FR2955157A1 - SIMPLE DEVICE FOR CONVERTING THE ENERGY OF THE HEAT IN ELECTRICAL ENERGY - Google Patents

SIMPLE DEVICE FOR CONVERTING THE ENERGY OF THE HEAT IN ELECTRICAL ENERGY Download PDF

Info

Publication number
FR2955157A1
FR2955157A1 FR1002834A FR1002834A FR2955157A1 FR 2955157 A1 FR2955157 A1 FR 2955157A1 FR 1002834 A FR1002834 A FR 1002834A FR 1002834 A FR1002834 A FR 1002834A FR 2955157 A1 FR2955157 A1 FR 2955157A1
Authority
FR
France
Prior art keywords
waves
volumes
stator
wave
helicoidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1002834A
Other languages
French (fr)
Other versions
FR2955157B1 (en
Inventor
Francois Christian Paul Crolet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR1002834A priority Critical patent/FR2955157B1/en
Publication of FR2955157A1 publication Critical patent/FR2955157A1/en
Application granted granted Critical
Publication of FR2955157B1 publication Critical patent/FR2955157B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1805Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem
    • F03B13/1825Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is hinged to the rem for 360° rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/25Geometry three-dimensional helical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Dispositif simple de conversion de l'énergie de la houle sous forme d'énergie électrique comportant deux rotors composés par des volumes en forme d'hélice de longueur et diamètre similaires mais de pas d'hélice de sens opposés (1) et (2) dont les axes de rotation sont maintenus sensiblement parallèles entre eux par l'intermédiaire d'une structure ou stator (3). Sous certaines conditions liant la longueur du pas des hélices à la longueur d'onde des vagues et le rayon des hélices au creux des vagues, quand le stator (3) est rendu globalement immobile à l'aide d'un ancrage (4), alors les volumes hélicoïdaux (1) et (2) sont soumis à un couple tendant à les faire tourner autour de leur axe avec le défilement des vagues. Cette caractéristique permet de transformer le mouvement alternatif des vagues en mouvement de rotation unidirectionnel exploitable directement par un générateur électrique tournant conventionnel. Un câble (14) conduit le courant électrique produit vers le réseau utilisateur. Un dispositif de ballastage (5) et un dispositif de stabilisation (6) permettent au stator (3) de maintenir les volumes hélicoïdaux (1) et (2) partiellement immergés à la surface de la mer avec le défilement des vagues. Par ailleurs, le dispositif de ballastage (5) permet également d'ajuster le niveau d'immersion du dispositif, le rendant ainsi submersible et permettant de l'immerger intégralement et temporairement afin de le soustraire aux effets de surface des tempêtes. Les applications industrielles concernent des installations temporaires ou durables assurant la production d'électricité pour des besoins notamment insulaires et côtiers.Simple device for converting wave energy as electrical energy comprising two rotors composed of helical volumes of similar length and diameter but of opposite helix pitch (1) and (2) whose axes of rotation are kept substantially parallel to each other by means of a structure or stator (3). Under certain conditions linking the length of the pitch of the helices to the wavelength of the waves and the radius of the helices in the hollow of the waves, when the stator (3) is rendered globally immobile by means of an anchorage (4), then the helicoidal volumes (1) and (2) are subjected to a torque tending to rotate around their axis with the scrolling waves. This characteristic makes it possible to transform the reciprocating movement of the waves into unidirectional rotational movement that can be operated directly by a conventional rotating electric generator. A cable (14) conducts the generated electric current to the user network. A ballasting device (5) and a stabilizing device (6) allow the stator (3) to maintain the helical volumes (1) and (2) partially immersed at the sea surface with the scrolling waves. In addition, the ballast device (5) also makes it possible to adjust the level of immersion of the device, thus making it submersible and allowing it to be fully and temporarily immersed in order to remove it from the surface effects of storms. Industrial applications concern temporary or sustainable installations for the production of electricity for particular island and coastal needs.

Description

Page 1 DISPOSITIF SIMPLE DE CONVERSION DE L'ENERGIE DE LA HOULE EN ENERGIE ELECTRIQUE La présente invention concerne les dispositifs du type "houlomotrices" permettant de convertir l'énergie de la houle sous forme d'énergie électrique. Les dispositifs flottants connus utilisent le mouvement va-et-vient vertical de la houle pour entraîner un flotteur articulé ou faire osciller une colonne d'eau dans un cylindre. The present invention relates to wave-type devices for converting wave energy in the form of electrical energy. Known floating devices use the vertical back and forth motion of the swell to drive an articulated float or to oscillate a column of water in a cylinder.

