FR2982008A1 - Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution - Google Patents

Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution Download PDF

Info

Publication number
FR2982008A1
FR2982008A1 FR1159704A FR1159704A FR2982008A1 FR 2982008 A1 FR2982008 A1 FR 2982008A1 FR 1159704 A FR1159704 A FR 1159704A FR 1159704 A FR1159704 A FR 1159704A FR 2982008 A1 FR2982008 A1 FR 2982008A1
Authority
FR
France
Prior art keywords
orifices
annular wall
cooling
rows
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1159704A
Other languages
English (en)
Other versions
FR2982008B1 (fr
Inventor
Matthieu Francois Rullaud
Bernard Joseph Jean-Pierre Carrere
Hubert Pascal Verdier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Safran Helicopter Engines SAS
Original Assignee
Turbomeca SA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1159704A priority Critical patent/FR2982008B1/fr
Application filed by Turbomeca SA, SNECMA SAS filed Critical Turbomeca SA
Priority to RU2014121037/06A priority patent/RU2575490C2/ru
Priority to IN3138DEN2014 priority patent/IN2014DN03138A/en
Priority to EP17175880.8A priority patent/EP3267111B1/fr
Priority to EP12790620.4A priority patent/EP2771618B8/fr
Priority to CA2852393A priority patent/CA2852393C/fr
Priority to CN201280052210.4A priority patent/CN103958970B/zh
Priority to CN2012205521196U priority patent/CN203147824U/zh
Priority to PCT/FR2012/052446 priority patent/WO2013060987A2/fr
Priority to JP2014537695A priority patent/JP6177785B2/ja
Priority to US14/352,946 priority patent/US10551064B2/en
Priority to BR112014010215A priority patent/BR112014010215A8/pt
Publication of FR2982008A1 publication Critical patent/FR2982008A1/fr
Application granted granted Critical
Publication of FR2982008B1 publication Critical patent/FR2982008B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Paroi annulaire de chambre de combustion (10) de turbomachine, comportant un côté froid (16a, 18a) et un côté chaud (16b, 18b), une pluralité de trous primaires et de dilution (30) répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid (16a, 18a) de la paroi annulaire de pénétrer du côté chaud (16b, 18b) afin d'assurer la dilution d'un mélange air/carburant ; et une pluralité d'orifices de refroidissement (32) pour permettre à l'air circulant du côté froid (16a, 18a) de la paroi annulaire de pénétrer du côté chaud (16b, 18b) afin de former un film d'air de refroidissement le long de la paroi annulaire, les orifices de refroidissement étant répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres et les axes géométriques de chacun des orifices de refroidissement étant inclinés, dans une direction axiale D d'écoulement des gaz de combustion, d'un angle d'inclinaison theta1 par rapport à une normale N à la paroi annulaire ; La paroi comportant en outre une pluralité d'orifices additionnels de refroidissement (34) disposés directement en aval des trous de dilution et répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres, les axes géométriques de chacun des orifices additionnels de refroidissement étant disposés dans un plan perpendiculaire à ladite direction axiale D et inclinés d'un angle d'inclinaison theta2 par rapport à une normale N à ladite paroi annulaire.

