FR2998351A1 - Backlight panel for illuminating e.g. decorations, has printed reflective mirrors provided with variable surface that is provided in direct proportion to intrinsic luminous attenuation of panel by absorption and refraction - Google Patents

Backlight panel for illuminating e.g. decorations, has printed reflective mirrors provided with variable surface that is provided in direct proportion to intrinsic luminous attenuation of panel by absorption and refraction Download PDF

Info

Publication number
FR2998351A1
FR2998351A1 FR1203185A FR1203185A FR2998351A1 FR 2998351 A1 FR2998351 A1 FR 2998351A1 FR 1203185 A FR1203185 A FR 1203185A FR 1203185 A FR1203185 A FR 1203185A FR 2998351 A1 FR2998351 A1 FR 2998351A1
Authority
FR
France
Prior art keywords
panel
printed
pmma
refraction
reflecting mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1203185A
Other languages
French (fr)
Other versions
FR2998351B1 (en
Inventor
Philippe Besnard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovative Technologies SARL
Original Assignee
Innovative Technologies SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovative Technologies SARL filed Critical Innovative Technologies SARL
Priority to FR1203185A priority Critical patent/FR2998351B1/en
Publication of FR2998351A1 publication Critical patent/FR2998351A1/en
Application granted granted Critical
Publication of FR2998351B1 publication Critical patent/FR2998351B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

The panel (1) has a set of LEDs (3), and a set of printed reflective mirrors (4), where the set of LEDs is arranged for illuminating a surface of the panel and a surface of a reflective film (6). The set of printed reflective mirrors is printed on the back of panel so as to return part of luminous energy corresponding to diffusion refraction (RD). The set of printed reflective mirrors is provided with a variable surface that is provided in direct proportion to intrinsic luminous attenuation of the panel by absorption and refraction.