Dans ces dispositifs connus, l'énergie potentielle et cinétique alternative contenue dans la houle est captée par l'intermédiaire de structures flottantes articulées conçues pour résister dans des conditions de mer extrêmes. De plus, ces dispositifs doivent pouvoir capter les vagues les plus énergétiques et présentent donc une bande passante adaptée à la capture des vagues de grandes longueurs d'onde entraînant des dimensions de plus de cent mètres. Tous ces dispositifs nécessitent des moyens d'ancrage surdimensionnés tandis que l'énergie mécanique récupérée dans ces systèmes sous forme alternative nécessite l'usage de mécanismes de conversion d'une efficience relative et parfois peu adaptés à un séjour prolongé en milieu marin. Enfin, ces structures mécaniques de grandes tailles articulées, doivent durer dans des conditions d'environnement particulièrement agressives. A ce jour, celles qui ont survécu ont pu bénéficier d'importants coefficients de sécurité pour leur dimensionnement. Ces raisons conduisent encore aujourd'hui à des projets de structures expérimentales dont la durée de vie reste incertaine et le coût difficilement rentabilisable. Le dispositif suivant l'invention permet d'éviter ces inconvénients. Le dispositif suivant l'invention, selon une première caractéristique, permet de convertir simplement l'énergie des vagues en électricité caractérisé par le fait qu'il comporte deux rotors composés chacun d'un volume globalement indéformable en forme d'hélice de longueur et de diamètre similaires mais de pas d'hélice de sens opposés (1) et (2) dont les axes de rotation sont maintenus sensiblement parallèles entre eux par l'intermédiaire d'une structure ou stator (3). Sous certaines conditions liant la longueur du pas des hélices à la longueur d'onde des vagues et le rayon des hélices au creux des vagues, quand le stator (3) est rendu globalement immobile à l'aide d'un ancrage (4), alors les volumes hélicoïdaux (1) et (2) sont soumis à un couple tendant à les faire tourner autour de leur axe avec le défilement des vagues. Cette caractéristique permet de transformer le mouvement alternatif des vagues en mouvement de rotation unidirectionnel exploitable directement par un générateur électrique tournant conventionnel. La combinaison des deux volumes hélicoïdaux de pas d'hélice contraires permet d'apporter la stabilité de la paire qu'ils constituent par l'intermédiaire du stator (3) au sein du dispositif. Selon une seconde caractéristique, les axes parallèles des volumes hélicoïdaux (1) et (2) sont maintenus dans le plan moyen de la surface de la mer grâce à un dispositif de ballastage (5) sur la longueur du stator (3), permettant ainsi de maintenir les volumes hélicoïdaux (1) et (2) partiellement immergés à la surface de la mer avec le défilement des vagues. Ce dispositif de ballastage (5) permet également d'ajuster le niveau d'immersion du dispositif, le rendant ainsi submersible. Cette caractéristique permet d'immerger intégralement et temporairement le dispositif afin de le soustraire aux effets des tempêtes qui affectent principalement la surface libre de la mer. Selon une troisième caractéristique, le stator (3) est muni d'un dispositif de stabilisation (6) composé d'ailerons orientables autour d'un axe globalement horizontal et perpendiculaire à la direction de propagation des vagues qui sont disposés à l'avant du dispositif et de façon à être immergés autant que possible. Cette caractéristique empêche le dispositif de s'effacer au passage de la vague et lui permet de disposer de l'appui nécessaire pour faire travailler les efforts exercés par la vague sur la partie immergée des volumes (1) et (2). In these known devices, the alternative potential kinetic energy contained in the swell is captured via articulated floating structures designed to withstand extreme sea conditions. In addition, these devices must be able to capture the most energetic waves and therefore have a bandwidth suitable for capturing waves of long wavelengths resulting in dimensions of more than one hundred meters. All these devices require oversized anchoring means while the mechanical energy recovered in these systems in alternative form requires the use of conversion mechanisms of relative efficiency and sometimes poorly adapted to an extended stay in the marine environment. Finally, these mechanical structures of large articulated sizes, must last in particularly aggressive environmental conditions. To date, those who have survived have benefited from important safety factors for their design. These reasons still lead today to projects of experimental structures whose life expectancy remains uncertain and the cost hardly profitable. The device according to the invention makes it possible to avoid these disadvantages. The device according to the invention, according to a first characteristic, makes it possible to simply convert the wave energy into electricity, characterized in that it comprises two rotors each composed of a generally indeformable volume in the form of a helix of length and width. similar diameter but propeller pitch opposite directions (1) and (2) whose axes of rotation are maintained substantially parallel to each other through a structure or stator (3). Under certain conditions linking the length of the pitch of the helices to the wavelength of the waves and the radius of the helices in the hollow of the waves, when the stator (3) is rendered globally immobile by means of an anchorage (4), then the helicoidal volumes (1) and (2) are subjected to a torque tending to rotate around their axis with the scrolling waves. This characteristic makes it possible to transform the reciprocating movement of the waves into unidirectional rotational movement that can be operated directly by a conventional rotating electric generator. The combination of the two helical volumes of opposite helical pitch makes it possible to bring the stability of the pair which they constitute by means of the stator (3) within the device. According to a second characteristic, the parallel axes of the helicoidal volumes (1) and (2) are maintained in the mean plane of the sea surface by means of a ballast device (5) along the length of the stator (3), thus allowing to maintain the helicoidal volumes (1) and (2) partially immersed on the surface of the sea with the scrolling waves. This ballasting device (5) also makes it possible to adjust the level of immersion of the device, thus making it submersible. This characteristic makes it possible to fully and temporarily immerse the device in order to avoid the effects of storms that mainly affect the free surface of the sea. According to a third characteristic, the stator (3) is provided with a stabilization device (6) composed of fins orientable around a generally horizontal axis and perpendicular to the wave propagation direction which are arranged at the front of the device and so as to be immersed as much as possible. This feature prevents the device from fading at the passage of the wave and allows it to have the support necessary to make work the efforts exerted by the wave on the immersed part of volumes (1) and (2).

