EP2771618A2 - Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution - Google Patents

Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution

Info

Publication number
EP2771618A2
EP2771618A2 EP12790620.4A EP12790620A EP2771618A2 EP 2771618 A2 EP2771618 A2 EP 2771618A2 EP 12790620 A EP12790620 A EP 12790620A EP 2771618 A2 EP2771618 A2 EP 2771618A2
Authority
EP
European Patent Office
Prior art keywords
orifices
annular wall
cooling
rows
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12790620.4A
Other languages
German (de)
English (en)
Other versions
EP2771618B1 (fr
EP2771618B8 (fr
Inventor
Matthieu François RULLAUD
Bernard Joseph Jean-Pierre Carrere
Hubert Pascal Verdier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Safran Helicopter Engines SAS
Original Assignee
Turbomeca SA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turbomeca SA, SNECMA SAS filed Critical Turbomeca SA
Priority to EP17175880.8A priority Critical patent/EP3267111B1/fr
Publication of EP2771618A2 publication Critical patent/EP2771618A2/fr
Publication of EP2771618B1 publication Critical patent/EP2771618B1/fr
Application granted granted Critical
Publication of EP2771618B8 publication Critical patent/EP2771618B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes

Definitions

  • the present invention relates to the general field of turbomachine combustion chambers. It is more particularly an annular wall for direct combustion chamber or reverse flow cooled by a process known as "multiperforation".
  • annular turbomachine combustion chamber is formed of an inner annular wall (also called inner shell) and an outer annular wall (also called outer shell) which are connected upstream by a transverse wall forming chamber bottom.
  • the inner and outer shrouds are each provided with a plurality of holes and various orifices allowing air circulating around the combustion chamber to penetrate inside thereof.
  • so-called “primary” and “dilution” holes are formed in these ferrules to convey air inside the combustion chamber.
  • the air passing through the primary holes helps to create an air / fuel mixture that is burned in the chamber, while the air from the dilution holes is intended to promote the dilution of the same air / fuel mixture.
  • the inner and outer shells are subjected to the high temperatures of the gases from the combustion of the air / fuel mixture.
  • multiperforation holes are also drilled through these ferrules over their entire surface. These multiperforation orifices, generally inclined at 60 °, allow the air circulating outside the chamber to penetrate inside thereof by forming cooling air films along the shells.
  • the present invention therefore aims to overcome such drawbacks by providing an annular combustion chamber wall which provides adequate cooling of the areas directly downstream of the primary and dilution holes.
  • annular wall of a turbomachine combustion chamber comprising a cold side and a hot side, said annular wall comprising:
  • a plurality of dilution holes distributed along a circumferential row to allow air flowing on the cold side of said annular wall to enter the warm side to ensure dilution of the air / fuel mixture;
  • a plurality of cooling orifices for allowing air flowing on the cold side of said annular wall to enter the warm side to form a cooling air film along said annular wall, said cooling orifices being distributed according to a plurality of circumferentially spaced rows spaced axially from each other and the geometric axes of each of said cooling orifices being inclined, in an axial direction D of flue gas flow, an inclination angle ⁇ 1 with respect to a normal N to said annular wall; characterized in that it further comprises a plurality of additional cooling orifices arranged on the one hand directly downstream of said primary holes and secondly directly downstream of said dilution holes and distributed in a plurality of axially spaced circumferential rows each other,
  • each of said additional cooling orifices being disposed in a plane perpendicular to said axial direction D and inclined at an inclination angle ⁇ 2 with respect to a normal N to said annular wall.
  • it further comprises, at a transition zone formed downstream of said plurality of rows of additional orifices, at least two rows of orifices whose geometric axes of each of said orifices are inclined, with respect to a plane perpendicular to said axial direction D, of a different determined inclination for each of said two rows.
  • turbomachine combustion chamber annular wall comprising a cold side and a hot side may also comprise:
  • a plurality of primary holes or dilution holes distributed in a circumferential row to allow air flowing on the cold side of said annular wall to enter the hot side to respectively create an air / fuel mixture or to ensure dilution air / fuel mixture;
  • a plurality of cooling orifices for allowing air flowing on the cold side of said annular wall to enter the warm side to form a cooling air film along said annular wall, said cooling orifices being distributed according to a plurality of circumferential rows spaced axially from each other and the geometric axes of each of said cooling orifices being inclined, in an axial direction D of flue gas flow, an inclination angle ⁇ 1 with respect to a normal N to said annular wall;
  • each of said additional cooling orifices being arranged in a plane perpendicular to said axial direction D and inclined at an angle of inclination ⁇ 2 with respect to a normal N to said annular wall,
  • This gyratory-axial multiperforation transition zone makes it possible, by smoothing the flows, to reduce the thermal gradient at the origin of crack initiation.
  • the average temperature profile at the chamber outlet is improved because of the more efficient mixture thus obtained.
  • said inclination ⁇ 2 of said additional orifices relative to the normal N to said annular wall is identical to that ⁇ 1 of said cooling orifices.
  • a diameter d2 of said additional orifices is identical to a diameter d1 of said cooling orifices and a pitch p2 of said additional orifices is identical to a pitch p1 of said cooling orifices and said additional orifices may have a greater densification just downstream of the holes. primary and dilution holes.
  • said inclinations are 30 ° and 60 ° respectively.
  • Said two rows of orifices are then either two rows of additional orifices arranged immediately upstream of a row of cooling orifices, or two rows of cooling orifices arranged immediately in downstream of a row of additional orifices, or a row of additional orifices and a row of adjacent cooling orifices.
  • said inclinations are regularly distributed between 0 ° and 90 °.
  • the direction of inclination of said additional orifices is constrained by the direction of flow of the air / fuel mixture downstream of said combustion chamber.
  • the present invention also relates to a combustion chamber and a turbomachine (having a combustion chamber) comprising an annular wall as defined above.
  • FIG. 1 is a longitudinal sectional view of a turbomachine combustion chamber in its environment
  • FIG. 2 is a partial view in developed of one of the annular walls of the combustion chamber of FIG. 1 according to one embodiment of the invention.
  • FIG. 3 is a partial view in perspective of a portion of the annular wall of FIG. 2.
  • FIG. 1 illustrates in its environment a combustion chamber 10 for a turbomachine.
  • a turbomachine comprises in particular a compression section (not shown) in which air is compressed before being injected into a chamber housing 12, then into the combustion chamber 10 mounted inside thereof. Compressed air is introduced into the combustion chamber and mixed with fuel before being burned. The gases resulting from this combustion are then directed to a high-pressure turbine 14 disposed at the outlet of the combustion chamber.
  • the combustion chamber is of the annular type. It is formed of an inner annular wall 16 and an outer annular wall 18 which are joined upstream by a transverse wall 20 forming the chamber bottom. It can be direct as illustrated or reverse flow. In this case, a return bend that can also be cooled by multi-piercing is placed between the combustion chamber and the turbine distributor.
  • the inner annular walls 16 and outer 18 extend along a longitudinal axis slightly inclined relative to the longitudinal axis 22 of the turbomachine.
  • the chamber bottom 20 is provided with a plurality of openings 20A in which fuel injectors 24 are mounted.
  • the chamber casing 12 which is formed of an inner casing 12a and an outer casing 12b, furnishes with the combustion chamber 10 annular spaces 26 into which compressed air for combustion is admitted. dilution and cooling of the chamber.
  • the inner annular walls 16 and outer 18 each have a cold side 16a, 18a disposed on the side of the annular space 26 in which the compressed air circulates and a hot side 16b, 18b turned towards the inside of the combustion chamber ( Figure 3).
  • the combustion chamber 10 is divided into a so-called “primary” zone (or combustion zone) and a so-called “secondary” zone (or dilution zone) located downstream of the previous one (the downstream means with respect to a general axial direction of flow of the gases resulting from the combustion of the air / fuel mixture inside the combustion chamber and represented by the arrow D).