Description

Arrière-plan de l'invention La présente invention se rapporte au domaine général des chambres de combustion de turbomachine. Elle vise plus particulièrement une paroi annulaire pour chambre de combustion directe ou à flux inversé refroidie par un procédé dit de «multiperforation». Typiquement, une chambre de combustion annulaire de turbomachine est formée d'une paroi annulaire interne (dite aussi virole interne) et d'une paroi annulaire externe (dite aussi virole externe) qui sont reliées en amont par une paroi transversale formant fond de chambre. Les viroles interne et externe sont chacune pourvues d'une pluralité de trous et d'orifices divers permettant à de l'air circulant autour de la chambre de combustion de pénétrer à l'intérieur de celle-ci. Ainsi, des trous dits « primaires » et « de dilution » sont formés dans ces viroles pour acheminer de l'air à l'intérieur de la chambre de combustion. L'air empruntant les trous primaires contribue à créer un mélange air/carburant qui est brûlé dans la chambre, tandis que l'air provenant des trous de dilution est destiné à favoriser la dilution de ce même mélange air/carburant. Les viroles interne et externe sont soumises aux températures élevées des gaz provenant de la combustion du mélange air/carburant.
Afin d'assurer leur refroidissement, des orifices supplémentaires dits de multiperforation sont également percés au travers de ces viroles sur toute leur surface. Ces orifices de multiperforation, inclinés en général à 60°, permettent à l'air circulant à l'extérieur de la chambre de pénétrer à l'intérieur de celle-ci en formant le long des viroles des films d'air de refroidissement. Toutefois, en pratique, il a été constaté que la zone des viroles interne et externe qui est située directement en aval de chacun des trous primaires ou de dilution, du fait notamment de l'absence d'orifices résultant de la technologie de perçage laser utilisée, bénéficie d'un faible niveau de refroidissement avec le risque de formation de criques que cela implique.
Afin de résoudre ce problème, le document US 6,145,319 propose de pratiquer des trous de transition dans la zone des parois située directement en aval de chacun des trous primaires et de dilution, ces trous de transition ayant une inclinaison plus importante que celle des orifices de multiperforation. Toutefois, étant donné qu'il s'agit d'un traitement localisé, cette solution s'avère malheureusement particulièrement onéreuse et elle augmente notablement la durée de fabrication des parois. Objet et résumé de l'invention La présente invention a donc pour but de pallier de tels inconvénients en proposant une paroi annulaire de chambre de combustion qui assure un refroidissement adéquat des zones situées directement en aval des trous primaires et de dilution. A cet effet, il est prévu une paroi annulaire de chambre de combustion de turbomachine, comportant un côté froid et un côté chaud, ladite paroi annulaire comportant : . une pluralité de trous primaires répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid de ladite paroi annulaire de pénétrer du côté chaud afin de créer un mélange air/carburant ; . une pluralité de trous de dilution répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid de ladite paroi annulaire de pénétrer du côté chaud afin d'assurer la dilution du mélange air/carburant ; et . une pluralité d'orifices de refroidissement pour permettre à l'air circulant du côté froid de ladite paroi annulaire de pénétrer du côté chaud afin de former un film d'air de refroidissement le long de ladite paroi annulaire, lesdits orifices de refroidissement étant répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres et les axes géométriques de chacun desdits orifices de refroidissement étant inclinés, dans une direction axiale D d'écoulement des gaz de combustion, d'un angle d'inclinaison 01 par rapport à une normale N à ladite paroi annulaire ; caractérisée en ce qu'elle comporte en outre une pluralité d'orifices additionnels de refroidissement disposés d'une part directement en aval desdits trous primaires et d'autre part directement en aval desdits trous de dilution et répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres, les axes géométriques de chacun desdits orifices additionnels de refroidissement étant disposés dans un plan perpendiculaire à ladite direction axiale D et inclinés d'un angle d'inclinaison 02 par rapport à une normale N à ladite paroi annulaire. La présence des orifices additionnels de refroidissement disposés de façon inclinée dans un plan perpendiculaire au sens d'écoulement des gaz de combustion, directement en aval et au plus près des trous primaires et de dilution, permet d'assurer un refroidissement efficace par rapport à la multiperforation axiale classique où le film d'air est stoppé par la présence de ces trous et cela sans modifier l'écoulement dans la zone primaire. Selon un mode de réalisation de l'invention avantageux, ladite inclinaison 02 desdits orifices additionnels par rapport à la normale N à ladite paroi annulaire est identique à celle 01 desdits orifices de refroidissement. Avantageusement, un diamètre d2 desdits orifices additionnels est identique à un diamètre di desdits orifices de refroidissement et un pas p2 desdits orifices additionnels est identique à un pas pi desdits orifices de refroidissement et lesdits orifices additionnels peuvent présenter une densification plus importante juste en aval des trous primaires et des trous de dilution. De préférence, elle comporte en outre au niveau d'une zone de transition formée en aval de ladite pluralité de rangées d'orifices additionnels, au moins deux rangées d'orifices dont les axes géométriques de chacun desdits orifices sont inclinés, par rapport à un plan perpendiculaire à ladite direction axiale D, d'une inclinaison déterminée différente pour chacune desdites deux rangées.
Lorsqu'elle comporte ces deux rangées d'orifices, lesdites inclinaisons sont de 30° et 60° respectivement. Lesdites deux rangées d'orifices sont alors soit deux rangées d'orifices additionnels disposées immédiatement en amont d'une rangée d'orifices de refroidissement, soit deux rangées d'orifices de refroidissement disposées immédiatement en aval d'une rangée d'orifices additionnels, ou encore une rangée d'orifices additionnels et une rangée d'orifices de refroidissement adjacente.
