FR2980126A1 - METHOD AND INSTALLATION FOR PROCESSING A LOAD - Google Patents
METHOD AND INSTALLATION FOR PROCESSING A LOAD Download PDFInfo
- Publication number
- FR2980126A1 FR2980126A1 FR1158212A FR1158212A FR2980126A1 FR 2980126 A1 FR2980126 A1 FR 2980126A1 FR 1158212 A FR1158212 A FR 1158212A FR 1158212 A FR1158212 A FR 1158212A FR 2980126 A1 FR2980126 A1 FR 2980126A1
- Authority
- FR
- France
- Prior art keywords
- gas flow
- charge
- flow
- homogenized
- obstruction body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/20—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
- B05B7/201—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
- B05B7/205—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/34—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
- B05B1/3405—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
- B05B1/341—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
- B05B1/3421—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
- B05B1/3426—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels emerging in the swirl chamber perpendicularly to the outlet axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/0075—Nozzle arrangements in gas streams
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/129—Flame spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Treating Waste Gases (AREA)
Abstract
L'invention concerne un procédé de traitement d'une charge par introduction de ladite charge dans un écoulement gazeux homogénéisé (27), dans lequel on génère un écoulement gazeux (5) à une température supérieure ou égale à 1200°C, ledit écoulement gazeux (5) ayant une vitesse au moins deux fois supérieure ou égale à la vitesse d'introduction de ladite charge dans ledit écoulement gazeux homogénéisé (27). Selon l'invention, on réalise les étapes successives suivantes : a) pendant un intervalle de temps tau, on applique une déformation audit écoulement gazeux (5) ainsi généré pour former un écoulement ayant une section de forme annulaire, b) on injecte ladite charge dans l'espace délimité par l'écoulement gazeux homogénéisé (27) obtenu par ledit écoulement gazeux (5) ainsi mis en forme, et c) on laisse réagir ladite charge dans ledit écoulement gazeux homogénéisé (27).The invention relates to a method for treating a charge by introducing said charge into a homogenized gas flow (27), in which a gas flow (5) is generated at a temperature of greater than or equal to 1200 ° C, said gas flow (5) having a velocity at least two times greater than or equal to the rate of introduction of said feed into said homogenized gas flow (27). According to the invention, the following successive steps are carried out: a) during a time interval tau, a deformation is applied to said gaseous flow (5) thus generated to form a flow having an annular section, b) said charge is injected in the space delimited by the homogenized gas flow (27) obtained by said gaseous flow (5) thus shaped, and c) said charge is allowed to react in said homogenized gas flow (27).
Description
Procédé et Installation pour le traitement d'une charge La présente invention concerne un procédé de traitement d'une charge dans un écoulement gazeux à haute température et à haute vitesse, ainsi qu'une installation pour sa mise en oeuvre. Elle concerne notamment un procédé permettant l'injection de la totalité d'une charge de matériaux solides, liquides ou gazeux au coeur d'un écoulement gazeux de température moyenne supérieure à 1200°C et de vitesse au moins deux fois supérieure à la vitesse d'introduction de la charge dans cet écoulement gazeux. Il est connu que la pénétration de fluides multiphasiques dans un écoulement gazeux à haute température et à haute vitesse, et plus particulièrement de matériaux solides sous forme de particules convoyées par un gaz vecteur, présente de grandes difficultés en raison de la haute viscosité du milieu, bien qu'il soit gazeux. On connaît, par exemple, des dispositifs de traitement visant à injecter, perpendiculairement à un écoulement plasma, une charge constituée de 15 particules solides. Ce type de dispositif est typiquement appliqué au traitement de surfaces par projection plasma. Or, on constate que seule une fraction des particules pénètre réellement l'écoulement plasma pour y être traitée, une autre fraction ne pénétrant pas l'écoulement plasma et la dernière faction traversant 20 l'écoulement plasma sans être traitée. De nombreuses solutions techniques ont été proposées afin de répondre à ce problème de traitement partiel de charges. The present invention relates to a method for treating a charge in a high temperature and high velocity gas flow, as well as an installation for its implementation. It relates in particular to a method for injecting all of a charge of solid, liquid or gaseous materials into the heart of a gas flow of average temperature greater than 1200 ° C and of speed at least twice the speed of d introduction of the charge into this gas flow. It is known that the penetration of multiphase fluids in a gas flow at high temperature and at high speed, and more particularly of solid materials in the form of particles conveyed by a carrier gas, presents great difficulties because of the high viscosity of the medium, although it is gaseous. For example, there are known processing devices for injecting, perpendicularly to a plasma flow, a charge consisting of solid particles. This type of device is typically applied to the plasma sprayed surface treatment. Now, it is found that only a fraction of the particles actually enter the plasma flow to be treated there, another fraction not penetrating the plasma flow and the last fraction passing through the plasma flow without being treated. Many technical solutions have been proposed to address this problem of partial processing of loads.
On connaît, par le brevet GB 2461747, une méthode et un dispositif de projection thermique, dans lequel un port d'introduction d'un gaz est placé à l'opposé d'un port d'injection de poudres par rapport à un écoulement plasma. Ainsi, un gaz tel que de l'Argon, est introduit à l'opposé d'une injection de poudres réalisée perpendiculairement à l'écoulement plasma, de manière à repousser vers cet écoulement plasma, les particules qui traverseraient le plasma, améliorant ainsi le bilan matière des particules traitées dans cet écoulement plasma. On cannait également par le document US 2010/0323117, un mode 10 d'injection dans un écoulement plasma guidé dans un conduit. Toutefois, ce dernier ne supprime pas la difficulté de pénétration réelle des particules dans l'écoulement plasma. On connaît encore par le document WO 2010/107484, une buse hybride destinée à être utilisée dans un pistolet de pulvérisation plasma, en 15 particulier pour la pulvérisation plasma de silicium pour former des dispositifs à semi-conducteurs. Ce document montre que des injections pariétales dans un écoulement plasma guidé dans un conduit peuvent conduire à un traitement inhomogène du matériau pulvérulent. Tous ces dispositifs de l'état de l'art présentent l'un ou l'autre des 20 inconvénients suivants: - une pénétration dans le plasma d'une fraction seulement des particules à traiter, et donc un bilan matière, considéré comme le rapport de la masse de particules traitées à celle de particules injectées, limité à environ 60 %, - un traitement inhomogène qui ne prend pas en compte la distribution 25 granulométrique des particules, dans le cas des solides, et qui existe nécessairement dans tout conditionnement préalable. La présente invention vise à palier ces divers inconvénients en proposant un procédé et une installation de traitement d'une charge, simple dans leur conception et dans leur mode opératoire, assurant une interaction 30 de la totalité de la charge injectée avec l'écoulement gazeux à haute température et haute vitesse. Un autre objet de la présente invention est d'obtenir un mélange écoulement gazeux à haute température et haute vitesse/fluide mono ou multiphasique tel que le traitement thermochimique d'une charge de particules 35 soit sensiblement équivalent pour la totalité des particules composant cette charge, quelle que soit leur distribution granulométrique, et quel que soit les caractéristiques ou le degré d'homogénéité de cet écoulement gazeux. Encore un autre objet de la présente invention est un mélange écoulement gazeux à haute température et haute vitesse/particules réalisé en phase dense, c'est-à-dire avec un rapport massique flux de particules/flux d'écoulement gazeux élevé, de manière à optimiser les bilans énergétique et chimique. A cet effet, la présente invention a pour objet une installation de traitement d'une charge par introduction de ladite charge dans un écoulement gazeux homogénéisé, ladite installation comportant un ensemble pour générer un écoulement gazeux à une température supérieure ou égale à 1200°C, ledit écoulement gazeux ayant une vitesse au moins deux fois supérieure ou égale à la vitesse d'introduction de ladite charge dans ledit écoulement gazeux homogénéisé. Patent GB 2461747 discloses a method and a device for thermal spraying, in which a port for introducing a gas is placed opposite a powder injection port with respect to a plasma flow. . Thus, a gas such as Argon, is introduced opposite an injection of powders made perpendicularly to the plasma flow, so as to push towards this plasma flow, the particles that would pass through the plasma, thus improving the material balance of the treated particles in this plasma flow. US 2010/0323117 also discloses an injection mode into a guided plasma flow in a conduit. However, the latter does not eliminate the difficulty of real penetration of the particles in the plasma flow. Also known from WO 2010/107484 is a hybrid nozzle for use in a plasma spray gun, particularly for plasma