  • the air that feeds the primary zone of the combustion chamber is introduced by a circumferential row of primary holes 28 formed in the inner annular walls 16 and outer 18 of the chamber over the entire circumference of these annular walls. These primary holes have a downstream edge aligned on the same line 28A.
  • the air supplying the secondary zone of the chamber it borrows a plurality of dilution holes 30 also formed in the inner annular walls 16 and outer 18 all around the circumference of these annular walls.
  • These dilution holes 30 are aligned in a circumferential row which is axially offset downstream from the rows of the primary holes 28 and may have diameters different with alternating large and small holes. In the configuration illustrated in Figure 2, these dilution holes of different diameters, however, have a downstream edge aligned on the same line 30A.
  • a plurality of cooling orifices 32 are provided.
  • These orifices 32 which provide a cooling of the walls 16, 18 by multiperforation, are distributed in a plurality of circumferential rows spaced axially from each other. These rows of multiperforation orifices cover the entire surface of the annular walls of the chamber with the exception of specific areas which are the subject of the invention and are precisely delimited and situated between the line 28A, 30A forming an upstream transition axis and a transition axis. downstream axially offset downstream relative to this upstream axis and is substantially in front of the dilution holes (for the downstream axis 28B) is substantially in front of the exit plane of the chamber (for the downstream axis 30B).
  • the number and the diameter d1 of the cooling orifices 32 are identical in each of the rows.
  • the pitch pl between two orifices of the same row is constant and may be identical or not for all the rows.
  • the adjacent rows of cooling orifices are arranged so that the orifices 32 are staggered as shown in FIG. 2.
  • the cooling orifices 32 generally have an angle of inclination ⁇ 1 with respect to a normal N to the annular wall 16, 18 through which they are pierced.
  • This inclination ⁇ 1 allows the air passing through these orifices to form a film of air along the hot side 16b, 18b of the annular wall.
  • the inclination ⁇ 1 of the cooling orifices 32 is directed so that the air film thus formed flows in the flow direction of the combustion gases inside the chamber (represented by the arrow D ).
  • the diameter d1 of the cooling orifices 32 may be between 0.3 and 1 mm, the pitch d1 between 1 and 10 mm and their inclination ⁇ 1 between + 30 ° and + 70 °, typically + 60 °.
  • the primary holes 28 and the dilution holes 30 have a diameter of the order of 4 to 20 mm.
  • each annular wall 16, 18 of the combustion chamber comprises, arranged directly downstream of the primary holes 28 and dilution holes 30 and distributed in several circumferential rows, typically at least 5 rows, from the upstream transition axis 28A, 30A and up to the downstream transition axis 28B, 30B, a plurality of additional cooling orifices 34.
  • additional cooling orifices 34 are arranged directly downstream of the primary holes 28 and dilution holes 30 and distributed in several circumferential rows, typically at least 5 rows, from the upstream transition axis 28A, 30A and up to the downstream transition axis 28B, 30B, a plurality of additional cooling orifices 34.
  • the air film delivered by these additional orifices flows in a perpendicular direction due to their arrangement in a plane perpendicular to this axial direction D of flue gas flow.
  • This multiperforation carried out perpendicularly to the axis of the turbomachine (in the following description, it will speak of multiperforation gyratory as opposed to the axial multiperforation of the cooling orifices) allows to bring the additional orifices of the primary holes or dilution and therefore d improve the efficiency of the air / fuel mixture.
  • the additional orifices 34 of the same row have the same diameter d2, preferably identical to the diameter d1 of the cooling orifices 32, are spaced by a constant pitch p2 which may or may not be identical to the pitch p1 between the cooling orifices 32 and have an inclination ⁇ 2, preferably identical to the inclination ⁇ 1 of the cooling orifices 32 but arranged in a perpendicular plane.
  • these characteristics of the additional orifices 34 may, while remaining within the ranges of values defined above, be substantially different from those of the cooling orifices 32, that is to say that the inclination ⁇ 2 of the additional orifices of a
  • the same row relative to a normal N to the annular wall 16, 18 may be different from that of the cooling orifices, and the diameter d2 of the additional orifices of the same row may be different from that of the cooling orifices 32.
  • the additional orifices 34 behind the row of primary holes 28 may further advantageously have different inclination, diameter, or pitch characteristics than those disposed behind the row of dilution holes.
  • a difference of the diameter d2 and the pitch p2 can also be achieved to densify this cooling in the most thermally stressed parts, that is to say those just downstream of the holes primary and large dilution ports, when these are formed alternately of large and small orifices as shown in Figure 2.
  • the introduction of the gyratory multiperforation allows limiting the rise of the thermal gradient to prevent the formation of cracks downstream of the primary holes 28.
  • the multiperforation upstream of the holes of dilution 30 from the downstream transition axis 28B remaining axial type it is necessary to provide a transition zone made for example in two rows in which the additional cooling holes 34 are each arranged in an inclined plane one of 30 ° and the other of 60 ° with respect to the axial direction D, the other parameters, namely the diameter d2, the pitch p2 and the inclination ⁇ 2 of these additional holes in these inclined planes remaining unchanged.
  • the introduction of the axial multiperforation makes it possible to fill the local level of gyration so as not to lose the TuHP yield of the combustion chamber.
  • the average temperature profile at the chamber outlet is improved because of the more efficient mixture thus obtained.
  • This transition zone may for example be made in two rows of additional cooling holes each disposed in a plane inclined at 30 ° and the other 60 ° with respect to the axial direction D, the other parameters, namely the diameter d2, the pitch p2 and the inclination ⁇ 2 of the additional holes in these inclined planes remaining unchanged.
  • this area from the 30B axis may not exist or be integrated with the return elbow.
  • transition zone has been described at the level of the gyratory multiperforation, however, there is no prohibition to achieve it at the level of the axial multiperforation or still riding with a row of axial multiperforation inclined at 30 ° and a row of multiperforation gyratory inclined at 60 °.
  • this transition zone may comprise more than two rows, the inclination of the orifices then being evenly distributed between 0 ° (multiperforation axial) and 90 ° (multiperforation gyratory). For example, with three rows, the inclination of the orifices will be respectively 22.5 °, 45 ° and 67.5 °.
  • the flow in the primary zone is not modified, the gyration does not impact the orientation of the dilution jets and overcoming the thermal barrier allows a gain in weight and therefore cost.
  • the direction of drilling of the multiperforation gyratory is fixed by the orientation of the blades of the High Pressure distributor ( DHP) downstream of the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Paroi annulaire de chambre de combustion (10) de turbomachine, comportant un côté froid (16a, 18a) et un côté chaud (16b, 18b), une pluralité de trous primaires et de dilution (30) répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid (16a, 18a) de la paroi annulaire de pénétrer du côté chaud (16b, 18b) afin d'assurer la dilution d'un mélange air/carburant; et une pluralité d'orifices de refroidissement (32) pour permettre à l'air circulant du côté froid (16a, 18a) de la paroi annulaire de pénétrer du côté chaud (16b, 18b) afin de former un film d'air de refroidissement le long de la paroi annulaire, les orifices de refroidissement étant répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres et les axes géométriques de chacun des orifices de refroidissement étant inclinés, dans une direction axiale D d'écoulement des gaz de combustion, d'un angle d'inclinaison Θ1 par rapport à une normale N à la paroi annulaire; La paroi comportant en outre une pluralité d'orifices additionnels de refroidissement (34) disposés directement en aval des trous de dilution et répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres, les axes géométriques de chacun des orifices additionnels de refroidissement étant disposés dans un plan perpendiculaire à ladite direction axiale D et inclinés d'un angle d'inclinaison Θ2 par rapport à une normale N à ladite paroi annulaire.