Lorsqu'elle comporte plusieurs rangées d'orifices, lesdites inclinaisons sont réparties régulièrement entre 0° et 90°. Avantageusement, le sens d'inclinaison desdits orifices additionnels est contraint par le sens d'écoulement du mélange air/carburant en aval de ladite chambre de combustion. La présente invention a également pour objet une chambre de combustion et une turbomachine (ayant une chambre de combustion) comportant une paroi annulaire telle que définie précédemment.
Brève description des dessins D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures : - la figure 1 est une vue en coupe longitudinale d'une chambre de combustion de turbomachine dans son environnement ; - la figure 2 est une vue partielle et en développé de l'une des parois annulaires de la chambre de combustion de la figure 1 selon un mode de réalisation de l'invention ; et - la figure 3 est une vue partielle et en perspective d'une partie de la paroi annulaire de la figure 2. Description détaillée de l'invention La figure 1 illustre dans son environnement une chambre de combustion 10 pour turbomachine. Une telle turbomachine comporte notamment une section de compression (non représentée) dans laquelle de l'air est comprimé avant d'être injecté dans un carter de chambre 12, puis dans la chambre de combustion 10 montée à l'intérieur de celui-ci. L'air comprimé est introduit dans la chambre de combustion et mélangé à du carburant avant d'y être brûlé. Les gaz issus de cette combustion sont alors dirigés vers une turbine haute-pression 14 disposée en sortie de la chambre de combustion. La chambre de combustion est de type annulaire. Elle est formée d'une paroi annulaire interne 16 et d'une paroi annulaire externe 18 qui sont réunies en amont par une paroi transversale 20 formant le fond de chambre. Elle peut être directe comme illustrée ou à flux inversé.
Dans ce cas, un coude de retour pouvant également être refroidi par multiperçage est placé entre la chambre de combustion et le distributeur de turbine. Les parois annulaires interne 16 et externe 18 s'étendent selon un axe longitudinal légèrement incliné par rapport à l'axe longitudinal 22 de la turbomachine. Le fond de chambre 20 est pourvu d'une pluralité d'ouvertures 20A dans lesquelles sont montés des injecteurs de carburant 24. Le carter de chambre 12, qui est formé d'une enveloppe interne 12a et d'une enveloppe externe 12b, ménage avec la chambre de combustion 10 des espaces annulaires 26 dans lequel est admis de l'air comprimé destiné à la combustion, à la dilution et au refroidissement de la chambre. Les parois annulaires interne 16 et externe 18 présentent chacune un côté froid 16a, 18a disposé du côté de l'espace annulaire 26 dans lequel circule l'air comprimé et un côté chaud 16b, 18b tourné vers l'intérieur de la chambre de combustion (figure 3). La chambre de combustion 10 se divise en une zone dite « primaire » (ou zone de combustion) et une zone dite « secondaire » (ou zone de dilution) située en aval de la précédente (l'aval s'entend par rapport à une direction générale axiale d'écoulement des gaz issus de la combustion du mélange air/carburant à l'intérieur de la chambre de combustion et matérialisée par la flèche D). L'air qui alimente la zone primaire de la chambre de combustion est introduit par une rangée circonférentielle de trous primaires 28 pratiqués dans les parois annulaires interne 16 et externe 18 de la chambre sur toute la circonférence de ces parois annulaires. Ces trous primaires comportent un bord aval aligné sur une même ligne 28A. Quant à l'air alimentant la zone secondaire de la chambre, il emprunte une pluralité de trous de dilution 30 également formés dans les parois annulaires interne 16 et externe 18 sur toute la circonférence de ces parois annulaires. Ces trous de dilution 30 sont alignés selon une rangée circonférentielle qui est décalée axialement vers l'aval par rapport aux rangées des trous primaires 28 et ils peuvent avoir des diamètres différents avec notamment une alternance de gros et petits trous. Dans la configuration illustrée à la figure 2, ces trous de dilution de diamètres différents présentent toutefois alors un bord aval aligné sur une même ligne 30A. Afin de refroidir les parois annulaires interne 16 et externe 18 de la chambre de combustion qui sont soumises aux températures élevées 5 des gaz de combustion, il est prévu une pluralité d'orifices de refroidissement 32 (illustrés sur les figures 2 et 3). Ces orifices 32, qui assurent un refroidissement des parois 16, 18 par multiperforation, sont répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres. Ces rangées 10 d'orifices de multiperforation couvrent toute la surface des parois annulaires de la chambre à l'exception de zones particulières objets de l'invention précisément délimitées et comprises entre la ligne 28A, 30A formant un axe de transition amont et un axe de transition aval décalé axialement vers l'aval par rapport à cet axe amont et soit sensiblement en 15 avant des trous de dilution (pour l'axe aval 28B) soit sensiblement en avant du plan de sortie de la chambre (pour l'axe aval 30B). Le nombre et le diamètre dl des orifices de refroidissement 32 sont identiques dans chacune des rangées. Le pas pi entre deux orifices d'une même rangée est constant et peut être identique ou non pour 20 toutes les rangées. Par ailleurs, les rangées adjacentes d'orifices de refroidissement sont arrangées de façon à ce que les orifices 32 soient disposés en quinconce comme représenté sur la figure 2. Comme illustré sur la figure 3, les orifices de refroidissement 32 présentent généralement un angle d'inclinaison 01 par rapport à une 25 normale N à la paroi annulaire 16, 18 au travers de laquelle ils sont percés. Cette inclinaison 01 permet à l'air empruntant ces orifices de former un film d'air le long du côté chaud 16b, 18b de la paroi annulaire. Par rapport à des orifices non inclinés, elle permet d'augmenter la surface de la paroi annulaire qui est refroidie. En outre, l'inclinaison 01 des orifices 30 de refroidissement 32 est dirigée de sorte que le film d'air ainsi formé s'écoule dans le sens d'écoulement des gaz de combustion à l'intérieur de la chambre (schématisé par la flèche D). A titre d'exemple, pour une paroi annulaire 16, 18 réalisée en matériau métallique ou céramique et ayant une épaisseur comprise entre 35 0,6 et 3,5mm, le diamètre dl des orifices de refroidissement 32 peut être compris entre 0,3 et 1 mm, le pas dl compris entre 1 et 10 mm et leur inclinaison 01 comprise entre +30° et +70°, typiquement +60°. A titre de comparaison, pour une paroi annulaire ayant les mêmes caractéristiques, les trous primaires 28 et les trous de dilution 30 possèdent un diamètre de l'ordre de 4 à 20 mm.