sputtering silicon to form semiconductor devices. This document shows that parietal injections in a guided plasma flow in a conduit can lead to an inhomogeneous treatment of the powder material. All these devices of the state of the art have one or the other of the following disadvantages: a penetration into the plasma of only a fraction of the particles to be treated, and therefore a material balance, considered as the ratio from the mass of treated particles to that of injected particles, limited to about 60%, - an inhomogeneous treatment which does not take into account the particle size distribution, in the case of solids, and which necessarily exists in any prior conditioning. The present invention aims to overcome these various drawbacks by proposing a method and a facility for treating a charge, simple in their design and in their operating mode, ensuring an interaction 30 of the totality of the injected charge with the gas flow at high temperature and high speed. Another object of the present invention is to obtain a mixture of gas flow at high temperature and high speed / single or multiphasic fluid such that the thermochemical treatment of a particle charge 35 is substantially equivalent for all the particles making up this charge, regardless of their particle size distribution, and whatever the characteristics or the degree of homogeneity of this gas flow. Yet another object of the present invention is a mixture of high temperature and high speed gas flow / particles made in a dense phase, that is to say with a mass ratio of particle flow / high gas flow, so optimize energy and chemical balances. For this purpose, the subject of the present invention is an installation for treating a charge by introducing said charge into a homogenized gas flow, said installation comprising an assembly for generating a gas flow at a temperature greater than or equal to 1200 ° C. said gas flow having a velocity at least two times greater than or equal to the rate of introduction of said feed into said homogenized gas flow.
Selon l'invention, cette installation comprend également : - un ensemble de mise en forme dudit écoulement gazeux comportant une enceinte délimitant un volume interne et un corps d'obstruction placé au moins partiellement dans ce volume interne de manière à définir un canal annulaire de passage de l'écoulement gazeux entre la face interne de l'enceinte et la face externe dudit corps d'obstruction, ledit canal annulaire s'étendant le long dudit corps d'obstruction, - ledit corps d'obstruction comportant une face avant destinée à recevoir ledit écoulement gazeux généré par ledit ensemble pour générer un écoulement gazeux, et à défléchir cet écoulement vers ledit canal annulaire, 25 et - ladite installation comprend des moyens d'injection de ladite charge dans un écoulement gazeux homogénéisé issu du passage dudit écoulement gazeux dans ledit canal annulaire. En conséquence, la présente invention s'intéresse d'abord à l'injection, 30 dans un écoulement à haute température et forte vitesse, de matériaux solides pulvérulents, d'agrégats de nano-poudres, de matériaux liquides, chargés ou non en particules solides, et flux gazeux présentant de moindres difficultés d'injection, mais devant subir une réaction chimique dans ledit écoulement de haute température et haute vitesse. According to the invention, this installation also comprises: a forming assembly of said gas flow comprising an enclosure delimiting an internal volume and an obstruction body placed at least partially in this internal volume so as to define an annular passage channel; the gaseous flow between the inner face of the chamber and the outer face of said obstruction body, said annular channel extending along said obstruction body, said obstruction body having a front face for receiving said gas flow generated by said assembly for generating a gaseous flow, and deflecting said flow towards said annular channel, and said plant comprises means for injecting said charge into a homogenized gas flow from the passage of said gaseous flow into said annular channel. Accordingly, the present invention is primarily concerned with the injection, into a high temperature, high velocity flow, of solid powdery materials, aggregates of nano-powders, liquid materials, whether or not charged with particles. solids, and gaseous flow with lower injection difficulties, but having to undergo a chemical reaction in said flow of high temperature and high speed.
On entend par l'expression « écoulement gazeux », des écoulements plasma tels que des jets plasma issus d'une torche à plasma mais aussi des flammes. Le plasma d'arc non transféré représente, en particulier, les conditions de température, de vitesse et de viscosité les plus extrêmes dans les procédés thermochimiques. En conséquence, le jet, ou dard, plasma sera, de préférence, généré par une torche à plasma d'arc non transféré. La présence du corps d'obstruction qui forme un obstacle dans la propagation linéaire de l'écoulement gazeux à haute température et haute vitesse, a pour effet de casser l'inhomogénéité spatiale et temporelle de l'écoulement gazeux en lui conférant une répartition spatiale annulaire ou sensiblement annulaire en fonction de la forme de l'obstacle et/ou de la paroi interne de l'enceinte. Ainsi, on homogénéise avantageusement l'écoulement gazeux en termes de température et de vitesse. On assiste en effet à une redistribution des vitesses et des températures dans cette répartition spatiale annulaire ou sensiblement annulaire. L'écoulement gazeux issu du canal annulaire est donc un écoulement gazeux homogénéisé. On entend par l'expression « écoulement gazeux homogénéisé », une distribution des vitesses et des températures de cet écoulement qui n'excède pas plus ou moins 20 (vingt)% des valeurs moyennes de vitesse et de 20 température de cet écoulement. Dans différents modes de réalisation particuliers de cette installation de traitement d'une charge, chacun ayant ses avantages particuliers et susceptibles de nombreuses combinaisons techniques possibles: - ledit corps d'obstruction comporte lesdits moyens d'injection de 25 ladite charge. De préférence, ce corps d'obstruction comportant une face arrière, placée en aval de sa face avant dans le sens de propagation de l'écoulement gazeux, au moins une partie des moyens d'injection de ladite charge, est placée sur ladite face arrière. 30 Dans un mode de réalisation encore plus avantageux, ladite face arrière comporte au moins un orifice d'injection, de préférence placée de manière centrale par rapport audit canal annulaire, les moyens d'injection étant placés à l'intérieur du corps d'obstruction en étant reliés audit au moins un orifice d'injection. lesdits moyens d'injection de la charge sont des moyens d'injection pour donner un mouvement hélicoïdal axial à la charge à l'intérieur de ladite enceinte. La charge est ainsi extraite des moyens d'injection selon des trajectoires hélicoïdales dans le sens de propagation de l'écoulement gazeux, comprenant donc une composante de rotation pour augmenter leur temps de séjour dans l'écoulement gazeux issu du canal annulaire, ce qui permet d'ajuster le traitement « en vol » de la charge. Ce temps de séjour est typiquement dans la gamme de quelques millisecondes à plus de 10 millisecondes. The term "gaseous flow" is understood to mean plasma flows such as plasma jets from a plasma torch but also flames. Non-transferred arc plasma represents, in particular, the most extreme temperature, velocity and viscosity conditions in thermochemical processes. Accordingly, the jet, or stinger, plasma will preferably be generated by an untransfected arc plasma torch. The presence of the obstruction body, which forms an obstacle in the linear propagation of the gas flow at high temperature and high speed, has the effect of breaking the spatial and temporal inhomogeneity of the gas flow by conferring on it an annular spatial distribution. or substantially annular depending on the shape of the obstacle and / or the inner wall of the enclosure. Thus, the gas flow is advantageously homogenized in terms of temperature and speed. There is indeed a redistribution of velocities and temperatures in this annular or substantially annular spatial distribution. The gas flow from the annular channel is thus a homogenized gas flow. By the term "homogenized gaseous flow" is meant a distribution of the velocities and temperatures of this flow which does not exceed more or less 20% (20%) of the average values of velocity and temperature of this flow. In various particular embodiments of this load processing installation, each having its particular advantages and capable of numerous possible technical combinations: said obstruction body comprises said means for injecting said load. Preferably, this obstruction body having a rear face, placed downstream of its front face in the direction of propagation of the gas flow, at least a part of the injection means of said load, is placed on said rear face . In an even more advantageous embodiment, said rear face comprises at least one injection orifice, preferably centrally located with respect to said annular channel, the injection means being placed inside the obstruction body. by being connected to said at least one injection port. said load injection means are injection means for axial axial movement of the load within said enclosure. The charge is thus extracted from the injection means along helical paths in the direction of propagation of the gas flow, thus comprising a rotation component to increase their residence time in the gas flow coming from the annular channel, which allows to adjust the treatment "in flight" of the load. This residence time is typically in the range of a few milliseconds to more than 10 milliseconds.
De plus, cette charge comportant des particules, la composante rotatoire induit des trajectoires distinctes des particules dans la zone d'extraction du corps d'obstruction, qui est placée en aval du canal annulaire, en fonction de leurs granulométries respectives. Avantageusement, ce mode d'extraction induit d'une part une répartition des particules dans un plus grand volume avant traitement dans l'écoulement gazeux issu du canal annulaire, lequel forme un écoulement gazeux homogénéisé et d'autre part, induit des temps de séjour des particules optimisés dans cet écoulement gazeux. En effet, aux particules de granulométrie élevée, donc de masse élevée, sont associées des trajectoires hélicoïdales de plus grand diamètre en raison de la force centrifuge liée à leur masse, et en conséquence, des temps de séjour dans l'écoulement gazeux nécessairement plus grands que pour les particules de plus faible granulométrie. En conclusion, ce mode d'injection a un triple avantage: a) traiter la totalité de la charge, b) augmenter le temps de séjour dans l'écoulement gazeux à haute température et haute vitesse de la charge, notamment des particules de granulométrie élevée, lesquelles nécessitent effectivement un temps de traitement plus long que celui des particules de plus faible granulométrie, d'où un temps de traitement adapté à la granulométrie des particules, c) répartir spatialement les particules dans l'écoulement haute température homogénéisé après mise en forme en fonction de leur masse et donc optimiser le transfert énergétique écoulement gazeux à haute température et haute vitesse/particules. - ledit corps d'obstruction comportant un volume interne, lesdits moyens d'injection de la charge comprennent un ou plusieurs conduits d'amenée de ladite charge dans ledit volume interne, lesdits conduits d'amenée étant disposés tangentiellement ou sensiblement tangentiellement par rapport audit volume interne, lesdits conduits d'amenée étant reliés à une de leurs extrémités à ladite enceinte et à leur autre extrémité audit corps d'obstruction. A titre d'exemple, ces conduits d'amenée peuvent être au nombre de quatre. - ledit écoulement gazeux ayant un axe de propagation et ledit corps d'obstruction ayant un axe principal de symétrie, lesdits axes sont confondus, - ledit ensemble de mise en forme comportant un port d'entrée pour l'introduction dudit écoulement gazeux généré par ledit ensemble pour générer un écoulement gazeux, Le corps d'obstruction peut faire saillie de ce port d'entrée et donc comporter une portion placée en avant de cette enceinte dans le sens de propagation e l'écoulement gazeux à haute température et haute vitesse. - ledit corps d'obstruction comportant une face arrière, la face interne de ladite enceinte s'étend en aval de ladite face arrière pour former une section de sortie dudit ensemble de mise en forme, - ledit corps d'obstruction comportant une face arrière, ladite portion de la face interne de l'enceinte placée en aval de ladite face arrière a une forme rétrécie de manière à assurer une nouvelle mise en forme dudit écoulement gazeux homogénéisé en sortie dudit canal annulaire. De préférence, ladite portion a une forme conique tronquée ou encore 25 pseudo-conique. Avantageusement, le demi-angle au sommet du cône est compris entre 5° et 30° de manière à former un écoulement gazeux ayant une forme dont la section a une forme circulaire ou sensiblement circulaire. Ainsi, en plus d'une fonction première de traitement de la charge, 30 l'écoulement gazeux homogénéisé ainsi mis en forme, c'est-à-dire présentant une section de forme annulaire, présente une paroi gazeuse de viscosité élevée qui confine la totalité de la charge issue des moyens d'injection, à température ambiante, préalablement à sa pénétration nécessaire dans l'écoulement gazeux homogénéisé reconstitué en aval du corps d'obstruction. 35 Autrement dit, l'écoulement gazeux homogénéisé ayant une forme annulaire en sortie du canal annulaire, cet écoulement gazeux homogénéisé piège la totalité de la charge injectée en son coeur en formant autour de la charge une paroi gazeuse de forte viscosité. L'écoulement gazeux homogénéisé de forme annulaire étant ensuite à nouveau mis en forme pour former un écoulement gazeux homogénéisé de section pleine, la totalité de la charge qui était piégée, peut alors réagir dans des champs de vitesse et de température homogénéisées assurant le traitement intégral de la charge. - la face avant dudit corps d'obstruction a une forme de calotte sphérique ou ovoïde, - au moins ladite face avant dudit corps d'obstruction est en cuivre ou en aluminium, - ledit ensemble pour générer un écoulement gazeux comporte au moins un élément choisi dans le groupe comprenant une torche à plasma à arc non transféré, un brûleur générant une zone de fusion où la charge est chauffée et fondue, un oxybrûleur, un oxybrûleur à flamme orientable, un chalumeau et des combinaisons de ces éléments, - le corps d'obstruction comporte des moyens de refroidissement, de préférence ledit corps d'obstruction comporte une double paroi reliée à un circuit de refroidissement de sorte à assurer le refroidissement dudit corps 20 d'obstruction et notamment de sa face avant. - la charge injectée peut être gazeuse, liquide ou solide sous forme de particules, de boue, d'agrégats de nanoparticules, Dans le cas de particules solides, le gaz porteur est un gaz neutre, de type argon, mais peut être aussi un gaz réactif qui participe au traitement 25 thermochimique des particules, en fonction de l'application souhaitée. A titre d'exemple, ce gaz peut être du CO2 pour des applications de gazéification. De préférence, une charge gazeuse est transportée sous pression et émerge des moyens d'injection directement dans l'écoulement gazeux issu du canal annulaire. 30 Une charge liquide (chargé en particules ou non), quant à elle, est transportée sous pression puis atomisée sous formes de fines gouttelettes pour être introduites dans l'écoulement gazeux issu du canal annulaire. Alternativement, cette charge liquide (chargé en particules ou non) est transportée sous pression, puis injectée en filet continu pour être atomisée par l'écoulement gazeux issu du canal annulaire tout en être traitée thermochimiquement. Une charge solide, sous forme de particules ou conditionnée sous forme de particules ou d'agrégats de nanoparticules, est transportée par gaz porteur, le mélange gaz porteur/particules étant traité dans l'écoulement gazeux issu du canal annulaire. De préférence, le rapport de la masse de la charge sur la masse de gaz porteur est supérieur à 20 pour limiter le débit de gaz porteur généralement froid ou à basse température, et donc limiter le refroidissement de l'écoulement gazeux à haute température et haute vitesse issu du canal annulaire. Le gaz porteur peut être un gaz neutre ou un gaz réactif, en fonction de l'application souhaitée. L'invention concerne également un procédé de traitement d'une charge par introduction de ladite charge dans un écoulement gazeux homogénéisé, dans lequel on génère un écoulement gazeux à une température supérieure ou égale à 1200°C, cet écoulement gazeux ayant une vitesse au moins deux fois supérieure ou égale à la vitesse d'introduction de ladite charge dans ledit écoulement gazeux homogénéisé. Selon l'invention, on réalise les étapes successives suivantes : a) pendant un intervalle de temps T, on applique une déformation audit 20 écoulement gazeux ainsi généré pour former un écoulement ayant une section de forme annulaire, b) on injecte ladite charge dans l'espace délimité par l'écoulement gazeux homogénéisé obtenu par ledit écoulement gazeux ainsi mis en forme, et 25 c) on laisse réagir ladite charge dans ledit écoulement gazeux homogénéisé. Le procédé de traitement de l'invention vise donc à introduire, de préférence en continu, dans un écoulement gazeux homogénéisé à haute température et haute vitesse par rapport à la vitesse d'introduction des charges dans cet 30 écoulement gazeux, des charges minérales, organiques ou des mélanges de celles-ci, constituées de particules, d'agrégats de nanoparticules solides. Ce procédé de traitement pourra également être appliqué à des charges liquides et gazeuses, chargées ou non en particules ou agrégats de nanoparticules. 35 A titre d'exemples, on peut injecter des oxydes afin de les réduire, par exemple des oxydes métalliques pour élaborer des métaux rares ou de haute pureté et autre alliages nobles; ou bien injecter des produits carbonés ou organiques pour les gazéifier en vue de le valoriser ultérieurement un gaz de synthèse par combustion, pour la production de carburant, voire pour de la synthèse chimique; ou encore injecter des déchets solides, liquides (chargés ou non), des boues ("slurrys") pour les détruire ou amoindrir leur toxicité par dissociation et recombinaison moléculaire; voire les rendre inertes. La gamme granulométrique que les moyens d'injection, permet d'introduire s'étend de préférence, du micromètre à 1000 micromètres environ (1 à 1000pm), en fonction de l'application souhaitée. A titre purement illustratif, l'oxyde à réduire peut être de la silice ou du quartz. Avantageusement dans ce cas, la granulométrie recommandée sera dans la gamme 1 à 1000 pm. Dans différents modes de réalisation particuliers de ce procédé de 15 traitement d'une charge, chacun ayant ses avantages particuliers et susceptibles de nombreuses combinaisons techniques possibles: - à l'étape b), on introduit en continu ladite charge dans l'espace délimité par l'écoulement gazeux homogénéisé, - à l'étape b), on introduit ladite charge de sorte à donner un 20 mouvement hélicoïdal axial à la charge dans l'espace délimité par l'écoulement gazeux homogénéisé, De préférence, la charge à injecter est dirigée vers l'aval dans le sens de propagation de cet écoulement gazeux homogénéisé. Cette charge se mélange alors à l'écoulement gazeux homogénéisé, pour y être traitée thermo 25 chimiquement «en vol» dans un processus de fusion/vaporisation. - à l'étape c), on applique une nouvelle déformation audit écoulement gazeux homogénéisé pour former un écoulement gazeux de section pleine circulaire ou sensiblement circulaire, - après l'étape c), les particules éventuellement incomplètement 30 traitées sont récupérées dans un creuset, soumises en point d'arrêt à l'écoulement gazeux à haute température et haute vitesse de manière à compléter le processus de fusion/vaporisation. Avantageusement, d'après le procédé de la présente invention, la totalité de la charge introduite est traitée thermochimiquement de manière non sélective 35 quelque soit les caractéristiques d'inhomogénéité physique de cette charge. In addition, this charge comprising particles, the rotary component induces distinct trajectories of the particles in the extraction zone of the obstruction body, which is placed downstream of the annular channel, according to their respective particle sizes. Advantageously, this method of extraction induces on the one hand a distribution of the particles in a larger volume before treatment in the gas flow from the annular channel, which forms a homogenized gas flow and on the other hand, induces residence times particles optimized in this gas flow. In fact, particles of high particle size, and therefore of high mass, are associated with helicoidal trajectories of larger diameter because of the centrifugal force associated with their mass, and consequently, necessarily longer residence times in the gas flow. only for particles of smaller particle size. In conclusion, this mode of injection has a triple advantage: a) treat the entire load, b) increase the residence time in the gas flow at high temperature and high speed of the load, in particular particles of high particle size , which actually require a longer treatment time than that of the particles of smaller particle size, hence a treatment time adapted to the particle size distribution, c) spatially distribute the particles in the homogenized high temperature flow after shaping according to their mass and thus optimize the energy transfer gas flow at high temperature and high speed / particles. said obstruction body comprising an internal volume, said charge injection means comprise one or more ducts for feeding said charge into said internal volume, said supply ducts being arranged tangentially or substantially tangentially with respect to said volume; internal, said supply conduits being connected at one of their ends to said enclosure and at their other end to said obstruction body. By way of example, these supply ducts may be four in number. said gaseous flow having an axis of propagation and said obstruction body having a principal axis of symmetry, said axes being merged, said forming assembly comprising an input port for the introduction of said gaseous flow generated by said together to generate a gas flow, the obstruction body can project from this input port and therefore have a portion placed in front of this chamber in the direction of propagation e gas flow at high temperature and high speed. said obstruction body having a rear face, the inner face of said enclosure extends downstream from said rear face to form an outlet section of said shaping assembly, said obstruction body having a rear face, said portion of the inner face of the enclosure placed downstream of said rear face has a narrowed shape so as to ensure a new shaping of said homogenized gas flow at the outlet of said annular channel. Preferably, said portion has a truncated conical or pseudo-conical shape. Advantageously, the half-angle at the top of the cone is between 5 ° and 30 ° so as to form a gaseous flow having a shape whose section has a circular or substantially circular shape. Thus, in addition to a primary charge processing function, the homogenized gas stream thus shaped, i.e. having an annular cross-section, has a gaseous wall of high viscosity which confines the all of the charge from the injection means, at room temperature, prior to its necessary penetration into the reconstituted homogenized gas flow downstream of the obstruction body. In other words, since the homogenized gaseous flow has an annular shape at the outlet of the annular channel, this homogenized gaseous flow traps all of the charge injected into its core, forming around the charge a gaseous wall of high viscosity. The ring-shaped homogenized gas flow is then again shaped to form a homogenized gaseous flow of full section, the entire charge that was trapped, can then react in homogenized speed and temperature fields ensuring the integral treatment of the charge. the front face of said obstruction body has a shape of a spherical or ovoid cap, at least said front face of said obstruction body is made of copper or aluminum; said assembly for generating a gas flow comprises at least one selected element; in the group comprising a non-transferred arc plasma torch, a burner generating a melting zone where the charge is heated and melted, an oxy-burner, an oxy-burner with an adjustable flame, a torch and combinations thereof, obstruction comprises cooling means, preferably said obstruction body comprises a double wall connected to a cooling circuit so as to ensure the cooling of said obstruction body and in particular of its front face. the injected charge can be gaseous, liquid or solid in the form of particles, sludge or nanoparticle aggregates. In the case of solid particles, the carrier gas is a neutral gas, of the argon type, but can also be a gas. reagent which participates in the thermochemical treatment of particles, depending on the desired application. By way of example, this gas may be CO2 for gasification applications. Preferably, a gaseous feedstock is transported under pressure and emerges from the injection means directly into the gaseous flow coming from the annular channel. A liquid charge (charged in particles or not), as for it, is transported under pressure then atomized in the form of fine droplets to be introduced in the gas flow coming from the annular channel. Alternatively, this liquid charge (charged in particles or not) is transported under pressure, then injected in continuous thread to be atomized by the gas flow from the annular channel while being treated thermochemically. A solid charge, in the form of particles or in the form of particles or aggregates of nanoparticles, is transported by carrier gas, the carrier gas / particle mixture being treated in the gas flow from the annular channel. Preferably, the ratio of the mass of the feedstock to the carrier gas mass is greater than 20 to limit the flow rate of the generally cold or low temperature carrier gas, and thus limit the cooling of the high temperature and high temperature gas flow. velocity from the annular channel. The carrier gas may be a neutral gas or a reactive gas, depending on the desired application. The invention also relates to a method of treating a charge by introducing said charge into a homogenized gas flow, in which a gaseous flow is generated at a temperature greater than or equal to 1200 ° C., said gas flow having a speed of at least two times greater than or equal to the rate of introduction of said charge into said homogenized gas flow. According to the invention, the following successive steps are carried out: a) during a time interval T, a deformation is applied to the gas flow thus generated to form a flow having an annular section, b) said charge is injected into the the space delimited by the homogenized gas flow obtained by said gaseous flow thus shaped, and c) said charge is allowed to react in said homogenized gas flow. The treatment method of the invention therefore aims to introduce, preferably continuously, in a homogenized gas flow at high temperature and high speed with respect to the rate of introduction of the charges in this gaseous flow, mineral, organic fillers. or mixtures thereof, consisting of particles, aggregates of solid nanoparticles. This treatment process can also be applied to liquid and gaseous charges, charged or not with particles or aggregates of nanoparticles. By way of examples, oxides may be injected to reduce them, for example metal oxides to make rare or high purity metals and other noble alloys; or inject carbonaceous or organic products to gasify them in order to subsequently recover a synthesis gas by combustion, for the production of fuel, or even for chemical synthesis; or inject solid waste, liquid (loaded or not), slurries ("slurrys") to destroy them or reduce their toxicity by dissociation and molecular recombination; even make them inert. The granulometric range that the injection means allows to introduce preferably extends from micrometer to about 1000 micrometers (1 to 1000pm), depending on the desired application. For purely illustrative purposes, the oxide to be reduced may be silica or quartz. Advantageously in this case, the recommended particle size will be in the range 1 to 1000 μm. In various particular embodiments of this method of treating a load, each having its particular advantages and capable of numerous possible technical combinations: in step b), said charge is continuously introduced into the space delimited by the gaseous flow homogenized, in step b), said charge is introduced so as to give axial axial movement to the charge in the space defined by the homogenized gas flow. Preferably, the charge to be injected is directed downstream in the direction of propagation of this homogenized gas flow. This filler then mixes with the homogenized gas flow to be treated thermo chemically "in flight" in a melting / vaporization process. in step c), a new deformation is applied to said homogenized gas flow to form a gas flow of circular or substantially circular solid section; after step c), the particles, if not completely treated, are recovered in a crucible; subjected to a stopping point at the gas flow at high temperature and high speed so as to complete the melting / vaporization process. Advantageously, according to the method of the present invention, all of the feedstock introduced is thermochemically treated in a non-selective manner regardless of the characteristics of physical inhomogeneity of this feedstock.
L'invention sera décrite plus en détail en référence aux dessins annexés dans lesquels: - la figure 1 représente schématiquement une vue en coupe d'un ensemble de mise en forme d'un écoulement gazeux dans une installation de traitement d'une charge selon un mode de réalisation particulier de l'invention, cet ensemble de mise en forme étant relié à une torche plasma à arc non transféré, l'écoulement gazeux homogénéisé étant partiellement représenté par souci de clarté; - la figure 2 est une vue latérale de l'enceinte et du corps d'obstruction, montrant les conduits d'amenée des particules par gaz porteur; - la figure 3 est une vue latérale de l'enceinte et du corps d'obstruction dans une installation de traitement d'une charge selon un autre mode de réalisation de l'invention; La Figure 1 représente schématiquement une vue en coupe d'un ensemble de mise en forme d'un écoulement gazeux dans une installation de traitement d'une charge selon un mode de réalisation préféré de l'invention. Cet ensemble de mise en forme de l'écoulement comprend une enceinte axisymétrique 1 délimitant un volume interne dans lequel sont placés un corps d'obstruction 2 et des conduits d'amenée de produits à traiter 3 reliés à ce corps d'obstruction 2. Le corps d'obstruction 2 comporte une face avant 4 qui a la forme d'une calotte sphérique. De préférence, au moins la face avant 4 de ce corps d'obstruction 2 est réalisée en cuivre. Cette face avant 4 est destinée à recevoir un écoulement plasma de section cylindrique 5 généré par une torche à plasma. L'extrémité 6 de cette torche à plasma est assemblée au port d'entrée de l'enceinte axisymétrique 1 de manière à être en communication de fluide avec cette enceinte 1. The invention will be described in more detail with reference to the accompanying drawings in which: - Figure 1 shows schematically a sectional view of a shaping assembly of a gas flow in a load processing facility according to a particular embodiment of the invention, this forming assembly being connected to a non-transferred arc plasma torch, the homogenized gas flow being partially represented for the sake of clarity; FIG. 2 is a side view of the enclosure and the obstruction body, showing the conduits for feeding the particles by carrier gas; FIG. 3 is a side view of the enclosure and the obstruction body in a charge processing installation according to another embodiment of the invention; Figure 1 schematically shows a sectional view of a shaping assembly of a gas flow in a load processing facility according to a preferred embodiment of the invention. This set of shaping of the flow comprises an axisymmetric chamber 1 delimiting an internal volume in which are placed an obstruction body 2 and supply ducts of products to be treated 3 connected to the obstruction body 2. The obstruction body 2 has a front face 4 which has the shape of a spherical cap. Preferably, at least the front face 4 of the obstruction body 2 is made of copper. This front face 4 is intended to receive a plasma flow of cylindrical section 5 generated by a plasma torch. The end 6 of this plasma torch is assembled at the input port of the axisymmetric chamber 1 so as to be in fluid communication with this chamber 1.
L'écoulement plasma 5 qui se propage suivant l'axe de propagation axiale 7, a typiquement une température de l'ordre de 3000°C et une vitesse supérieure à 100 m.s-1. Le corps d'obstruction 2 présente une double paroi en vue de son refroidissement, laquelle est reliée à un circuit de refroidissement (non représenté). The plasma flow 5 which propagates along the axis of axial propagation 7, typically has a temperature of the order of 3000 ° C and a speed greater than 100 m.s-1. The obstruction body 2 has a double wall for cooling, which is connected to a cooling circuit (not shown).
Le corps d'obstruction 2 peut cependant avoir tout autre forme, par exemple ovoïde, pour ce qui est de sa face avant qui fait face à l'écoulement plasma 5 d'axe de propagation 7. Une charge solide pulvérulente 8 transportée au moyen d'un gaz porteur, est introduite en continu par au moins deux canalisations métalliques 9 d'amenée de la charge à traiter à l'intérieur du corps d'obstruction 2. Dans le cas de réalisation décrit, quatre canalisations 9 d'amenée de la charge sont prévues, lesquelles sont réparties angulairement à 90° autour de la périphérie du corps d'obstruction 2 (Figure 2). The obstruction body 2 may, however, have any other shape, for example ovoid, with respect to its front face which faces the propagation axis plasma flow 7. A pulverulent solid charge 8 transported by means of FIG. a carrier gas is introduced continuously by at least two metal pipes 9 for feeding the charge to be treated inside the obstruction body 2. In the embodiment described, four pipes 9 for supplying the load are provided, which are distributed angularly at 90 ° around the periphery of the obstruction body 2 (Figure 2).
Chaque canalisation d'amenée de la charge 9, qui sera amenée à être partiellement en contact avec l'écoulement plasma 5 est protégée par un tube 10 concentrique à ladite canalisation 9, l'espace annulaire 11 entre la paroi du tube 10 et la canalisation 9 étant parcouru par un fluide de refroidissement sous pression, dont le débit garantit la tenue mécanique à haute température du tube 10 comme de la canalisation 9. Avantageusement, le fluide de refroidissement est de l'eau. De plus, l'ensemble formé par les canalisations 9 et les tubes 10 assure le support du corps d'obstruction 2 et son positionnement. Le corps d'obstruction 2 est placé à l'intérieur de l'enceinte 1 de sorte que son axe de 20 symétrie soit confondu avec l'axe de propagation 7 de l'écoulement plasma 5. La charge solide pulvérulente 8, transportée dans les canalisations 9 au moyen d'un gaz porteur, est amenée dans une chambre interne 12 du corps d'obstruction 2. Le volume de cette chambre interne 12 est en partie délimitée par une paroi 13 présentant une section circulaire évolutive en 25 direction d'un orifice d'injection 14 placé sur la face arrière 15 du corps d'obstruction 2, avec lequel elle est reliée. Cette paroi 13 présente ici une section de forme circulaire se réduisant en direction de cet orifice d'injection 14. Cette paroi 13 pourrait avoir cependant toute autre forme, par exemple, être de section elliptique. 30 La chambre interne 12 est, en conséquence, en communication de fluide avec l'orifice d'injection 14, également de section circulaire. L'axe principal de la chambre interne 12 est, par ailleurs, également confondu avec l'axe de propagation 7 de l'écoulement plasma 5. La charge solide pulvérulente 8, transportée par gaz porteur, est 35 introduite en vortex dans la chambre interne 12. La forme évolutive 13 de la chambre interne 12 avec réduction de sa section en direction de l'orifice d'injection 14 conduit au renforcement de l'effet de vortex jusqu'à cet orifice d'injection 14. Cet effet de vortex est de plus encore augmenté par la présence de cannelures, ou rainures, 16 réalisées dans la paroi 13 de la chambre interne à proximité de et jusqu'à l'orifice d'injection 14. Ces cannelures 16 présentent une forme hélicoïdale. Avantageusement, l'aire de la section de l'orifice d'injection 14 est au moins sensiblement égale à l'aire cumulée des sections des canalisations 9, pour éviter toute accumulation de matière dans la chambre interne 12 du corps d'obstruction 2. Dans ces conditions, on trouve, en sortie de la chambre 12, au niveau de l'orifice d'injection 14, un écoulement diphasique dans lequel les particules solides suivent des trajectoires hélicoïdales dont les diamètres, mesurés perpendiculairement à l'axe de propagation 7 de l'écoulement plasma 5, sont en relation avec la masse individuelle de chacune de ces particules. Ainsi, les particules les plus lourdes présentent des trajectoires hélicoïdales de plus grands diamètres. Le corps d'obstruction 2 placé à l'intérieur de l'enceinte 1 délimite un canal annulaire 17 de passage de l'écoulement gazeux entre la face interne d'une première portion de paroi 18 de l'enceinte 1 et la face externe de ce corps d'obstruction 2, ce canal annulaire 17 s'étendant le long du corps d'obstruction 2. Ce canal annulaire 17 présente avantageusement une section sensiblement constante dans le sens de propagation de l'écoulement plasma grâce à la forme incurvée de la première portion de paroi 18 de l'enceinte 1. Each feed pipe 9, which will be brought into contact with the plasma flow 5, is protected by a tube 10 concentric with said pipe 9, the annular space 11 between the wall of the pipe 10 and the pipe 9 being traversed by a cooling fluid under pressure, the flow ensures the mechanical strength at high temperature of the tube 10 as the pipe 9. Advantageously, the cooling fluid is water. In addition, the assembly formed by the pipes 9 and the tubes 10 provides support for the obstruction body 2 and its positioning. The obstruction body 2 is placed inside the chamber 1 so that its axis of symmetry coincides with the axis of propagation 7 of the plasma flow 5. The solid powdery charge 8, transported in the pipes 9 by means of a carrier gas, is brought into an internal chamber 12 of the obstruction body 2. The volume of this inner chamber 12 is partly delimited by a wall 13 having a circular section that is progressive in the direction of a injection port 14 placed on the rear face 15 of the obstruction body 2, with which it is connected. This wall 13 here has a section of circular shape that is reduced towards this injection port 14. This wall 13 could have any other shape, for example, be of elliptical section. The inner chamber 12 is accordingly in fluid communication with the injection port 14, also of circular section. The main axis of the internal chamber 12 is, moreover, also coincident with the propagation axis 7 of the plasma flow 5. The powdery solid charge 8, transported by carrier gas, is vortexed into the internal chamber. 12. The evolutionary form 13 of the internal chamber 12 with reduction of its section towards the injection orifice 14 leads to the reinforcement of the vortex effect up to this injection orifice 14. This vortex effect is further increased by the presence of grooves, or grooves, 16 made in the wall 13 of the inner chamber near and to the injection port 14. These flutes 16 have a helical shape. Advantageously, the area of the section of the injection orifice 14 is at least substantially equal to the cumulative area of the sections of the pipes 9, to prevent any accumulation of material in the internal chamber 12 of the obstruction body 2. Under these conditions, there is, at the outlet of the chamber 12, at the injection orifice 14, a two-phase flow in which the solid particles follow helicoidal paths whose diameters, measured perpendicular to the axis of propagation 7 of the plasma flow 5, are related to the individual mass of each of these particles. Thus, the heavier particles have helicoidal trajectories of larger diameters. The obstruction body 2 placed inside the enclosure 1 defines an annular channel 17 for passing the gas flow between the internal face of a first wall portion 18 of the enclosure 1 and the outer face of the this obstruction body 2, this annular channel 17 extending along the obstruction body 2. This annular channel 17 advantageously has a substantially constant section in the direction of propagation of the plasma flow thanks to the curved shape of the first wall portion 18 of the enclosure 1.