Description

Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution
Arrière-plan de l'invention
La présente invention se rapporte au domaine général des chambres de combustion de turbomachine. Elle vise plus particulièrement une paroi annulaire pour chambre de combustion directe ou à flux inversé refroidie par un procédé dit de «multiperforation».
Typiquement, une chambre de combustion annulaire de turbomachine est formée d'une paroi annulaire interne (dite aussi virole interne) et d'une paroi annulaire externe (dite aussi virole externe) qui sont reliées en amont par une paroi transversale formant fond de chambre.
Les viroles interne et externe sont chacune pourvues d'une pluralité de trous et d'orifices divers permettant à de l'air circulant autour de la chambre de combustion de pénétrer à l'intérieur de celle-ci.
Ainsi, des trous dits « primaires » et « de dilution » sont formés dans ces viroles pour acheminer de l'air à l'intérieur de la chambre de combustion. L'air empruntant les trous primaires contribue à créer un mélange air/carburant qui est brûlé dans la chambre, tandis que l'air provenant des trous de dilution est destiné à favoriser la dilution de ce même mélange air/carburant.
Les viroles interne et externe sont soumises aux températures élevées des gaz provenant de la combustion du mélange air/carburant.
Afin d'assurer leur refroidissement, des orifices supplémentaires dits de multiperforation sont également percés au travers de ces viroles sur toute leur surface. Ces orifices de multiperforation, inclinés en général à 60°, permettent à l'air circulant à l'extérieur de la chambre de pénétrer à l'intérieur de celle-ci en formant le long des viroles des films d'air de refroidissement.
Toutefois, en pratique, il a été constaté que la zone des viroles interne et externe qui est située directement en aval de chacun des trous primaires ou de dilution, du fait notamment de l'absence d'orifices résultant de la technologie de perçage laser utilisée, bénéficie d'un faible niveau de refroidissement avec le risque de formation de criques que cela implique.
Afin de résoudre ce problème, le document US 6,145,319 propose de pratiquer des trous de transition dans la zone des parois située directement en aval de chacun des trous primaires et de dilution, ces trous de transition ayant une inclinaison plus importante que celle des orifices de multiperforation. Toutefois, étant donné qu'il s'agit d'un traitement localisé, cette solution s'avère malheureusement particulièrement onéreuse et elle augmente notablement la durée de fabrication des parois.
Obiet et résumé de l'invention
La présente invention a donc pour but de pallier de tels inconvénients en proposant une paroi annulaire de chambre de combustion qui assure un refroidissement adéquat des zones situées directement en aval des trous primaires et de dilution.
A cet effet, il est prévu une paroi annulaire de chambre de combustion de turbomachine, comportant un côté froid et un côté chaud, ladite paroi annulaire comportant :
. une pluralité de trous primaires répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid de ladite paroi annulaire de pénétrer du côté chaud afin de créer un mélange air/carburant ;
. une pluralité de trous de dilution répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid de ladite paroi annulaire de pénétrer du côté chaud afin d'assurer la dilution du mélange air/carburant ; et
. une pluralité d'orifices de refroidissement pour permettre à l'air circulant du côté froid de ladite paroi annulaire de pénétrer du côté chaud afin de former un film d'air de refroidissement le long de ladite paroi annulaire, lesdits orifices de refroidissement étant répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres et les axes géométriques de chacun desdits orifices de refroidissement étant inclinés, dans une direction axiale D d'écoulement des gaz de combustion, d'un angle d'inclinaison 01 par rapport à une normale N à ladite paroi annulaire ; caractérisée en ce qu'elle comporte en outre une pluralité d'orifices additionnels de refroidissement disposés d'une part directement en aval desdits trous primaires et d'autre part directement en aval desdits trous de dilution et répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres,
les axes géométriques de chacun desdits orifices additionnels de refroidissement étant disposés dans un plan perpendiculaire à ladite direction axiale D et inclinés d'un angle d'inclinaison Θ2 par rapport à une normale N à ladite paroi annulaire.
La présence des orifices additionnels de refroidissement disposés de façon inclinée dans un plan perpendiculaire au sens d'écoulement des gaz de combustion, directement en aval et au plus près des trous primaires et de dilution, permet d'assurer un refroidissement efficace par rapport à la multiperforation axiale classique où le film d'air est stoppé par la présence de ces trous et cela sans modifier l'écoulement dans la zone primaire.
De préférence, elle comporte en outre au niveau d'une zone de transition formée en aval de ladite pluralité de rangées d'orifices additionnels, au moins deux rangées d'orifices dont les axes géométriques de chacun desdits orifices sont inclinés, par rapport à un plan perpendiculaire à ladite direction axiale D, d'une inclinaison déterminée différente pour chacune desdites deux rangées.
Selon un autre mode de réalisation, la paroi annulaire de chambre de combustion de turbomachine, comportant un côté froid et un côté chaud peut aussi comporter :
. une pluralité de trous primaires ou de trous de dilution répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid de ladite paroi annulaire de pénétrer du côté chaud afin respectivement de créer un mélange air/carburant ou d'assurer la dilution du mélange air/carburant ; et
. une pluralité d'orifices de refroidissement pour permettre à l'air circulant du côté froid de ladite paroi annulaire de pénétrer du côté chaud afin de former un film d'air de refroidissement le long de ladite paroi annulaire, lesdits orifices de refroidissement étant répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres et les axes géométriques de chacun desdits orifices de refroidissement étant inclinés, dans une direction axiale D d'écoulement des gaz de combustion, d'un angle d'inclinaison Θ1 par rapport à une normale N à ladite paroi annulaire ;
caractérisée en ce qu'elle comporte en outre une pluralité d'orifices additionnels de refroidissement disposés directement en aval desdits trous primaires ou de dilution et répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres,
les axes géométriques de chacun desdits orifices additionnels de refroidissement étant disposés dans un plan perpendiculaire à ladite direction axiale D et inclinés d'un angle d'inclinaison Θ2 par rapport à une normale N à ladite paroi annulaire,
et en ce qu'elle comporte en outre au niveau d'une zone de transition formée en aval de ladite pluralité de rangées d'orifices additionnels, au moins deux rangées d'orifices dont les axes géométriques de chacun desdits orifices sont inclinés, par rapport à un plan perpendiculaire à ladite direction axiale D, d'une inclinaison déterminée différente pour chacune desdites deux rangées.