Selon l'invention, chaque paroi annulaire 16, 18 de la chambre de combustion comporte, disposés directement en aval des trous primaires 28 et de dilution 30 et répartis selon plusieurs rangées circonférentielles, typiquement au moins 5 rangées, depuis l'axe de transition amont 28A, 30A et jusqu'à l'axe de transition aval 28B, 30B, une pluralité d'orifices additionnels de refroidissement 34. Toutefois, au contraire des orifices de refroidissement précédents qui délivrent un film d'air s'écoulant dans la direction axiale D, le film d'air délivré par ces orifices additionnels s'écoule dans une direction perpendiculaire du fait de leur disposition dans un plan perpendiculaire à cette direction axiale D d'écoulement des gaz de combustion. Cette multiperforation réalisée perpendiculairement à l'axe de la turbomachine (dans la suite de la description, on parlera de multiperforation giratoire par opposition à la multiperforation axiale des orifices de refroidissement) permet de rapprocher les orifices additionnels des trous primaires ou de dilution et donc d'améliorer l'efficacité du mélange air/carburant. Les orifices additionnels 34 d'une même rangée présentent un même diamètre d2, de préférence identique au diamètre di des orifices de refroidissement 32, sont espacés d'un pas p2 constant qui peut être identique ou non au pas pi entre les orifices de refroidissement 32 et présentent une inclinaison 02, de préférence identique à l'inclinaison 01 des orifices de refroidissement 32 mais disposée dans un plan perpendiculaire. Toutefois, ces caractéristiques des orifices additionnels 34 peuvent, tout en restant dans les plages de valeurs définies précédemment, être sensiblement différentes de celles des orifices de refroidissement 32, c'est-à-dire que l'inclinaison 02 des orifices additionnels d'une même rangée par rapport à une normale N à la paroi annulaire 16, 18 peut être différente de celle 01 des orifices de refroidissement, et le diamètre d2 des orifices additionnels d'une même rangée peut être différent de celui dl des orifices de refroidissement 32.
Toutefois, selon le besoin de refroidissement souhaité, les orifices additionnels 34 derrière la rangée des trous primaires 28 peuvent en outre présenter avantageusement des caractéristiques en matière d'inclinaison, de diamètre ou de pas différentes de ceux disposés derrière la rangée des trous de dilution 30 et, plus particulièrement, au sein d'une même zone une différence du diamètre d2 et du pas p2 peut aussi être réalisée pour densifier ce refroidissement dans les parties les plus contraintes thermiquement, c'est-à-dire celles justes en aval des trous primaires et des gros orifices de dilution, lorsque ces derniers sont formés d'une alternance de gros et de petits orifices comme illustré à la figure 2. Entre la rangée des trous primaires et celle des trous de dilution, l'introduction de la multiperforation giratoire permet en limitant l'élévation du gradient thermique d'éviter la formation de criques en aval des trous primaires 28. La multiperforation en amont des trous de dilution 30 depuis l'axe de transition aval 28B restant de type axial, il est nécessaire de prévoir une zone de transition réalisée par exemple sur deux rangées dans laquelle les trous additionnels de refroidissement 34 sont chacun disposés dans un plan incliné l'un de 30° et l'autre de 60° par rapport à la direction axiale D, les autres paramètres, à savoir le diamètre d2, le pas p2 et l'inclinaison 02 de ces trous additionnels dans ces plans inclinés restant inchangés.
De même, en sortie de chambre, plus précisément à partir de l'axe de transition aval 30B (figure 2), l'introduction de la multiperforation axiale permet de combler le niveau local de giration afin de ne pas perdre le rendement TuHP de la chambre de combustion. De préférence, il est aussi conseillé de prévoir une zone de transition multiperforation giratoire- axiale permettant en lissant les écoulements de réduire le gradient thermique à l'origine d'amorçage de criques. Le profil de température moyen en sortie de chambre est amélioré du fait du mélange plus efficace ainsi obtenu. Cette zone de transition peut par exemple être réalisée sur deux rangées de trous additionnels de refroidissement chacun disposés dans un plan incliné l'un de 30° et l'autre de 60° par rapport à la direction axiale D, les autres paramètres, à savoir le diamètre d2, le pas p2 et l'inclinaison 02 des trous additionnels dans ces plans inclinés restant inchangés. Dans le cas d'une chambre de combustion à flux inversé, cette zone à partir de l'axe 30B peut ne pas exister ou être intégrée au coude de retour.
On notera que si la zone de transition a été décrite au niveau de la multiperforation giratoire, rien n'interdit toutefois de la réaliser au niveau de la multiperforation axiale ou encore à cheval avec une rangée de multiperforation axiale inclinée à 30° et une rangée de multiperforation giratoire inclinée à 60°. De même, cette zone de transition peut comporter plus de deux rangées, l'inclinaison des orifices étant alors répartie régulièrement entre 0° (multiperforation axiale) et 90° (multiperforation giratoire). Par exemple, avec trois rangées, l'inclinaison des orifices sera respectivement de 22,5°, 45° et 67,5°.
Avec l'invention, l'écoulement dans la zone primaire n'est pas modifié, la giration n'impactant pas l'orientation des jets de dilution et en s'affranchissement de la barrière thermique permet un gain de masse et donc de coût. On notera également que pour respecter le sens des écoulements dans le DHP et éviter les décollements aérodynamiques et ainsi conserver le rendement de la turbine haute pression, le sens du perçage de la multiperforation giratoire est figé par l'orientation des aubages du distributeur Haute Pression (DHP) en aval de la chambre de combustion.