Description

Panneau de rétroéclairage à leds, à lumière tangentielle et à luminance homogène La présente invention concerne un panneau de rétroéclairage à LED et à éclairage tangentiel caractérisé en ce qu'il permet d'obtenir une uniformité de la luminance sur toute sa surface. Les panneaux d'affichage rétro-éclairés à lumière tangentielle sont bien connus de l'état de l'art. Les dits panneaux sont utilisés pour éclairer des affiches ou des décors translucides par leur arrière. Les panneaux d'affichage rétro-éclairés à LEDs et à lumière tangentielle sont généralement fabriqués à base d'un panneau de PMMA (1) (Polymethyl Methacrylate) d'une épaisseur variable en fonction du type de LED et de la quantité des dites LEDs. L'éclairement est produit par des diodes électroluminescentes (3) autrement appelées LEDs installées sur la tranche (2) dudit panneau de PMMA (1), généralement sur les quatre cotés du panneau, pour les panneaux de grande dimension, c'est à dire dont deux des cotés, dans le cas d'un panneau rectangulaire, sont supérieurs à 400 mm et un film réfléchissant (6) est installé du coté opposé de la partie visible afin de renvoyer vers l'avant la lumière émise par les diodes électroluminescentes. Le fonctionnement classique d'un dispositif de rétro-éclairage à lumière tangentielle est décrit ci-après en référence aux figures 1, 2 et 3. La lumière incidente i provenant des diodes électroluminescentes (3) transite dans la tranche (2) du panneau de PMMA (1) qui se comporte comme un collimateur optique. Il est connu que, dans un milieu transparent et homogène, la lumière se propage en ligne droite. Toutefois, la structure intrinsèque du PMMA présente des impuretés (5), que sont des imperfections de coulage ou des inclusions dans lesquelles de l'air est présent, ce qui crée des phénomènes de réfraction correspondant à un changement de direction que subit le rayon lumineux quand il traverse la surface séparant deux milieux transparents différents. La source incidente i est donc collimatée, mais une partie de l'énergie lumineuse est réfléchie par réflectance diffuse RD dans toutes les directions selon un angle d'incidence variable et aléatoire. C'est ce phénomène de réflectance diffuse qui distribue de l'énergie lumineuse vers l'avant et l'arrière du panneau de rétro éclairage. Le film réfléchissant (6) est installé en partie arrière du panneau de PMMA (1) et a pour but d'assurer une réflectance de la lumière vers l'avant du panneau de la partie de l'énergie lumineuse qui est diffusée vers l'arrière du fait de la réfraction diffuse RD ainsi renvoyée vers l'avant du panneau de rétro-éclairage, augmentant l'éclairement vers l'avant du dit panneau de PMMA (1). Il est constaté, dans les panneaux de rétro-éclairage de construction traditionnelle, que la luminance n'est pas homogène sur toute la surface dudit panneau. Cet inconvénient est en particulier visible pour les panneaux dont la dimension de l'un des cotés est d'au moins 300 millimètre. Ceci est dû au phénomène connu de l'atténuation dans la transmission de l'énergie lumineuse par absorption d'une quantité de lumière dans le PMMA du fait de son facteur d'absorption a.BACKGROUND OF THE INVENTION The present invention relates to an LED backlight panel with tangential illumination, characterized in that it makes it possible to obtain uniformity of the luminance over its entire surface. Backlit billboards with tangential light are well known in the state of the art. The said panels are used to illuminate posters or translucent decorations by their rear. LED-backlit and tangential-light billboards are generally made from PMMA (1) (Polymethyl Methacrylate) board of varying thickness depending on the type of LED and the amount of said LEDs . The illumination is produced by light-emitting diodes (3) otherwise called LEDs installed on the edge (2) of said PMMA panel (1), generally on the four sides of the panel, for the large panels, that is to say two sides of which, in the case of a rectangular panel, are greater than 400 mm and a reflective film (6) is installed on the opposite side of the visible part in order to return the light emitted by the light-emitting diodes forwards. The conventional operation of a tangential light backlighting device is described hereinafter with reference to FIGS. 1, 2 and 3. The incident light i coming from the light-emitting diodes (3) passes through the wafer (2) of the PMMA (1) that behaves like an optical collimator. It is known that, in a transparent and homogeneous medium, the light propagates in a straight line. However, the intrinsic structure of PMMA has impurities (5), which are casting imperfections or inclusions in which air is present, which creates refraction phenomena corresponding to a change of direction that the light ray undergoes. when it crosses the surface separating two different transparent media. The incident source i is therefore collimated, but a portion of the light energy is reflected by diffuse reflectance RD in all directions at a variable and random incidence angle. It is this phenomenon of diffuse reflectance that distributes light energy towards the front and back of the backlight panel. The reflective film (6) is installed in the rear part of the PMMA panel (1) and is intended to provide a reflectance of the light towards the front of the panel of the portion of the light energy which is diffused towards the rearward due to diffuse refraction RD thus returned to the front of the backlight panel, increasing the illumination forward of said PMMA panel (1). It is found in backlighting panels of traditional construction that the luminance is not homogeneous over the entire surface of said panel. This disadvantage is particularly visible for panels whose dimension of one side is at least 300 millimeters. This is due to the known phenomenon of attenuation in the transmission of light energy by absorption of a quantity of light in the PMMA because of its absorption factor a.

Le rayon lumineux incident i, guidé dans le panneau de PMMA perd de sa puissance du fait de deux phénomènes physiques, l'absorption et la diffusion, conduisant à un affaiblissement de la quantité de lumière transmise en fonction de la distance de propagation. La transmission de la lumière dans une matière plastique amorphe telle que le PMMA est définie comme le rapport de la lumière transmise à la lumière incidente du fait que la structure intrinsèque dudit PMMA qui présente, comme décrit plus haut, des impuretés, des imperfections de coulage ou des inclusions dans lesquelles de l'air est présent. Une partie de l'énergie du rayonnement incident î est ainsi absorbée par le matériau rendant non homogène la luminance du panneau (1). De fait, la partie centrale du panneau (1), la plus éloignée des diodes électroluminescentes, et pour les panneaux de grande dimension, n'a pas la même luminance que les parties à proximité de la zone de production de la lumière. Cette différence est très notable pour l'oeil de l'observateur lorsqu'il se trouve devant le panneau éclairé.The incident light ray i, guided in the PMMA panel loses its power due to two physical phenomena, absorption and scattering, leading to a decrease in the amount of light transmitted as a function of the propagation distance. The transmission of light in an amorphous plastic material such as PMMA is defined as the ratio of the light transmitted to the incident light because the intrinsic structure of said PMMA which has, as described above, impurities, casting imperfections. or inclusions in which air is present. Part of the energy of the incident radiation is thus absorbed by the material rendering the luminance of the panel (1) inhomogeneous. In fact, the central part of the panel (1), the farthest from the light-emitting diodes, and for the large panels, does not have the same luminance as the parts near the light production zone. This difference is very noticeable for the observer's eye when he is in front of the illuminated panel.