Cette zone de transition multiperforation giratoire-axiale permet en lissant les écoulements de réduire le gradient thermique à l'origine d'amorçage de criques. Le profil de température moyen en sortie de chambre est amélioré du fait du mélange plus efficace ainsi obtenu.
Selon un mode de réalisation de l'invention avantageux, ladite inclinaison Θ2 desdits orifices additionnels par rapport à la normale N à ladite paroi annulaire est identique à celle Θ1 desdits orifices de refroidissement.
Avantageusement, un diamètre d2 desdits orifices additionnels est identique à un diamètre dl desdits orifices de refroidissement et un pas p2 desdits orifices additionnels est identique à un pas pl desdits orifices de refroidissement et lesdits orifices additionnels peuvent présenter une densification plus importante juste en aval des trous primaires et des trous de dilution.
Lorsqu'elle comporte ces deux rangées d'orifices, lesdites inclinaisons sont de 30° et 60° respectivement. Lesdites deux rangées d'orifices sont alors soit deux rangées d'orifices additionnels disposées immédiatement en amont d'une rangée d'orifices de refroidissement, soit deux rangées d'orifices de refroidissement disposées immédiatement en aval d'une rangée d'orifices additionnels, ou encore une rangée d'orifices additionnels et une rangée d'orifices de refroidissement adjacente.
Lorsqu'elle comporte plusieurs rangées d'orifices, lesdites inclinaisons sont réparties régulièrement entre 0° et 90°.
Avantageusement, le sens d'inclinaison desdits orifices additionnels est contraint par le sens d'écoulement du mélange air/carburant en aval de ladite chambre de combustion.
La présente invention a également pour objet une chambre de combustion et une turbomachine (ayant une chambre de combustion) comportant une paroi annulaire telle que définie précédemment.
Brève description des dessins
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
- la figure 1 est une vue en coupe longitudinale d'une chambre de combustion de turbomachine dans son environnement ;
- la figure 2 est une vue partielle et en développé de l'une des parois annulaires de la chambre de combustion de la figure 1 selon un mode de réalisation de l'invention ; et
- la figure 3 est une vue partielle et en perspective d'une partie de la paroi annulaire de la figure 2. Description détaillée de l'invention
La figure 1 illustre dans son environnement une chambre de combustion 10 pour turbomachine. Une telle turbomachine comporte notamment une section de compression (non représentée) dans laquelle de l'air est comprimé avant d'être injecté dans un carter de chambre 12, puis dans la chambre de combustion 10 montée à l'intérieur de celui-ci. L'air comprimé est introduit dans la chambre de combustion et mélangé à du carburant avant d'y être brûlé. Les gaz issus de cette combustion sont alors dirigés vers une turbine haute-pression 14 disposée en sortie de la chambre de combustion.
La chambre de combustion est de type annulaire. Elle est formée d'une paroi annulaire interne 16 et d'une paroi annulaire externe 18 qui sont réunies en amont par une paroi transversale 20 formant le fond de chambre. Elle peut être directe comme illustrée ou à flux inversé. Dans ce cas, un coude de retour pouvant également être refroidi par multiperçage est placé entre la chambre de combustion et le distributeur de turbine.
Les parois annulaires interne 16 et externe 18 s'étendent selon un axe longitudinal légèrement incliné par rapport à l'axe longitudinal 22 de la turbomachine. Le fond de chambre 20 est pourvu d'une pluralité d'ouvertures 20A dans lesquelles sont montés des injecteurs de carburant 24.
Le carter de chambre 12, qui est formé d'une enveloppe interne 12a et d'une enveloppe externe 12b, ménage avec la chambre de combustion 10 des espaces annulaires 26 dans lequel est admis de l'air comprimé destiné à la combustion, à la dilution et au refroidissement de la chambre.
Les parois annulaires interne 16 et externe 18 présentent chacune un côté froid 16a, 18a disposé du côté de l'espace annulaire 26 dans lequel circule l'air comprimé et un côté chaud 16b, 18b tourné vers l'intérieur de la chambre de combustion (figure 3).
La chambre de combustion 10 se divise en une zone dite « primaire » (ou zone de combustion) et une zone dite « secondaire » (ou zone de dilution) située en aval de la précédente (l'aval s'entend par rapport à une direction générale axiale d'écoulement des gaz issus de la combustion du mélange air/carburant à l'intérieur de la chambre de combustion et matérialisée par la flèche D).
L'air qui alimente la zone primaire de la chambre de combustion est introduit par une rangée circonférentielle de trous primaires 28 pratiqués dans les parois annulaires interne 16 et externe 18 de la chambre sur toute la circonférence de ces parois annulaires. Ces trous primaires comportent un bord aval aligné sur une même ligne 28A. Quant à l'air alimentant la zone secondaire de la chambre, il emprunte une pluralité de trous de dilution 30 également formés dans les parois annulaires interne 16 et externe 18 sur toute la circonférence de ces parois annulaires. Ces trous de dilution 30 sont alignés selon une rangée circonférentielle qui est décalée axialement vers l'aval par rapport aux rangées des trous primaires 28 et ils peuvent avoir des diamètres différents avec notamment une alternance de gros et petits trous. Dans la configuration illustrée à la figure 2, ces trous de dilution de diamètres différents présentent toutefois alors un bord aval aligné sur une même ligne 30A.
Afin de refroidir les parois annulaires interne 16 et externe 18 de la chambre de combustion qui sont soumises aux températures élevées des gaz de combustion, il est prévu une pluralité d'orifices de refroidissement 32 (illustrés sur les figures 2 et 3).
Ces orifices 32, qui assurent un refroidissement des parois 16, 18 par multiperforation, sont répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres. Ces rangées d'orifices de multiperforation couvrent toute la surface des parois annulaires de la chambre à l'exception de zones particulières objets de l'invention précisément délimitées et comprises entre la ligne 28A, 30A formant un axe de transition amont et un axe de transition aval décalé axialement vers l'aval par rapport à cet axe amont et soit sensiblement en avant des trous de dilution (pour l'axe aval 28B) soit sensiblement en avant du plan de sortie de la chambre (pour l'axe aval 30B).
Le nombre et le diamètre dl des orifices de refroidissement 32 sont identiques dans chacune des rangées. Le pas pl entre deux orifices d'une même rangée est constant et peut être identique ou non pour toutes les rangées. Par ailleurs, les rangées adjacentes d'orifices de refroidissement sont arrangées de façon à ce que les orifices 32 soient disposés en quinconce comme représenté sur la figure 2.
Comme illustré sur la figure 3, les orifices de refroidissement 32 présentent généralement un angle d'inclinaison Θ1 par rapport à une normale N à la paroi annulaire 16, 18 au travers de laquelle ils sont percés. Cette inclinaison Θ1 permet à l'air empruntant ces orifices de former un film d'air le long du côté chaud 16b, 18b de la paroi annulaire. Par rapport à des orifices non inclinés, elle permet d'augmenter la surface de la paroi annulaire qui est refroidie. En outre, l'inclinaison Θ1 des orifices de refroidissement 32 est dirigée de sorte que le film d'air ainsi formé s'écoule dans le sens d'écoulement des gaz de combustion à l'intérieur de la chambre (schématisé par la flèche D).
A titre d'exemple, pour une paroi annulaire 16, 18 réalisée en matériau métallique ou céramique et ayant une épaisseur comprise entre 0,6 et 3,5mm, le diamètre dl des orifices de refroidissement 32 peut être compris entre 0,3 et 1 mm, le pas dl compris entre 1 et 10 mm et leur inclinaison Θ1 comprise entre +30° et +70°, typiquement +60°. A titre de comparaison, pour une paroi annulaire ayant les mêmes caractéristiques, les trous primaires 28 et les trous de dilution 30 possèdent un diamètre de l'ordre de 4 à 20 mm.
Selon l'invention, chaque paroi annulaire 16, 18 de la chambre de combustion comporte, disposés directement en aval des trous primaires 28 et de dilution 30 et répartis selon plusieurs rangées circonférentielles, typiquement au moins 5 rangées, depuis l'axe de transition amont 28A, 30A et jusqu'à l'axe de transition aval 28B, 30B, une pluralité d'orifices additionnels de refroidissement 34. Toutefois, au contraire des orifices de refroidissement précédents qui délivrent un film d'air s'écoulant dans la direction axiale D, le film d'air délivré par ces orifices additionnels s'écoule dans une direction perpendiculaire du fait de leur disposition dans un plan perpendiculaire à cette direction axiale D d'écoulement des gaz de combustion. Cette multiperforation réalisée perpendiculairement à l'axe de la turbomachine (dans la suite de la description, on parlera de multiperforation giratoire par opposition à la multiperforation axiale des orifices de refroidissement) permet de rapprocher les orifices additionnels des trous primaires ou de dilution et donc d'améliorer l'efficacité du mélange air/carburant.
Les orifices additionnels 34 d'une même rangée présentent un même diamètre d2, de préférence identique au diamètre dl des orifices de refroidissement 32, sont espacés d'un pas p2 constant qui peut être identique ou non au pas pl entre les orifices de refroidissement 32 et présentent une inclinaison Θ2, de préférence identique à l'inclinaison Θ1 des orifices de refroidissement 32 mais disposée dans un plan perpendiculaire. Toutefois, ces caractéristiques des orifices additionnels 34 peuvent, tout en restant dans les plages de valeurs définies précédemment, être sensiblement différentes de celles des orifices de refroidissement 32, c'est-à-dire que l'inclinaison Θ2 des orifices additionnels d'une même rangée par rapport à une normale N à la paroi annulaire 16, 18 peut être différente de celle Θ1 des orifices de refroidissement, et le diamètre d2 des orifices additionnels d'une même rangée peut être différent de celui dl des orifices de refroidissement 32. Toutefois, selon le besoin de refroidissement souhaité, les orifices additionnels 34 derrière la rangée des trous primaires 28 peuvent en outre présenter avantageusement des caractéristiques en matière d'inclinaison, de diamètre ou de pas différentes de ceux disposés derrière la rangée des trous de dilution 30 et, plus particulièrement, au sein d'une même zone une différence du diamètre d2 et du pas p2 peut aussi être réalisée pour densifier ce refroidissement dans les parties les plus contraintes thermiquement, c'est-à-dire celles justes en aval des trous primaires et des gros orifices de dilution, lorsque ces derniers sont formés d'une alternance de gros et de petits orifices comme illustré à la figure 2.
Entre la rangée des trous primaires et celle des trous de dilution, l'introduction de la multiperforation giratoire permet en limitant l'élévation du gradient thermique d'éviter la formation de criques en aval des trous primaires 28. La multiperforation en amont des trous de dilution 30 depuis l'axe de transition aval 28B restant de type axial, il est nécessaire de prévoir une zone de transition réalisée par exemple sur deux rangées dans laquelle les trous additionnels de refroidissement 34 sont chacun disposés dans un plan incliné l'un de 30° et l'autre de 60° par rapport à la direction axiale D, les autres paramètres, à savoir le diamètre d2, le pas p2 et l'inclinaison Θ2 de ces trous additionnels dans ces plans inclinés restant inchangés.
De même, en sortie de chambre, plus précisément à partir de l'axe de transition aval 30B (figure 2), l'introduction de la multiperforation axiale permet de combler le niveau local de giration afin de ne pas perdre le rendement TuHP de la chambre de combustion. De préférence, il est aussi conseillé de prévoir une zone de transition multiperforation giratoire- axiale permettant en lissant les écoulements de réduire le gradient thermique à l'origine d'amorçage de criques. Le profil de température moyen en sortie de chambre est amélioré du fait du mélange plus efficace ainsi obtenu. Cette zone de transition peut par exemple être réalisée sur deux rangées de trous additionnels de refroidissement chacun disposés dans un plan incliné l'un de 30° et l'autre de 60° par rapport à la direction axiale D, les autres paramètres, à savoir le diamètre d2, le pas p2 et l'inclinaison Θ2 des trous additionnels dans ces plans inclinés restant inchangés. Dans le cas d'une chambre de combustion à flux inversé, cette zone à partir de l'axe 30B peut ne pas exister ou être intégrée au coude de retour.
On notera que si la zone de transition a été décrite au niveau de la multiperforation giratoire, rien n'interdit toutefois de la réaliser au niveau de la multiperforation axiale ou encore à cheval avec une rangée de multiperforation axiale inclinée à 30° et une rangée de multiperforation giratoire inclinée à 60°. De même, cette zone de transition peut comporter plus de deux rangées, l'inclinaison des orifices étant alors répartie régulièrement entre 0° (multiperforation axiale) et 90° (multiperforation giratoire). Par exemple, avec trois rangées, l'inclinaison des orifices sera respectivement de 22,5°, 45° et 67,5°.
Avec l'invention, l'écoulement dans la zone primaire n'est pas modifié, la giration n'impactant pas l'orientation des jets de dilution et en s'affranchissement de la barrière thermique permet un gain de masse et donc de coût. On notera également que pour respecter le sens des écoulements dans le DHP et éviter les décollements aérodynamiques et ainsi conserver le rendement de la turbine haute pression, le sens du perçage de la multiperforation giratoire est figé par l'orientation des aubages du distributeur Haute Pression (DHP) en aval de la chambre de combustion.

Claims

REVENDICATIONS
1. Paroi annulaire (16, 18) de chambre de combustion (10) de turbomachine, comportant un côté froid (16a, 18a) et un côté chaud (16b, 18b), ladite paroi annulaire comportant :
. une pluralité de trous primaires (28) répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid (16a, 18a) de ladite paroi annulaire de pénétrer du côté chaud (16b, 18b) afin de créer un mélange air/carburant ;
. une pluralité de trous de dilution (30) répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid (16a, 18a) de ladite paroi annulaire de pénétrer du côté chaud (16b, 18b) afin d'assurer la dilution du mélange air/carburant ; et
. une pluralité d'orifices de refroidissement (32) pour permettre à l'air circulant du côté froid (16a, 18a) de ladite paroi annulaire de pénétrer du côté chaud (16b, 18b) afin de former un film d'air de refroidissement le long de ladite paroi annulaire, lesdits orifices de refroidissement étant répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres et les axes géométriques de chacun desdits orifices de refroidissement étant inclinés, dans une direction axiale D d'écoulement des gaz de combustion, d'un angle d'inclinaison Θ1 par rapport à une normale N à ladite paroi annulaire ;
caractérisée en ce qu'elle comporte en outre une pluralité d'orifices additionnels de refroidissement (34) disposés d'une part directement en aval desdits trous primaires et d'autre part directement en aval desdits trous de dilution et répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres,
les axes géométriques de chacun desdits orifices additionnels de refroidissement étant disposés dans un plan perpendiculaire à ladite direction axiale D et inclinés d'un angle d'inclinaison Θ2 par rapport à une normale N à ladite paroi annulaire.
2. Paroi selon la revendication 1, caractérisée en ce que ladite inclinaison Θ2 desdits orifices additionnels par rapport à la normale N à ladite paroi annulaire est identique à celle Θ1 desdits orifices de refroidissement.
3. Paroi selon la revendication 1 ou la revendication 2, caractérisée en ce qu'un diamètre d2 desdits orifices additionnels est identique à un diamètre dl desdits orifices de refroidissement et un pas p2 desdits orifices additionnels est identique à un pas pl desdits orifices de refroidissement.
4. Paroi selon la revendication 1, caractérisée en ce que lesdits orifices additionnels présentent une densification plus importante juste en aval des trous primaires et des trous de dilution.
5. Paroi selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle comporte en outre au niveau d'une zone de transition (28B, 30B) formée en aval de ladite pluralité de rangées d'orifices additionnels, au moins deux rangées d'orifices dont les axes géométriques de chacun desdits orifices sont inclinés, par rapport à un plan perpendiculaire à ladite direction axiale D, d'une inclinaison déterminée différente pour chacune desdites deux rangées.
6. Paroi annulaire (16, 18) de chambre de combustion (10) de turbomachine, comportant un côté froid (16a, 18a) et un côté chaud (16b,
18b), ladite paroi annulaire comportant :
. une pluralité de trous primaires (28) ou de trous de dilution (30) répartis selon une rangée circonférentielle pour permettre à de l'air circulant du côté froid (16a, 18a) de ladite paroi annulaire de pénétrer du côté chaud (16b, 18b) afin respectivement de créer un mélange air/carburant ou d'assurer la dilution du mélange air/carburant ; et
. une pluralité d'orifices de refroidissement (32) pour permettre à l'air circulant du côté froid (16a, 18a) de ladite paroi annulaire de pénétrer du côté chaud (16b, 18b) afin de former un film d'air de refroidissement le long de ladite paroi annulaire, lesdits orifices de refroidissement étant répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres et les axes géométriques de chacun desdits orifices de refroidissement étant inclinés, dans une direction axiale D d'écoulement des gaz de combustion, d'un angle d'inclinaison Θ1 par rapport à une normale N à ladite paroi annulaire ; caractérisée en ce qu'elle comporte en outre une pluralité d'orifices additionnels de refroidissement (34) disposés directement en aval desdits trous primaires ou de dilution et répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres,
les axes géométriques de chacun desdits orifices additionnels de refroidissement étant disposés dans un plan perpendiculaire à ladite direction axiale D et inclinés d'un angle d'inclinaison Θ2 par rapport à une normale N à ladite paroi annulaire,
et en ce qu'elle comporte en outre au niveau d'une zone de transition (28B, 30B) formée en aval de ladite pluralité de rangées d'orifices additionnels, au moins deux rangées d'orifices dont les axes géométriques de chacun desdits orifices sont inclinés, par rapport à un plan perpendiculaire à ladite direction axiale D, d'une inclinaison déterminée différente pour chacune desdites deux rangées.
7. Paroi selon la revendication 5 ou la revendication 6, caractérisée en ce qu'elle comporte deux rangées d'orifices et lesdites inclinaisons sont de 30° et 60° respectivement.
8. Paroi selon la revendication 7, caractérisée en ce que lesdites deux rangées d'orifices sont deux rangées d'orifices additionnels disposées immédiatement en amont d'une rangée d'orifices de refroidissement, deux rangées d'orifices de refroidissement disposées immédiatement en aval d'une rangée d'orifices additionnels, ou encore une rangée d'orifices additionnels et une rangée d'orifices de refroidissement adjacente.
9. Paroi selon la revendication 5 ou la revendication 6, caractérisée en ce qu'elle comporte plusieurs rangées d'orifices et lesdites inclinaisons sont réparties régulièrement entre 0° et 90°.
10. Paroi selon l'une quelconque des revendications 1 à 9, caractérisée en ce que le sens d'inclinaison desdits orifices additionnels est contraint par le sens d'écoulement du mélange air/carburant en aval de ladite chambre de combustion.
11. Chambre de combustion (10) de turbomachine, comportant au moins une paroi annulaire (16, 18) selon l'une quelconque des revendications 1 à 10.
12. Turbomachine comportant une chambre de combustion (10) ayant au moins une paroi annulaire (16, 18) selon l'une quelconque des revendications 1 à 10.
EP12790620.4A 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution Active EP2771618B8 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17175880.8A EP3267111B1 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amelioré au niveau des trous primaires et/ou de dilution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1159704A FR2982008B1 (fr) 2011-10-26 2011-10-26 Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution
PCT/FR2012/052446 WO2013060987A2 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP17175880.8A Division EP3267111B1 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amelioré au niveau des trous primaires et/ou de dilution
EP17175880.8A Division-Into EP3267111B1 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amelioré au niveau des trous primaires et/ou de dilution

