FR2986547A1 - Device for thermodynamic insulation of building, has outer envelope open in lower portion of walls and in top portion of roof, where volume of air created by transfer of heat across wall panel and rain barrier is evacuated by extractor - Google Patents
Device for thermodynamic insulation of building, has outer envelope open in lower portion of walls and in top portion of roof, where volume of air created by transfer of heat across wall panel and rain barrier is evacuated by extractor Download PDFInfo
- Publication number
- FR2986547A1 FR2986547A1 FR1200362A FR1200362A FR2986547A1 FR 2986547 A1 FR2986547 A1 FR 2986547A1 FR 1200362 A FR1200362 A FR 1200362A FR 1200362 A FR1200362 A FR 1200362A FR 2986547 A1 FR2986547 A1 FR 2986547A1
- Authority
- FR
- France
- Prior art keywords
- air
- thermodynamic
- walls
- insulation
- roof
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 13
- 230000004888 barrier function Effects 0.000 title claims abstract description 5
- 238000000605 extraction Methods 0.000 claims abstract description 7
- 230000000694 effects Effects 0.000 claims abstract description 3
- 238000009792 diffusion process Methods 0.000 claims abstract 2
- 238000005253 cladding Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000009423 ventilation Methods 0.000 claims description 7
- 238000011084 recovery Methods 0.000 claims description 4
- 238000005399 mechanical ventilation Methods 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims 1
- 230000001936 parietal effect Effects 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/60—Solar heat collectors integrated in fixed constructions, e.g. in buildings
- F24S20/66—Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/60—Solar heat collectors integrated in fixed constructions, e.g. in buildings
- F24S20/67—Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Architecture (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Acoustics & Sound (AREA)
- Building Environments (AREA)
Abstract
Description
Dispositif destiné à l'isolation thermodynamique d'un bâtiment à vêture et lame d'air La présente invention concerne l'élaboration et la mise en oeuvre de l'isolation thermodynamique. C'est un dispositif de sur-ventilation de l'énergie solaire pariétale captée par augmentation de la ventilation des parois afin d'améliorer le confort estival en augmentant le déphasage thermique en été, et le chauffage en hiver des bâtiments à vêture et lame d'air. The present invention relates to the development and implementation of thermodynamic insulation. It is a device for over-ventilation of solar wall energy captured by increasing the ventilation of the walls in order to improve the summer comfort by increasing the thermal phase shift in summer, and the heating in winter of buildings with cladding and blade. 'air.
Nous recherchons aujourd'hui un confort optimum à l'intérieur des bâtiments. Cette notion inclue à la fois la capacité à chauffer correctement mais aussi à rafraîchir l'habitat lorsque cela est nécessaire. En parallèle, la réglementation thermique préconise des besoins en énergie pour le chauffage ou le rafraîchissement de plus en plus faibles. Le dispositif d'isolation thermodynamique est un principe simple et pourtant ignoré qui permet le rafraîchissement des parois par ventilation forcée, mais aussi le chauffage des bâtiments par récupération des calories de l'air. Actuellement, dans les bâtiments à vêture et lame d'air, la lame d'air se situant derrière la vêture n'a qu'une fonction de ventilation de la vêture, et n'est donc pas prise en compte pour le rafraîchissement ou le chauffage du bâtiment. Seulement le rayonnement solaire (en été comme en hiver), qui irradie les façades et les toitures des bâtiments, chauffe cette lame d'air et produit ainsi une source de chaleur. Celle-ci pose un problème de surchauffe en saison estivale et elle est un apport immédiat de chaleur ignoré en période hivernale. L'isolation thermodynamique propose de récupérer cette énergie solaire pariétale captée, soit pour rafraîchir, soit pour les besoins en chauffage des bâtiments, ou les deux, en fonction des saisons. Today we are looking for optimum comfort inside buildings. This concept includes both the ability to heat properly but also to cool the habitat when necessary. In parallel, the thermal regulation recommends energy requirements for heating or cooling increasingly low. The thermodynamic insulation device is a simple and yet ignored principle that allows the cooling of the walls by forced ventilation, but also the heating of buildings by recovery of calories from the air. Currently, in buildings with cladding and air space, the air space behind the cladding has only a function of ventilation of the cladding, and is therefore not taken into account for the refreshment or heating of the building. Only solar radiation (in summer as in winter), which radiates the facades and roofs of buildings, heats this air space and thus produces a source of heat. This poses a problem of overheating in the summer season and it is an immediate contribution of heat ignored in winter. Thermodynamic insulation proposes to recover this captured solar energy, either to cool, or for the heating needs of buildings, or both, depending on the season.