Claims (11)

  1. REVENDICATIONS1. Paroi annulaire (16, 18) de chambre de combustion (10) de turbomachine, comportant un côté froid (16a, 18a) et un côté chaud (16b, 18b), ladite paroi annulaire comportant : . une pluralité de trous primaires (28) répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid (16a, 18a) de ladite paroi annulaire de pénétrer du côté chaud (16b, 18b) afin de créer un mélange air/carburant ; . une pluralité de trous de dilution (30) répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid (16a, 18a) de ladite paroi annulaire de pénétrer du côté chaud (16b, 18b) afin d'assurer la dilution du mélange air/carburant ; et . une pluralité d'orifices de refroidissement (32) pour permettre à l'air circulant du côté froid (16a, 18a) de ladite paroi annulaire de pénétrer du côté chaud (16b, 18b) afin de former un film d'air de refroidissement le long de ladite paroi annulaire, lesdits orifices de refroidissement étant répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres et les axes géométriques de chacun desdits orifices de refroidissement étant inclinés, dans une direction axiale D d'écoulement des gaz de combustion, d'un angle d'inclinaison 01 par rapport à une normale N à ladite paroi annulaire ; caractérisée en ce qu'elle comporte en outre une pluralité d'orifices additionnels de refroidissement (34) disposés d'une part directement en aval desdits trous primaires et d'autre part directement en aval desdits trous de dilution et répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres, les axes géométriques de chacun desdits orifices additionnels de refroidissement étant disposés dans un plan perpendiculaire à ladite direction axiale D et inclinés d'un angle d'inclinaison 02 par rapport à une normale N à ladite paroi annulaire.
  2. 2. Paroi selon la revendication 1, caractérisée en ce que ladite inclinaison 02 desdits orifices additionnels par rapport à la normale N à ladite paroi annulaire est identique à celle 01 desdits orifices de refroidissement.
  3. 3. Paroi selon la revendication 1 ou la revendication 2, caractérisée en ce qu'un diamètre d2 desdits orifices additionnels est identique à un diamètre dl desdits orifices de refroidissement et un pas p2 desdits orifices additionnels est identique à un pas pl desdits orifices de refroidissement.
  4. 4. Paroi selon la revendication 1, caractérisée en ce que lesdits orifices additionnels présentent une densification plus importante juste en aval des trous primaires et des trous de dilution.
  5. 5. Paroi selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle comporte en outre au niveau d'une zone de transition (28B, 30B) formée en aval de ladite pluralité de rangées d'orifices additionnels, au moins deux rangées d'orifices dont les axes géométriques de chacun desdits orifices sont inclinés, par rapport à un plan perpendiculaire à ladite direction axiale D, d'une inclinaison déterminée différente pour chacune desdites deux rangées.
  6. 6. Paroi selon la revendication 5, caractérisée en ce qu'elle comporte deux 20 rangées d'orifices et lesdites inclinaisons sont de 30° et 60° respectivement.
  7. 7. Paroi selon la revendication 6, caractérisée en ce que lesdites deux rangées d'orifices sont deux rangées d'orifices additionnels disposées 25 immédiatement en amont d'une rangée d'orifices de refroidissement, deux rangées d'orifices de refroidissement disposées immédiatement en aval d'une rangée d'orifices additionnels, ou encore une rangée d'orifices additionnels et une rangée d'orifices de refroidissement adjacente. 30
  8. 8. Paroi selon la revendication 5, caractérisée en ce qu'elle comporte plusieurs rangées d'orifices et lesdites inclinaisons sont réparties régulièrement entre 0° et 90°.
  9. 9. Paroi selon l'une quelconque des revendications 1 à 8, caractérisée en 35 ce que le sens d'inclinaison desdits orifices additionnels est contraint par lesens d'écoulement du mélange air/carburant en aval de ladite chambre de combustion.
  10. 10. Chambre de combustion (10) de turbomachine, comportant au moins une paroi annulaire (16, 18) selon l'une quelconque des revendications 1 à 9.
  11. 11. Turbomachine comportant une chambre de combustion (10) ayant au moins une paroi annulaire (16, 18) selon l'une quelconque des revendications 1 à 9.
FR1159704A 2011-10-26 2011-10-26 Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution Active FR2982008B1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
FR1159704A FR2982008B1 (fr) 2011-10-26 2011-10-26 Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution
PCT/FR2012/052446 WO2013060987A2 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution
EP17175880.8A EP3267111B1 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amelioré au niveau des trous primaires et/ou de dilution
EP12790620.4A EP2771618B8 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution
CA2852393A CA2852393C (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et/ou de dilution
CN201280052210.4A CN103958970B (zh) 2011-10-26 2012-10-25 涡轮机燃烧室的环形壁
RU2014121037/06A RU2575490C2 (ru) 2011-10-26 2012-10-25 Кольцевая стенка сгорания с улучшенным охлаждением на уровне первичных отверстий и/или отверстий разбавления
IN3138DEN2014 IN2014DN03138A (fr) 2011-10-26 2012-10-25
JP2014537695A JP6177785B2 (ja) 2011-10-26 2012-10-25 一次孔および/または希釈孔のレベルで冷却を改善した燃焼室の環状壁
US14/352,946 US10551064B2 (en) 2011-10-26 2012-10-25 Annular wall of a combustion chamber with improved cooling at the level of primary and/or dilution holes
BR112014010215A BR112014010215A8 (pt) 2011-10-26 2012-10-25 parede anular de câmara de combustão com resfriamento melhorado no nível dos orifícios primários e/ou de diluição
CN2012205521196U CN203147824U (zh) 2011-10-26 2012-10-25 涡轮发动机燃烧室的环形壁,涡轮发动机的燃烧室及涡轮发动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1159704A FR2982008B1 (fr) 2011-10-26 2011-10-26 Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution

Publications (2)

Publication Number Publication Date
FR2982008A1 true FR2982008A1 (fr) 2013-05-03
FR2982008B1 FR2982008B1 (fr) 2013-12-13

Family

ID=47221481

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1159704A Active FR2982008B1 (fr) 2011-10-26 2011-10-26 Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution

Country Status (9)

Country Link
US (1) US10551064B2 (fr)
EP (2) EP2771618B8 (fr)
JP (1) JP6177785B2 (fr)
CN (2) CN203147824U (fr)
BR (1) BR112014010215A8 (fr)
CA (1) CA2852393C (fr)
FR (1) FR2982008B1 (fr)
IN (1) IN2014DN03138A (fr)
WO (1) WO2013060987A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193589A1 (fr) 2015-06-03 2016-12-08 Safran Aircraft Engines Paroi annulaire de chambre de combustion a refroidissement optimise
FR3098569A1 (fr) 2019-07-10 2021-01-15 Safran Aircraft Engines Paroi annulaire pour chambre de combustion de turbomachine comprenant des trous primaires, des trous de dilution et des orifices de refroidissement inclines

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982008B1 (fr) * 2011-10-26 2013-12-13 Snecma Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution
FR3019270B1 (fr) * 2014-03-31 2016-04-15 Snecma Paroi annulaire de chambre de combustion a orifices de refroidissement ameliores au niveau des jonctions brides
CN104791848A (zh) * 2014-11-25 2015-07-22 西北工业大学 一种采用叶栅通道多斜孔冷却方式的燃烧室火焰筒壁面
US20160258623A1 (en) * 2015-03-05 2016-09-08 United Technologies Corporation Combustor and heat shield configurations for a gas turbine engine
US10520193B2 (en) 2015-10-28 2019-12-31 General Electric Company Cooling patch for hot gas path components
US10041677B2 (en) * 2015-12-17 2018-08-07 General Electric Company Combustion liner for use in a combustor assembly and method of manufacturing
JP6026028B1 (ja) * 2016-03-10 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法
US10520194B2 (en) 2016-03-25 2019-12-31 General Electric Company Radially stacked fuel injection module for a segmented annular combustion system
US11428413B2 (en) 2016-03-25 2022-08-30 General Electric Company Fuel injection module for segmented annular combustion system
US10584876B2 (en) 2016-03-25 2020-03-10 General Electric Company Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system
US10830442B2 (en) 2016-03-25 2020-11-10 General Electric Company Segmented annular combustion system with dual fuel capability
US10641491B2 (en) 2016-03-25 2020-05-05 General Electric Company Cooling of integrated combustor nozzle of segmented annular combustion system
US10605459B2 (en) 2016-03-25 2020-03-31 General Electric Company Integrated combustor nozzle for a segmented annular combustion system
US10584880B2 (en) 2016-03-25 2020-03-10 General Electric Company Mounting of integrated combustor nozzles in a segmented annular combustion system
US10655541B2 (en) 2016-03-25 2020-05-19 General Electric Company Segmented annular combustion system
US10563869B2 (en) 2016-03-25 2020-02-18 General Electric Company Operation and turndown of a segmented annular combustion system
US10337738B2 (en) * 2016-06-22 2019-07-02 General Electric Company Combustor assembly for a turbine engine
CN106247402B (zh) * 2016-08-12 2019-04-23 中国航空工业集团公司沈阳发动机设计研究所 一种火焰筒
US10690350B2 (en) 2016-11-28 2020-06-23 General Electric Company Combustor with axially staged fuel injection
US11156362B2 (en) 2016-11-28 2021-10-26 General Electric Company Combustor with axially staged fuel injection
US10753283B2 (en) * 2017-03-20 2020-08-25 Pratt & Whitney Canada Corp. Combustor heat shield cooling hole arrangement
US10816202B2 (en) * 2017-11-28 2020-10-27 General Electric Company Combustor liner for a gas turbine engine and an associated method thereof
US10890327B2 (en) 2018-02-14 2021-01-12 General Electric Company Liner of a gas turbine engine combustor including dilution holes with airflow features
US11255543B2 (en) 2018-08-07 2022-02-22 General Electric Company Dilution structure for gas turbine engine combustor