Page 2 Selon une quatrième caractéristique, les volumes hélicoïdaux (1) et (2) entraînent chacun un générateur électrique (11) et (12), positionnés à l'avant, dans une cabine adaptée, solidaire du stator (3). Les masses des générateurs entraînés par les volumes (1) et (2) contribuent à assurer l'horizontalité des axes des volumes hélicoïdaux (1) et (2) grâce à un effet de masse pendulaire avec le défilement des vagues. Selon une cinquième caractéristique, le dispositif est maintenu en position sur un champ de vagues par l'intermédiaire d'un dispositif d'ancrage (4) destiné à résister aux composantes horizontale, longitudinale et transversale des efforts induits par les vagues sur le dispositif. Cette caractéristique permet de maintenir la position géographique du dispositif sur le champ de vagues so auquel il est adapté tout en lui laissant l'aptitude de s'orienter naturellement à mesure que la direction des vagues change. Selon une sixième caractéristique, le dispositif d'ancrage (4) est relié par un câble (10) au stator (3). Le ou les points d'accroche de ce câble (10) sur le stator (3) seront situés en aval de la cabine abritant les générateurs électriques (11) et (12) et en amont des flotteurs hélicoïdaux (1) et (2), par rapport au sens de défilement des vagues. Cette caractéristique permet de bénéficier de 15 l'effet dynamique pendulaire avant exercée par les masses des générateurs électriques (11) et (12) d'une part et les efforts dynamiques induits par le défilement des vagues sur les volumes hélicoïdaux (1) et (2) d'autre part. Selon une septième caractéristique, les axes des volumes hélicoïdaux (1) et (2) sont maintenus sensiblement parallèles à l'axe de propagation des vagues par l'intermédiaire d'un ou deux safrans L0 (13) pour notamment réduire l'effet de dérive occasionné par un vent de direction différente de l'axe de propagation des vagues. Selon une huitième caractéristique, un câble électrique (14) relie chaque dispositif au réseau local d'électricité. Selon un premier mode de réalisation de l'invention, destiné à la production d'énergie électrique 25 de masse à partir d'un parc de machines implantées dans un champ de vagues orientées à proximité des côtes, les volumes hélicoïdaux (1) et (2) de grande longueur de chaque machine sont composés par l'association de plusieurs modules identiques de forme principalement tubulaire (7) disposés solidairement en faisceau le long de l'arbre (8) pour que l'ensemble forme les volumes hélicoïdaux (1) et (2) suivant le sens du faisceau. La structure et l'architecture du stator (3) 30 apportent une rigidité axiale pour la liaison avec les volumes hélicoïdaux (1) et (2), notamment par l'ajout d'entretoises (9), solidaires du stator (3), régulièrement disposées le long des axes des volumes hélicoïdaux (1) et (2) et munies d'une liaison pivot à chaque extrémité permettant de réduire les contraintes induites dans les arbres (8) avec le défilement des vagues. Le dispositif de ballastage (5) peut notamment ici prendre la forme de compartiments ballastables intégrés dans 35 la structure axiale immergée du stator (3). Selon un autre mode de réalisation plus léger de l'invention, destiné à la production locale ponctuelle d'énergie électrique, les volumes hélicoïdaux (1) et (2) sont réalisés grâce à des poutres tridimensionnelles tétraèdrées (20) dont le choix particulier des caractéristiques permet de former un maillage volumique de forme globalement hélicoïdale sur un axe continu. Ces poutres 40 tétraèdrées (20), réalisées à partir de poutrelles (21) standardisées, dont les longueurs sont choisies de manière à ce qu'une des arêtes soit toujours sur l'axe du volume hélicoïdal ; tandis que deux autres arêtes définissent la continuité de la forme hélicoïdale. Des flotteurs identiques (27) de forme grossièrement sphérique, pouvant être gonflables, sont intégrés de façon régulière à l'intérieur de la structure en prenant appui sur les 6 poutrelles (21) constituant chaque tétraèdre 45 élémentaire de base. Grâce à cette structure tétraédrée rigide sur sa longueur, le stator (3) ne nécessite pas de liaison pivot intermédiaire. Le dispositif de ballastage (5) se résume à 2 volumes (51) et (52) respectivement placés à l'avant et à l'arrière du dispositif. According to a fourth characteristic, the helicoidal volumes (1) and (2) each lead an electric generator (11) and (12), positioned at the front, in a suitable cabin, integral with the stator (3). The masses of the generators driven by the volumes (1) and (2) contribute to ensure the horizontality of the axes of the helical volumes (1) and (2) through a pendulum mass effect with the scrolling waves. According to a fifth characteristic, the device is held in position on a wave field by means of an anchoring device (4) intended to withstand the horizontal, longitudinal and transverse components of the forces induced by the waves on the device. This feature makes it possible to maintain the geographical position of the device on the wave field so that it is adapted while leaving the ability to orient itself naturally as the direction of the waves changes. According to a sixth characteristic, the anchoring device (4) is connected by a cable (10) to the stator (3). The point or points of attachment of this cable (10) on the stator (3) will be located downstream of the cabin housing the electric generators (11) and (12) and upstream of the helical floats (1) and (2) , compared to the direction of scrolling waves. This characteristic makes it possible to benefit from the forward pendulum dynamic effect exerted by the masses of the electric generators (11) and (12) on the one hand and the dynamic forces induced by the scrolling of the waves on the helicoidal volumes (1) and ( 2) secondly. According to a seventh characteristic, the axes of the helicoidal volumes (1) and (2) are kept substantially parallel to the axis of propagation of the waves by means of one or two rudders L0 (13) in particular to reduce the effect of drift caused by a wind direction different from the wave propagation axis. According to an eighth characteristic, an electric cable (14) connects each device to the local electricity network. According to a first embodiment of the invention, intended for the production of mass electrical energy from a fleet of machines located in a wave field oriented near the coasts, the helicoidal volumes (1) and ( 2) of great length of each machine are composed by the combination of several identical modules of predominantly tubular shape (7) arranged in a beam-like manner along the shaft (8) so that the assembly forms the helicoidal volumes (1) and (2) according to the direction of the beam. The structure and the architecture of the stator (3) provide an axial rigidity for the connection with the helicoidal volumes (1) and (2), in particular by the addition of spacers (9) integral with the stator (3), regularly arranged along the axes of the helicoidal volumes (1) and (2) and provided with a pivot connection at each end to reduce the stresses induced in the trees (8) with the scrolling waves. The ballast device (5) can in particular here take the form of ballastable compartments integrated in the submerged axial structure of the stator (3). According to another lighter embodiment of the invention, intended for the local local production of electrical energy, the helicoidal volumes (1) and (2) are produced by means of three-dimensional tetrahedral beams (20) whose particular choice of characteristics makes it possible to form a volume mesh of generally helical shape on a continuous axis. These tetrahedron beams (20), made from standardized beams (21), whose lengths are chosen so that one of the edges is always on the axis of the helical volume; while two other edges define the continuity of the helical shape. Identical floats (27) of roughly spherical shape, which can be inflatable, are incorporated in a regular manner inside the structure by resting on the 6 beams (21) constituting each basic elementary tetrahedron 45. Due to this rigid tetrahedron structure along its length, the stator (3) does not require an intermediate pivot connection. The ballasting device (5) is limited to 2 volumes (51) and (52) respectively placed at the front and rear of the device.