Ce dispositif permet des économies tant au niveau des quantités de matériaux utilisés pour l'isolation, les épaisseurs pour arriver au même résultat pourront être réduites, qu'au niveau de la qualité de ces matériaux qui n'auront plus besoin d'être issus de matières nobles telles que le liège ou la laine de bois très dense, par exemple. - Conditions préalables : La première étape consiste à réaliser un volume étanche entre le bâtiment et les vêtures en parois et en toiture. Pour le volume habité chauffé - Figure 1 - point A, nous utilisons un pare-vapeur ou un frein-vapeur et de l'adhésif adapté pour joindre les lés entre eux. Il faut ensuite réaliser l'enveloppe externe du bâtiment - Figures 1 et 2 - point B, avec un pare-pluie côté mur, et en créant une continuité avec l'écran de sous toiture de telle sorte que l'air circulant dans « la cheminée thermique » - Figures 1 et 2 - point C, ne provienne exclusivement que de la partie basse du mur - Figure 1 - point D. Pour cela, une membrane, qui pourra être de type pare-pluie, vient fermer les joints de la vêture qui laissent passer l'air, en continu ou en points singuliers, suivant le type de vêture - Figure 2. Ces deux étapes doivent être réalisées parfaitement pour assurer un fonctionnement optimal du dispositif d'isolation thermodynamique. - Descriptif détaillé du dispositif : L'air froid pénètre en partie basse du mur au travers de la grille anti-rongeur - Figure 1 point D, sur la totalité de la périphérie du bâtiment. Le transfert de chaleur s'effectue alors de plusieurs manières (le mur étant correctement isolé, les échanges entre le volume chauffé et la lame d'air par conduction sont donc très faibles). Tout d'abord, le rayonnement solaire arrive directement sur la vêture et réchauffe celle-ci. Il y a aussi un phénomène de conduction au travers du matériau composant la vêture. Et enfin, il y a échange de chaleur par convection entre la vêture et l'air contenu dans la cheminée thermique - Figures 1 et 2 - points B et C. C'est au cours de ce dernier échange par convection que l'air se charge le plus en énergie. L'air récupère les calories sur toute la hauteur des murs et par différence de densité, se dirige vers la toiture. La sur-ventilation du procédé d'isolation thermodynamique permet d'accélérer le processus d'évacuation, donc augmente le déphasage thermique en période d'été. Cet air circule au travers de la grille d'isolation thermodynamique auto-réglable Figures 1, 3, 4, 5, 6, et 7 point E. Cette grille est un élément primordial innovant puisqu'elle permet la régulation du débit d'air en fonction de la température, voire également de l'hygrométrie, sur les différentes façades du bâtiment, afin d'optimiser l'extraction de chaleur. Le dispositif se différencie à ce niveau suivant que la charpente soit prévue avec des combles perdus ou des combles aménagés et isolés. Dans le cas de combles non aménageables - Figure 3, l'air réchauffé circule naturellement au dessus de l'isolant. Pour les cas de charpente traditionnelle ou de caissons isolés, sur combles aménagés - Figure 4, il faut au préalable clouer des demi-liteaux sur les chevrons, pour ensuite agrafer l'écran de sous toiture et ainsi créer une lame d'air. Les pignons nécessitent un traitement particulier suivant les différents cas de charpente, pour assurer le passage de l'air réchauffé vers le conduit d'extraction : - Figure 5. Les échanges de chaleur décrits ci-dessus s'effectuent également le long de la toiture. This device allows savings both in the amount of materials used for insulation, the thicknesses to achieve the same result can be reduced, as the quality of these materials that will no longer need to be from noble materials such as cork or very dense wood wool, for example. - Prerequisites: The first step is to achieve a tight volume between the building and the cladding walls and roof. For the heated inhabited volume - Figure 1 - point A, we use a vapor barrier or a vapor barrier and suitable adhesive to join the strips together. The outer envelope of the building - Figures 1 and 2 - point B must then be made with a wall-side rain cover and creating a continuity with the under-roof screen so that the air circulating in "the thermal chimney "- Figures 1 and 2 - point C, comes exclusively from the lower part of the wall - Figure 1 - point D. For this, a membrane, which can be of type rains, just close the joints of the cladding that allows the air to pass, continuously or in singular points, depending on the type of cladding - Figure 2. These two steps must be performed perfectly to ensure optimal operation of the thermodynamic insulation device. - Detailed description of the device: The cold air enters the lower part of the