L'invention a pour but de pallier à l'inconvénient précité de manque d'homogénéité lumineuse des panneaux de rétroéclairage à LEDs et à lumière tangentielle ainsi qu'il va être décrit ci-après en regard des dessins annexés qui représentent : 2 9 9 8 3 5 1 3 - La figure 1/6 montre en vue de face le panneau de PMMA (1) avec les LEDs (3) positionnées sur la tranche (2) dudit panneau (1); - La figure 2/6 montre en vue de section le panneau de PMMA (1) avec les LEDs (3) fonctionnant à une longueur d'onde comprise entre 450 et de 5 760 nM et positionnées sur la tranche (2) dudit panneau (1), les miroirs imprimés réfléchissants (4), le film réfléchissant (6) et le sens de diffusion du rayon lumineux incident i ; - La figure 3/6 montre en vue de section la diffraction du rayon incident i en réfraction diffuse RD au cours de sa propagation dans le panneau de 10 PMMA (1) lorsque le dit rayon incident i rencontre une impureté (5) et la diffraction du rayon diffusant en réfraction diffuse RD' lorsque le rayon diffusant RD rencontre un motif réfléchissant imprimé (4); - La figure 4/6 représente la courbe d'atténuation Cl de la luminance relevée par la demanderesse sur des panneaux de rétro-éclairage d'une 15 largeur de 600 mm avec un éclairage à led et la courbe d'atténuation C2 de la luminance résultant de l'utilisation des miroirs imprimés (4). La courbe C2, horizontale, montre l'homogénéité de la luminance résultante mesurée sur toute la surface du panneau de PMMA (1). - La figure 5/6 montre en vue de face arrière le panneau de PMMA (1) et un 20 exemple d'organisation géométrique des miroirs réfléchissants imprimés (4). - La figure 6/6 montre en vue de face arrière le panneau de PMMA (1) et un autre exemple d'organisation géométrique des miroirs réfléchissants imprimés (4); 25 Des miroirs réfléchissants (4) sont imprimés en sérigraphie ou en impression numérique sur la partie arrière du panneau de PMMA (1) avec une encre de couleur blanche et ayant un fort pouvoir réfléchissant. Ces miroirs réfléchissants imprimés (4) vont se comporter en miroirs de la réflectance diffuse RD et vont renvoyer une partie de l'énergie lumineuse vers l'avant du panneau de - 30 PMMA (1) en réflectance diffuse RD'. L'arrangement de ces miroirs réfléchissants imprimés (4) et leur surface sont tels que la surface par dm2 couverte par les dits miroirs réfléchissants imprimés (4) est plus en plus importante au fur et à mesure que l'on se rapproche du centre du panneau. Ainsi, plus on se rapproche du centre, donc plus on s'éloigne de l'origine de l'émission lumineuse, plus la surface et la densité des mroirs réfléchissants augmente et ce manière directement proportionnelle à l'affaiblissement. Cette augmentation de l'aire couverte par les miroirs imprimés réfléchissants (4) va augmenter la quantité d'énergie lumineuse en réflectance diffuse RD' dans une même proportionnalité que l'affaiblissement de lumière lié au facteur d'absorption a. Cette proportionnalité se décrit sous la forme d'une décroissance géométrique dont la raison est fonction de la qualité du matériau PMMA à transmettre la lumière et de son épaisseur. L'illustration de la figure 5 montre les miroirs réfléchissants imprimés (4) de forme ronde, mais toute autre forme géométrique telle que carré ou losange peut être utilisée à la condition que l'accroissement de la variation de leur aire, soit proportionnelle à l'éloignement de la source lumineuse et donc à l'affaiblissement lié au facteur d'absorption a. Dans une autre variante de l'invention, les miroirs réfléchissants imprimés (4) ont une aire identique, mais leur arrangement sur la surface du panneau de PMMA (1) est conçu de telle manière que leur densité est proportionnelle à l'éloignement de la source lumineuse et donc à l'affaiblissement lié au facteur