Publications (3)

Publication Number Publication Date
EP2771618A2 true EP2771618A2 (fr) 2014-09-03
EP2771618B1 EP2771618B1 (fr) 2017-06-14
EP2771618B8 EP2771618B8 (fr) 2017-08-16

Family

ID=47221481

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17175880.8A Active EP3267111B1 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amelioré au niveau des trous primaires et/ou de dilution
EP12790620.4A Active EP2771618B8 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17175880.8A Active EP3267111B1 (fr) 2011-10-26 2012-10-25 Paroi annulaire de chambre de combustion à refroidissement amelioré au niveau des trous primaires et/ou de dilution

Country Status (9)

Country Link
US (1) US10551064B2 (fr)
EP (2) EP3267111B1 (fr)
JP (1) JP6177785B2 (fr)
CN (2) CN103958970B (fr)
BR (1) BR112014010215A8 (fr)
CA (1) CA2852393C (fr)
FR (1) FR2982008B1 (fr)
IN (1) IN2014DN03138A (fr)
WO (1) WO2013060987A2 (fr)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982008B1 (fr) * 2011-10-26 2013-12-13 Snecma Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution
FR3019270B1 (fr) * 2014-03-31 2016-04-15 Snecma Paroi annulaire de chambre de combustion a orifices de refroidissement ameliores au niveau des jonctions brides
CN104791848A (zh) * 2014-11-25 2015-07-22 西北工业大学 一种采用叶栅通道多斜孔冷却方式的燃烧室火焰筒壁面
US20160258623A1 (en) * 2015-03-05 2016-09-08 United Technologies Corporation Combustor and heat shield configurations for a gas turbine engine
FR3037107B1 (fr) * 2015-06-03 2019-11-15 Safran Aircraft Engines Paroi annulaire de chambre de combustion a refroidissement optimise
US10520193B2 (en) 2015-10-28 2019-12-31 General Electric Company Cooling patch for hot gas path components
US10041677B2 (en) * 2015-12-17 2018-08-07 General Electric Company Combustion liner for use in a combustor assembly and method of manufacturing
JP6026028B1 (ja) * 2016-03-10 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法
US10584880B2 (en) 2016-03-25 2020-03-10 General Electric Company Mounting of integrated combustor nozzles in a segmented annular combustion system
US10605459B2 (en) 2016-03-25 2020-03-31 General Electric Company Integrated combustor nozzle for a segmented annular combustion system
US10641491B2 (en) 2016-03-25 2020-05-05 General Electric Company Cooling of integrated combustor nozzle of segmented annular combustion system
US10520194B2 (en) 2016-03-25 2019-12-31 General Electric Company Radially stacked fuel injection module for a segmented annular combustion system
US11428413B2 (en) 2016-03-25 2022-08-30 General Electric Company Fuel injection module for segmented annular combustion system
US10830442B2 (en) 2016-03-25 2020-11-10 General Electric Company Segmented annular combustion system with dual fuel capability
US10584876B2 (en) 2016-03-25 2020-03-10 General Electric Company Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system
US10641176B2 (en) 2016-03-25 2020-05-05 General Electric Company Combustion system with panel fuel injector
US10563869B2 (en) 2016-03-25 2020-02-18 General Electric Company Operation and turndown of a segmented annular combustion system
US10337738B2 (en) * 2016-06-22 2019-07-02 General Electric Company Combustor assembly for a turbine engine
CN106247402B (zh) * 2016-08-12 2019-04-23 中国航空工业集团公司沈阳发动机设计研究所 一种火焰筒
US11156362B2 (en) 2016-11-28 2021-10-26 General Electric Company Combustor with axially staged fuel injection
US10690350B2 (en) 2016-11-28 2020-06-23 General Electric Company Combustor with axially staged fuel injection
US10753283B2 (en) * 2017-03-20 2020-08-25 Pratt & Whitney Canada Corp. Combustor heat shield cooling hole arrangement
US10816202B2 (en) * 2017-11-28 2020-10-27 General Electric Company Combustor liner for a gas turbine engine and an associated method thereof
US10890327B2 (en) 2018-02-14 2021-01-12 General Electric Company Liner of a gas turbine engine combustor including dilution holes with airflow features
US11255543B2 (en) 2018-08-07 2022-02-22 General Electric Company Dilution structure for gas turbine engine combustor
US11029027B2 (en) 2018-10-03 2021-06-08 Raytheon Technologies Corporation Dilution/effusion hole pattern for thick combustor panels
FR3090746B1 (fr) * 2018-12-20 2021-06-11 Safran Aircraft Engines Tuyere de post combustion comportant une chemise a perforation obliques
FR3098569B1 (fr) 2019-07-10 2021-07-16 Safran Aircraft Engines Paroi annulaire pour chambre de combustion de turbomachine comprenant des trous primaires, des trous de dilution et des orifices de refroidissement inclines
US20210222879A1 (en) * 2020-01-17 2021-07-22 United Technologies Corporation Convection cooling at low effusion density region of combustor panel
US11994292B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus for turbomachine
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
CN112607040A (zh) * 2020-12-31 2021-04-06 西北工业大学 一种用以飞行器高温部件的壁面交错斜孔射流冷却技术
US11774100B2 (en) * 2022-01-14 2023-10-03 General Electric Company Combustor fuel nozzle assembly
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923371A (en) * 1988-04-01 1990-05-08 General Electric Company Wall having cooling passage
GB2221979B (en) * 1988-08-17 1992-03-25 Rolls Royce Plc A combustion chamber for a gas turbine engine
US5241827A (en) * 1991-05-03 1993-09-07 General Electric Company Multi-hole film cooled combuster linear with differential cooling
US5261223A (en) * 1992-10-07 1993-11-16 General Electric Company Multi-hole film cooled combustor liner with rectangular film restarting holes
US5289686A (en) * 1992-11-12 1994-03-01 General Motors Corporation Low nox gas turbine combustor liner with elliptical apertures for air swirling
US6145319A (en) * 1998-07-16 2000-11-14 General Electric Company Transitional multihole combustion liner
US6205789B1 (en) * 1998-11-13 2001-03-27 General Electric Company Multi-hole film cooled combuster liner
US6408629B1 (en) * 2000-10-03 2002-06-25 General Electric Company Combustor liner having preferentially angled cooling holes
US6513331B1 (en) * 2001-08-21 2003-02-04 General Electric Company Preferential multihole combustor liner
US6568187B1 (en) * 2001-12-10 2003-05-27 Power Systems Mfg, Llc Effusion cooled transition duct
JP2004257335A (ja) * 2003-02-27 2004-09-16 Kawasaki Heavy Ind Ltd ポーラス金属を用いたガスタービン部品及びその製造方法
US7216485B2 (en) * 2004-09-03 2007-05-15 General Electric Company Adjusting airflow in turbine component by depositing overlay metallic coating
US7614235B2 (en) * 2005-03-01 2009-11-10 United Technologies Corporation Combustor cooling hole pattern
FR2892180B1 (fr) * 2005-10-18 2008-02-01 Snecma Sa Amelioration des perfomances d'une chambre de combustion par multiperforation des parois
US7546737B2 (en) * 2006-01-24 2009-06-16 Honeywell International Inc. Segmented effusion cooled gas turbine engine combustor
US7669422B2 (en) * 2006-07-26 2010-03-02 General Electric Company Combustor liner and method of fabricating same
US8522557B2 (en) * 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component
US7905094B2 (en) * 2007-09-28 2011-03-15 Honeywell International Inc. Combustor systems with liners having improved cooling hole patterns
US8104288B2 (en) * 2008-09-25 2012-01-31 Honeywell International Inc. Effusion cooling techniques for combustors in engine assemblies
US9897320B2 (en) * 2009-07-30 2018-02-20 Honeywell International Inc. Effusion cooled dual wall gas turbine combustors
FR2982008B1 (fr) * 2011-10-26 2013-12-13 Snecma Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013060987A2 *