wall through the anti-rodent grill - Figure 1 point D, over the entire periphery of the building. The heat transfer is then carried out in several ways (the wall being properly insulated, exchanges between the heated volume and the air space by conduction are very low). First, the solar radiation comes directly on the clothing and warms it. There is also a phenomenon of conduction through the material composing the clothing. And finally, there is heat exchange by convection between the cladding and the air contained in the thermal chimney - Figures 1 and 2 - points B and C. It is during this last convection exchange that the air is charge the most energy. The air recovers the calories over the entire height of the walls and by density difference, goes to the roof. The over-ventilation of the thermodynamic insulation process makes it possible to accelerate the evacuation process, thus increasing the thermal phase shift in the summer period. This air circulates through the self-adjusting thermodynamic insulation grid Figures 1, 3, 4, 5, 6, and 7 point E. This grid is an innovative element primordial since it allows the regulation of the air flow in depending on the temperature, or even the hygrometry, on the different facades of the building, in order to optimize the extraction of heat. The device is differentiated at this level depending on whether the frame is provided with attic or attic arranged and isolated. In the case of non-convertible attics - Figure 3, the heated air circulates naturally over the insulation. For cases of traditional framing or insulated caissons, on converted attics - Figure 4, it is necessary to first nail half-battens on the rafters, then staple the under-roof screen and thus create a blade of air. The gears require a particular treatment according to the different cases of framework, to ensure the passage of the heated air to the extraction duct: - Figure 5. The heat exchanges described above are also performed along the roof .
L'air se réchauffe alors une nouvelle fois au contact avec cette paroi. Cet air qui a circulé le long des parois du bâtiment arrive au conduit d'extraction de toiture, par un effet de cheminée, avec possibilité, le cas échéant, de dérivation avec le conduit de la Ventilation Mécanique Contrôlée (VMC) double flux. Pour un complément de la régulation du rafraîchissement des parois en période estivale, il suffit de placer au niveau du conduit d'extraction en toiture - Figure 1 - point F, un ventilateur, commandé par un thermostat. Ce dispositif permet de réguler le débit d'extraction en fonction du confort souhaité dans le bâtiment. Ceci concerne uniquement la ventilation des parois pour permettre le rafraîchissement estival des bâtiments. Pour la récupération des calories contenues dans l'air pour le chauffage des bâtiments, il faut mettre en place un raccord, muni d'un clapet motorisé commandé par thermostat, sur le conduit d'arrivée à une VMC double flux - Figure 1 - point G. L'intérêt étant d'amener un air préchauffé pour ventiler le bâtiment en saison hivernale et/ ou pour un chauffe-eau thermodynamique pour l'eau chaude sanitaire. The air then heats up again in contact with this wall. This air that has circulated along the walls of the building arrives at the roof extraction duct, by a chimney effect, with the possibility, if necessary, of diversion with the duct of the Controlled Mechanical Ventilation (VMC) double flow. For additional control of the cooling of the walls in the summer period, it is sufficient to place at the level of the extraction duct on the roof - Figure 1 - point F, a fan controlled by a thermostat. This device makes it possible to regulate the extraction flow rate according to the desired comfort in the building. This only concerns the ventilation of the walls to allow the summer cooling of the buildings. For the recovery of the calories contained in the air for the heating of the buildings, it is necessary to set up a connection, equipped with a motorized valve controlled by thermostat, on the duct of arrival to a VMC double flux - Figure 1 - point G. The interest is to bring a preheated air to ventilate the building in the winter season and / or for a thermodynamic water heater for domestic hot water.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1200362A FR2986547A1 (en) | 2012-02-06 | 2012-02-06 | Device for thermodynamic insulation of building, has outer envelope open in lower portion of walls and in top portion of roof, where volume of air created by transfer of heat across wall panel and rain barrier is evacuated by extractor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1200362A FR2986547A1 (en) | 2012-02-06 | 2012-02-06 | Device for thermodynamic insulation of building, has outer envelope open in lower portion of walls and in top portion of roof, where volume of air created by transfer of heat across wall panel and rain barrier is evacuated by extractor |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2986547A1 true FR2986547A1 (en) | 2013-08-09 |
