FR2980380A1 - Manufacturing metal part such as blade of turboshaft engine, comprises performing two successive sweepings of same zone of metal powder layer by laser beam or electron beam, where metal powder layer is coated with deposit on support - Google Patents

Manufacturing metal part such as blade of turboshaft engine, comprises performing two successive sweepings of same zone of metal powder layer by laser beam or electron beam, where metal powder layer is coated with deposit on support Download PDF

Info

Publication number
FR2980380A1
FR2980380A1 FR1158504A FR1158504A FR2980380A1 FR 2980380 A1 FR2980380 A1 FR 2980380A1 FR 1158504 A FR1158504 A FR 1158504A FR 1158504 A FR1158504 A FR 1158504A FR 2980380 A1 FR2980380 A1 FR 2980380A1
Authority
FR
France
Prior art keywords
laser beam
powder layer
metal powder
electron beam
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1158504A
Other languages
French (fr)
Other versions
FR2980380B1 (en
Inventor
Sophie Martine Jobez
Beryl Cassandre Anne Mereaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Priority to FR1158504A priority Critical patent/FR2980380B1/en
Publication of FR2980380A1 publication Critical patent/FR2980380A1/en
Application granted granted Critical
Publication of FR2980380B1 publication Critical patent/FR2980380B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

The method comprises performing two successive sweepings of a same zone of a metal powder layer (2) by a laser beam or an electron beam (11) of different energies, where the metal powder layer is coated with a deposit on a support (6), a selective fusion is performed in the metal powder layer by sweeping a surface of the metal powder layer by the laser beam or the electron beam, and a coating part is obtained after solidification of the metal powder layer. A periphery of the part is swept by the laser beam or electron beam whose energy is lower than that used to sweep the core of the part. The method comprises performing two successive sweepings of a same zone of a metal powder layer (2) by a laser beam or an electron beam (11) of different energies, where the metal powder layer is coated with a deposit on a support (6), a selective fusion is performed in the metal powder layer by sweeping a surface of the metal powder layer by the laser beam or the electron beam, and a coating part is obtained after solidification of the metal powder layer. The first sweeping is carried out with a laser beam or an electron beam whose energy is lower or higher than that of the laser beam or the electron beam during the second sweeping. A periphery of the part is swept by the laser beam or electron beam whose energy is lower than that used to sweep the core of the part. The first complete sweeping of the metal powder layer is carried out using the laser beam or the electron beam before carrying out the second complete sweeping of the zone previously swept using the laser beam or the electron beam. The sweeping of the metal powder layer is carried out using first and second beams that are simultaneously moved and shifted one compared to the other so that a trajectory of the second beam follows that of the first beam. The first and second beams are produced by a same source whose beam was divided into two parts or produced by two distinct sources (9). The metal powder layer comprises superalloy of nickel. An average granulometry of the metal powder layer is 40-45 mu m. The first sweeping of the metal powder layer is realized using the laser beam with an energy of 0.22-0.26 Watt.s/mm. The second sweeping is realized using the laser beam with an energy of 0.11-0.13 Watt.s/mm. The periphery of the part is swept by a first laser beam whose energy is 0.14-0.18 Watt.s/mm, and by a second laser beam whose energy is 0.09-0.11 20 Watt.s/m.

Description

Stratégie de fabrication d'une pièce métallique par fusion sélective d'une poudre La présente invention concerne un procédé de fabrication couche par couche d'une pièce métallique par fusion sélective d'une poudre à l'aide d'un faisceau laser ou d'un faisceau d'électrons, un tel procédé étant également connu sous les noms de Direct Metal Laser Sintering ou Electron Beam Melting. On connaît une technique qui consiste à fabriquer une pièce par fusion de couches successives de poudre au moyen d'un faisceau laser ou d'un faisceau d'électrons commandé par un système de traitement de l'information dans lequel on a enregistré les coordonnées tridimensionnelles des points des couches successives à réaliser. De façon pratique, on dispose dans une cuve dont le fond est formé par un plateau mobile en translation, une première couche de poudre à l'aide d'un racleur. La couche présente alors une surface inférieure correspondant à la surface du plateau et une surface supérieure sur laquelle est dirigé et déplacé le faisceau laser ou le faisceau d'électrons. L'énergie apportée par ce faisceau provoque la fusion locale de la poudre qui, en se solidifiant, forme une première couche de la pièce métallique. Après formation de cette première couche, le plateau est descendu d'une distance correspondant à l'épaisseur d'une couche, puis une seconde couche de poudre est amenée par le racleur sur la couche précédente. De la même manière que précédemment, une seconde couche de la pièce métallique est formée à l'aide du faisceau. Ces opérations sont répétées jusqu'à fabrication complète de la pièce. Un tel procédé permet de réduire les temps de fabrication des pièces d'environ 30%, par rapport à un usinage classique. The present invention relates to a method of manufacturing layer by layer of a metal part by selective melting of a powder with the aid of a laser beam or a laser beam. an electron beam, such a process also being known as Direct Metal Laser Sintering or Electron Beam Melting. A technique is known which consists in making a part by melting successive layers of powder by means of a laser beam or an electron beam controlled by an information processing system in which the three-dimensional coordinates have been recorded. points of successive layers to achieve. Conveniently, in a vessel whose bottom is formed by a movable plate in translation, a first layer of powder is provided with a scraper. The layer then has a lower surface corresponding to the surface of the plate and an upper surface on which is directed and displaced the laser beam or the electron beam. The energy provided by this beam causes the local melting of the powder which, solidifying, forms a first layer of the metal part. After forming this first layer, the plate is lowered by a distance corresponding to the thickness of a layer, then a second layer of powder is fed by the scraper on the previous layer. In the same way as before, a second layer of the metal part is formed using the beam. These operations are repeated until complete production of the part. Such a method makes it possible to reduce the manufacturing times of the parts by approximately 30% compared with conventional machining.

On a toutefois constaté que les pièces fabriquées à l'aide d'un tel procédé peuvent ne pas présenter les caractéristiques mécaniques recherchées. Des études menées par la Demanderesse ont permis de constater que le matériau de ces pièces n'est pas toujours suffisamment dense et peut être fissuré et/ou peut présenter une quantité de porosités trop importante. La taille de ces pores doit être la plus faible possible pour réduire les risques d'amorce de fissure qu'ils constituent. Plus les amorces de fissures sont grandes, plus les fissures générées peuvent se propager et endommager gravement la pièce, en particulier si cette dernière est soumise à des sollicitations telles qu'une fatigue vibratoire ou oligocyclique. Dans le cas de la fusion sélective à l'aide d'un faisceau laser ou d'un faisceau d'électrons, plus l'énergie du faisceau est importante, plus le matériau obtenu après solidification du bain de poudre fondue est dense. Cependant, un faisceau dont l'énergie est élevée génère des gradients thermiques importants en avant et en arrière du bain liquide obtenu par fusion, ce qui peut générer des fissures qui dégradent les propriétés mécaniques de la pièce, en particulier si le matériau est sensible à la fissuration tel que le René 77, le TiAI, etc... Le matériau des pièces obtenues par un tel procédé peut également présenter une hétérogénéité relativement importante, ce qui est défavorable en termes de propriétés mécaniques. However, it has been found that parts made using such a process may not have the desired mechanical characteristics. Studies conducted by the Applicant have found that the material of these parts is not always dense enough and can be cracked and / or may have too much porosity. The size of these pores must be as small as possible to reduce the risk of crack initiation they constitute. The larger the crack initiators, the more the cracks generated can spread and seriously damage the part, especially if the latter is subjected to stresses such as vibratory or oligocyclic fatigue. In the case of selective fusion using a laser beam or an electron beam, the higher the energy of the beam, the more the material obtained after solidification of the molten powder bath is dense. However, a beam whose energy is high generates significant thermal gradients ahead and behind the melt liquid bath, which can generate cracks that degrade the mechanical properties of the part, especially if the material is sensitive to cracking such as René 77, TiAI, etc ... The material of the parts obtained by such a process can also have a relatively large heterogeneity, which is unfavorable in terms of mechanical properties.

L'objectif recherché est d'obtenir des pièces dont le matériau est le plus dense possible, avec des porosités les plus petites possibles, sans pour autant présenter de fissures. L'invention a notamment pour but d'apporter une solution simple, efficace et économique à ces problèmes. The objective is to obtain parts whose material is as dense as possible, with the smallest possible porosities, without presenting cracks. The invention aims in particular to provide a simple, effective and economical solution to these problems.

A cet effet, elle propose un procédé de fabrication d'une pièce métallique, réalisée couche par couche par dépôt d'une couche de poudre métallique sur un support ou sur une partie déjà réalisée de la pièce, puis par fusion sélective de la couche de poudre par balayage de la surface de la couche de poudre par un faisceau laser ou un faisceau d'électrons, une couche de la pièce étant obtenue après solidification de la couche de poudre fondue, caractérisé en ce que, pour chaque couche de la pièce ainsi réalisée, le procédé comprend au moins deux balayages successifs d'une même zone de la couche de poudre par un faisceau laser ou un faisceau d'électrons. Alors qu'auparavant, la couche de poudre n'était balayée qu'une seule fois par le faisceau, l'invention propose donc de réaliser deux balayages successifs de cette couche. Ceci permet de mieux contrôler le procédé de fabrication, de réduire les risques de fissuration et de générer des couches de matière de plus grande densité sans provoquer de gradients thermiques trop importants, ainsi que d'homogénéiser le matériau des pièces ainsi fabriquées. De préférence, les deux balayages successifs de la même zone sont réalisés avec des faisceaux laser ou d'électrons d'énergie différente. En particulier, le premier balayage peut être effectué avec un faisceau laser ou un faisceau d'électrons dont l'énergie est, par rapport à celle dudit faisceau qui assure le balayage suivant : - soit inférieure, afin de préchauffer la poudre pour réduire le gradient thermique au passage du deuxième balayage qui créé la fusion ; - soit supérieure, afin d'obtenir une double fusion. For this purpose, it proposes a method of manufacturing a metal part, carried out layer by layer by depositing a layer of metal powder on a support or on a part already made of the part, then by selective melting of the layer of powder by scanning the surface of the powder layer by a laser beam or an electron beam, a layer of the part being obtained after solidification of the layer of melted powder, characterized in that for each layer of the piece and realized, the method comprises at least two successive scans of the same area of the powder layer by a laser beam or an electron beam. Whereas before, the powder layer was scanned only once by the beam, the invention therefore proposes to perform two successive scans of this layer. This allows better control of the manufacturing process, reduce the risk of cracking and generate layers of higher density material without causing excessive thermal gradients, as well as to homogenize the material of the parts thus manufactured. Preferably, the two successive scans of the same area are made with laser beams or electrons of different energy. In particular, the first scan may be performed with a laser beam or an electron beam whose energy is, relative to that of said beam which provides the following scan: - is lower, in order to preheat the powder to reduce the gradient thermal at the passage of the second sweep that creates the fusion; - higher, in order to obtain a double fusion.

Chaque balayage peut ainsi être réalisé à l'aide d'un faisceau ayant une énergie adaptée à l'effet recherché. Le premier balayage permet par exemple d'obtenir la bonne densité du matériau ainsi que la taille de porosité recherchée. Le second balayage peut alors être effectué avec une énergie moindre, sans détruire l'effet du premier balayage car la poudre a déjà été fondue. Ce second balayage permet d'accroître l'homogénéité du matériau et abaisse le niveau de contraintes résiduelles du matériau. Selon une autre caractéristique de l'invention, pour obtenir un état de surface moins rugueux, la périphérie de la pièce est balayée deux fois par un faisceau laser ou un faisceau d'électrons dont l'énergie est inférieure à celle utilisée pour balayer le coeur de la pièce. Each scan can thus be performed using a beam having an energy adapted to the desired effect. The first scan makes it possible, for example, to obtain the right density of the material as well as the desired porosity size. The second scan can then be performed with less energy, without destroying the effect of the first scan because the powder has already been melted. This second scan makes it possible to increase the homogeneity of the material and lowers the level of residual stresses of the material. According to another characteristic of the invention, in order to obtain a rougher surface condition, the periphery of the part is scanned twice by a laser beam or an electron beam whose energy is less than that used to scan the core. of the room.