L'écoulement plasma 5 qui est défléchit de sa trajectoire de propagation par la face avant 4 du corps d'obstruction 2 placé à l'intérieur de l'enceinte 1, est guidé à l'intérieur du canal annulaire 17 dans lequel il subit ainsi une mise en forme. Cette mise en forme permet avantageusement de redistribuer l'ensemble des vitesses des écoulements gazeux et d'obtenir un écoulement gazeux homogénéisé 27 en sortie du canal annulaire 17. Dans le plan- de sortie 19 de la première portion de paroi 18 de l'enceinte 1, l'écoulement plasma homogénéisé est angulairement orienté vers l'axe principal 7, suivant une trajectoire conique conférée par une seconde portion de paroi 20 de l'enceinte 1. Le sommet théorique du cône est avantageusement positionné sur l'axe principal 7 en aval de la face arrière 15 du dispositif d'obstruction 2 dans le sens de l'écoulement plasma 5. Le sommet théorique du cône 21 résulte de l'orientation initiale de l'écoulement plasma homogénéisé dans le plan de sortie 19, prenant en compte un demi-angle au sommet du cône compris dans une plage de valeurs comprise entre 5° et 30°. La seconde portion de paroi 20 de l'enceinte 1 est toutefois reliée à un port de sortie 22 de sorte que cette seconde portion de paroi 20 a une forme de cône tronqué. Au niveau de ce port de sortie 22, est reconstitué un écoulement plasma volumique, ou cylindrique, 23, l'écoulement plasma ayant ainsi subi une seconde mise en forme pour revenir à sa forme initiale en sortie de la torche plasma 6. Les particules de trajectoires hélicoïdales en sortie de l'orifice d'injection 14, introduites dans une zone à température ambiante, sont «piégées» par l'écoulement plasma de section annulaire. En effet, l'écoulement plasma ainsi mis en forme une première fois, présente une paroi gazeuse de viscosité élevée qui confine la totalité de la charge issue de l'orifice d'injection 14. Les particules que comprend la charge à traiter sont ainsi guidées jusqu'à ce qu'elles pénètrent l'écoulement plasma volumique 23 pour y être traitées thermo chimiquement « en vol ». On notera que le liquide de refroidissement qui circule dans les espaces annulaires 11, injectée par deux canalisations 9 implantées en vis-à- vis à la périphérie du corps d'obstruction 2, est collectée puis distribuée à l'intérieur de ce corps d'obstruction 2 et notamment au travers d'un conduit longitudinal 24 acheminant le liquide de refroidissement en direction de la face avant 4 du corps d'obstruction 2 de manière à refroidir en priorité une portion de paroi 25 de cette face avant 4 positionnée en point d'arrêt de l'écoulement plasma 5 issu de la torche à plasma 6. Cette portion de paroi 25 de la face avant 4 du corps d'obstruction 2 est en effet la plus sollicitée thermiquement. A partir de ce conduit longitudinal 24 et après avoir rencontré la portion de paroi 25, le liquide de refroidissement est distribué dans une double paroi sur la totalité du corps d'obstruction 2 de manière à assurer le refroidissement de ses parois. Le retour de liquide de refroidissement s'effectue par les deux autres canalisations implantées en vis-à-vis à la périphérie du corps d'obstruction 2. En conclusion, les trajets des liquides de refroidissement sont découplés des trajets de la charge à traiter sans qu'il soit nécessaire de prévoir des circuits extérieurs spécifiques d'alimentation en liquide de refroidissement. Sur la Figure 1, on a également représenté de manière très schématique un creuset 26 permettant de compléter le traitement des particules éventuellement non intégralement traitées en vol dans l'écoulement plasma volumique homogénéisé 23 en sortie de l'enceinte 1. La Figure 2 présente une vue en coupe partielle et de face du raccordement des canalisations 9 et tubes 10 avec la chambre interne 12 du corps d'obstruction 2, l'enceinte 1 ayant été omise par souci de clarté. Les axes longitudinaux 28 des canalisations 9 sont disposés tangentiellement à la paroi 13 délimitant la chambre interne 12 dans un plan perpendiculaire à l'axe principal 7. Cette disposition des canalisations 9 ainsi que leur répartition autour de la chambre 12 autorise l'injection en vortex de la charge à traiter dans la chambre interne 12. Les cannelures usinées 16 dans la paroi 13 sont également visibles. Des moyens de mesure et de contrôle permettent de connaître l'état du processus de fusion/vaporisation, ainsi que la bonne tenue des éléments du dispositif d'obstruction 2 qui sont soumis à l'action du plasma thermique. Dans un mode de mise en oeuvre, l'installation ici décrite pour le traitement d'une charge est utilisée comme suit: a) mise en fonctionnement du refroidissement du dispositif d'obstruction 2 par un liquide de refroidissement sous pression, ce liquide de refroidissement étant avantageusement de l'eau, b) mise en service de la torche à plasma 6 d'arc non transféré, c) injection en continu de la charge à traiter et traitement simultané de cette dernière, e) en parallèle, traitement complémentaire des particules éventuellement non traitées et recueillies dans le creuset 26, f) récupération des effluents gazeux résultant du traitement, pour l'obtention des produits de réaction par condensation ultérieure. A titre purement illustratif, une installation pour le traitement d'une charge industrielle présente les caractéristiques principales suivantes: - diamètre du corps d'obstruction 2 face à l'écoulement plasma: 60 mm, - diamètre des canalisations 9 de transport des particules: 6 mm, - débit de particules: 100 kg/h, et débit de gaz porteur: 5 kg/h. The plasma flow 5 which is deflected from its propagation trajectory by the front face 4 of the obstruction body 2 placed inside the enclosure 1, is guided inside the annular channel 17 in which it undergoes a shaping. This shaping advantageously makes it possible to redistribute all the speeds of the gaseous flows and to obtain a homogenized gas flow 27 at the outlet of the annular channel 17. In the outlet plane 19 of the first wall portion 18 of the enclosure 1, the homogenized plasma flow is angularly oriented towards the main axis 7, following a conical trajectory imparted by a second wall portion 20 of the enclosure 1. The theoretical peak of the cone is advantageously positioned on the main axis 7 downstream of the rear face 15 of the obstruction device 2 in the direction of the plasma flow 5. The theoretical peak of the cone 21 results from the initial orientation of the homogenized plasma flow in the outlet plane 19, taking into account a half-angle at the apex of the cone in a range of values between 5 ° and 30 °. The second wall portion 20 of the enclosure 1 is however connected to an output port 22 so that this second wall portion 20 has a truncated cone shape. At this output port 22, a voluminal or cylindrical plasma flow 23 is reconstituted, the plasma flow thus having undergone a second shaping to return to its initial shape at the outlet of the plasma torch 6. The particles of helical trajectories at the exit of the injection orifice 14, introduced into a zone at ambient temperature, are "trapped" by the plasma flow of annular section. Indeed, the plasma flow thus formed a first time, has a gaseous wall of high viscosity which confines the entire charge from the injection port 14. The particles that comprises the load to be treated are thus guided until they penetrate the plasma volume flow 23 to be treated thermo chemically "in flight". It will be noted that the coolant circulating in the annular spaces 11, injected by two pipes 9 implanted vis-a-vis the periphery of the obstruction body 2, is collected and then distributed inside this