US11029027B2 (en) 2018-10-03 2021-06-08 Raytheon Technologies Corporation Dilution/effusion hole pattern for thick combustor panels
FR3090746B1 (fr) * 2018-12-20 2021-06-11 Safran Aircraft Engines Tuyere de post combustion comportant une chemise a perforation obliques
US20210222879A1 (en) * 2020-01-17 2021-07-22 United Technologies Corporation Convection cooling at low effusion density region of combustor panel
US11994292B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus for turbomachine
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
CN112607040A (zh) * 2020-12-31 2021-04-06 西北工业大学 一种用以飞行器高温部件的壁面交错斜孔射流冷却技术
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084219A1 (en) * 2005-10-18 2007-04-19 Snecma Performance of a combustion chamber by multiple wall perforations
US20090084110A1 (en) * 2007-09-28 2009-04-02 Honeywell International, Inc. Combustor systems with liners having improved cooling hole patterns
US20110023495A1 (en) * 2009-07-30 2011-02-03 Honeywell International Inc. Effusion cooled dual wall gas turbine combustors

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923371A (en) * 1988-04-01 1990-05-08 General Electric Company Wall having cooling passage
GB2221979B (en) * 1988-08-17 1992-03-25 Rolls Royce Plc A combustion chamber for a gas turbine engine
US5241827A (en) * 1991-05-03 1993-09-07 General Electric Company Multi-hole film cooled combuster linear with differential cooling
US5261223A (en) * 1992-10-07 1993-11-16 General Electric Company Multi-hole film cooled combustor liner with rectangular film restarting holes
US5289686A (en) * 1992-11-12 1994-03-01 General Motors Corporation Low nox gas turbine combustor liner with elliptical apertures for air swirling
US6145319A (en) * 1998-07-16 2000-11-14 General Electric Company Transitional multihole combustion liner
US6205789B1 (en) * 1998-11-13 2001-03-27 General Electric Company Multi-hole film cooled combuster liner
US6408629B1 (en) * 2000-10-03 2002-06-25 General Electric Company Combustor liner having preferentially angled cooling holes
US6513331B1 (en) * 2001-08-21 2003-02-04 General Electric Company Preferential multihole combustor liner
US6568187B1 (en) * 2001-12-10 2003-05-27 Power Systems Mfg, Llc Effusion cooled transition duct
JP2004257335A (ja) * 2003-02-27 2004-09-16 Kawasaki Heavy Ind Ltd ポーラス金属を用いたガスタービン部品及びその製造方法
US7216485B2 (en) * 2004-09-03 2007-05-15 General Electric Company Adjusting airflow in turbine component by depositing overlay metallic coating
US7614235B2 (en) * 2005-03-01 2009-11-10 United Technologies Corporation Combustor cooling hole pattern
US7546737B2 (en) * 2006-01-24 2009-06-16 Honeywell International Inc. Segmented effusion cooled gas turbine engine combustor
US7669422B2 (en) * 2006-07-26 2010-03-02 General Electric Company Combustor liner and method of fabricating same
US8522557B2 (en) * 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component
US8104288B2 (en) * 2008-09-25 2012-01-31 Honeywell International Inc. Effusion cooling techniques for combustors in engine assemblies
FR2982008B1 (fr) * 2011-10-26 2013-12-13 Snecma Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084219A1 (en) * 2005-10-18 2007-04-19 Snecma Performance of a combustion chamber by multiple wall perforations
US20090084110A1 (en) * 2007-09-28 2009-04-02 Honeywell International, Inc. Combustor systems with liners having improved cooling hole patterns
US20110023495A1 (en) * 2009-07-30 2011-02-03 Honeywell International Inc. Effusion cooled dual wall gas turbine combustors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193589A1 (fr) 2015-06-03 2016-12-08 Safran Aircraft Engines Paroi annulaire de chambre de combustion a refroidissement optimise
FR3098569A1 (fr) 2019-07-10 2021-01-15 Safran Aircraft Engines Paroi annulaire pour chambre de combustion de turbomachine comprenant des trous primaires, des trous de dilution et des orifices de refroidissement inclines