Family
ID=47427297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1200362A Withdrawn FR2986547A1 (en) | 2012-02-06 | 2012-02-06 | Device for thermodynamic insulation of building, has outer envelope open in lower portion of walls and in top portion of roof, where volume of air created by transfer of heat across wall panel and rain barrier is evacuated by extractor |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2986547A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3801199A1 (en) * | 1988-01-18 | 1989-07-27 | Erhard Wolke | Method for the energy-saving heating of buildings and installation for carrying out the method |
US5761864A (en) * | 1994-08-31 | 1998-06-09 | Nonoshita; Tadamichi | Thermally insulated building and a building panel therefor |
-
2012
- 2012-02-06 FR FR1200362A patent/FR2986547A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3801199A1 (en) * | 1988-01-18 | 1989-07-27 | Erhard Wolke | Method for the energy-saving heating of buildings and installation for carrying out the method |
US5761864A (en) * | 1994-08-31 | 1998-06-09 | Nonoshita; Tadamichi | Thermally insulated building and a building panel therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100300645A1 (en) | Building energy system | |
FR3032996A1 (en) | JOINERY FOR THE MANAGEMENT OF AIR CIRCULATION IN A BUILDING | |
FR2986547A1 (en) | Device for thermodynamic insulation of building, has outer envelope open in lower portion of walls and in top portion of roof, where volume of air created by transfer of heat across wall panel and rain barrier is evacuated by extractor | |
WO2009112715A1 (en) | Building, for example a dwelling | |
EP1695010B1 (en) | Heating and air-conditioning device | |
EP0005110B1 (en) | Facade of a building provided with at least one solar collector for heating the rooms of this building | |
EP3379157B1 (en) | Hot air and ventilation distribution valve for a façade with heat recovery | |
FR2951472A1 (en) | Method for active thermal isolation of habitable volume of e.g. shed, involves controlling circulation of gas in gas gap based on temperature of gas to obtain temperature difference between temperature of air and temperature of gas | |
EP2865951B1 (en) | Thermodynamic facility for producing hot water | |
WO2012172214A1 (en) | System for collecting solar gain on a traditional sloping roof | |
FR3028599A3 (en) | LOW CONSUMPTION OR POSITIVE ENERGY BUILDING AND METHOD OF CONTROLLING TEMPERATURE AND RELATIVE HUMIDITY IN THIS BUILDING | |
BE550914A (en) | ||
FR2510728A1 (en) | METHOD AND INSTALLATION OF AIR CONDITIONING FOR INDUSTRIAL PREMISES | |
FR2570734A1 (en) | Methods for the thermal insulation of buildings and buildings constructed according to these methods | |
BE1015422A6 (en) | Multifunctional building components, prefabricated for external walls and roofs to renewable energy recovery and replacement of fossil energy. | |
BE1005162A3 (en) | Speaker device heat adapted to passive solar heating. | |
FR2492955A1 (en) | Solar-powered central heating system - has air circulated to heat accumulator fitted in base of building after heating | |
WO2023099555A1 (en) | Heat- or cold-emitting device and heating or cooling system incorporating this device | |
FR2476805A1 (en) | Solar and off-peak electricity storage heating system - uses heat storing mass in which depression can be made to draw in air from heat collecting panels for later distribution | |
EP1985928A1 (en) | Panoramic heating device with pre-heated primary air | |
EP0155718B1 (en) | Installation for maintenance of the temperature of rooms such as halls, hangars, factory buildings etc. with hot air | |
FR2486215A1 (en) | Solar heat collector for building envelope - has surface of plastics coated controlled oxidation steel to aid thermal transfer | |
FR3041083B1 (en) | SYSTEM FOR ENHANCING THE ENERGY PERFORMANCE OF A BUILDING AND METHOD OF RENOVATING A CORRESPONDING BUILDING | |
FR2542799A3 (en) | Transparent shutter ensuring dynamic glazing insulation and solar absorption at the window breast | |
FR2936861A1 (en) | AIR CONDITIONING INSTALLATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 4 |
|
ST | Notification of lapse |
Effective date: 20151030 |
|
RN | Application for restoration |
Effective date: 20151124 |
|
FC | Decision of inpi director general to approve request for restoration |
Effective date: 20160204 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |