EP0248731A1 - Chambre de combustion pour turbomachines à orifices de mélange assurant le positionnement de la paroi chaude sur la paroi froide - Google Patents

Chambre de combustion pour turbomachines à orifices de mélange assurant le positionnement de la paroi chaude sur la paroi froide Download PDF

Info

Publication number
EP0248731A1
EP0248731A1 EP87401235A EP87401235A EP0248731A1 EP 0248731 A1 EP0248731 A1 EP 0248731A1 EP 87401235 A EP87401235 A EP 87401235A EP 87401235 A EP87401235 A EP 87401235A EP 0248731 A1 EP0248731 A1 EP 0248731A1
Authority
EP
European Patent Office
Prior art keywords
wall
hot
cold
combustion chamber
orifices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87401235A
Other languages
German (de)
English (en)
Other versions
EP0248731B1 (fr
Inventor
Gérard Yves Georges Barbier
Gérard Joseph Pascal Bayle-Laboure
Michel André Albert Desaulty
François Duchene
Pascal Maurice Trouillot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0248731A1 publication Critical patent/EP0248731A1/fr
Application granted granted Critical
Publication of EP0248731B1 publication Critical patent/EP0248731B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/045Air inlet arrangements using pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the present invention relates to combustion chambers and more particularly to double-walled chambers, in particular for turbomachines comprising at least one outer wall, known as a cold wall, formed of several mechanically welded ferrules and intended to ensure the mechanical rigidity of the combustion chamber. , and comprising at least one interior wall, known as the hot wall intended to ensure the thermal resistance of the chamber, formed of several successive ferrules assembled together and on the cold wall so as to leave free between the two walls a cooling space allowing a expansion of the hot wall; the chamber also comprising mixing orifices passing through the two walls to allow the introduction of primary combustion and dilution air inside the chamber.
  • Cooling uses the thermal shield effect provided by secondary air inlets creating along the internal surface of the wall a parietal layer avoiding direct contact between the wall and combustion gases. This layer which dilutes as it travels from upstream to downstream must be renewed by means of air inlets successively distributed in the length of the chamber.
  • US Pat. No. 4,303,941 provides an interior wall, of which stepped hot rings are fixed with radial clearance by screws on the cold wall, while tongues integral with the external face of the hot rings ensure the guiding of the convection air and limit the radial clearance.
  • these tabs useful for channeling the convection air, create significant wakes in the parietal film formed at the outlet of the hot shell, which disturbs the effectiveness of this film.
  • the dilution air inlet orifices placed directly at the outlet of the film also disturb the latter.
  • Patent FR 2 023 415 provides a combustion chamber with double walls, the internal rings of the hot wall being stepped and fixed by their upstream edge, while the downstream comprises pads for limiting the expansion play of the ring.
  • One annoyance presented by this type of chamber which uses the principle of cooling by co-current convection and by parietal film is to present a film thickness which is not completely controlled as a function of the expansion of the hot wall.
  • Another drawback lies in the fact that, as in the previous device, the downstream clearance limitation pads introduce wakes in the parietal film, wakes detrimental to the regularity and efficiency of the latter.
  • Patent FR 2 422 035 for its part, provides for limiting the disturbance of the parietal film, caused by the dilution air inlet holes by leaving a free space between the hot shell and the tubular dilution hole and by having a downstream lip at the inner end of the dilution tube in order to restore downstream the film which had been interrupted by the obstacle constituted by the tube.
  • the object of the present invention is to produce a double-walled combustion chamber which allows better coupling of impact, multi-perforation, convection and film cooling and a significant reduction in the flow rates allocated to cooling.
  • Another important object of the invention is to best control the formation and optimization of the shape of the parietal cooling films by controlling the respective positioning of the upstream part of each hot shell and of the downstream tongue of the previous hot shell. , depending on the expansion of the hot ferrules during the operation of the combustion chamber.
  • the invention aims to simplify the fixing of the ferrules of the hot wall by allowing their floating fixing on the cold wall by means of a particular type of mixing orifices.
  • the invention therefore relates to a double-walled combustion chamber, as defined above and such that the mixing orifices are of the hole-nozzle type comprising a first cylindrical element comprising in combination successively from the outside to the inside from the chamber a flare flared outwards in quarter-round, the flange internally forming an air inlet nozzle and externally comprising a shoulder by which it can rest on the external face of the cold wall without being integral therewith , a first outer cylindrical bearing coming to be housed in a circular recess of the cold wall and a second circular bearing on which is concentrically mounted a second ring-shaped element comprising a collar and a tubular bearing arranged inside one. recess in the hot wall, against which the tubular seat is folded back on the fallen edge and such that the ring is welded to the second cylindrical seat of the prem ier element forming a nozzle.
  • the mixing orifices are of the hole-nozzle type comprising a first cylindrical element comprising in combination successively from the outside to the inside from the
  • the first cylindrical bearing surface of the element of the mixing orifice forming hole-nozzle has a length greater than the thickness of the hot wall so that the mixing orifice, integral with the hot wall, or mounted floating on the cold wall of the combustion chamber.
  • each ferrule constituting the hot wall has at its downstream a curved flange allowing its downstream attachment in an annular groove of the cold wall and each of said ferrules is mounted floating upstream relative to the hot wall by means of the only mixing orifices constituting, in addition to their air inlet function, means for radial and axial positioning of the ferrules of the hot wall on the cold wall and means for controlling the expansion clearance of the hot wall.
  • the wall structure can be organized so that the upstream edge of each ferrule of the hot wall cooperates with a tongue downstream of the ferrule located immediately upstream to form the cooling film and that the slit height of the cooling films is controlled during operation by the positioning of said ferrule by means of its mixing orifices and by the inclination of the downstream tongue of the ferrule located immediately upstream, due to the positioning of said upstream ferrule by its own mixing orifices.
  • a low pressure compressor 1 compresses the air drawn at the engine inlet; the flow leaving the low pressure compressor is separated into a primary flow and a secondary flow, the primary flow is compressed again by a high pressure compressor 2 before being mixed with pressurized fuel in an annular combustion chamber 3 such than that of the invention where the mixture is burned to provide combustion energy to the engine.
  • the gases from chamber 3 drive a turbine 4 which, itself drives compressors 1 and 2.
  • the gases are accelerated.
  • the hot flow is then mixed with the cold flow, which at the outlet of the low pressure compressor has flowed into an annular stream formed by the intermediate casing 5 surrounding the hot flow and the external casing 6 of the engine.
  • the gases are then ejected, either dry, or by undergoing a reheating in a post-combustion device 7.
  • FIG. 2 shows in longitudinal section the detail A of FIG. 1.
  • the combustion chamber 3 is an annular double-walled chamber formed by a double internal wall 8, that is to say the one closest to the axis of symmetry of the engine and a double external wall 9 most radially distant from the axis of symmetry of the engine.
  • Each of these double walls 8 and 9 includes an inner wall to the chamber, subjected to combustion gases and called hot wall or hot skin and an outer wall subjected to the flow of primary air cooler than the combustion gases.
  • the cold walls, internal and external, of the chamber are each formed by four ferrules (respectively from upstream to downstream 10, 11, 12, 13; 110, 111, 112, 113) welded together by means of parts massive machined annulars (respectively 14, 15, 16; 114, 115, 116) serving for the attachment of the hot walls and, as regards the piece 114 for the formation of a parietal cooling film.
  • the ferrule 21 has downstream a groove 23 allowing its attachment to a flange 24 of the film 15 of the cold wall while the ferrule 22 has two flanges 25 and 26 which are hung one, 25, on an annular groove of the part machined 16 from the cold wall and the other 26 downstream in a second groove 27 downstream from the internal cold wall.
  • the ferrules 121 and 122 are similarly hung downstream by flanges 123, 125 and 126 in annular grooves of the machined parts 115, 116 and of the downstream 127 of the external wall.
  • the ferrules 21, 22, 121, 122 have their upstream surfaces mounted floating and are positioned on the cold walls only by the mixing orifices 29, 30 intended for supplying combustion air to the primary zone and the zone of dilution.
  • Each mixing orifice 29 or 30 comprises a first cylindrical element 31 having a central bore 32 flared in quarter round 33 towards the outside and forming the mixing air inlet hole-nozzle.
  • the flange formed by the flared part delimits a shoulder 34 which can be supported on the external face of the cold wall 11 or 12, 111 or 112 while the first external cylindrical bearing 35 penetrates inside two aligned circular recesses 36 , 37 cold and hot skin.
  • a second cylindrical bearing surface 38 of smaller diameter extends the first bearing surface 35.
  • a ring 39 comprising a collar 40 and a tubular bearing surface 41 passing through the orifice 37.
  • the collar 40 is disposed between the hot and cold skins resting against the end of the bearing surface 35, while the end 42 of the bearing surface 41 is folded back on the fallen edge onto the hot skin 21, 22 or 121, 122 once the latter has been assembled.
  • the ring 39 is secured to the nozzle hole 31 by a weld bead deposited between the fallen edge 42 and the seat 38.
  • the thickness of the collar 40 determines the minimum interval between the hot and cold skins while the length of the staff 35 added to the thickness of the collar determines the maximum interval.
  • the cold interval hF between walls is fixed by the thickness of the collar and the hot wall by its expansion during operation tends to deviate from the cold wall and it is then the cumulative height of the staff 3 . 5 and the collar 40 which fixes the maximum expansion interval hC when hot.
  • the desired height when cold h F can be fixed between the hot and cold skin of the internal wall and the maximum limit of expansion of the hot skin as well as for the external wall, the minimum distance between walls can be set at the desired hC value when hot.
  • the cooling of the walls of the combustion chamber is achieved by combining a convection flow external to the cold walls, by multi-perforations of the cold walls 10, 11, 12, 13, 110, 111, 112, 113; by convection against the current between cold skins (resp. 11, 12, 13, 111, 112, 113) and hot skins (resp. 21, 22, 121, 122) and by parietal film along the hot ferrules 21 , 22, 121, 122.
  • the machined parts 19, 114 of the primary ferrules have downstream tongues 44, 45 which cooperate with the upstream edge of the ferrules 21 and 121 to form the parietal film for cooling the primary ferrules.
  • the downstream edge of the primary hot shrouds 21, 121 has tongues 46, 47 which cooperate with the upstream edge of the hot dilution shrouds in order to produce the cooling film for said hot dilution shrouds.
  • the radial positioning of the hot ferrules on the cold walls by the mixing orifices 29.30 allows optimum cooling efficiency by the parietal films to be obtained because it allows the shape of the flow-speed cavity to be controlled as well that the slit height of the film, this being able to be better controlled as the thickness of the downstream tabs 44, 45, 46, 47, produced in massive parts, can be calculated so that the low expansion of the tongue does not change substantially the slit height of the film.
  • the fixing of the hot ferrules on the cold walls by the mixing orifices also makes it possible to ensure the circumferential homogeneity of the flow by avoiding the wake phenomena, known in the prior devices and which were due to the bridges for limiting expansion.
  • the method of mounting hot skins on cold skins makes it possible to achieve a better compromise between the various cooling modes used while allowing the production of a double-walled chamber of low weight and technology simple and easy to assemble (or disassemble), which makes its application particularly useful in turbojets for which high performance and high reliability are sought.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Spray-Type Burners (AREA)

Abstract

Chambre de combustion à double paroi pourturbomach- ines comportant au moins une paroi extérieure dite paroi froide, et une paroi intérieure dite paroi chaude délimitant entre elles un espace de refroidissement.Les orifices (29) d'introduction d'air de combustion et de dilution sont du type trou-tuyère comportant un premier élément cylindrique (31) comprenant une collerette (33) évasée formant tuyère, un épaulement (34) et des portées (35-38) et un second élément cylindrique (39) et une portée tubulaire (41)Cette disposition permet les dilatations relatives des deux parois en définissant entre elles l'intervalle minimal et l'intervalle maximal.

Description

  • La présente invention concerne les chambres de combustion et plus particulièreement les chambres à double paroi, notamment pour turbomachines comprenant au moins une paroi extérieure, dite paroi froide, formée de plusieurs viroles mécano-soudées et destinée à assurer la rigidité mécanique de la chambre de combustion, et comprenant au moins une paroi intérieure, dite paroi chaude destinée à assurer la tenue thermique de la chambre, formée de plusieurs viroles successives assemblées entre elles et sur la paroi froide de façon à laisser libre entre les deux parois un espace de refroidissement permettant un jeu de dilatation de la paroi chaude ; la chambre comprenant également des orifices de mélange traversant les deux parois pour permettre l'introduction d'air de combustion primaire et de dilution à l'intérieur de la chambre.
  • Ce type de chambres de combustion est de plus en plus employé dans les turboréacteurs actuels car leurs taux de compression tendent à s'accroître de jour en jour de même que la température d'entrée de turbine du moteur. En effet, la puissance développé par un moteur est directement liée à la température d'entrée turbine et pour augmenter la puissance, les constructeurs atteignent de nos jours des températures devant turbines qui avoisinent, voire dépassent 1800° K. D'autre part, la consommation spécifique d'un moteur, très élevée à ces températures de travail, décroit lorsque le taux de compression du moteur augmente et pour ne pas obérer ce paramètre, les moteurs actuels voient donc leur taux de compression augmenter. Ces différentes considérations ont amené à créer des chambres de combustion à double paroi de façon à améliorer la protection thermique des parois de la chambre afin d'augmenter la longivité des chambres.
  • Un exemple en est donné dans le brevet FR 2 340 453 au nom de la demanderesse.
  • Diverses techniques de refroidissement sont employées en plus du simple refroidissement par convection externe.
  • Le refroidissement, dit par "film cooling" ou film pariétal, utilise l'effet d'écran thermique fourni par des entrées d'air secondaire créant le long de la surface interne de la paroi une couche pariétale évitant le contact direct entre la paroi et les gaz de combustion. Cette couche qui se dilue au fur et à mesure de son parcours d'amont en aval doit être renouvelée au moyen d'entrées d'air successivement distribuées dans la longueur de la chambre.
  • On utilise également le principe du refroidissement par convection entre les deux parois de la chambre soit à co-courant, soit à contre-courant. Dans ce cas le même flux d'air peut servir à refroidir la face externe de la paroi chaude, par convection, puis être utilisé pour former un film pariétal qui refroidira sa face interne. Toutefois, cette disposition exige des débits d'air très importants si l'on désire obtenir des effets de convection notables.
  • Ces types de refroidissement sont néanmoins utilisés mais amènent un certain nombre d'inconvénients. Certains sont liés à la structure même des doubles parois car la paroi chaude doit pouvoir supporter des dilatations notables lors du fonctionnement de la chambre et cela exige de la monter avec jeu par rapport à la paroi froide.
  • Ainsi le brevet US 4 303 941 prévoit une paroi intérieure dont des viroles chaudes étagées sont fixées avec jeu radial par des vis sur la paroi froide tandis que des languettes solidaires de la face externe des viroles chaudes assurent le guidage de l'air de convection et limitent le jeu radial. Toutefois, ces languettes, utiles pour canaliser l'air de convection créent des sillages importants dans le film pariétal formé en sortie de la virole chaude, ce qui perturbe l'efficacité de ce film. D'autre part les orifices d'entrée d'air de dilution, placés directement en sortie du film perturbent également celui-ci.
  • Le brevet FR 2 023 415 prévoit une chambre de combustion à doubles parois, les viroles internes de la paroi chaude étant étagées et fixées par leur bord amont, tandis que l'aval comprend des patins de limitation du jeu de dilatation de la virole. Un ennui présenté par ce type de chambre qui utilise le principe du refroidissement par convection à co-courant et par film pariétal est de présenter une épaisseur de film qui n'est pas totalement maitrisée en fonction de la dilatation de la paroi chaude. Un autre inconvénient réside dans le fait que, comme dans le dispositif précédent, les patins aval de limitation de jeu introduisent des sillages dans le film pariétal, sillages nuisibles à la régularité et à l'efficacité de celui-ci.
  • Le brevet FR 2 422 035, quant à lui, prévoit de limiter la perturbation du film pariétal, causée par les orifices d'entrée d'air de dilution en laissant un espace libre entre la virole chaude et l'orifice tubulaire de dilution et en disposant une lèvre aval à l'extrémité intérieure du tube de dilution afin de rétablir en aval le film qui avait été interrompu par l'obstacle constitué par le tube.
  • La présente invention a pour but de réaliser une chambre de combustion à double parois qui permet un meilleur couplage des refroidissements par impact, multiperforations, convection et par film et une réduction importante des débits alloués au refroidissement.
  • Elle a également pour but de réaliser une chambre de combustion à double paroi de construction simple permettant de limiter le surplus de masse engendré par une technologie à double paroi, de permettre la démontabilité des viroles de la paroi chaude et de séparer les fonctions de tenue thermique et mécanique.
  • Un autre but important de l'invention est de contrôler au mieux la formation et l'optimisation de la forme des films pariétaux de refroidissement en pilotant le positionnement respectif de la partie amont de chaque virole chaude et de la languette aval de la virole chaude précédente, en fonction de la dilatation des viroles chaudes lors du fonctionnement de la chambre de combustion.
  • Enfin l'invention a pour but de simplifier la fixation des viroles de la paroi chaude en permettant leur fixation flottante sur la paroi froide au moyen d'un type particulier d'orifices de mélange.
  • L'invention a donc pour objet une chambre de combustion à double paroi, telle que définie plus haut et telle que les orifices de mélange sont du type trou-tuyère comportant un premier élément cylindrique comprenant en combinaison successivement de l'extérieur vers l'intérieur de la chambre une collerette évasée vers l'extérieur en quart de rond, la collerette formant intérieurement tuyère d'entrée d'air et comprenant extérieurement un épaulement par lequel elle peut s'appuyer sur la face externe de la paroi froide sans y être solidarisée, une première portée cylindrique extérieure venant se loger dans un évidement circulaire de la paroi froide et une seconde portée circulaire sur laquelle est monté concentriquement un second élément en forme de bague comportant un collet et une portée tubulaire disposée à l'intérieur d'un.évidement de la paroi chaude, contre laquelle la portée tubulaire est repliée en bord tombé et telle que la bague est soudée sur la seconde portée cylindrique du premier élément formant tuyère.
  • Selon une particularité de l'invention, la première portée cylindrique de l'élément de l'orifice de mélange formant trou-tuyère a une longueur supérieure à l'épaisseur de la paroi chaude de telle sorte que l'orifice de mélange, solidaire de la paroi chaude, soit monté flottant sur la paroi froide dé la chambre de combustion.
  • Selon une autre particularité de l'invention, chaque virole constituant la paroi chaude comporte à son aval une bride recourbée permettant son accrochage aval dans une rainure annulaire de la paroi froide et chacune des dites viroles est montée flottante en amont par rapport à la paroi chaude au moyen des seuls orifices de mélange constituant, outre leur fonction d'entrée d'air, des moyens de positionnement radial et axial des viroles de la paroi chaude sur la paroi froide et des moyens de contrôle du jeu de dilatation de la paroi chaude.
  • Si l'invention est utilisée dans une chambre de combustion dans laquelle on applique, outre le refroidissement par convection entre les parois, le principe du refroidissement par film pariétal, alors on peut organiser la structure de paroi de telle sorte que le bord amont de chaque virole de la paroi chaude coopère avec une languette aval de la virole située immédiatement en amont pour former le film de refroidissement et que la hauteur de fente des films de refroidissement soit pilotée au cours du fonctionnement par le positionnement de la dite virole au moyen de ses orifices de mélange et par l'inclinaison de la languette aval de la virole située immédiatement en amont, due au positionnement de la dite virole amont par ses propres orifices de mélange.
  • D'autres caractéristiques des chambres de combustion selon l'invention seront explicitées en regard des planches de dessins annexées parmi lesquelles :
    • - La figure 1 est une coupe schématique d'un turboréacteur incorporant une chambre de combustion selon l'inventiôn ;
    • - la figure 2 montre un mode de réalisation d'une chambre de combustion à double paroi telle que précédemment décrite, en demi-coupe longitudinale selon le détail A de la figure 1
    • - la figure 3 montre en coupe à plus grande échelle le détail d'un orifice de mélange disposé sur la paroi externe de la chambre, c'est-à-dire la paroi la plus éloignée de l'axe longétudinal de symétrie de la chambre, à froid en partie gauche de la figure, et à chaud en partie droite de la figure ;
    • - la figure 4 montre en coupe un orifice de mélange identique au précédent, mais monté sur la paroi interne, c'est-à-dire le plus proche de l'axe, à froid en partie gauche de la figure, et à chaud en partie droite.
  • En référence à la figure 1 où un moteur double flux à faible taux de dilution a été représenté, on voit que de façon classique un compresseur basse pression 1 comprime l'air aspiré à l'entrée du moteur ; le flux en sortie du compresseur basse pression est séparé en un flux primaire et un flux secondaire, le flux primaire est comprimé à nouveau par un compresseur haute pression 2 avant d'être mélangé à du carburant sous pression dans une chambre de combustion annulaire 3 telle que celle de l'invention où le mélange est brûlé pour apporter une énergie de combustion au moteur. Les gaz issus de la chambre 3 entrainent une turbine 4 qui, elle-même entraine les compresseurs 1 et 2. En sortie de turbine, les gaz sont accélérés. Le flux chaud est alors mélangé au flux froid, qui en sortie du compresseur basse pression s'est écoulé dans une veine annulaire formée du carter intermédiaire 5 entourant le flux chaud et du carter externe 6 du moteur. Les gaz sont alors éjectés, soit à sec, soit en subissant une rechauffe dans un dispositif de post-combustion 7.
  • La figure 2 montre en coupe longitudinale le détail A de la figure 1.
  • La chambre de combustion 3 selon l'invention est une chambre annulaire à double parois formée d'une double paroi interne 8, c'est-à-dire la plus proche de l'axe de symétrie du moteur et d'une double paroi externe 9 la plus éloignée radialement de l'axe de symétrie du moteur. Chacune de ces double parois 8 et 9 comprend une paroi intérieure à la chambre, soumise aux gaz de combustion et dite paroi chaude ou peau chaude et une paroi extérieure soumise au flux d'air primaire plus froid que les gaz de combustion.
  • Pour éviter toute confusion entre les parois intérieures ("chaudes") à la chambre et la paroi interne de la chambre ainsi qu'entre les parois extérieures ("froides") à la chambre et la partie externe, on désignera systématiquement dans la suite du texte les parois intérieures par les termes "peaux chaudes" ou "parois chaudes" et les parois extérieures par "peaux froides" ou "parois froides" tandis que les expressions "paroi interne" et "paroi externe" désigneront respectivement la double paroi proche de l'axe de symétrie du moteur et la double paroi la plus éloignée radialement de l'axe de symétrie du moteur.
  • Les parois froides, interne et externe, de la chambre sont formées chacune de quatre viroles (respectivement de l'amont vers l'aval 10, 11, 12, 13 ; 110, 111, 112, 113) soudées entre elles au moyen de pièces annulaires usinées massives (respectivement 14, 15, 16 ; 114, 115, 116) servant à l'accrochage des parois chaudes et, en ce qui concerne la pièce 114 à la formation d'un film pariétal de refroidissement.
  • Les parois chaudes sont constituées :
    • - pour la partie interne d'une virole fixe 17 soudée au fond 18 de la chambre de combustion et comportant une gorge annulaire aval 19 dans laquelle vient se positionner une languette 20 du film 14 de la paroi froide, et de deux viroles 21 et 22 montées flottantes sur la paroi interne froide ;
    • - pour la partie externe de deux viroles 121, 122 montées flottantes sur la paroi externe froide, ainsi qu'on va le voir.
  • La virole 21 comporte en aval une rainure 23 permettant son accrochage sur une bride 24 du film 15 de la paroi froide tandis que la virole 22 comporte deux brides 25 et 26 qui sont accrochées l'une, 25, sur une rainure annulaire de la partie usinée 16 de la paroi froide et l'autre 26 en aval dans une seconde rainure 27 de l'aval de la paroi froide interne.
  • Les viroles 121 et 122 sont accrochées en aval de façon similaire par des brides 123, 125 et 126 dans des rainures annulaires des pièces usinées 115, 116 et de l'aval 127 de la paroi externe.
  • Les viroles 21, 22, 121, 122 ont leurs portées amont montées flottantes et ne sont positionnées sur les parois froides que par les orifices de mélange 29, 30 destinées à l'alimentation en air de combustion de la zone primaire et de la zone de dilution. Chaque orifice de mélange 29 ou 30 comporte un premier élément cylindrique 31 possédant un alésage central 32 évasé en quart de rond 33 vers l'extérieur et formant le trou-tuyère d'entrée d'air de mélange. La collerette formée par la partie évasée délimite un épaulement 34 qui peut s'appuyer sur la face externe de la paroi froide 11 ou 12, 111 ou 112 tandis que la première portée cylindrique extérieure 35 pénètre à l'intérieur de deux évidements circulaires alignés 36, 37 des peaux froides et chaudes. Une seconde portée cylindrique 38 de moindre diamètre prolonge la première portée 35. Sur cette portée 38 est montée concentriquement une bague 39 comportant un collet 40 et une portée tubulaire 41 traversant l'orifice 37. Le collet 40 est disposé entre les peaux chaudes et froides en appui contre l'extrémité de la portée 35, tandis que l'extrémité 42 de la portée 41 est repliée en bord tombé sur la peau chaude 21, 22 ou 121, 122 une fois celle-ci montée. Ensuite, la bague 39 est solidarisée au trou-tuyère 31 par un cordon de soudure déposé entre le bord tombé 42 et la portée 38.
  • L'épaisseur du collet 40 détermine l'intervalle minimal entre les peaux chaudes et froides tandis que la longueur de la portée 35 ajoutée à l'épaisseur du collet en détermine l'intervalle maximal.
  • Ainsi (figure 3), sur la paroi externe de la chambre, l'échauffement de la paroi chaude lors du fonctionnement de la chambre tend à rapprocher les deux parois qui, à froid étaient séparées d'un intervalle hF déterminé par la hauteur du trou-tuyère 31 jusqu'à la valeur hC (inférieure à hF) égale à l'épaisseur du collet 40.
  • A l'inverse sur les parois internes, l'intervalle à froid hF entre parois est fixé par l'épaisseur de collet et la paroi chaude par sa dilatation lors du fonctionnement a tendance à s'écarter de la paroi froide et c'est alors la hauteur cumulée de la portée 3.5 et du collet 40 qui fixe l'intervalle de dilatation maximale hC à chaud.
  • De ce fait par le seul calcul des dimensions des trous- tuyères on peut fixer la hauteur souhaitée à froid hF entre peau chaude et froide de la paroi interne et la limite maximale de dilatation de la peau chaude de même que pour la paroi externe, on peut fixer l'intervalle minimal entre parois à la valeur hC désirée à chaud.
  • L'assemblage de la chambre s'effectue de la façon suivante :
    • On monte d'abord de part et d'autre de la paroi froide externe lll, 112 les deux éléments 31 et 39 des trous- tuyères 30 puis on accroche la virole 121 par sa bride 123 dans la rainure de la pièce 115 et on positionne la virole 121 au moyen des orifices de mélange 30 dont on vient replier l'extrémité 42 de la bague sur la virole. Enfin on solidarise les éléments 31 et 39. On fait de même avec la virole 122. Les viroles 21 et 22 de la paroi interne sont montées de la même façon sur la peau froide 11, 12, 13 au moyen des orifices de dilution 29 puis l'ensemble de la paroi interne est accroché en 19, 20 sur la virole 17 et fixée par des boulons 43 sur la casquette interne de fond de chambre.
  • Le refroidissement des parois de la chambre de combustion est réalisé par combinaison d'un flux de convection externe aux parois froides, par des multiperforations des parois froides 10, 11, 12, 13, 110, 111, 112, 113 ; par convection à contre-courant entre les peaux froides (resp. 11, 12, 13, 111, 112, 113) et les peaux chaudes (resp. 21, 22, 121, 122) et par film pariétal le long des viroles chaudes 21, 22, 121, 122. Pour ce faire, les parties usinées 19, 114 des viroles primaires comportent des languettes aval 44, 45 qui coopèrent avec le bord amont des viroles 21 et 121 pour former le film pariétal de refroidissement des viroles primaires. De même, le bord aval des viroles chaudes primaires 21, 121 comporte des languettes 46, 47 qui coopèrent avec le bord amont des viroles chaudes de dilution pour réaliser le film de refroidissement des dites viroles chaudes de dilution.
  • Le positionnement radial des viroles chaudes sur les parois froides par les orifices de mélange 29,30 permet d'obtenir une efficacité optimale du refroidissement par les films pariétaux car il permet de contrôler la forme de la cavité de mise en vitesse de l'écoulement ainsi que la hauteur de fente du film, celle-ci pouvant d'autant mieux être contrôlée que l'épaisseur des languettes aval 44, 45, 46, 47, réalisées dans des parties massives, peut être calculée de sorte que la faible dilatation de la languette ne modifie pas sensiblement la hauteur de fente du film.
  • La fixation des viroles chaudes sur les parois froides par les orifices de mélange permet également d'assurer l'homogénéité circonférentielle de l'écoulement en évitant les phénomènes de sillages, connus dans les dispositifs antérieurs et gui étaient dûs aux pontets de limitation de dilatation.
  • Elle permet également de diminuer les sillages amont par une accélération progressive de l'écoulement, obtenue par une loi d'évolution de section dans la partie finale du film.
  • Le film pariétal réalisé en amont des viroles aval de dilution 22, 122 n'étant pas suffisant pour garder une efficacité totale sur la longueur, importante, des dites viroles, leur partie convergente est refroidie entre les brides 25, 27 et resp. 125,126 par impact et par multiperforation de la peau chaude, ainsi que montré à la figure 2.
  • Le mode de montage des peaux chaudes sur les peaux froides, proposé par l'invention, permet d'otenir un meilleur compromis entre les divers modes de refroidissement utilisés tout en permettant la réalisation d'une chambre à doubles parois de faible poids et de technologie simple et de montage (ou de démontage) aisé, qui en rend l'application particulièrement utile dans les turboréacteurs pour lesquels des performances élevées et une grande fiabilité sont recherchées.

Claims (7)

1. - Chambre de combustion à double paroi, notamment pour turbomachines, comprenant au moins une paroi extérieure, dite paroi froide, formée de plusieurs viroles mécanosoudées et destinée à assurer la rigidité mécanique de la chambre de combustion, et comprenant au moins une paroi intérieure, dite paroi chaude, destinée à assurer la tenue thermique de la chambre, formée de plusieurs viroles assemblées entre elles et sur la paroi extérieure de façon à laisser libre entre les deux parois un espace de refroidissement permettant un jeu de dilatation de la paroi chaude, la chambre comportant des orifices de mélange traversant les deux parois pour permettre l'introduction d'air de combustion primaire et de dilution, caractérisée en ce que les orifices de mélange 29,30 sont du type trou-tuyère comportant un premier élément cylindrique (31) comprenant en combinaison successivement de l'extérieur vers l'intérieur de la chambre une collerette(33) évasée vers l'extérieur en quart de rond, la collerette formant intérieurement tuyère d'entrée d'air et comprenant extérieurement un épaulement (34) par lequel elle peut s'appuyer sur la face externe de la paroi froide sans y être solidarisée, une première portée cylindrique extérieure (35) venant se loger dans un évidement circulaire (36) de la paroi froide et une seconde portée circulaire (38) sur laquelle est monté concentriquement un second élément (39) en forme de bague comportant un collet (40) et une portée tubulaire (41) disposée à l'intérieur d'un évidement (37) de la paroi chaude, contre laquelle la portée tubulaire est repliée en bord tombé (42) et en ce que la bague est soudée sur la seconde portée cylindrique du premier élément formant tuyère.
2. - Chambre de combustion selon la revendication 1, caractérisée en ce que la première portée cylindrique (35) a une longueur supérieure à l'épaisseur de la paroi chaude de telle sorte que l'orifice de mélange (29,30), solidaire de la paroi chaude soit monté flottant sur la paroi froide de la chambre de combustion.
3. - Chambre de combustion selon l'une des revendications 1 ou 2, du type annulaire,comprenant une double paroi interne, proche de l'axe de symétrie de la chambre et une double paroi externe éloignée de l'axe de symétrie de la chambre et comprenant des orifices de mélange sur sa paroi interne et sa paroi externe, caractérisé en ce que l'épaisseur du collet (40) de bague des orifices (30) de la paroi externe est calculée à la hauteur hC souhaitée à chaud entre paroi chaude et froide, et en ce que l'épaisseur des dits collets (40) des orifices (29) de la paroi interne est calculée à la hauteur souhaitée à froid hF entre paroi chaude et froide.
4. - Chambre de combustion selon l'une quelconque des revendications 1 à 3, caractérisée en ce que chaque virole constituant la paroi chaude comporte à son aval une bride recourbée (23, 26, 123, 126) permettant son accrochage aval dans une rainure annulaire de la paroi froide et en ce que chacune des dites viroles est montée flottante en amont par rapport à la paroi chaude au moyen des seuls orifices de mélange (29,30) constituant, outre leur fonction d'entrée d'air, des moyens de positionnement radial et axial des viroles de la paroi chaude sur la paroi froide et des moyens de contrôle du jeu de dilatation de la paroi chaude.
5. - Chambre de combustion selon la revendication 4, comprenant un refroidissement par film pariétal, caractérisé en ce que le bord amont de chaque virole (21,22,121,122) de la paroi chaude coopère avec une languette aval (resp. 44,46,45,47) de la virole située immédiatement en amont pour former le film de refroidissement et en ce que la hauteur de fente des films de refroidissement est pilotée au cours du fonctionnement par le positionnement de ladite virole au moyen de ses orifices de mélange et par l'inclinaison de la languette aval de la virole située immédiatement en amont due au positionnement de la ladite virole amont par ses propres orifices de mélange.
6. - Chambre de combustion selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'elle comporte un refroidissement de la paroi chaude par impact au travers de multiperforations-des parois froide et chaude.
7. - Chambre de combustion selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comporte un refroidissement de la paroi chaude par convection à contre-courant entre la paroi froide et la paroi chaude.
EP87401235A 1986-06-04 1987-06-03 Chambre de combustion pour turbomachines à orifices de mélange assurant le positionnement de la paroi chaude sur la paroi froide Expired EP0248731B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8608015 1986-06-04
FR8608015A FR2599821B1 (fr) 1986-06-04 1986-06-04 Chambre de combustion pour turbomachines a orifices de melange assurant le positionnement de la paroi chaude sur la paroi froide

Publications (2)

Publication Number Publication Date
EP0248731A1 true EP0248731A1 (fr) 1987-12-09
EP0248731B1 EP0248731B1 (fr) 1989-01-11

Family

ID=9335972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401235A Expired EP0248731B1 (fr) 1986-06-04 1987-06-03 Chambre de combustion pour turbomachines à orifices de mélange assurant le positionnement de la paroi chaude sur la paroi froide

Country Status (4)

Country Link
US (1) US4805397A (fr)
EP (1) EP0248731B1 (fr)
DE (1) DE3760036D1 (fr)
FR (1) FR2599821B1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321320A1 (fr) * 1987-12-16 1989-06-21 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Chambre de combustion pour turbomachine possédant un convergent à doubles parois
EP0363624A1 (fr) * 1988-10-07 1990-04-18 Westinghouse Electric Corporation Chambre de combustion d'une turbine à gaz à orifices de mélange
EP0493304A1 (fr) * 1990-12-24 1992-07-01 United Technologies Corporation Connecteur et tube d'air intégré pour une chambre de combustion de turbomachine
FR2674317A1 (fr) * 1991-03-20 1992-09-25 Snecma Chambre de combustion de turbomachine comportant un reglage du debit de comburant.
EP0647817A1 (fr) * 1993-10-06 1995-04-12 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Chambre de combustion à double paroi
EP0694739A1 (fr) * 1994-07-27 1996-01-31 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Chambre de combustion comportant une double paroi
EP0780638A3 (fr) * 1995-12-20 1998-06-10 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Chambre de combustion pour turbine à gaz
FR2970065A1 (fr) * 2011-01-03 2012-07-06 Gen Electric Dispositif de combustion pour moteur a turbine
WO2015031816A1 (fr) 2013-08-30 2015-03-05 United Technologies Corporation Ensemble paroi de turbine à gaz doté de zones de contour d'enveloppe de support
WO2015117137A1 (fr) 2014-02-03 2015-08-06 United Technologies Corporation Refroidissement par film d'air d'une paroi de chambre de combustion d'un moteur à turbine

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394688A (en) * 1993-10-27 1995-03-07 Westinghouse Electric Corporation Gas turbine combustor swirl vane arrangement
US5431517A (en) * 1994-01-12 1995-07-11 General Electric Company Apparatus and method for securing a bracket to a fixed member
JPH09195799A (ja) * 1996-01-17 1997-07-29 Mitsubishi Heavy Ind Ltd 燃焼器のスプリングシール装置
US6499993B2 (en) * 2000-05-25 2002-12-31 General Electric Company External dilution air tuning for dry low NOX combustors and methods therefor
US6334310B1 (en) * 2000-06-02 2002-01-01 General Electric Company Fracture resistant support structure for a hula seal in a turbine combustor and related method
JP2004524479A (ja) * 2001-04-27 2004-08-12 シーメンス アクチエンゲゼルシヤフト 特にガスタービンの燃焼室
EP1312865A1 (fr) * 2001-11-15 2003-05-21 Siemens Aktiengesellschaft Chambre de combustion annulaire de turbine à gaz
US8281600B2 (en) * 2007-01-09 2012-10-09 General Electric Company Thimble, sleeve, and method for cooling a combustor assembly
US8387396B2 (en) 2007-01-09 2013-03-05 General Electric Company Airfoil, sleeve, and method for assembling a combustor assembly
US8616004B2 (en) * 2007-11-29 2013-12-31 Honeywell International Inc. Quench jet arrangement for annular rich-quench-lean gas turbine combustors
US8141365B2 (en) * 2009-02-27 2012-03-27 Honeywell International Inc. Plunged hole arrangement for annular rich-quench-lean gas turbine combustors
US8171740B2 (en) * 2009-02-27 2012-05-08 Honeywell International Inc. Annular rich-quench-lean gas turbine combustors with plunged holes
US9010123B2 (en) * 2010-07-26 2015-04-21 Honeywell International Inc. Combustors with quench inserts
US9249679B2 (en) * 2011-03-15 2016-02-02 General Electric Company Impingement sleeve and methods for designing and forming impingement sleeve
JP5821550B2 (ja) 2011-11-10 2015-11-24 株式会社Ihi 燃焼器ライナ
US20130298564A1 (en) * 2012-05-14 2013-11-14 General Electric Company Cooling system and method for turbine system
US8695352B2 (en) * 2012-07-12 2014-04-15 Solar Turbines Inc. Baffle assembly for bleed air system of gas turbine engine
DE102012022259A1 (de) * 2012-11-13 2014-05-28 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerschindel einer Gasturbine sowie Verfahren zu deren Herstellung
US20140190171A1 (en) * 2013-01-10 2014-07-10 Honeywell International Inc. Combustors with hybrid walled liners
US20150354819A1 (en) 2013-01-16 2015-12-10 United Technologies Corporation Combustor Cooled Quench Zone Array
US11112115B2 (en) * 2013-08-30 2021-09-07 Raytheon Technologies Corporation Contoured dilution passages for gas turbine engine combustor
EP3044444B1 (fr) * 2013-09-13 2019-11-06 United Technologies Corporation Chambre de combustion pour une turbine à gaz avec un panneau de chemisage hermétiquement scellé
US10151486B2 (en) * 2014-01-03 2018-12-11 United Technologies Corporation Cooled grommet for a combustor wall assembly
US10112557B2 (en) * 2014-04-03 2018-10-30 United Technologies Corporation Thermally compliant grommet assembly
GB201514390D0 (en) 2015-08-13 2015-09-30 Rolls Royce Plc A combustion chamber and a combustion chamber segment
EP3315864B1 (fr) * 2016-10-26 2021-07-28 Raytheon Technologies Corporation Panneau de revêtement de combustion coulé à illet de passage de dilution arrondi pour chambre de combustion de moteur de turbine à gaz
US10697372B2 (en) * 2017-04-05 2020-06-30 General Electric Company Turbine engine conduit interface
GB201720254D0 (en) * 2017-12-05 2018-01-17 Rolls Royce Plc A combustion chamber arrangement
US10816203B2 (en) * 2017-12-11 2020-10-27 General Electric Company Thimble assemblies for introducing a cross-flow into a secondary combustion zone
US11022308B2 (en) 2018-05-31 2021-06-01 Honeywell International Inc. Double wall combustors with strain isolated inserts
US10808930B2 (en) * 2018-06-28 2020-10-20 Raytheon Technologies Corporation Combustor shell attachment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1195188A (fr) * 1958-07-21 1959-11-16 Gen Electric Manchon intérieur de chambre de combustion pour les moteurs à turbine à gaz
US3496722A (en) * 1968-08-02 1970-02-24 Garrett Corp Combustion chamber flame tube construction
FR2422035A1 (fr) * 1978-04-04 1979-11-02 Gen Electric Dispositif de combustion refroidi par film d'air
US4184326A (en) * 1975-12-05 1980-01-22 United Technologies Corporation Louver construction for liner of gas turbine engine combustor
US4480436A (en) * 1972-12-19 1984-11-06 General Electric Company Combustion chamber construction
FR2567250A1 (fr) * 1984-07-06 1986-01-10 Gen Electric Chambre de combustion pour moteur a turbine a gaz

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1059199A (en) * 1965-10-20 1967-02-15 Rolls Royce Flame tube
US3899876A (en) * 1968-11-15 1975-08-19 Secr Defence Brit Flame tube for a gas turbine combustion equipment
US3545202A (en) * 1969-04-02 1970-12-08 United Aircraft Corp Wall structure and combustion holes for a gas turbine engine
US4614082A (en) * 1972-12-19 1986-09-30 General Electric Company Combustion chamber construction
US4555901A (en) * 1972-12-19 1985-12-03 General Electric Company Combustion chamber construction
US4302941A (en) * 1980-04-02 1981-12-01 United Technologies Corporation Combuster liner construction for gas turbine engine
US4512159A (en) * 1984-04-02 1985-04-23 United Technologies Corporation Clip attachment
US4748806A (en) * 1985-07-03 1988-06-07 United Technologies Corporation Attachment means
DE3535443C1 (de) * 1985-10-04 1986-11-20 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Brennkammer fuer ein Gasturbinentriebwerk,insbesondere Ringbrennkammer,mit mindestes einer Luftzufuhrbuchse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1195188A (fr) * 1958-07-21 1959-11-16 Gen Electric Manchon intérieur de chambre de combustion pour les moteurs à turbine à gaz
US3496722A (en) * 1968-08-02 1970-02-24 Garrett Corp Combustion chamber flame tube construction
US4480436A (en) * 1972-12-19 1984-11-06 General Electric Company Combustion chamber construction
US4184326A (en) * 1975-12-05 1980-01-22 United Technologies Corporation Louver construction for liner of gas turbine engine combustor
FR2422035A1 (fr) * 1978-04-04 1979-11-02 Gen Electric Dispositif de combustion refroidi par film d'air
FR2567250A1 (fr) * 1984-07-06 1986-01-10 Gen Electric Chambre de combustion pour moteur a turbine a gaz

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321320A1 (fr) * 1987-12-16 1989-06-21 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Chambre de combustion pour turbomachine possédant un convergent à doubles parois
FR2624953A1 (fr) * 1987-12-16 1989-06-23 Snecma Chambre de combustion, pour turbomachines, possedant un convergent a doubles parois
US4901522A (en) * 1987-12-16 1990-02-20 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) Turbojet engine combustion chamber with a double wall converging zone
EP0363624A1 (fr) * 1988-10-07 1990-04-18 Westinghouse Electric Corporation Chambre de combustion d'une turbine à gaz à orifices de mélange
EP0493304A1 (fr) * 1990-12-24 1992-07-01 United Technologies Corporation Connecteur et tube d'air intégré pour une chambre de combustion de turbomachine
FR2674317A1 (fr) * 1991-03-20 1992-09-25 Snecma Chambre de combustion de turbomachine comportant un reglage du debit de comburant.
EP0506516A1 (fr) * 1991-03-20 1992-09-30 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Chambre de combustion de turbomachine comportant un réglage du débit de comburant
FR2710968A1 (fr) * 1993-10-06 1995-04-14 Snecma Chambre de combustion à double paroi.
EP0647817A1 (fr) * 1993-10-06 1995-04-12 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Chambre de combustion à double paroi
US5499499A (en) * 1993-10-06 1996-03-19 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Cladded combustion chamber construction
EP0694739A1 (fr) * 1994-07-27 1996-01-31 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Chambre de combustion comportant une double paroi
FR2723177A1 (fr) * 1994-07-27 1996-02-02 Snecma Sa Chambre de combustion comportant une double paroi
EP0780638A3 (fr) * 1995-12-20 1998-06-10 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Chambre de combustion pour turbine à gaz
FR2970065A1 (fr) * 2011-01-03 2012-07-06 Gen Electric Dispositif de combustion pour moteur a turbine
WO2015031816A1 (fr) 2013-08-30 2015-03-05 United Technologies Corporation Ensemble paroi de turbine à gaz doté de zones de contour d'enveloppe de support
EP3039347A1 (fr) * 2013-08-30 2016-07-06 United Technologies Corporation Ensemble paroi de turbine à gaz doté de zones de contour d'enveloppe de support
EP3039347A4 (fr) * 2013-08-30 2016-09-21 United Technologies Corp Ensemble paroi de turbine à gaz doté de zones de contour d'enveloppe de support
WO2015117137A1 (fr) 2014-02-03 2015-08-06 United Technologies Corporation Refroidissement par film d'air d'une paroi de chambre de combustion d'un moteur à turbine
EP3102883A4 (fr) * 2014-02-03 2017-03-01 United Technologies Corporation Refroidissement par film d'air d'une paroi de chambre de combustion d'un moteur à turbine

Also Published As

Publication number Publication date
US4805397A (en) 1989-02-21
FR2599821A1 (fr) 1987-12-11
EP0248731B1 (fr) 1989-01-11
FR2599821B1 (fr) 1988-09-02
DE3760036D1 (en) 1989-02-16

Similar Documents

Publication Publication Date Title
EP0248731B1 (fr) Chambre de combustion pour turbomachines à orifices de mélange assurant le positionnement de la paroi chaude sur la paroi froide
EP1818613B1 (fr) Chambre de combustion d'une turbomachine
EP2771618B1 (fr) Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution
CA2782661C (fr) Chambre de combustion pour turbomachine
FR2639678A1 (fr) Compartiment, notamment a chicanes, du type resonateur de helmholtz attenuateur de bruits, chemisage acoustique notamment annulaire, pour un canal notamment annulaire d'un moteur a turbines a gaz, et moteur equipe de ces dispositifs
CA2987526C (fr) Paroi annulaire de chambre de combustion a refroidissement optimise
CA2641989A1 (fr) Chambre de combustion a dilution optimisee et turbomachine en etant munie
CA2642059C (fr) Paroi de chambre de combustion a dilution et refroidissement optimises, chambre de combustion et turbomachine en etant munies
CA2925565C (fr) Chambre de combustion de turbomachine pourvue de moyens de deflection d'air pour reduire le sillage cree par une bougie d'allumage
EP1577530A1 (fr) Procédé d'amélioration des performances d'allumage de dispositif de post-combustion pour turboréacteur double flux et dispositif de post-combustion à performance d'allumage améliorée
FR3021351B1 (fr) Paroi de turbomachine comportant une partie au moins d'orifices de refroidissement obtures
FR2873408A1 (fr) Turboreacteur avec un ecran de protection de la rampe de carburant d'un anneau bruleur, l'anneau bruleur et l'ecran de protection
EP4179256B1 (fr) Chambre annulaire de combustion pour une turbomachine d'aéronef
FR3109430A1 (fr) Bougie pour chambre de combustion monobloc
FR3071908A1 (fr) Chambre de combustion de turbomachine a geometrie de cheminee fixe
FR3068732A1 (fr) Dispositif de refroidissement
EP4327023A1 (fr) Cone de diffusion pour partie arriere de turboreacteur integrant un anneau accroche-flamme en bord de fuite
EP4327021A1 (fr) Dispositif accroche-flammes pour postcombustion de turboreacteur comprenant des bras a trois branches
FR3061948A1 (fr) Chambre de combustion de turbomachine a haute permeabilite
FR3108966A1 (fr) Chambre de combustion comportant une paroi comprenant un conduit de refroidissement entre une première cloison et une deuxième cloison
FR3122719A1 (fr) Accroche-flammes pour postcombustion de turboréacteur comprenant des bras à bords de fuite dentelés
WO2023047055A1 (fr) Carter d'injection d'air de refroidissement pour turbine de turbomachine
FR3140122A1 (fr) Ensemble pour turbomachine d’aeronef comprenant un echangeur de chaleur du type sacoc, de conception ameliore
FR3065024A1 (fr) Anneau de turbine de turbomachine et procede de fabrication d'un tel anneau
FR3122720A1 (fr) Cône de diffusion pour partie arrière de turboréacteur intégrant un système d'injection d'air et de carburant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19880316

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3760036

Country of ref document: DE

Date of ref document: 19890216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940830

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050524

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050527

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630