Also Published As

Publication number Publication date
FR2982008A1 (fr) 2013-05-03
JP2014531015A (ja) 2014-11-20
EP3267111B1 (fr) 2022-02-16
EP2771618B1 (fr) 2017-06-14
US10551064B2 (en) 2020-02-04
WO2013060987A2 (fr) 2013-05-02
CN103958970A (zh) 2014-07-30
RU2014121037A (ru) 2015-12-10
EP2771618B8 (fr) 2017-08-16
CA2852393C (fr) 2020-08-04
EP3267111A3 (fr) 2018-02-28
BR112014010215A2 (pt) 2017-06-13
BR112014010215A8 (pt) 2017-06-20
CN103958970B (zh) 2016-08-24
EP3267111A2 (fr) 2018-01-10
CN203147824U (zh) 2013-08-21
WO2013060987A3 (fr) 2014-02-20
IN2014DN03138A (fr) 2015-05-22
FR2982008B1 (fr) 2013-12-13
US20140260257A1 (en) 2014-09-18
JP6177785B2 (ja) 2017-08-09
CA2852393A1 (fr) 2013-05-02

Similar Documents

Publication Publication Date Title
EP2771618B1 (fr) Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution
EP3303774B1 (fr) Paroi annulaire de chambre de combustion a refroidissement optimise
EP1777458B1 (fr) Amélioration des performances d'une chambre de combustion par multiperforation des parois
CA2639980C (fr) Chambre de combustion d'une turbomachine
EP2510284B1 (fr) Chambre de combustion pour turbomachine
EP0248731A1 (fr) Chambre de combustion pour turbomachines à orifices de mélange assurant le positionnement de la paroi chaude sur la paroi froide
FR2975465A1 (fr) Paroi pour chambre de combustion de turbomachine comprenant un agencement optimise d'orifices d'entree d'air
FR2982009A1 (fr) Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et/ou de dilution
CA2843690C (fr) Paroi de chambre de combustion
FR3021351B1 (fr) Paroi de turbomachine comportant une partie au moins d'orifices de refroidissement obtures
FR3019270A1 (fr) Paroi annulaire de chambre de combustion a orifices de refroidissement ameliores au niveau des jonctions brides
FR3072448B1 (fr) Chambre de combustion de turbomachine
FR3015010A1 (fr) Paroi annulaire pour chambre de combustion de turbomachine comprenant des orifices de refroidissement a effet contra-rotatif
FR3027741A1 (fr) Ensemble d’allumage
WO2013045802A1 (fr) Chambre de combustion de turbomachine
EP4179256B1 (fr) Chambre annulaire de combustion pour une turbomachine d'aéronef
FR3061948A1 (fr) Chambre de combustion de turbomachine a haute permeabilite
FR2999277A1 (fr) Paroi annulaire de chambre de combustion en aval d'un compresseur centrifuge
FR3098569A1 (fr) Paroi annulaire pour chambre de combustion de turbomachine comprenant des trous primaires, des trous de dilution et des orifices de refroidissement inclines
FR3101915A1 (fr) Anneau de turbine de turbomachine comprenant des conduites internes de refroidissement
FR3090746A1 (fr) Tuyere de post combustion comportant une chemise a perforation obliques
FR3033028A1 (fr) Chambre de combustion de turbomachine comportant une piece penetrante avec ouverture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140327

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

Owner name: SAFRAN HELICOPTER ENGINES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 901351

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

Owner name: SAFRAN HELICOPTER ENGINES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012033476

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170614

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170915

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 901351

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171014

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012033476

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

26N No opposition filed

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210921

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240919

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240919

Year of fee payment: 13