exemple sensiblement triangulaire. Au voisinage de chaque sommet du triangle on peut placer des accessoires de fixation du compresseur 15 comme par exemple des vis ou des rivets. Le montage du compresseur 15 se fait par un mouvement de translation parallèlement à l'axe 23. Des formes 32, 33 et 34 permettent de positionner respectivement l'évaporateur 14, le ventilateur 20 et la bouteille 28. Les formes 31 à 34 sont complémentaires des formes des composants associés de façon à permettre le positionnement de chaque composant après avoir engagé le composant dans la forme qui lui est dédiée. De façon générale, les formes du socle 25 sont définies de façon que l'engagement du composant se fasse avantageusement par un mouvement de translation de celui-ci suivant l'axe 23. Certains composants de l'étage froid 12, comme par exemple le compresseur 15, peuvent être fixés uniquement sur le socle 25. Il est également possible d'utiliser les formes du socle 25 uniquement pour un positionnement des certains composants, comme notamment pour l'évaporateur 14 et le ventilateur 20. La fixation complète de ces composants est obtenue par des formes associées réalisées dans la coiffe 26. Sur la figure 4, on distingue une forme 36 coiffant l'évaporateur 14 et une forme 37 coiffant le ventilateur 20. La mise en place de la coiffe 26 sur le socle 25 se fait par un déplacement de la coiffe 26 en translation suivant l'axe 23. Le déplacement se fait jusqu'à engagement complet de l'alésage 30 de la coiffe 26 sur la partie cylindrique 29 du socle 25. Cette position relative de la coiffe 26 par rapport au socle 25 est la position opérationnelle du chauffe-eau 10.A shape 31 makes it possible to position the compressor 15. The shape 31 is for example substantially triangular. In the vicinity of each vertex of the triangle it is possible to place fastening accessories for the compressor 15, for example screws or rivets. The compressor 15 is mounted by a translational movement parallel to the axis 23. Forms 32, 33 and 34 make it possible respectively to position the evaporator 14, the fan 20 and the bottle 28. The shapes 31 to 34 are complementary shapes of the associated components to allow the positioning of each component after engaging the component in the form dedicated to it. In general, the shapes of the base 25 are defined so that the engagement of the component is advantageously by a translational movement thereof along the axis 23. Some components of the cold stage 12, such as the compressor 15, can be fixed only on the base 25. It is also possible to use the shapes of the base 25 only for positioning certain components, such as in particular for the evaporator 14 and the fan 20. The complete fixation of these components is obtained by associated forms made in the cap 26. In Figure 4, there is a shape 36 capping the evaporator 14 and a form 37 capping the fan 20. The establishment of the cap 26 on the base 25 is made by displacement of the cap 26 in translation along the axis 23. The displacement is made until full engagement of the bore 30 of the cap 26 on the cylindrical portion 29 of the base 25. This relative position of the capped 26 relative to the base 25 is the operational position of the water heater 10.

Dans cette position plusieurs composants de l'étage froid 12 sont maintenus en position par le socle 25 et la coiffe 26. De façon plus générale, le socle 25 comprend des formes permettant de positionner des composants de l'étage froid 12 durant une phase d'assemblage de la machine thermodynamique. La coiffe 26 comprend des formes qui, associées auxdites formes du socle 25, assurent, durant le fonctionnement de la machine, le maintien des composants de l'étage froid 12 positionnés durant la phase d'assemblage.In this position several components of the cold stage 12 are held in position by the base 25 and the cap 26. More generally, the base 25 comprises forms for positioning components of the cold stage 12 during a phase of the phase. assembly of the thermodynamic machine. The cap 26 comprises shapes which, associated with said shapes of the base 25, ensure, during operation of the machine, the maintenance of the components of the cold stage 12 positioned during the assembly phase.