body. obstruction 2 and in particular through a longitudinal duct 24 conveying the coolant towards the front face 4 of the obstruction body 2 so as to cool a wall portion 25 of the front face 4 positioned at a point d stopping the plasma flow 5 from the plasma torch 6. This wall portion 25 of the front face 4 of the obstruction body 2 is in fact the most thermally stressed. From this longitudinal duct 24 and after encountering the wall portion 25, the cooling liquid is distributed in a double wall over the entire obstruction body 2 so as to ensure the cooling of its walls. The return of cooling liquid is effected by the two other pipes implanted vis-a-vis at the periphery of the obstruction body 2. In conclusion, the paths of the coolants are decoupled from the paths of the charge to be treated without it is necessary to provide specific external circuits for the supply of coolant. FIG. 1 also very schematically shows a crucible 26 making it possible to complete the treatment of the particles possibly not completely treated in flight in the homogenized voluminal plasma flow 23 at the outlet of the enclosure 1. FIG. partial sectional view and front of the connection of the pipes 9 and tubes 10 with the inner chamber 12 of the obstruction body 2, the chamber 1 has been omitted for the sake of clarity. The longitudinal axes 28 of the pipes 9 are arranged tangentially to the wall 13 delimiting the internal chamber 12 in a plane perpendicular to the main axis 7. This arrangement of the pipes 9 and their distribution around the chamber 12 allows the vortex injection of the charge to be treated in the inner chamber 12. The machined grooves 16 in the wall 13 are also visible. Means of measurement and control make it possible to know the state of the melting / vaporization process, as well as the good behavior of the elements of the obstruction device 2 which are subjected to the action of the thermal plasma. In one embodiment, the installation described here for the treatment of a load is used as follows: a) operating the cooling of the obstruction device 2 by a cooling liquid under pressure, this coolant being advantageously water, b) commissioning of the non-transferred arc plasma torch 6, c) continuous injection of the charge to be treated and simultaneous treatment of the latter, e) in parallel, complementary treatment of the particles optionally untreated and collected in the crucible 26, f) recovery of gaseous effluents resulting from the treatment, for obtaining the reaction products by subsequent condensation. As a purely illustrative example, an installation for the treatment of an industrial load has the following main characteristics: - diameter of the obstruction body 2 facing the plasma flow: 60 mm, - diameter of the particle transport pipes 9: 6 mm, - particle flow rate: 100 kg / h, and carrier gas flow rate: 5 kg / h.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1158212A FR2980126B1 (en) | 2011-09-15 | 2011-09-15 | METHOD AND INSTALLATION FOR PROCESSING A LOAD |
PCT/EP2012/068269 WO2013038015A1 (en) | 2011-09-15 | 2012-09-17 | Method and installation for treating a charge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1158212A FR2980126B1 (en) | 2011-09-15 | 2011-09-15 | METHOD AND INSTALLATION FOR PROCESSING A LOAD |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2980126A1 true FR2980126A1 (en) | 2013-03-22 |
FR2980126B1 FR2980126B1 (en) | 2014-01-31 |
Family
ID=46875810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1158212A Expired - Fee Related FR2980126B1 (en) | 2011-09-15 | 2011-09-15 | METHOD AND INSTALLATION FOR PROCESSING A LOAD |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2980126B1 (en) |
WO (1) | WO2013038015A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5230470A (en) * | 1991-06-19 | 1993-07-27 | Alberta Research Council | Flame spray applicator system |
US6202939B1 (en) * | 1999-11-10 | 2001-03-20 | Lucian Bogdan Delcea | Sequential feedback injector for thermal spray torches |
US20040018317A1 (en) * | 2002-05-22 | 2004-01-29 | Linde Aktiengesellschaft | Process and device for high-speed flame spraying |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2461747A (en) | 2008-07-12 | 2010-01-20 | Quigley Michael Bernard Coupla | A powder injection apparatus with a shroud having a gas port opposing a powder port |
US8253058B2 (en) | 2009-03-19 | 2012-08-28 | Integrated Photovoltaics, Incorporated | Hybrid nozzle for plasma spraying silicon |
US9683282B2 (en) | 2009-06-22 | 2017-06-20 | Oerlikon Metco (Us) Inc. | Symmetrical multi-port powder injection ring |
-
2011
- 2011-09-15 FR FR1158212A patent/FR2980126B1/en not_active Expired - Fee Related
-
2012
- 2012-09-17 WO PCT/EP2012/068269 patent/WO2013038015A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5230470A (en) * | 1991-06-19 | 1993-07-27 | Alberta Research Council | Flame spray applicator system |
US6202939B1 (en) * | 1999-11-10 | 2001-03-20 | Lucian Bogdan Delcea | Sequential feedback injector for thermal spray torches |
US20040018317A1 (en) * | 2002-05-22 | 2004-01-29 | Linde Aktiengesellschaft | Process and device for high-speed flame spraying |
Also Published As
Publication number | Publication date |
---|---|
WO2013038015A1 (en) | 2013-03-21 |
FR2980126B1 (en) | 2014-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0755720B1 (en) | Device for spraying a liquid | |
EP0312428B1 (en) | Apparatus for injecting a hydrocarbon feed into a catalytic cracking reactor | |
EP2249968B1 (en) | Apparatus and method for varying the properties of a multiple-phase jet | |
FR2636198A1 (en) | NOZZLE FOR PLASMA TORCH AND METHOD FOR INTRODUCING POWDER IN PLASMA TORCH | |
CH629886A5 (en) | METHOD FOR COMBUSTING A CARBON FUEL. | |
EP2171118A1 (en) | Method and device for spraying a pulverulent material into a carrier gas | |
WO2006047441A1 (en) | Multi-sectioned pulsed detonation coating apparatus and method of using same | |
EP0506552B1 (en) | Method of treating for instance a substrate surface by projecting a plasma flow and apparatus for carrying out the method | |
FR2648068A1 (en) | LASER WELDING METHOD AND APPARATUS | |
FR2533036A1 (en) | PERISCOPE FOR REACTORS WITH HIGH TEMPERATURE | |
EP3817877A1 (en) | Granulation method and device | |
CA2758483A1 (en) | Spraying device and method | |
WO2015170034A1 (en) | Injection device, in particular for injecting a hydrocarbon feedstock into a refining unit. | |
EP0965791B1 (en) | Nozzle to inject fuel as a mist like spray for a fuel burner and burner comprising such a nozzle | |
FR2980126A1 (en) | METHOD AND INSTALLATION FOR PROCESSING A LOAD | |
EP1616041B1 (en) | Flame covering method and corresponding device | |
EP0766595B1 (en) | Process for spraying a dispersible liquid material | |
WO2013093289A2 (en) | Device and method for spraying a combustible liquid | |
EP2586276A1 (en) | Device for generating a plasma jet | |
EP1797963B1 (en) | Mixing chamber and spraying device comprising said chamber | |
EP0800565B1 (en) | Steam cracking method and plant using controlled injection of solid particles into a quenching exchanger | |
WO1995007768A1 (en) | Method for the production of composite materials or coatings and system for implementing it | |
EP2310745B1 (en) | Method and device for heat treating at least one effluent comprising fuel pollutants | |
FR3130651A1 (en) | CYCLONE FOR AN INSTALLATION AND A COMBUSTION PROCESS IN A CHEMICAL LOOP WITH AN INLET PIPE WITH INCLINED WALLS AND GAS INJECTION | |
FR3086192A1 (en) | METHOD FOR MANUFACTURING METAL POWDERS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
ST | Notification of lapse |
Effective date: 20210505 |