Page 3 Applications industrielles : le rassemblement de plusieurs dispositifs selon l'invention de taille conséquente à la surface d'un champ de houle à proximité des côtes constitue un véritable parc de production d'électricité. L'installation d'une ou plusieurs machines de dimensions réduites permet de produire 5 ponctuellement de l'électricité en appoint ou en secours sur des sites côtiers notamment isolés. La transformation de l'énergie de la houle en énergie électrique permet accessoirement d'atténuer la violence de cette houle en aval du dispositif. II est ainsi permis d'envisager des applications intéressant la protection des ouvrages en mer, des côtes contre l'agression de la houle, ou encore des activités humaines d'aquaculture. Le rassemblement de plusieurs dispositifs so dans une même zone permet de constituer un barrage flottant atténuateur de houle en aval duquel les activités humaines, animales ou végétales pourront d'autant plus facilement s'exercer qu'elles disposeront d'une source d'énergie locale. Industrial applications: the gathering of several devices according to the invention of substantial size on the surface of a wave field near the coast is a real power generation park. The installation of one or more machines of reduced size makes it possible to produce punctual electricity for backup or relief on isolated coastal sites. The transformation of the wave energy into electrical energy incidentally makes it possible to attenuate the violence of this swell downstream of the device. It is thus possible to consider applications that concern the protection of structures at sea, coasts against wave aggression, or even human activities in aquaculture. The gathering of several devices so in the same area makes it possible to constitute a floating wave attenuator dam downstream from which human, animal or plant activities will be all the easier as they will have a local energy source. .

Claims (8)

Revendications1) Le dispositif selon l'invention pour convertir simplement l'énergie des vagues en électricité caractérisé par le fait qu'il comporte deux rotors composés chacun d'un volume globalement indéformable en forme d'hélice de longueur et de diamètre similaires mais de pas d'hélice de sens opposés (1) et (2) dont les axes de rotation sont maintenus sensiblement parallèles entre eux par l'intermédiaire d'une structure ou stator (3). Sous certaines conditions liant la longueur du pas des hélices à la longueur d'onde des vagues et le rayon des hélices au creux des vagues, quand le stator (3) est rendu globalement immobile à l'aide d'un ancrage (4), alors les volumes hélicoïdaux (1) et (2) sont soumis à un couple tendant à les faire tourner autour de leur axe avec le défilement des vagues. Cette caractéristique permet de transformer le mouvement alternatif des vagues en Ao mouvement de rotation unidirectionnel exploitable directement par un générateur électrique tournant conventionnel. La combinaison des deux volumes hélicoïdaux de pas d'hélice contraires permet d'apporter la stabilité de la paire qu'ils constituent par l'intermédiaire du stator (3) au sein du dispositif. Claims 1) The device according to the invention for simply converting wave energy into electricity characterized by the fact that it comprises two rotors each composed of a generally dimensionally stable dimension in the form of a helix of similar length and diameter but of pitch propeller in opposite directions (1) and (2) whose axes of rotation are maintained substantially parallel to each other by means of a structure or stator (3). Under certain conditions linking the length of the pitch of the helices to the wavelength of the waves and the radius of the helices in the hollow of the waves, when the stator (3) is rendered globally immobile by means of an anchorage (4), then the helicoidal volumes (1) and (2) are subjected to a torque tending to rotate around their axis with the scrolling waves. This characteristic makes it possible to transform the wave reciprocating motion into a unidirectional rotation movement exploitable directly by a conventional rotating electric generator. The combination of the two helical volumes of opposite helical pitch makes it possible to bring the stability of the pair which they constitute by means of the stator (3) within the device. 2) dispositif selon revendication 1 caractérisé par le fait que les axes parallèles des volumes 1 hélicoïdaux (1) et (2) sont maintenus dans le plan moyen de la surface de la mer grâce à un dispositif de ballastage (5) sur la longueur du stator (3), permettant ainsi de maintenir les volumes hélicoïdaux (1) et (2) partiellement immergés à la surface de la mer avec le défilement des vagues. Ce dispositif de ballastage (5) permet également d'ajuster le niveau d'immersion du dispositif, le rendant ainsi submersible. Cette caractéristique permet d'immerger intégralement et 20 temporairement le dispositif afin de le soustraire aux effets des tempêtes qui affectent principalement la surface libre de la mer. 2) Device according to claim 1 characterized in that the parallel axes of the helicoidal volumes 1 (1) and (2) are maintained in the mean plane of the sea surface by means of a ballast device (5) along the length of the stator (3), thus making it possible to maintain the helicoidal volumes (1) and (2) partially immersed on the surface of the sea with the scrolling of the waves. This ballasting device (5) also makes it possible to adjust the level of immersion of the device, thus making it submersible. This feature allows the device to be completely and temporarily immersed away from the effects of storms that primarily affect the free surface of the sea. 3) dispositif selon revendication 1 caractérisé par le fait que le stator (3) est muni d'un dispositif de stabilisation (6) composé d'ailerons orientables autour d'un axe globalement horizontal et perpendiculaire à la direction de propagation des vagues qui sont disposés à l'avant du dispositif et de façon à être immergés autant que possible. Cette caractéristique empêche le dispositif de s'effacer au passage de la vague et lui permet de disposer de l'appui nécessaire pour faire travailler les efforts exercés par la vague sur la partie immergée des volumes (1) et (2). 3) Device according to claim 1 characterized in that the stator (3) is provided with a stabilizing device (6) consisting of orientable fins around a generally horizontal axis and perpendicular to the direction of propagation of the waves which are arranged at the front of the device and so as to be submerged as much as possible. This feature prevents the device from fading at the passage of the wave and allows it to have the support necessary to make work the efforts exerted by the wave on the immersed part of volumes (1) and (2). 