La circulation d'air dans l'évaporateur 14 est guidée entre le socle 25 et la coiffe 26. Ce guidage de la circulation d'air est assuré par des formes spécifiques réalisées dans le socle 25 et dans la coiffe 26. La figure 5 représente l'étage froid 12 en vue de dessus. La figure 6 représente l'étage froid 12 en coupe A-A, la figure 7 en coupe B-B et la figure 8 en coupe brisée C-C. Les différentes coupes des figures 6 à 8 permettent de visualiser les formes utilisées pour le guidage de la circulation d'air. On retrouve aussi les formes permettant d'accueillir les composants de l'étage froid 12. En amont de l'évaporateur 14, l'air pénètre dans l'étage froid 12 par l'orifice 21 dans une zone 40 délimitée par le socle 25, la coiffe 26 et l'évaporateur 14. Dans la zone 40, l'air n'est pas à proprement parler guidé. L'air peut circuler librement autour des différents composants se trouvant dans cette zone. Le compresseur 15 se trouve avantageusement dans la zone 40 qui est située en amont de l'évaporateur 14 dans la circulation d'air.The circulation of air in the evaporator 14 is guided between the base 25 and the cap 26. This guidance of the air circulation is ensured by specific shapes made in the base 25 and in the cap 26. FIG. the cold stage 12 in plan view. Figure 6 shows the cold stage 12 in section A-A, Figure 7 in section B-B and Figure 8 in broken section C-C. The different sections of FIGS. 6 to 8 make it possible to visualize the shapes used for guiding the air flow. We also find the forms for accommodating the components of the cold stage 12. Upstream of the evaporator 14, the air enters the cold stage 12 through the orifice 21 in a zone 40 delimited by the base 25 , the cap 26 and the evaporator 14. In the zone 40, the air is not strictly speaking guided. Air can circulate freely around the various components in this area. The compressor 15 is advantageously in the zone 40 which is located upstream of the evaporator 14 in the air flow.

Cette position du compresseur 15 présente un double avantage. Tout d'abord, lors de son fonctionnement, le compresseur 15 chauffe et l'air circulant dans la zone 40, ce qui permet de refroidir le compresseur 15. Ensuite, l'air réchauffé au contact du compresseur 15 circule dans l'évaporateur 14 ce qui améliore l'échange thermique réalisé par l'évaporateur 14. En d'autres termes, l'énergie calorifique perdue par le compresseur 15 est récupérée par le circuit thermodynamique. En sortie de l'évaporateur 14, l'air est guidé entre le socle 25 et la coiffe 26 jusqu'au ventilateur 20. Plus précisément, l'évaporateur 14 a une section de passage d'air sensiblement rectangulaire et le ventilateur 20 35 possède un orifice d'entrée 41 à section sensiblement circulaire. Une surface de raccordement 42 courbe permet de raccorder l'évaporateur 14 à l'orifice 41. La surface 42 est réalisée en deux parties 43 et 44. La partie 43 est réalisée dans le socle 25 et la partie 44 est réalisée dans la coiffe 26. La surface 42 est continue au niveau de la jonction entre le socle 25 et la coiffe 26. La surface 42 s'appuie sur des courbes de raccordement douces et sans angles vifs de façon à limiter l'apparition de turbulences dans la circulation d'air entre l'évaporateur 14 et le ventilateur 20. L'intersection entre les parties 43 et 44 est située dans un plan horizontal de la figure 6 formant localement un plan de joint lorsque le socle 25 et la coiffe 26 sont réalisés par moulage.This position of the compressor 15 has a double advantage. Firstly, during its operation, the compressor 15 heats up and the air circulating in the zone 40, which makes it possible to cool the compressor 15. Next, the air heated in contact with the compressor 15 circulates in the evaporator 14 This improves the heat exchange achieved by the evaporator 14. In other words, the heat energy lost by the compressor 15 is recovered by the thermodynamic circuit. At the outlet of the evaporator 14, the air is guided between the base 25 and the cap 26 to the fan 20. More precisely, the evaporator 14 has a substantially rectangular air passage section and the fan 20 has an inlet 41 with a substantially circular section. A curved connection surface 42 makes it possible to connect the evaporator 14 to the orifice 41. The surface 42 is made in two parts 43 and 44. The portion 43 is made in the base 25 and the portion 44 is made in the cap 26 The surface 42 is continuous at the junction between the base 25 and the cap 26. The surface 42 is based on smooth connection curves and without sharp angles so as to limit the appearance of turbulence in the circulation of air between the evaporator 14 and the fan 20. The intersection between the parts 43 and 44 is located in a horizontal plane of Figure 6 locally forming a joint plane when the base 25 and the cap 26 are made by molding.