Also Published As

Publication number Publication date
JP6177785B2 (ja) 2017-08-09
EP2771618B1 (fr) 2017-06-14
JP2014531015A (ja) 2014-11-20
EP2771618B8 (fr) 2017-08-16
CN203147824U (zh) 2013-08-21
CA2852393A1 (fr) 2013-05-02
US10551064B2 (en) 2020-02-04
CA2852393C (fr) 2020-08-04
BR112014010215A8 (pt) 2017-06-20
WO2013060987A2 (fr) 2013-05-02
WO2013060987A3 (fr) 2014-02-20
EP3267111B1 (fr) 2022-02-16
US20140260257A1 (en) 2014-09-18
EP3267111A3 (fr) 2018-02-28
IN2014DN03138A (fr) 2015-05-22
EP3267111A2 (fr) 2018-01-10
EP2771618A2 (fr) 2014-09-03
CN103958970A (zh) 2014-07-30
BR112014010215A2 (pt) 2017-06-13
RU2014121037A (ru) 2015-12-10
CN103958970B (zh) 2016-08-24
FR2982008B1 (fr) 2013-12-13

Similar Documents

Publication Publication Date Title
EP2771618B1 (fr) Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution
EP3303774B1 (fr) Paroi annulaire de chambre de combustion a refroidissement optimise
EP1777458B1 (fr) Amélioration des performances d'une chambre de combustion par multiperforation des parois
CA2639980C (fr) Chambre de combustion d'une turbomachine
CA2782661C (fr) Chambre de combustion pour turbomachine
EP0248731A1 (fr) Chambre de combustion pour turbomachines à orifices de mélange assurant le positionnement de la paroi chaude sur la paroi froide
FR2928995A1 (fr) Dispositif de combustion de moteur a turbine, moteur a turbine et procede de refroidissement de region de transition
FR2865525A1 (fr) Methode de formation d'une zone de passage pour l'alimentation en carburant dans la tubulure d'un injecteur pour turbine d'un reacteur
FR2996289A1 (fr) Chambre de combustion comprenant un tube a flamme fixe au moyen de trois elements de centrage.
FR2982009A1 (fr) Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et/ou de dilution
FR3021351B1 (fr) Paroi de turbomachine comportant une partie au moins d'orifices de refroidissement obtures
FR3019270A1 (fr) Paroi annulaire de chambre de combustion a orifices de refroidissement ameliores au niveau des jonctions brides
WO2013030492A1 (fr) Paroi de chambre de combustion
FR3072448B1 (fr) Chambre de combustion de turbomachine
FR3064050A1 (fr) Chambre de combustion d'une turbomachine
FR3015010A1 (fr) Paroi annulaire pour chambre de combustion de turbomachine comprenant des orifices de refroidissement a effet contra-rotatif
EP1491752B1 (fr) Canaux de ventilation sur tôle de confluence d'une chambre de post-combustion
WO2013045802A1 (fr) Chambre de combustion de turbomachine
FR3061948A1 (fr) Chambre de combustion de turbomachine a haute permeabilite
FR3081974A1 (fr) Chambre de combustion d'une turbomachine
FR2999277A1 (fr) Paroi annulaire de chambre de combustion en aval d'un compresseur centrifuge
FR3098569A1 (fr) Paroi annulaire pour chambre de combustion de turbomachine comprenant des trous primaires, des trous de dilution et des orifices de refroidissement inclines
FR3026469A1 (fr) Paroi annulaire de chambre de combustion a alimentation d'air regule localement
FR3101915A1 (fr) Anneau de turbine de turbomachine comprenant des conduites internes de refroidissement
FR3090746A1 (fr) Tuyere de post combustion comportant une chemise a perforation obliques

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

CD Change of name or company name

Owner name: SAFRAN HELICOPTER ENGINES, FR

Effective date: 20170727

Owner name: SNECMA, FR

Effective date: 20170727

PLFP Fee payment

Year of fee payment: 7

CD Change of name or company name

Owner name: SNECMA, FR

Effective date: 20170713

Owner name: SAFRAN HELICOPTER ENGINES, FR

Effective date: 20170713

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13