4) dispositif selon revendication 1 caractérisé par le fait que les volumes hélicoïdaux (1) et (2) entraînent chacun un générateur électrique (11) et (12), positionnés à l'avant, dans une cabine 'e adaptée, solidaire du stator (3). Les masses des générateurs entraînés par les volumes (1) et (2) contribuent à assurer l'horizontalité des axes des volumes hélicoïdaux (1) et (2) grâce à un effet de masse pendulaire avec le défilement des vagues. 4) Device according to claim 1 characterized in that the helicoidal volumes (1) and (2) each drive an electric generator (11) and (12), positioned at the front, in a cab 'e fitted, secured to the stator (3). The masses of the generators driven by the volumes (1) and (2) contribute to ensure the horizontality of the axes of the helical volumes (1) and (2) through a pendulum mass effect with the scrolling waves. 5) dispositif selon revendication 1 caractérisé par le fait que le dispositif est maintenu en position sur un champ de vagues par l'intermédiaire d'un dispositif d'ancrage (4) destiné à résister aux 35 composantes horizontale, longitudinale et transversale des efforts induits par les vagues sur le dispositif. Cette caractéristique permet de maintenir la position géographique du dispositif sur le champ de vagues auquel il est adapté tout en lui laissant l'aptitude de s'orienter naturellement à mesure que la direction des vagues change. 5) Device according to claim 1 characterized in that the device is held in position on a wave field by means of an anchoring device (4) designed to withstand the horizontal, longitudinal and transverse components of the induced forces by the waves on the device. This feature makes it possible to maintain the geographical position of the device on the wave field to which it is adapted while leaving it the ability to orient itself naturally as the direction of the waves changes. 6) dispositif selon revendication 5 caractérisé par le fait que le dispositif d'ancrage (4) est relié par iro un câble (10) au stator (3). Le ou les points d'accroche de ce câble (10) sur le stator (3) seront situés en aval de la cabine abritant les générateurs électriques (11) et (12) et en amont des flotteurs hélicoïdaux (1) et (2), par rapport au sens de défilement des vagues. Cette caractéristique permet de bénéficier de l'effet dynamique pendulaire avant exercée par les masses des générateurs électriques (11) et (12) d'une part et les efforts dynamiques induits par le défilement qs des vagues sur les volumes hélicoïdaux (1) et (2) d'autre part.Page 5 6) Device according to claim 5 characterized in that the anchoring device (4) is connected by iro a cable (10) to the stator (3). The point or points of attachment of this cable (10) on the stator (3) will be located downstream of the cabin housing the electric generators (11) and (12) and upstream of the helical floats (1) and (2) , compared to the direction of scrolling waves. This characteristic makes it possible to benefit from the forward pendulum dynamic effect exerted by the masses of the electric generators (11) and (12) on the one hand and the dynamic forces induced by the movement qs of the waves on the helicoidal volumes (1) and ( 2) secondly.Page 5 7) dispositif selon revendication 1 caractérisé par le fait que les axes des volumes hélicoïdaux (1) et (2) sont maintenus sensiblement parallèle à l'axe de propagation des vagues par l'intermédiaire d'un ou deux safrans (13) pour notamment réduire l'effet de dérive occasionné par un vent de direction différente de l'axe de propagation des vagues. 7) Device according to claim 1 characterized in that the axes of the helical volumes (1) and (2) are maintained substantially parallel to the wave propagation axis by means of one or two rudders (13) for particular reduce the drift effect caused by a directional wind different from the wave propagation axis. 8) dispositif selon revendication 1 caractérisé par le fait qu'un câble électrique (14) te.-au réseau local d'électricité. 8) Device according to claim 1 characterized in that an electric cable (14) te.-the local network of electricity.
FR1002834A 2010-01-14 2010-07-06 SIMPLE DEVICE FOR CONVERTING THE ENERGY OF THE HEAT IN ELECTRICAL ENERGY Expired - Fee Related FR2955157B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1002834A FR2955157B1 (en) 2010-01-14 2010-07-06 SIMPLE DEVICE FOR CONVERTING THE ENERGY OF THE HEAT IN ELECTRICAL ENERGY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1000133A FR2955156A1 (en) 2010-01-14 2010-01-14 Device for converting energy of waves at surface of sea into electric energy, has volume formed in shape of propeller, where axis of volume is maintained parallel with direction of propagation of waves at average level of surface of sea
FR1002834A FR2955157B1 (en) 2010-01-14 2010-07-06 SIMPLE DEVICE FOR CONVERTING THE ENERGY OF THE HEAT IN ELECTRICAL ENERGY