Dans un premier mode d'exécution du procédé selon l'invention, on réalise un premier balayage complet de la couche de poudre à l'aide d'un faisceau laser ou d'un faisceau d'électrons avant d'effectuer au moins un second balayage complet de la zone précédemment balayée à l'aide du faisceau laser ou du faisceau d'électrons. Ce premier mode permet de n'utiliser qu'une seule source laser qui réalise deux balayages complets, l'un après l'autre. Dans un second mode d'exécution de ce procédé, on réalise un balayage de la couche de poudre à l'aide d'un premier et d'un second faisceau, au moins, déplacés en synchronisme et décalés l'un par rapport à l'autre de façon à ce que la trajectoire du second faisceau suive, au moins partiellement, celle du premier faisceau. Ce second mode d'exécution permet de réaliser des pièces avec un temps de cycle très faible. In a first embodiment of the method according to the invention, a first complete scan of the powder layer is carried out using a laser beam or an electron beam before carrying out at least a second complete scanning of the previously scanned area using the laser beam or the electron beam. This first mode makes it possible to use only one laser source which carries out two complete sweeps, one after the other. In a second embodiment of this method, the powder layer is scanned using a first and a second beam, at least, moved in synchronism and offset with respect to the other so that the trajectory of the second beam follows, at least partially, that of the first beam. This second embodiment makes it possible to produce parts with a very short cycle time.

Dans le cadre du second mode d'exécution, les deux faisceaux peuvent être produits par une même source, dont le faisceau a été divisé en au moins deux parties, ou par deux sources distinctes. Il est à noter que l'utilisation d'une seule source permet d'obtenir deux faisceaux d'énergies différentes. In the context of the second embodiment, the two beams may be produced by the same source, whose beam has been divided into at least two parts, or by two separate sources. It should be noted that the use of a single source makes it possible to obtain two beams of different energies.

Avantageusement, la poudre est en superalliage à base Nickel, la granulométrie moyenne de la poudre étant comprise entre 40 et 45 lm, le premier balayage de la couche de poudre étant réalisé à l'aide d'un faisceau laser d'énergie linéaire comprise entre 0,22 et 0,26 Watt.s/mm, le second balayage étant réalisé à l'aide d'un faisceau laser d'énergie comprise entre 0,11 et 0,13 Watt.s/mm. En outre, pour améliorer l'état de surface, la périphérie de la pièce peut être balayée par un premier faisceau laser dont l'énergie linéaire est comprise entre 0,14 et 0,18 Watt.s/mm, puis par un second faisceau laser dont l'énergie est comprise 0,09 et 0,11Watt.s/mm. Advantageously, the powder is made of nickel-based superalloy, the mean particle size of the powder being between 40 and 45 μm, the first scan of the powder layer being made using a laser beam of linear energy between 0.22 and 0.26 Watt s / mm, the second scan being performed using a laser energy beam of between 0.11 and 0.13 Watt s / mm. In addition, to improve the surface condition, the periphery of the part can be scanned by a first laser beam whose linear energy is between 0.14 and 0.18 Watt s / mm, then by a second beam laser whose energy is between 0.09 and 0.11 Watts / mm.

L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels : - la figure 1 est une vue schématique d'une installation de fusion sélective de poudre ; - les figures 2 à 4 sont vues d'une partie de l'installation, selon trois variantes de réalisation de l'invention. La figure 1 représente une installation de fusion sélective de poudre utilisée pour la fabrication de pièces telles par exemple que des aubes de turbomachine. Cette installation comporte un réservoir 1 contenant une poudre métallique 2 et dont le fond 3 est mobile et déplaçable en translation verticale par une tige 4 d'un vérin, et une cuve voisine 5 dont le fond est constitué par un plateau mobile 6, également déplaçable en translation verticale par une tige 7 d'un vérin. L'installation comporte en outre un racleur 8 permettant d'amener de la poudre du réservoir 1 vers la cuve 5, par déplacement dans un plan horizontal A, et des moyens de génération 9 d'un faisceau laser ou d'un faisceau d'électrons, couplés à un dispositif 10 commandé par ordinateur pour orienter et déplacer le faisceau 11. Un bac de réception 12 de la poudre excédentaire 13, adjacent à la cuve 5, peut également être prévu. The invention will be better understood and other details, features and advantages of the invention will become apparent on reading the following description given by way of non-limiting example with reference to the accompanying drawings, in which: FIG. 1 is a view schematic diagram of a selective powder melting plant; - Figures 2 to 4 are seen from a portion of the installation, according to three embodiments of the invention. FIG. 1 represents a selective powder melting installation used for the manufacture of parts such as, for example, turbomachine blades. This installation comprises a tank 1 containing a metal powder 2 and whose bottom 3 is movable and movable in vertical translation by a rod 4 of a jack, and a neighboring tank 5 whose bottom is constituted by a movable plate 6, also movable in vertical translation by a rod 7 of a jack. The installation further comprises a scraper 8 for feeding powder from the tank 1 to the tank 5, by displacement in a horizontal plane A, and means 9 for generating a laser beam or a beam of electrons, coupled to a computer controlled device 10 for orienting and moving the beam 11. A receiving tray 12 of the excess powder 13, adjacent to the tank 5, can also be provided.

Le fonctionnement de cette installation est le suivant. Tout d'abord, le fond 3 du réservoir 1 est déplacé vers le haut de manière à ce qu'une certaine quantité de poudre 2 soit située au-dessus du plan horizontal A. Le racleur 8 est déplacé de la gauche vers la droite, de manière à racler ladite couche de poudre 2 dans le réservoir 1 et déposer une couche mince de poudre métallique sur la surface plane horizontale du plateau 6. La quantité de poudre 2 et la position du plateau 6 sont déterminées de façon à former une couche de poudre d'une épaisseur choisie et constante. The operation of this installation is as follows. First, the bottom 3 of the tank 1 is moved upwards so that a certain amount of powder 2 is located above the horizontal plane A. The scraper 8 is moved from left to right, in order to scrape said powder layer 2 in the reservoir 1 and deposit a thin layer of metal powder on the horizontal flat surface of the plate 6. The quantity of powder 2 and the position of the plate 6 are determined so as to form a layer of powder of a chosen and constant thickness.

Dans un premier mode d'exécution du procédé, un faisceau laser 11 ou un faisceau d'électrons, perpendiculaire au plan A, balaye une première fois une zone déterminée de la couche de poudre formée dans la cuve 5, de manière à la préchauffer ou la faire fondre localement. Les zones fondues se solidifient ensuite en formant une première couche de matière 14, cette couche ayant par exemple une épaisseur de l'ordre de 10 à 200 pm. Cette couche est ensuite balayée une seconde fois par le faisceau laser 11 ou par le faisceau d'électrons. Dans ce cas, il est donc procédé à un premier balayage complet de la couche de poudre à l'aide d'un faisceau laser ou d'un faisceau d'électrons avant d'effectuer au moins un second balayage complet de la zone précédemment balayée à l'aide d'un faisceau laser ou d'un faisceau d'électrons. Une seule source laser ou d'électrons 9 peut être utilisée pour la mise en oeuvre d'un tel procédé, comme cela est illustré schématiquement à la figure 2. In a first embodiment of the method, a laser beam 11 or an electron beam, perpendicular to the plane A, scans for a first time a determined zone of the powder layer formed in the tank 5, so as to preheat it or melt it locally. The melted zones then solidify by forming a first layer of material 14, this layer having, for example, a thickness of the order of 10 to 200 μm. This layer is then scanned a second time by the laser beam 11 or by the electron beam. In this case, a first complete scan of the powder layer with a laser beam or an electron beam is then performed before performing at least a second complete scan of the previously scanned area. using a laser beam or an electron beam. A single laser or electron source 9 can be used for the implementation of such a method, as shown schematically in FIG. 2.

En variante, il est également possible de procéder à un balayage de la couche de poudre à l'aide d'un premier et d'un second faisceaux 11a, 11b, déplacés simultanément en synchronisme et décalés l'un par rapport à l'autre de façon à ce que la trajectoire du second faisceau 11 b suive, au moins partiellement, celle du premier faisceau 11 a. Alternatively, it is also possible to scan the powder layer using a first and a second beam 11a, 11b, moved simultaneously in synchronism and offset with respect to each other so that the trajectory of the second beam 11b follows, at least partially, that of the first beam 11a.

Dans un tel cas, les deux faisceaux 11a, llb peuvent être produits par deux sources 9 distinctes (figure 3), ou par une seule source 9 dont le faisceau a été divisée en deux parties par un système optique bifocal 15 ou par tout autre moyen de séparation du faisceau (figure 4), chacun des deux faisceaux étant ensuite piloté par un dispositif de balayage et/ou par un montage optique 16 distinct afin d'obtenir le balayage et l'énergie escomptés. Selon l'invention, les deux balayages successifs de la même zone sont réalisés avantageusement avec des faisceaux laser ou d'électrons d'énergies différentes. En particulier, le premier balayage est effectué avec 30 un faisceau laser ou un faisceau d'électrons dont l'énergie est, par rapport à celle dudit faisceau lors du balayage suivant, soit inférieure (préchauffage), soit supérieure (double fusion). En outre, la périphérie de la pièce est avantageusement balayée successivement par un faisceau laser ou un faisceau d'électrons dont l'énergie est inférieure à celle utilisée pour balayer le coeur de la pièce. A titre d'exemple, dans le cas où la poudre est en superalliage à base Nickel et où la granulométrie moyenne de la poudre est comprise entre 40 et 45 lm, le premier balayage de la couche de poudre est réalisé à l'aide d'un faisceau laser d'énergie comprise entre 0,22 et 0,26 10 Watt.s/mm, le second balayage de la couche de poudre étant réalisé à l'aide d'un faisceau laser d'énergie comprise entre 0,11 et 0,13 Watt.s/mm. Dans ce cas également, la périphérie de la pièce est balayée par un premier faisceau laser dont l'énergie est comprise entre 0,14 et 0,18 Watt.s/mm, puis par un second faisceau laser dont l'énergie est comprise 15 entre 0,09 et 0,11 Watt.s/mm. La périphérie présente par exemple une largeur comprise entre 50 et 100 lm. L'épaisseur de chaque couche de la pièce est comprise entre 10 et 45 pm, respectivement entre 45 et 150 pm, lorsque la poudre est fondue à 20 l'aide d'un faisceau laser ou respectivement à l'aide d'un faisceau d'électrons. Les couches minces sont privilégiées car elles permettent de contrôler la rugosité. Une fois qu'une première couche de la pièce a été réalisée, le plateau 6 est descendu puis une seconde couche de poudre est amenée, 25 de la même manière que précédemment, sur la première couche de poudre. Ces opérations sont répétées jusqu'à la formation complète de la pièce. Les couches présentent sensiblement la même épaisseur. Dans le cas où la pièce est construite couche par couche par 30 fusion sélective de la poudre à l'aide d'un faisceau laser, la poudre présente une taille de grain moyenne comprise entre 10 et 50 lm, préférentiellement comprise entre 40 et 45 i_tm. Dans le cas où la pièce est construite couche par couche par fusion sélective de la poudre à l'aide d'un faisceau d'électrons, la poudre présente une taille de grain moyenne comprise entre 50 et 100 lm. Le procédé selon l'invention permet de générer des pièces de plus grande densité sans provoquer de gradients thermiques trop importants, et d'homogénéiser le matériau des pièces ainsi fabriquées. En outre, les pièces réalisées à l'aide de ce procédé n'ont pas nécessairement besoin de subir une opération supplémentaire de traitement thermique et/ou de compactage isostatique à chaud, ce qui est un gain évident en termes de temps et de coût du cycle de fabrication. In such a case, the two beams 11a, 11b may be produced by two separate sources 9 (FIG. 3), or by a single source 9 whose beam has been divided into two parts by a bifocal optical system 15 or by any other means beam separation (Figure 4), each of the two beams being then controlled by a scanning device and / or by a separate optical arrangement 16 to obtain the expected scan and energy. According to the invention, the two successive scans of the same zone are advantageously made with laser beams or electrons of different energies. In particular, the first scan is performed with a laser beam or an electron beam whose energy is, relative to that of said beam during the next scan, either lower (preheating) or higher (double melting). In addition, the periphery of the part is advantageously scanned successively by a laser beam or an electron beam whose energy is less than that used to scan the heart of the part. By way of example, in the case where the powder is made of nickel-based superalloy and the mean particle size of the powder is between 40 and 45 μm, the first sweep of the powder layer is carried out using an energy laser beam of between 0.22 and 0.26 Watt s / mm, the second scan of the powder layer being carried out using an energy laser beam of between 0.11 and 0.13 Watt s / mm. In this case also, the periphery of the part is scanned by a first laser beam whose energy is between 0.14 and 0.18 Watt s / mm, then by a second laser beam whose energy is included. between 0.09 and 0.11 Watt s / mm. The periphery has for example a width of between 50 and 100 lm. The thickness of each layer of the part is between 10 and 45 μm, respectively between 45 and 150 μm, when the powder is melted with the aid of a laser beam or with a laser beam respectively. electrons. Thin films are preferred because they control the roughness. Once a first layer of the piece has been made, the plate 6 is lowered and then a second layer of powder is fed, in the same manner as before, onto the first layer of powder. These operations are repeated until the complete formation of the piece. The layers have substantially the same thickness. In the case where the part is built layer by layer by selective melting of the powder by means of a laser beam, the powder has an average grain size of between 10 and 50 μm, preferably between 40 and 45 μm. . In the case where the part is built layer by layer by selective melting of the powder with the aid of an electron beam, the powder has an average grain size of between 50 and 100 μm. The method according to the invention makes it possible to generate parts of greater density without causing excessive thermal gradients, and to homogenize the material of the parts thus produced. In addition, the parts made using this method do not necessarily need to undergo an additional heat treatment operation and / or hot isostatic compaction, which is an obvious gain in terms of time and cost of the process. manufacturing cycle.

Claims (10)

REVENDICATIONS1. Procédé de fabrication d'une pièce métallique, réalisée couche par couche par dépôt d'une couche de poudre métallique (2) sur un support (6) ou sur une partie déjà réalisée de la pièce, puis par fusion sélective de la couche de poudre par balayage de la surface de la couche de poudre par un faisceau laser ou un faisceau d'électrons (11), une couche de la pièce étant obtenue après solidification de la couche de poudre fondue, caractérisé en ce que, pour chaque couche de la pièce ainsi réalisée, le procédé comprend au moins deux balayages successifs d'une même zone de la couche de poudre par un faisceau laser ou un faisceau d'électrons (11). REVENDICATIONS1. Process for manufacturing a metal part, carried out layer by layer by depositing a layer of metal powder (2) on a support (6) or on a part already made of the part, then by selective melting of the powder layer by scanning the surface of the powder layer by a laser beam or an electron beam (11), a layer of the part being obtained after solidification of the molten powder layer, characterized in that, for each layer of the piece thus produced, the method comprises at least two successive scans of the same area of the powder layer by a laser beam or an electron beam (11). 2. Procédé de fabrication selon la revendication 1, caractérisé en ce que les deux balayages successifs de la même zone sont réalisés avec des faisceaux laser ou d'électrons (11) d'énergies différentes. 2. Manufacturing process according to claim 1, characterized in that the two successive scans of the same area are made with laser beams or electrons (11) of different energies. 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le premier balayage est effectué avec un faisceau laser ou un faisceau d'électrons (11) dont l'énergie est, suivant l'effet recherché, soit inférieure, soit supérieure à celle dudit faisceau (11) lors du balayage suivant. 3. Method according to claim 1 or 2, characterized in that the first scan is performed with a laser beam or an electron beam (11) whose energy is, according to the desired effect, either less than or greater than that of said beam (11) during the next scan. 4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la périphérie de la pièce est balayée par un faisceau laser ou un faisceau d'électrons (11) dont l'énergie est inférieure à celle utilisée pour balayer le coeur de la pièce. 4. Method according to one of claims 1 to 3, characterized in that the periphery of the part is scanned by a laser beam or an electron beam (11) whose energy is less than that used to scan the heart of the room. 5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'on réalise un premier balayage complet de la couche de poudre à l'aide d'un faisceau laser ou d'un faisceau d'électrons (11) avant d'effectuer au moins un second balayage complet de la zone précédemment balayée à l'aide d'un faisceau laser ou d'un faisceau d'électrons (11). 5. Method according to one of claims 1 to 4, characterized in that a first complete scan of the powder layer is carried out using a laser beam or an electron beam (11) before performing at least a second complete scan of the previously scanned area with a laser beam or an electron beam (11). 6. Procédé selon la revendication 1 à 4, caractérisé en ce qu'on réalise un balayage de la couche de poudre à l'aide d'un premier et d'un second faisceaux (11a, 11b), au moins, déplacés simultanément ensynchronisme et décalés l'un par rapport à l'autre de façon à ce que la trajectoire du second faisceau (11b) suive, au moins partiellement, celle du premier faisceau (11a). 6. Method according to claim 1 to 4, characterized in that a scanning of the powder layer is carried out using a first and a second beam (11a, 11b), at least, simultaneously moved ensynchronism and offset with respect to each other so that the path of the second beam (11b) follows, at least partially, that of the first beam (11a). 7. Procédé selon la revendication 6, caractérisé en ce que les deux 5 faisceaux sont produits par une même source (9), dont le faisceau a été divisé en au moins deux parties. 7. Method according to claim 6, characterized in that the two beams are produced by the same source (9), the beam of which has been divided into at least two parts. 8. Procédé selon la revendication 6, caractérisé en ce que les deux faisceaux (11a, 11b) sont produits par deux sources (9) distinctes. 8. Method according to claim 6, characterized in that the two beams (11a, 11b) are produced by two separate sources (9). 9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce 10 que la poudre (2) est en superalliage à base Nickel, la granulométrie moyenne de la poudre (2) étant comprise entre 40 et 45 lm, le premier balayage de la couche de poudre étant réalisé à l'aide d'un faisceau laser (11) d'énergie comprise entre 0,22 et 0,26 Watt.s/mm, le second balayage étant réalisé à l'aide d'un faisceau laser (11) d'énergie comprise en 0,11 et 15 0,13 Watt. s/mm. 9. Method according to one of claims 1 to 8, characterized in that the powder (2) is nickel-based superalloy, the average particle size of the powder (2) being between 40 and 45 lm, the first sweep the powder layer is produced using a laser beam (11) of energy between 0.22 and 0.26 Watt s / mm, the second scan being carried out using a beam laser (11) with a power of 0.11 and 0.13 watts. s / mm. 10. Procédé selon les revendications 4 et 9, caractérisé en ce que la périphérie de la pièce est balayée par un premier faisceau laser (11) dont l'énergie est comprise entre 0,14 et 0,18 Watt.s/mm, puis par un second faisceau laser (11) dont l'énergie est comprise entre 0,09 et 0,11 20 Watt. s/m m. 10. Method according to claims 4 and 9, characterized in that the periphery of the part is scanned by a first laser beam (11) whose energy is between 0.14 and 0.18 Watt s / mm, then by a second laser beam (11) whose energy is between 0.09 and 0.11 Watt. s / m m.
FR1158504A 2011-09-23 2011-09-23 STRATEGY FOR MANUFACTURING A METAL PIECE BY SELECTIVE FUSION OF A POWDER Active FR2980380B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1158504A FR2980380B1 (en) 2011-09-23 2011-09-23 STRATEGY FOR MANUFACTURING A METAL PIECE BY SELECTIVE FUSION OF A POWDER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1158504A FR2980380B1 (en) 2011-09-23 2011-09-23 STRATEGY FOR MANUFACTURING A METAL PIECE BY SELECTIVE FUSION OF A POWDER

Publications (2)

Publication Number Publication Date
FR2980380A1 true FR2980380A1 (en) 2013-03-29
FR2980380B1 FR2980380B1 (en) 2015-03-06

Family

ID=45757545

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1158504A Active FR2980380B1 (en) 2011-09-23 2011-09-23 STRATEGY FOR MANUFACTURING A METAL PIECE BY SELECTIVE FUSION OF A POWDER

Country Status (1)

Country Link
FR (1) FR2980380B1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014187606A1 (en) * 2013-05-23 2014-11-27 Arcam Ab Method and apparatus for additive manufacturing
US20150090074A1 (en) * 2013-09-27 2015-04-02 Alstom Technology Ltd Method for manufacturing a metallic component by additive laser manufacturing
CN104550952A (en) * 2014-12-19 2015-04-29 江苏大学 Rapid laser printing device and method for water pump shell
US20150283612A1 (en) * 2014-04-04 2015-10-08 Matsuura Machinery Corporation Three-Dimensional Molding Equipment and Method for Manufacturing Three-Dimensional Shaped Molding Object
EP2878409B1 (en) 2013-11-27 2016-03-30 SLM Solutions Group AG Method of and device for controlling an irradiation system
US9550207B2 (en) 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
CN106424725A (en) * 2016-09-09 2017-02-22 赵晴堂 Method and device for three-section type hot-melt metal material additive molding
EP3102389A4 (en) * 2014-02-06 2017-02-22 United Technologies Corporation An additive manufacturing system with a multi-energy beam gun and method of operation
US9664505B2 (en) 2014-08-20 2017-05-30 Arcam Ab Energy beam position verification
US9676033B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
US9718129B2 (en) 2012-12-17 2017-08-01 Arcam Ab Additive manufacturing method and apparatus
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
US9782933B2 (en) 2008-01-03 2017-10-10 Arcam Ab Method and apparatus for producing three-dimensional objects
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US9950367B2 (en) 2014-04-02 2018-04-24 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
CN108057886A (en) * 2017-11-17 2018-05-22 深圳市圆梦精密技术研究院 The scan method of electronics selective melting
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
FR3066705A1 (en) * 2017-05-29 2018-11-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives PARTICLE FOR THE PRODUCTION OF METALLIC PARTS BY 3D PRINTING AND PROCESS FOR PRODUCING METALLIC PARTS
US10144063B2 (en) 2011-12-28 2018-12-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
WO2019025135A1 (en) * 2017-08-02 2019-02-07 Siemens Aktiengesellschaft Method for forming a defined surface roughness in a region of a component for a turbomachine, which component is to be manufactured or is manufactured additively
US10369662B2 (en) 2009-07-15 2019-08-06 Arcam Ab Method and apparatus for producing three-dimensional objects
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
CN111036902A (en) * 2019-12-13 2020-04-21 同济大学 Porous forming method for selective laser additive manufacturing
FR3088837A1 (en) 2018-11-27 2020-05-29 Safran Aircraft Engines SCRAPER FOR ADDITIVE MANUFACTURE OF METAL PARTS BY POWDER BED PROCESS
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
WO2023047044A1 (en) 2021-09-27 2023-03-30 Addup Method for the additive manufacture of a copper object

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536467A (en) * 1993-01-28 1996-07-16 Eos Gmbh Electro Optical Systems Method and apparatus for producing a three-dimensional object
US5985204A (en) * 1997-04-25 1999-11-16 Toyota Jidosha Kabushiki Kasiha Method for producing laminated object
DE10208150A1 (en) * 2001-02-26 2002-09-12 Matthias Fockele Rapid prototyping by consolidating layers with laser beam includes oscillating beam impact zone to improve surface finish
US20060119012A1 (en) * 2004-12-07 2006-06-08 3D Systems, Inc. Controlled densification of fusible powders in laser sintering
WO2008013483A1 (en) * 2006-07-27 2008-01-31 Arcam Ab Method and device for producing three-dimensional objects
EP2119530A1 (en) * 2008-05-15 2009-11-18 General Electric Company Preheating Using a Laser Beam
JP2011052289A (en) * 2009-09-03 2011-03-17 Nakashima Medical Co Ltd Method for producing implant made of titanium alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536467A (en) * 1993-01-28 1996-07-16 Eos Gmbh Electro Optical Systems Method and apparatus for producing a three-dimensional object
US5985204A (en) * 1997-04-25 1999-11-16 Toyota Jidosha Kabushiki Kasiha Method for producing laminated object
DE10208150A1 (en) * 2001-02-26 2002-09-12 Matthias Fockele Rapid prototyping by consolidating layers with laser beam includes oscillating beam impact zone to improve surface finish
US20060119012A1 (en) * 2004-12-07 2006-06-08 3D Systems, Inc. Controlled densification of fusible powders in laser sintering
WO2008013483A1 (en) * 2006-07-27 2008-01-31 Arcam Ab Method and device for producing three-dimensional objects
EP2119530A1 (en) * 2008-05-15 2009-11-18 General Electric Company Preheating Using a Laser Beam
JP2011052289A (en) * 2009-09-03 2011-03-17 Nakashima Medical Co Ltd Method for producing implant made of titanium alloy

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782933B2 (en) 2008-01-03 2017-10-10 Arcam Ab Method and apparatus for producing three-dimensional objects
US10369662B2 (en) 2009-07-15 2019-08-06 Arcam Ab Method and apparatus for producing three-dimensional objects
US11161177B2 (en) 2011-12-28 2021-11-02 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US11141790B2 (en) 2011-12-28 2021-10-12 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
US10144063B2 (en) 2011-12-28 2018-12-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10406599B2 (en) 2012-12-17 2019-09-10 Arcam Ab Additive manufacturing method and apparatus
US9718129B2 (en) 2012-12-17 2017-08-01 Arcam Ab Additive manufacturing method and apparatus
US9950366B2 (en) 2013-04-18 2018-04-24 Arcam Ab Apparatus for additive manufacturing
US9550207B2 (en) 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
US9713844B2 (en) 2013-04-18 2017-07-25 Arcam Ab Method and apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
RU2630096C2 (en) * 2013-05-23 2017-09-05 Аркам Аб Method and device for manufacture by additive technologies
JP2016526098A (en) * 2013-05-23 2016-09-01 ア−カム アーベー Method and apparatus for additive manufacturing
WO2014187606A1 (en) * 2013-05-23 2014-11-27 Arcam Ab Method and apparatus for additive manufacturing
US9415443B2 (en) 2013-05-23 2016-08-16 Arcam Ab Method and apparatus for additive manufacturing
US10814393B2 (en) 2013-09-20 2020-10-27 Arcam Ab Apparatus for additive manufacturing
US9676033B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US9676032B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US10814392B2 (en) 2013-09-20 2020-10-27 Arcam Ab Apparatus for additive manufacturing
CN104511589A (en) * 2013-09-27 2015-04-15 阿尔斯通技术有限公司 Method for manufacturing metallic component by additive laser manufacturing
US20150090074A1 (en) * 2013-09-27 2015-04-02 Alstom Technology Ltd Method for manufacturing a metallic component by additive laser manufacturing
EP2878409B1 (en) 2013-11-27 2016-03-30 SLM Solutions Group AG Method of and device for controlling an irradiation system
US9919361B2 (en) 2013-12-16 2018-03-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US10099289B2 (en) 2013-12-16 2018-10-16 Arcam Ab Additive manufacturing of three-dimensional articles
US10974448B2 (en) 2013-12-18 2021-04-13 Arcam Ab Additive manufacturing of three-dimensional articles
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US11517964B2 (en) 2013-12-19 2022-12-06 Arcam Ab Method for additive manufacturing
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
EP3102389A4 (en) * 2014-02-06 2017-02-22 United Technologies Corporation An additive manufacturing system with a multi-energy beam gun and method of operation
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US10071424B2 (en) 2014-03-07 2018-09-11 Arcam Ab Computer program products configured for additive manufacturing of three-dimensional articles
US10071423B2 (en) 2014-04-02 2018-09-11 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US10058921B2 (en) 2014-04-02 2018-08-28 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US9950367B2 (en) 2014-04-02 2018-04-24 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US10821517B2 (en) 2014-04-02 2020-11-03 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US11084098B2 (en) 2014-04-02 2021-08-10 Arcam Ab Apparatus for fusing a workpiece
US20150283612A1 (en) * 2014-04-04 2015-10-08 Matsuura Machinery Corporation Three-Dimensional Molding Equipment and Method for Manufacturing Three-Dimensional Shaped Molding Object
EP2926925A3 (en) * 2014-04-04 2015-10-21 Matsuura Machinery Corporation Three-dimensional molding equipment and method for manufacturing three-dimensional shaped molding object
CN104972118A (en) * 2014-04-04 2015-10-14 株式会社松浦机械制作所 Three-dimensional molding equipment and method for manufacturing three-dimensional shaped molding object
CN104972118B (en) * 2014-04-04 2019-09-27 株式会社松浦机械制作所 The manufacturing method of three-dimensional moulding device and three dimensional structure
US9915583B2 (en) 2014-08-20 2018-03-13 Arcam Ab Energy beam position verification
US9897513B2 (en) 2014-08-20 2018-02-20 Arcam Ab Energy beam size verification
US9664504B2 (en) 2014-08-20 2017-05-30 Arcam Ab Energy beam size verification
US9664505B2 (en) 2014-08-20 2017-05-30 Arcam Ab Energy beam position verification
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
CN104550952A (en) * 2014-12-19 2015-04-29 江苏大学 Rapid laser printing device and method for water pump shell
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
US10586683B2 (en) 2015-01-21 2020-03-10 Arcam Ab Method and device for characterizing an electron beam
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
US11806800B2 (en) 2015-09-24 2023-11-07 Arcam Ab X-ray calibration standard object
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US11571748B2 (en) 2015-10-15 2023-02-07 Arcam Ab Method and apparatus for producing a three-dimensional article
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
US11623282B2 (en) 2015-11-18 2023-04-11 Arcam Ab Additive manufacturing of three-dimensional articles
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
CN106424725B (en) * 2016-09-09 2019-07-05 赵晴堂 Three-stage fuse metal material increases the molding method of material
CN106424725A (en) * 2016-09-09 2017-02-22 赵晴堂 Method and device for three-section type hot-melt metal material additive molding
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11123795B2 (en) 2017-05-29 2021-09-21 Commissariat à l'énergie atomique et aux énergies alternatives Particle for making metal parts using 3D printing and method for making metal parts
EP3409349A1 (en) * 2017-05-29 2018-12-05 Commissariat à l'énergie atomique et aux énergies alternatives Particle for manufacturing metal parts by 3d printing and method for manufacturing metal parts
FR3066705A1 (en) * 2017-05-29 2018-11-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives PARTICLE FOR THE PRODUCTION OF METALLIC PARTS BY 3D PRINTING AND PROCESS FOR PRODUCING METALLIC PARTS
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
WO2019025135A1 (en) * 2017-08-02 2019-02-07 Siemens Aktiengesellschaft Method for forming a defined surface roughness in a region of a component for a turbomachine, which component is to be manufactured or is manufactured additively
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
US11993008B2 (en) 2017-09-29 2024-05-28 Arcam Ab Method and apparatus for additive manufacturing
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
CN108057886A (en) * 2017-11-17 2018-05-22 深圳市圆梦精密技术研究院 The scan method of electronics selective melting
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US11458682B2 (en) 2018-02-27 2022-10-04 Arcam Ab Compact build tank for an additive manufacturing apparatus
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
US11724316B2 (en) 2018-03-29 2023-08-15 Arcam Ab Method and device for distributing powder material
FR3088837A1 (en) 2018-11-27 2020-05-29 Safran Aircraft Engines SCRAPER FOR ADDITIVE MANUFACTURE OF METAL PARTS BY POWDER BED PROCESS
CN111036902B (en) * 2019-12-13 2021-09-03 同济大学 Porous forming method for selective laser additive manufacturing
CN111036902A (en) * 2019-12-13 2020-04-21 同济大学 Porous forming method for selective laser additive manufacturing
WO2023047044A1 (en) 2021-09-27 2023-03-30 Addup Method for the additive manufacture of a copper object
FR3127422A1 (en) 2021-09-27 2023-03-31 Addup Additive manufacturing process of a copper object