Comme pour les formes utilisées pour le positionnement et le maintien des composants de l'étage froid 12, les parties 43 et 44 sont définies de façon à ce que des sections de ces parties, parallèles à leur intersection horizontales, se referment en s'éloignant de l'intersection. Le démoulage du socle 25 et de la coiffe 26 se faisant par un mouvement de translation dans une direction portée par l'axe 23, le démoulage se fait sans aucun tiroir pour réaliser les parties 43 et 44. Plusieurs types de ventilateurs peuvent être mis en oeuvre dans le chauffe-eau 10. On peut par exemple mettre en oeuvre un ventilateur dont le flux d'air suit la même direction en entrée et en sortie. Ce type de ventilateur est de conception très simple. Sur la figure 6, en amont du ventilateur 20, le flux d'air est à axe horizontal. Le flux d'air aval au ventilateur suivrait alors le même axe. Pour limiter les pertes de charges, l'orifice de sortie 22 devrait alors être à axe horizontal sur la figure 6 ou 8. Cette disposition de l'orifice de sortie nécessite un tiroir au niveau de l'orifice 22 pour démouler la coiffe 26. En effet, l'axe de l'orifice est perpendiculaire à l'axe 23 de démoulage de la coiffe 26. Pour éviter cette difficulté de fabrication de la coiffe 26, l'orifice de sortie 22 s'ouvre dans la direction commune portée par l'axe 23. Plus précisément l'orifice 22 possède une section circulaire d'axe 45 perpendiculaire à l'axe 23. Le flux d'air sortant de l'étage froid 12 par l'orifice de sortie 22 suit l'axe 45. On peut également réaliser l'orifice d'entrée 21 de la même façon en l'ouvrant selon un axe 46 parallèle à l'axe 23. Autrement dit, le chauffe-eau 10 comprend un orifice d'entrée 21 d'air dans l'étage froid 12 et un 35 orifice de sortie 22 d'air de l'étage froid 12. Avantageusement, les orifices d'entrée et de sortie d'air 21 et 22 sont réalisés dans la coiffe 26 et s'ouvrent dans la direction commune portée par l'axe 23. Entre l'évaporateur 14 et le ventilateur 20, en amont du ventilateur 20, le flux d'air possède une direction horizontale sur la figure 8. En aval du 5 ventilateur 20, le flux d'air suit une direction verticale sur la figure 8, direction suivant l'axe 45. Pour réaliser un changement de direction du flux d'air entre l'amont et l'aval du ventilateur 20 entrainant la circulation d'air, le ventilateur 20 est avantageusement centrifuge. Une volute 47, assurant le guidage de l'air aval du ventilateur 20 est réalisée en partie dans le socle 25 et en partie 10 dans la coiffe 26. La volute 47 est réalisée en deux parties 48 et 49. La partie 49 est réalisée dans le socle 25 et la partie 48 est réalisée dans la coiffe 26. La volute 47 est continue au niveau de la jonction entre le socle 25 et la coiffe 26. La volute 47 s'ouvre progressivement jusqu'au voisinage de l'orifice de 15 sortie 22. L'intersection entre les parties 48 et 49 est située dans un plan horizontal de la figure 7 formant un plan de joint lorsque le socle 25 et la coiffe 26 sont réalisés par moulage. Comme pour les autres formes de la coiffe 26 et du socle 25, les parties 48 et 49 sont définies de façon à ce que 20 des sections de ces parties, parallèles à l'intersection entre les parties 48 et 49, se referment en s'éloignant de l'intersection pour éviter tout tiroir dans la réalisation des parties 48 et 49. Entre la volute 47 et l'orifice de sortie 22, la circulation d'air peut être guidée par un divergeant 50 s'ouvrant depuis la partie 48 jusqu'à l'orifice 25 22. De plus, le socle 25 et la coiffe 26 assurent conjointement une étanchéité de la circulation d'air. Cette étanchéité est assurée au niveau de l'ajustement serré entre la coiffe 26 et le socle 25, notamment pour s'assurer que la pénétration de l'air dans l'étage froid 12 se fasse par l'orifice 21 et que 30 la sortie de l'air se fasse par l'orifice 22. Autrement dit, le socle 25 et la coiffe 26 possèdent chacun une surface, respectivement 29 et 30, les deux surfaces 29, 30 étant destinées à venir au contact l'une de l'autre pour assurer une étanchéité à l'air de l'étage froid 12. Avantageusement, pour que l'ajustement serré se maintienne tout au long de la durée de vie du chauffe- 35 eau, le socle 25 et/ou la coiffe 26 sont réalisés dans un matériau à mémoire de forme. Les matériaux métalliques, dans leur domaine élastique, possèdent