Publications (2)

Publication Number Publication Date
FR2955157A1 true FR2955157A1 (en) 2011-07-15
FR2955157B1 FR2955157B1 (en) 2013-05-17

Family

ID=43383543

Family Applications (2)

Application Number Title Priority Date Filing Date
FR1000133A Pending FR2955156A1 (en) 2010-01-14 2010-01-14 Device for converting energy of waves at surface of sea into electric energy, has volume formed in shape of propeller, where axis of volume is maintained parallel with direction of propagation of waves at average level of surface of sea
FR1002834A Expired - Fee Related FR2955157B1 (en) 2010-01-14 2010-07-06 SIMPLE DEVICE FOR CONVERTING THE ENERGY OF THE HEAT IN ELECTRICAL ENERGY

Family Applications Before (1)

Application Number Title Priority Date Filing Date
FR1000133A Pending FR2955156A1 (en) 2010-01-14 2010-01-14 Device for converting energy of waves at surface of sea into electric energy, has volume formed in shape of propeller, where axis of volume is maintained parallel with direction of propagation of waves at average level of surface of sea

Country Status (1)

Country Link
FR (2) FR2955156A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818703A (en) * 1971-06-01 1974-06-25 Laitram Corp Wave energy converter array
FR2457989A1 (en) * 1979-05-28 1980-12-26 Grugeaud Charles Floating screw to recover wave or water current energy - uses helical screw supported in anchored keel to generate electricity
FR2505937A1 (en) * 1981-05-15 1982-11-19 Hydronautics DEVICE FOR CONVERTING WAVE ENERGY INTO A MORE USEFUL ENERGY FORM
EP0222352A2 (en) * 1985-11-07 1987-05-20 Johann Dauenhauer Electric current generating hydraulic device
FR2805864A1 (en) * 2000-01-25 2001-09-07 Francois Christian Paul Crolet Device, for the conversion of wave energy, consist of series of float arms, mounted to form helix on main shaft, which is maintained in partially immersed condition by anchor and stability devices
WO2004065785A1 (en) * 2003-01-20 2004-08-05 Torben Veset Mogensen Sea wave energy converter
WO2009093909A1 (en) * 2008-01-24 2009-07-30 Flucon As Turbine arrangement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818703A (en) * 1971-06-01 1974-06-25 Laitram Corp Wave energy converter array
FR2457989A1 (en) * 1979-05-28 1980-12-26 Grugeaud Charles Floating screw to recover wave or water current energy - uses helical screw supported in anchored keel to generate electricity
FR2505937A1 (en) * 1981-05-15 1982-11-19 Hydronautics DEVICE FOR CONVERTING WAVE ENERGY INTO A MORE USEFUL ENERGY FORM
EP0222352A2 (en) * 1985-11-07 1987-05-20 Johann Dauenhauer Electric current generating hydraulic device
FR2805864A1 (en) * 2000-01-25 2001-09-07 Francois Christian Paul Crolet Device, for the conversion of wave energy, consist of series of float arms, mounted to form helix on main shaft, which is maintained in partially immersed condition by anchor and stability devices
WO2004065785A1 (en) * 2003-01-20 2004-08-05 Torben Veset Mogensen Sea wave energy converter
WO2009093909A1 (en) * 2008-01-24 2009-07-30 Flucon As Turbine arrangement