d'absorption a. Dans autre caractéristique technique de l'invention les miroirs 20 réfléchissants (4) sont imprimés sur un film transparent adhésif qui est contrecollé sur l'arrière du panneau de PMMA (1).The aim of the invention is to overcome the aforementioned disadvantage of lack of luminous homogeneity of the LED backlit and tangential light panels, as will be described below with reference to the appended drawings which represent: 8 3 5 1 3 - Figure 1/6 shows in front view the PMMA panel (1) with the LEDs (3) positioned on the edge (2) of said panel (1); FIG. 2/6 shows in section view the PMMA panel (1) with the LEDs (3) operating at a wavelength between 450 and 5 760 nm and positioned on the wafer (2) of said panel ( 1), the reflective printed mirrors (4), the reflective film (6) and the direction of diffusion of the incident light ray i; FIG. 3/6 shows in section view the diffraction of the incident ray i in diffuse refraction RD during its propagation in the PMMA panel (1) when said incident ray i encounters an impurity (5) and the diffraction diffuse refracting ray RD 'when the scattering ray RD encounters a printed reflective pattern (4); FIG. 4/6 shows the attenuation curve C1 of the luminance recorded by the applicant on 600 mm wide backlight panels with LED lighting and the C2 attenuation curve of the luminance. resulting from the use of printed mirrors (4). Curve C2, horizontal, shows the homogeneity of the resulting luminance measured over the entire surface of the PMMA panel (1). FIG. 5/6 shows a rear view of the PMMA panel (1) and an example of geometric organization of the printed reflecting mirrors (4). FIG. 6/6 shows a rear view of the PMMA panel (1) and another example of geometric organization of the printed reflecting mirrors (4); Reflective mirrors (4) are screen printed or digitally printed on the back of the PMMA panel (1) with a white ink and having a high reflectivity. These printed reflecting mirrors (4) will behave as mirrors of the diffuse reflectance RD and will return some of the light energy towards the front of the PMMA panel (1) in diffuse reflectance RD '. The arrangement of these printed reflecting mirrors (4) and their surface are such that the area per dm2 covered by said printed reflecting mirrors (4) is increasingly important as one approaches the center of the sign. Thus, the closer we get to the center, the further away we are from the origin of the light emission, the more the surface and the density of the reflecting mirrors increases and this way directly proportional to the weakening. This increase in the area covered by the reflective printed mirrors (4) will increase the amount of diffuse reflectance light energy RD 'in the same proportionality as the attenuation of light related to the absorption factor a. This proportionality is described in the form of a geometric decay whose reason is a function of the quality of the PMMA material to transmit the light and its thickness. The illustration of Figure 5 shows the printed reflective mirrors (4) of round shape, but any other geometric shape such as square or diamond can be used provided that the increase in the variation of their area, is proportional to the distance from the light source and thus to the attenuation related to the absorption factor a. In another variant of the invention, the printed reflecting mirrors (4) have an identical area, but their arrangement on the surface of the PMMA panel (1) is designed in such a way that their density is proportional to the distance from the light source and therefore the attenuation related to the absorption factor a. In another technical feature of the invention the reflecting mirrors (4) are printed on an adhesive transparent film which is laminated to the back of the PMMA panel (1).