une mémoire de forme permettant de maintenir le serrage de la coiffe 26 sur le socle 25. Certains matériaux plastiques possèdent aussi cette caractéristique et évite le fluage qui nuirait à l'étanchéité.As for the shapes used for the positioning and maintenance of the components of the cold stage 12, the parts 43 and 44 are defined so that sections of these parts, parallel to their horizontal intersections, close again as they move away. of the intersection. The release of the base 25 and the cap 26 being effected by a translation movement in a direction carried by the axis 23, the demolding is done without any drawer to achieve the parts 43 and 44. Several types of fans can be put in place. It can for example implement a fan whose air flow follows the same direction in and out. This type of fan is very simple design. In Figure 6, upstream of the fan 20, the air flow is horizontal axis. The air flow downstream to the fan would then follow the same axis. To limit the pressure losses, the outlet orifice 22 should then have a horizontal axis in FIG. 6 or 8. This arrangement of the outlet orifice requires a drawer at the orifice 22 to unmold the cap 26. Indeed, the axis of the orifice is perpendicular to the axis 23 of demolding of the cap 26. To avoid this difficulty of manufacturing the cap 26, the outlet orifice 22 opens in the common direction carried by the axis 23. More precisely, the orifice 22 has a circular section with an axis 45 perpendicular to the axis 23. The flow of air leaving the cold stage 12 through the outlet orifice 22 follows the axis 45 It is also possible to make the inlet orifice 21 in the same way by opening it along an axis 46 parallel to the axis 23. In other words, the water heater 10 comprises an air inlet opening 21 in which the cold stage 12 and an air outlet orifice 22 of the cold stage 12. Advantageously, the air inlet and outlet ports 21 and 2 2 are made in the cap 26 and open in the common direction carried by the axis 23. Between the evaporator 14 and the fan 20, upstream of the fan 20, the air flow has a horizontal direction in the figure 8. Downstream of the fan 20, the flow of air follows a vertical direction in FIG. 8, direction along the axis 45. To achieve a change of direction of the air flow between the upstream and the downstream of the fan 20 causing the flow of air, the fan 20 is advantageously centrifugal. A volute 47, guiding the downstream air of the fan 20 is formed partly in the base 25 and partly in the cap 26. The volute 47 is made in two parts 48 and 49. The portion 49 is made in the base 25 and the portion 48 is formed in the cap 26. The volute 47 is continuous at the junction between the base 25 and the cap 26. The volute 47 opens gradually to the vicinity of the orifice 15 22. The intersection between the portions 48 and 49 is located in a horizontal plane of Figure 7 forming a joint plane when the base 25 and the cap 26 are made by molding. As for the other forms of the cap 26 and the base 25, the portions 48 and 49 are defined so that sections of these portions, parallel to the intersection between the portions 48 and 49, are closed again in a manner that away from the intersection to avoid any drawer in the embodiment of the parts 48 and 49. Between the volute 47 and the outlet port 22, the air flow can be guided by a diverging 50 opening from the portion 48 to In addition, the base 25 and the cap 26 together provide a seal of the air flow. This tightness is ensured at the level of the tight fit between the cap 26 and the base 25, in particular to ensure that the penetration of the air into the cold stage 12 takes place via the orifice 21 and that the outlet air is done through the orifice 22. In other words, the base 25 and the cap 26 each have a surface, respectively 29 and 30, the two surfaces 29, 30 being intended to come into contact with one of the Another for providing an airtightness of the cold stage 12. Advantageously, for the tight fit to be maintained throughout the life of the water heater, the base 25 and / or the cap 26 are made of a shape memory material. Metal materials, in their elastic domain, have a shape memory to maintain the clamping of the cap 26 on the base 25. Some plastic materials also have this characteristic and prevents creep that would affect the seal.