Also Published As

Publication number Publication date
FR2980380B1 (en) 2015-03-06

Similar Documents

Publication Publication Date Title
FR2980380A1 (en) Manufacturing metal part such as blade of turboshaft engine, comprises performing two successive sweepings of same zone of metal powder layer by laser beam or electron beam, where metal powder layer is coated with deposit on support
EP2588263B1 (en) Process for manufacturing a metal part by selectively melting a powder
EP2156942B1 (en) Method for manufacturing a part by selective laser fusion or sintering of powders of different materials
EP2794151B1 (en) Method and apparatus for producing three-dimensional objects
EP2670547B1 (en) Sintering and laser fusion device, comprising a means for heating powder by induction
FR2998819A1 (en) PROCESS FOR POWDER FUSION WITH HEATING OF THE AREA ADJACENT TO THE BATH
FR2998496A1 (en) PROCESS FOR THE ADDITIVE PRODUCTION OF A PIECE BY SELECTIVE FUSION OR SELECTIVE SINTING OF HIGH ENERGY OPTIMIZED POWDER BEDS
WO2017118806A1 (en) Method for manufacturing a workpiece by additive manufacturing
EP3600727B1 (en) Specimen for the validation of operating parameters of an additive manufacturing process of a part by laser powder bed fusion
FR2981867A1 (en) PROCESS FOR MANUFACTURING A METAL PIECE FOR AIRCRAFT TURBOJET ENGINE
FR2991613A1 (en) PROCESS FOR MANUFACTURING PIECE BY SELECTIVE FUSION OR SELECTIVE SINTING OF POWDER BEDS (S) BY MEANS OF A HIGH ENERGY BEAM
FR2962357A1 (en) Repairing/reloading metal piece of turbomachine e.g. turboreactor, by determining geometry of piece, positioning and fixing piece on plate, positioning mask on plate and piece, and depositing thin metallic powder layer on surface of mask
FR2978070A1 (en) Repairing turbine engine part e.g. blade, comprises forming preform by selective melting of powder containing base material, maintaining preform in part by laser pointing, and degreasing and/or pickling a surface of preform to be brazed
FR2982182A1 (en) INSTALLATION FOR MANUFACTURING PARTS BY SELECTIVE FUSION OF POWDER
FR2912674A1 (en) METHOD FOR RECHARGING AN ALUMINUM ALLOY PIECE
EP3509774B1 (en) Method for manufacturing a part of electroconductive material by additive manufacturing
FR2998497A1 (en) Manufacturing e.g. intermetallic part, comprises providing a material in form of powder particles, depositing a first layer of powder of the material on support, and scanning an area of first layer by a beam to heat the powder
FR3064519A1 (en) PROCESS FOR MANUFACTURING A METAL PIECE BY ADDITIVE MANUFACTURE
CA2835541A1 (en) Tool for manufacturing a part by selectively melting a powder
EP3802130A1 (en) Method for preparing the upper surface of an additive manufacturing platen by depositing a bed of powder
FR3090459A1 (en) Improved machine for additive manufacturing of a part and associated method
FR3095974A1 (en) DEVICE AND METHOD FOR ADDITIVE MANUFACTURING BY LASER FUSION ON POWDER BED
FR3095365A1 (en) SUPPORT AND SYSTEM FOR ADDITIVE MANUFACTURING AND ADDITIVE MANUFACTURING PROCESS IMPLEMENTING SUCH A SUPPORT
FR3102079A1 (en) Additive manufacturing process on single-piece powder beds allowing a reduction, or even elimination, of the holding elements usually required
FR3098742A1 (en) SELECTIVE ADDITIVE MANUFACTURING ON BED OF POWDER, ESPECIALLY FOR TURBOMOTOR PARTS

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

CD Change of name or company name

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13