Claims (3)

REVENDICATIONS1. Panneau de rétroéclairage à LEDs et à éclairage tangentiel permettant d'obtenir une uniformité de la luminance sur toute sa surface constitué d'un panneau de PMMA (1) imprimé de miroirs réfléchissants (4), de LEDs (3) éclairant la tranche dudit panneau (1) et d'un film réfléchissant (6), caractérisé en ce des miroirs réfléchissants (4) sont imprimés sur l'arrière du panneau de PMMA (1) et permettent de renvoyer vers l'avant dudit panneau de PMMA (1) une partie de l'énergie lumineuse correspondant à la réfraction diffuse RD, les dits miroirs réfléchissants imprimés (4) étant d'une surface variable caractérisés en ce que l'intégrale de leur surface par dm2 soit augmentée de manière directement proportionnelle à l'atténuation lumineuse intrinsèque du panneau de PMMA par absorption et par réfraction.REVENDICATIONS1. LED backlit and tangentially illuminated panel providing luminance uniformity across its entire surface consisting of a PMMA panel (1) printed with reflecting mirrors (4), LEDs (3) illuminating the edge of said panel (1) and a reflective film (6), characterized in that reflecting mirrors (4) are printed on the back of the PMMA panel (1) and allow forwarding of said PMMA panel (1) a portion of the light energy corresponding to the diffuse refraction RD, said printed reflecting mirrors (4) being of a variable surface characterized in that the integral of their area by dm2 is increased in a manner directly proportional to the attenuation Intrinsic luminosity of the PMMA panel by absorption and refraction. 2. Panneau de rétroéclairage à LEDs et à éclairage tangentiel, selon la revendication 1, caractérisé en ce que les miroirs réfléchissants (4) sont imprimés sur un film transparent qui est contre-collé sur l'arrière du panneau de PMMA (1).2. A tangentially illuminated LED backlighting panel according to claim 1, characterized in that the reflecting mirrors (4) are printed on a transparent film which is laminated to the back of the PMMA panel (1). 3. Panneau de rétroéclairage à LEDs et à éclairage tangentiel, selon la revendication 1, caractérisé en ce que l'aire en dm2 couverte par les miroirs réfléchissants (4) soit augmentée de manière directement proportionnelle à l'atténuation lumineuse intrinsèque du panneau de PMMA par absorption et par réfraction du fait de l'accroissement de la surface des dits miroirs réfléchissants (4) soit de leur densité sur la surface du panneau de PMMA (1).3. A tangentially illuminated LED backlighting panel according to claim 1, characterized in that the dm2 area covered by the reflecting mirrors (4) is increased in direct proportion to the intrinsic light attenuation of the PMMA panel. by absorption and by refraction due to the increase in the area of said reflecting mirrors (4) or their density on the surface of the PMMA panel (1).
FR1203185A 2012-11-21 2012-11-21 LED BACKLIGHT PANEL WITH TANGENTIAL LIGHT AND HOMOGENEOUS LUMINANCE Active FR2998351B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1203185A FR2998351B1 (en) 2012-11-21 2012-11-21 LED BACKLIGHT PANEL WITH TANGENTIAL LIGHT AND HOMOGENEOUS LUMINANCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1203185A FR2998351B1 (en) 2012-11-21 2012-11-21 LED BACKLIGHT PANEL WITH TANGENTIAL LIGHT AND HOMOGENEOUS LUMINANCE
FR1203185 2012-11-21

Publications (2)

Publication Number Publication Date
FR2998351A1 true FR2998351A1 (en) 2014-05-23
FR2998351B1 FR2998351B1 (en) 2020-06-12

Family

ID=47553162

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1203185A Active FR2998351B1 (en) 2012-11-21 2012-11-21 LED BACKLIGHT PANEL WITH TANGENTIAL LIGHT AND HOMOGENEOUS LUMINANCE

Country Status (1)