L'étanchéité est également assurée entre les formes 32 et 36 et l'évaporateur 14 afin que la circulation d'air traverse bien l'évaporateur 14 sans pouvoir le contourner. L'étanchéité est encore assuré au niveau de l'intersection des parties 43 et 44 de la surface de raccordement 42, au niveau des formes 33 et 37 assurant le maintien du ventilateur 20 et au niveau de l'intersection des parties 48 et 49 de la volute 47. L'étage froid 12 comprend des câbles électriques et avantageusement le socle 25 et/ou la coiffe 26 assurent un maintien mécanique des câbles. Ce maintien est par exemple réalisée par une rainure 52 réalisée dans le socle 25 et permettant de guider et de maintenir par serrage un câble électrique alimentant le ventilateur 20. Ce moyen de maintien par rainure est avantageux car il peut être réalisé par moulage. Tel qu'il est représenté sur la figure 3, la forme de la rainure ne nécessite pas de tiroir lors de sa fabrication. Il est bien entendu possible de maintenir le câble par d'autres moyens tes que des cavaliers fixés au socle 25. Avantageusement, pour faciliter la manipulation du socle 25 et/ou de la coiffe 26, ces deux pièces mécaniques sont réalisées dans un matériau 25 dont la masse volumique est inférieur à 70 kg/m3. Cette caractéristique permet aussi d'alléger globalement le chauffe-eau 10. Avantageusement, le socle 25 et/ou la coiffe 26 sont réalisés dans un matériau résistant à une température supérieure à 100°C. Cette caractéristique permet à ces deux pièces de résister mécaniquement à 30 l'apparition de points chauds, par exemple au voisinage du compresseur 15 ou au voisinage du moteur électrique du ventilateur 20. Plusieurs propriétés ont été proposées pour les matériaux dans lesquels sont réalisés le socle 25 et la coiffe 26. La mise en oeuvre de 35 polypropylène expansé pour réaliser le socle 25 et la coiffe 26 répond à ces différentes caractéristiques. Plus précisément, en mettant en oeuvre ce matériau par moulage des porosités apparaissent de façon plus importante en interne qu'en surface. Ce matériau possède une mémoire de forme lui conservant un domaine élastique sur une longue durée sans fluage. Sa masse volumique est typiquement comprise entre 15 et 70 kg/m3 et il est résistant à une température supérieure à 100°C. Il est bien entendu possible de mettre en oeuvre l'invention avec d'autres matériaux dans lesquels sont réalisés le socle 25 et la coiffe 26, matériaux ne répondant que partiellement à l'ensemble des caractéristiques énumérées ci-dessus.10Sealing is also provided between the forms 32 and 36 and the evaporator 14 so that the air flow passes through the evaporator 14 without being able to bypass it. Sealing is still ensured at the intersection of the parts 43 and 44 of the connecting surface 42, at the forms 33 and 37 ensuring the maintenance of the fan 20 and at the intersection of the portions 48 and 49 of the volute 47. The cold stage 12 comprises electrical cables and advantageously the base 25 and / or the cap 26 provide a mechanical hold of the cables. This holding is for example performed by a groove 52 formed in the base 25 and for guiding and holding by clamping an electric cable supplying the fan 20. This groove holding means is advantageous because it can be made by molding. As shown in Figure 3, the shape of the groove does not require a drawer during its manufacture. It is of course possible to maintain the cable by other means than the jumpers fixed to the base 25. Advantageously, to facilitate the handling of the base 25 and / or the cap 26, these two mechanical parts are made of a material 25 whose density is less than 70 kg / m3. This characteristic also makes it possible to lighten the water heater 10. Advantageously, the base 25 and / or the cap 26 are made of a material resistant to a temperature greater than 100 ° C. This characteristic allows these two parts to mechanically resist the appearance of hot spots, for example in the vicinity of the compressor 15 or in the vicinity of the electric motor of the fan 20. Several properties have been proposed for the materials in which the base is made. 25 and the cap 26. The use of expanded polypropylene to produce the base 25 and the cap 26 responds to these different characteristics. More specifically, by using this material by molding the pores appear more significantly internally than on the surface. This material has a shape memory which preserves a long-lasting elastic domain without creep. Its density is typically between 15 and 70 kg / m3 and is resistant to a temperature above 100 ° C. It is of course possible to implement the invention with other materials in which are made the base 25 and the cap 26, materials only partially meeting all the characteristics listed above.