Also Published As

Publication number Publication date
FR2955156A1 (en) 2011-07-15
FR2955157B1 (en) 2013-05-17

Similar Documents

Publication Publication Date Title
Mittal et al. Floating solar photovoltaic systems: An overview and their feasibility at Kota in Rajasthan
EP2986848B1 (en) Floating wind turbine structure
FR3052817A1 (en) FLOATING DEVICE SUPPORT FOR OFFSHORE WIND TURBINES AND FLOATING WINDING ASSEMBLY THEREFOR
AU2014363581B2 (en) Device and method for converting wave motion energy into electric power
KR101416962B1 (en) Generator of using wave power
FR2980245A1 (en) DEVICE FOR RECOVERING ENERGY FROM MARINE OR WATERCOURSE CURRENTS
EP2076670A1 (en) Hydroelectric apparatus for generating electric power mainly from tidal currents
FR2955157A1 (en) SIMPLE DEVICE FOR CONVERTING THE ENERGY OF THE HEAT IN ELECTRICAL ENERGY
FR2540567A1 (en) Device for recovering energy from the swell
FR2821647A1 (en) OMNIDIRECTIONAL SUBMERSIBLE HYDRAULIC TURBINE WITH PERPENDICULAR AXIS
CA2696758A1 (en) Vertical axis turbine compatible with wind turbines and marine current turbines
FR3028895A1 (en) DEVICE FOR GENERATING ENERGY OF WIND TYPE.
FR2977642A1 (en) HOLLOVERING DEVICE FOR ENERGY CONVERSION OF THE HULL IN ELECTRICAL ENERGY
FR3009032A1 (en) EQUIPMENT FOR CONVERTING AN ALTERNATED TRANSLATION MOTION INTO A FLUID INTO A ROTATION MOVEMENT, AND A WAVE ENERGY RECOVERY DEVICE USING SUCH AN EQUIPMENT.
FR2994716A1 (en) Renewable energy conversion installation for marine environment such as waves, has power summing device with driving shafts, and driven shaft controlling rotation of input shaft of power generating device around axis
FR2669684A1 (en) Energy collector with tangential vanes
WO2020109674A1 (en) Multi-generator electrical power generation assembly for high-power floating wind turbines
FR2805864A1 (en) Device, for the conversion of wave energy, consist of series of float arms, mounted to form helix on main shaft, which is maintained in partially immersed condition by anchor and stability devices
FR2869368A1 (en) Wave`s energy extracting device, has floating platform, where movements of liquid cause vertical or side displacement of platform, and transformation apparatuses to convert rotational movement directly into electric current
EP1375914A1 (en) Floating structure supporting plurality of wind turbines
KR200490005Y1 (en) Equipment for generating electricity with increase in speed function
FR2466636A1 (en) Tidal and wave power generator - uses float forcing screw through longitudinally fixed wheel with ratchet for unidirectional rotation
FR2884285A1 (en) Energy collection device, has turbines with inversed blades, where sum of energies recovered by turbines is collected in point and transmitted to wire rope by worm, non-return bearing allowing transmission between rope and pinion
EP3332115A1 (en) Device for producing electricity from flows of liquid fluid
FR2867523A3 (en) Sea and river currents` energy acquiring device for producing e.g. electricity, has turbines vertically suspended under support barge, where turbines are fixed together by their supports and connected to barge using vertical posts

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20140331

RN Application for restoration

Effective date: 20140513

FC Decision of inpi director general to approve request for restoration

Effective date: 20140520

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8