Country Link
FR (1) FR2998351B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667289A (en) * 1989-05-18 1997-09-16 Seiko Epson Corporation Background lighting apparatus for liquid crystal display
US20040136173A1 (en) * 2002-12-20 2004-07-15 Kun-Jung Tsai Surface light source device for liquid crystal display
US20040263718A1 (en) * 2003-06-30 2004-12-30 Kun-Jung Tsai Backlight module and liquid crystal display device using the same
WO2012033206A1 (en) * 2010-09-10 2012-03-15 株式会社フジクラ Planar light-emitting device and illumination module
US20120287665A1 (en) * 2011-05-13 2012-11-15 Seiren Co., Ltd. Light guide plate, surface light source device, transmission-type image display device, method of designing light distribution pattern for light guide plate, and method of manufacturing light guide plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667289A (en) * 1989-05-18 1997-09-16 Seiko Epson Corporation Background lighting apparatus for liquid crystal display
US20040136173A1 (en) * 2002-12-20 2004-07-15 Kun-Jung Tsai Surface light source device for liquid crystal display
US20040263718A1 (en) * 2003-06-30 2004-12-30 Kun-Jung Tsai Backlight module and liquid crystal display device using the same
WO2012033206A1 (en) * 2010-09-10 2012-03-15 株式会社フジクラ Planar light-emitting device and illumination module
US20120287665A1 (en) * 2011-05-13 2012-11-15 Seiren Co., Ltd. Light guide plate, surface light source device, transmission-type image display device, method of designing light distribution pattern for light guide plate, and method of manufacturing light guide plate

Also Published As

Publication number Publication date
FR2998351B1 (en) 2020-06-12

Similar Documents

Publication Publication Date Title
EP2098774B1 (en) Optical system with main function for an automobile
EP1775511B1 (en) Vehicle lighting or signalling device with a light guide
TWI396873B (en) A polarized and microstructural light-guide device comprises a non-polarized light source module
EP3755942B1 (en) Signal lamp for a vehicle
FR2903202A1 (en) Direct type backlight unit for use in LCD device, has dot patterns formed on diffuser or diffusion sheet to face lamps, serving to disperse light at center of lamps and to condense light in boundary between lamps
EP3071449B1 (en) Lighting and/or signalling system with light guides for a vehicle
EP2317214A1 (en) Lighting or signalling device for an automobile comprising a light guide
FR3076888A1 (en) LINEAR LIGHT SOURCE
CN110678693B (en) Decorative light guide element
JP4966146B2 (en) Surface emitting device
FR3071041A1 (en) VEHICLE OPTICAL BLOCK WITH LIGHT GUIDE (S) WITH PROTUBERANCE OF LIMITATION OF PASSAGE OF PHOTONS PARASITES
FR2927404A1 (en) Optical system for headlight of motor vehicle, has division units dividing luminous rays into light beam contributing to realization of main optical function and another light beam contributing to realization of decorative function
EP2703220B1 (en) Lighting and/or signalling device for an automobile
FR2939868A1 (en) Optical system for head light or signaling light of motor vehicle, has light source propagated in single diffusion screen, and insulating separating film separating functions for realization of multiple main optical functions through screen
FR2998351A1 (en) Backlight panel for illuminating e.g. decorations, has printed reflective mirrors provided with variable surface that is provided in direct proportion to intrinsic luminous attenuation of panel by absorption and refraction
WO2019122613A1 (en) Light signalling device for motor vehicle offering improved visual comfort to road users
FR2961335A1 (en) Display device i.e. push button, for displaying symbol representing state of e.g. audio system in cab interior of motor vehicle, has concentrator installed between light source and support and extended to right side of symbol
EP2208988A1 (en) Light-emitting diode lighting device
FR3061537A1 (en) LUMINOUS EMISSION MODULE WITH IMPROVED GUIDE RAIL
FR3102231A1 (en) Light panel for the realization of a covering of a wall of a room
FR3071039B1 (en) LOW-THICKNESS LUMINOUS DEVICE AND HOMOGENEOUS LIGHTING
TWI387707B (en) Light guide film and light source module
FR3082011A1 (en) IMAGE GENERATION DEVICE AND HEAD-UP DISPLAY COMPRISING SUCH A DEVICE
TWI504840B (en) Light source light set with detachable frame
FR2816694A3 (en) LED vehicle signalling lamp has light source(s) formed by series of LEDs and connected with current source with light from side face into light mask

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 9

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12