Claims (14)

REVENDICATIONS1. Machine thermodynamique (10) comprenant un étage froid (12), comprenant plusieurs composants (14, 15, 16, 20, 28) dont un évaporateur (14) au travers duquel une circulation d'air (18, 19) est établie lors du fonctionnement de la machine (10), caractérisée en ce qu'elle comprend en outre un socle (25) et une coiffe (26) formant chacun une pièce monobloc, en ce que des composants (14, 20) de l'étage froid (12) sont supportés entre le socle (25) et la coiffe (26), en ce que la circulation d'air est guidée entre le socle (25) et la coiffe (26) et en ce que le socle (25) et la coiffe (26) assurent conjointement une étanchéité de la circulation d'air.REVENDICATIONS1. Thermodynamic machine (10) comprising a cold stage (12), comprising a plurality of components (14, 15, 16, 20, 28) including an evaporator (14) through which an air flow (18, 19) is established during the operation of the machine (10), characterized in that it further comprises a base (25) and a cap (26) each forming a single piece, in that components (14, 20) of the cold stage ( 12) are supported between the base (25) and the cap (26), in that the air flow is guided between the base (25) and the cap (26) and that the base (25) and the cap (26) jointly seal the air circulation. 2. Machine selon la revendication 1, caractérisée en ce que le socle (25) et la coiffe (26) forment une enceinte dans laquelle sont situés les composants de l'étage froid (12).2. Machine according to claim 1, characterized in that the base (25) and the cap (26) form an enclosure in which are located the components of the cold stage (12). 3. Machine selon la revendication 2, caractérisée en ce que l'étage froid (12) comprend un compresseur (15) et en ce que l'enceinte (25, 26) assure une atténuation acoustique d'ondes sonores émises par le compresseur (15).3. Machine according to claim 2, characterized in that the cold stage (12) comprises a compressor (15) and in that the chamber (25, 26) provides an acoustic attenuation of sound waves emitted by the compressor ( 15). 4. Machine selon l'une des revendications précédentes, caractérisée en ce que le socle (25) et de la coiffe (26) comprennent des formes (31, 32, 33, 34, 36, 37) permettant d'accueillir différents composants (14, 15, 20, 28) de l'étage froid (12) et en ce que ces formes (31, 32, 33, 34, 36, 37) s'ouvrent dans une direction commune (23).4. Machine according to one of the preceding claims, characterized in that the base (25) and the cap (26) comprise shapes (31, 32, 33, 34, 36, 37) for accommodating different components ( 14, 15, 20, 28) of the cold stage (12) and in that these forms (31, 32, 33, 34, 36, 37) open in a common direction (23). 5. Machine selon la revendication 4, caractérisée en ce qu'elle comprend un orifice d'entrée (21) d'air dans l'étage froid (12) et un orifice de sortie (22) d'air de l'étage froid (12), en ce que les orifices d'entrée et de sortie d'air (21, 22) sont réalisés dans la coiffe (26) et s'ouvrent dans la direction commune (23).5. Machine according to claim 4, characterized in that it comprises an inlet port (21) of air in the cold stage (12) and an outlet port (22) of air of the cold stage (12), in that the air inlet and outlet ports (21, 22) are formed in the cap (26) and open in the common direction (23). 6. Machine selon l'une des revendications précédentes, caractérisée en ce que l'étage froid (12) comprend des câbles électriques eten ce que le socle et/ou la coiffe assurent un maintien mécanique (52) des câbles.6. Machine according to one of the preceding claims, characterized in that the cold stage (12) comprises electrical cables and in that the base and / or the cap provide mechanical support (52) cables. 7. Machine selon l'une des revendications précédentes, 5 caractérisée en ce que le socle (25) comprend des formes (32, 33) permettant de positionner des composants (14, 20) de l'étage froid (12) durant une phase d'assemblage de la machine (10) et en ce que la coiffe (26) comprend des formes (36, 37) qui associées auxdites formes (32, 33) du socle (25) assurent, durant le fonctionnement de la machine (10), le maintien 10 desdits composants (14, 20) de l'étage froid (12) positionnés durant la phase d'assemblage.7. Machine according to one of the preceding claims, characterized in that the base (25) comprises shapes (32, 33) for positioning components (14, 20) of the cold stage (12) during a phase for assembling the machine (10) and in that the cap (26) comprises shapes (36, 37) associated with said forms (32, 33) of the base (25) during operation of the machine (10). ), maintaining said components (14, 20) of the cold stage (12) positioned during the assembly phase. 8. Machine selon l'une des revendications précédentes, caractérisée en ce que l'étage froid (12) comprend un compresseur (15) 15 disposé dans une zone (40) située en amont de l'évaporateur (14) et délimitée par le socle (25), la coiffe (26) et l'évaporateur (14), la zone (40) étant fermée hormis un orifice (21) réalisé dans la coiffe (26) et destiné à l'entrée d'air (18) dans l'étage froid (12), et l'évaporateur (14) au travers duquel la circulation d'air sort de la zone (40). 208. Machine according to one of the preceding claims, characterized in that the cold stage (12) comprises a compressor (15) 15 disposed in a zone (40) located upstream of the evaporator (14) and delimited by the base (25), the cap (26) and the evaporator (14), the zone (40) being closed except for an orifice (21) made in the cap (26) and intended for the air inlet (18) in the cold stage (12), and the evaporator (14) through which the air flow exits the zone (40). 20 9. Machine selon l'une des revendications précédentes, caractérisée en ce que l'étage froid (12) comprend un ventilateur centrifuge (20) entrainant la circulation d'air au travers de l'évaporateur (14) en en ce qu'une volute (47) assurant le guidage de l'air en aval du ventilateur (20) est 25 réalisée en partie (49) dans le socle (25) et en partie (48) dans la coiffe (26).9. Machine according to one of the preceding claims, characterized in that the cold stage (12) comprises a centrifugal fan (20) causing the flow of air through the evaporator (14) in that a The volute (47) guiding the air downstream of the fan (20) is partly (49) formed in the base (25) and partly (48) in the cap (26). 10. Machine selon l'une des revendications précédentes, caractérisée en ce que le socle (25) et la coiffe (26) possèdent chacun une surface (29, 30), les deux surfaces (29, 30) étant destinées à venir au 30 contact l'une de l'autre pour assurer une étanchéité à l'air de l'étage froid (12).10. Machine according to one of the preceding claims, characterized in that the base (25) and the cap (26) each have a surface (29, 30), the two surfaces (29, 30) being intended to come to the 30 contact one another to ensure an airtightness of the cold stage (12). 11. Machine selon l'une des revendications précédentes, caractérisée en ce que le socle (25) et/ou la coiffe (26) sont réalisés dans un 35 matériau dont la masse volumique est inférieur à 70 kg/m3.11. Machine according to one of the preceding claims, characterized in that the base (25) and / or the cap (26) are made of a material whose density is less than 70 kg / m3. 12. Machine selon l'une des revendications précédentes, caractérisée en ce que le socle (25) et/ou la coiffe (26) sont réalisés dans un matériau à mémoire de forme.12. Machine according to one of the preceding claims, characterized in that the base (25) and / or the cap (26) are made of a shape memory material. 13. Machine selon l'une des revendications précédentes, caractérisée en ce que le socle (25) et/ou la coiffe (26) sont réalisés dans un matériau possédant des porosités plus importantes en interne qu'en surface.13. Machine according to one of the preceding claims, characterized in that the base (25) and / or the cap (26) are made of a material having larger porosities internally than surface. 14. Machine selon l'une des revendications précédentes, caractérisée en ce que le socle (25) et/ou la coiffe (26) sont réalisés dans un matériau résistant à une température supérieure à 100°C.14. Machine according to one of the preceding claims, characterized in that the base (25) and / or the cap (26) are made of a material resistant to a temperature above 100 ° C.
FR1356816A 2013-07-11 2013-07-11 ASSEMBLY OF A THERMODYNAMIC MACHINE Withdrawn FR3008483A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1356816A FR3008483A1 (en) 2013-07-11 2013-07-11 ASSEMBLY OF A THERMODYNAMIC MACHINE
EP14736799.9A EP3019796B1 (en) 2013-07-11 2014-07-08 Assembling of a thermodynamic machine
PCT/EP2014/064538 WO2015004101A1 (en) 2013-07-11 2014-07-08 Thermodynamic machine assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1356816A FR3008483A1 (en) 2013-07-11 2013-07-11 ASSEMBLY OF A THERMODYNAMIC MACHINE

Publications (1)

Publication Number Publication Date
FR3008483A1 true FR3008483A1 (en) 2015-01-16

Family

ID=49753284

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1356816A Withdrawn FR3008483A1 (en) 2013-07-11 2013-07-11 ASSEMBLY OF A THERMODYNAMIC MACHINE

Country Status (3)

Country Link
EP (1) EP3019796B1 (en)
FR (1) FR3008483A1 (en)
WO (1) WO2015004101A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT108520A (en) * 2015-06-01 2016-12-01 Bosch Termotecnologia Sa HEAT PUMP WITH AIR SOURCE FOR HEAT EXTRACTION AIR ENVIRONMENT
FR3109811B1 (en) * 2020-04-30 2023-01-13 Compagnie Ind Des Chauffe Eau DOMESTIC HOT WATER HEATING INSTALLATION
EP4249825A1 (en) * 2022-03-21 2023-09-27 BDR Thermea Group B.V. Cap element with buffer channels
WO2023174741A1 (en) * 2022-03-14 2023-09-21 Bdr Thermea Group B.V. Fixing assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1518652A (en) * 1976-01-14 1978-07-19 Must Energie Heat pump
EP2530400A2 (en) * 2011-05-31 2012-12-05 Panasonic Corporation Heat pump hydronic heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3104663A1 (en) * 1981-02-10 1982-08-12 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart HEAT PUMP, ESPECIALLY FOR HEATING WATER WATER THROUGH HEAT EXTRACTION FROM THE AIR

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1518652A (en) * 1976-01-14 1978-07-19 Must Energie Heat pump
EP2530400A2 (en) * 2011-05-31 2012-12-05 Panasonic Corporation Heat pump hydronic heater

Also Published As

Publication number Publication date
WO2015004101A1 (en) 2015-01-15
EP3019796A1 (en) 2016-05-18
EP3019796B1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
EP3019796B1 (en) Assembling of a thermodynamic machine
EP2032822B1 (en) Turboreactor for aircraft
WO2017109374A1 (en) Turbomachine comprising a surface air-oil heat exchanger built into an inter-flow compartment
CA2615275A1 (en) Heat exchanger, propulsion unit and aircraft provided therewith
FR3070321A1 (en) COOLING UNIT FOR A COMPARTMENT OF A MOTOR VEHICLE
FR3087244A1 (en) EXHAUST VALVE
FR3069884A1 (en) EXTERNAL HOT SOURCE MOTOR WITH BOISSEAUX
FR3076866A1 (en) Exhaust gas cooler and exhaust gas recirculation system with exhaust gas cooler
FR2849470A1 (en) Exhaust manifold for motor vehicle turbocharged internal combustion engine has upstream and downstream flanges connected by strut plate to allow support of turbocharger
EP2405209A1 (en) Air-intake and mixing device for a heat pump
FR2876781A1 (en) Household baking oven for use with furniture, has ventilating device including fan arranged in case and intended to create air circulation between two inlet and one outlet openings, and compressing air flow in compression chamber
FR2947301A1 (en) Exhaust manifold for in-line four cylinder internal combustion engine, has body whose portion includes section with mechanical resistance higher than mechanical resistance of remaining part of body for assembling turbocompressor
EP0447320A1 (en) Internal cooling circuit for the stator vane of a turbine
EP2799666A2 (en) Volute casing with two volumes for gas turbine
EP2581973A1 (en) Electricity producing device with fuel cell and method for starting up same
FR3069621A1 (en) VENTILATION DEVICE FOR MOTOR VEHICLE
FR2907502A1 (en) Cooling system for an internal combustion enginecomprises a head gasket with openings connecting a crankcase water chamber with lower and upper compartments of a cylinder head water chamber
FR2999359A1 (en) Axial flow electric machine i.e. motor, for vehicle, has protection case enclosing rotor and stators, and cooling circuit that is in direct contact with case for cooling stators that are placed symmetrical to rotor
FR3068433A1 (en) ASSEMBLY COMPRISING A RECEPTACLE AND A GAS FLOW CONTROL VALVE FOR ASSEMBLY
FR2879260A1 (en) Cylinder block for internal combustion engine, has water chamber in which projection is formed such that cooling liquid circulates along predetermined path between inlet port and openings of water chamber
FR3068076A1 (en) CONSTANT VOLUME COMBUSTION SYSTEM WITH BYPASS FLOW
FR3070320B1 (en) COOLING UNIT FOR A MOTOR VEHICLE
WO2020128346A1 (en) Sealing device for a motor vehicle heat exchanger
FR2850739A1 (en) Heat exchanger for internal combustion engine, has principal duct extending axially in radial zone of honeycomb cellular structure and having central part formed by channels delimiting internal and external part of structure
FR3032916A1 (en) DEVICE FOR HEATING, VENTILATION AND / OR AIR CONDITIONING FOR A MOTOR VEHICLE

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 3

TP Transmission of property

Owner name: TECUMSEH EUROPE SALES & LOGISTICS, FR

Effective date: 20160316

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

ST Notification of lapse

Effective date: 20200306