FR2941560A1 - Procede pour empecher la formation de residus sur une couche a base d'un metal apres exposition de cette couche a un plasma contenant du fluor - Google Patents

Procede pour empecher la formation de residus sur une couche a base d'un metal apres exposition de cette couche a un plasma contenant du fluor Download PDF

Info

Publication number
FR2941560A1
FR2941560A1 FR0950503A FR0950503A FR2941560A1 FR 2941560 A1 FR2941560 A1 FR 2941560A1 FR 0950503 A FR0950503 A FR 0950503A FR 0950503 A FR0950503 A FR 0950503A FR 2941560 A1 FR2941560 A1 FR 2941560A1
Authority
FR
France
Prior art keywords
layer
plasma
metal
fluorine
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0950503A
Other languages
English (en)
Inventor
Nicolas Posseme
Regis Bouyssou
Thierry Chevolleau
Thibaut David
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR0950503A priority Critical patent/FR2941560A1/fr
Publication of FR2941560A1 publication Critical patent/FR2941560A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

L'invention se rapporte à un procédé pour éviter la formation, sur une couche à base d'un métal ayant été exposée à un plasma contenant du fluor, de résidus oxyfluorures métalliques lorsque cette couche est ensuite exposée à l'air. Ce procédé comprend, après l'exposition de ladite couche au plasma contenant du fluor mais avant son exposition à l'air, son traitement par un plasma réducteur contenant un ou plusieurs composés choisis parmi les hydrocarbures et les composés constitués d'azote et d'hydrogène. Elle se rapporte également à un procédé de gravure utile pour la réalisation d'une structure à interconnexions de type double damascène, qui comprend la mise en oeuvre de ce procédé. Domaines d'application : nanosciences et nanotechnologies.

Description

PROCEDE POUR EMPECHER LA FORMATION DE RESIDUS SUR UNE COUCHE A BASE D'UN METAL APRES EXPOSITION DE CETTE COUCHE A UN PLASMA CONTENANT DU FLUOR DESCRIPTION DOMAINE TECHNIQUE La présente invention se rapporte à un procédé permettant d'éviter que ne se forment, sur la surface d'une couche à base d'un métal ayant un pouvoir catalytique telle qu'une couche à base de titane, de tantale, de tungstène, d'or, de nickel et/ou d'aluminium, des résidus oxyfluorures métalliques lorsque cette couche est mise au contact de l'air après avoir été exposée à un plasma contenant du fluor.
Bien que ce procédé soit susceptible de trouver des applications dans tous les secteurs des nanosciences et des nanotechnologies dans lesquels une couche à base d'un métal est exposée à un plasma contenant du fluor, il est particulièrement utile dans le cas où la couche à base d'un métal est employée comme masque dur de gravure pour la fabrication d'une structure à interconnexions de type double damascène, par exemple dans la filière CMOS pour le noeud technologique 45 nm.
Aussi, la présente invention a-t-elle également pour objet un procédé de gravure utile pour la réalisation d'une structure à interconnexions de type double damascène, qui comprend la mise en oeuvre de ce procédé. ÉTAT DE LA TECHNIQUE ANTÉRIEURE Des métaux comme le titane et le tantale ainsi que certains composés de ces métaux comme les nitrures et oxynitrures de titane (TiN) et de tantale (TaN), sont couramment utilisés dans la fabrication de circuits intégrés sur silicium. Initialement employés comme couches antiréflectives et comme couches barrières à la diffusion, ces métaux et composés métalliques ont trouvé récemment, du fait de l'augmentation de la densité des circuits intégrés sur silicium, de nouvelles applications, notamment dans la réalisation de dispositifs actifs (par exemple, pour la fabrication de grilles métalliques de transistors), de dispositifs passifs tels que les capacités MIM (Métal-Isolant-Métal), et de structures à interconnexions. Dans le cadre de la réalisation de structures à interconnexions, il a été montré par Possémé et al. d'une part (Proceedings of International Conference on Microelectronics and Interfaces (ICMI), 2005, [1]) et par Darnon et al. d'autre part (J. Vac. Sci. Technol. B, 24(5), 2262-2270, 2006, [2]) que l'utilisation de ces métaux et composés métalliques comme masques durs pour la gravure par un plasma fluoré ou fluorocarboné de matériaux diélectriques, présente un réel avantage par rapport à celle de masques durs non métalliques, à la fois en termes de sélectivité et de tenue à la gravure. Cependant, l'utilisation d'un masque dur métallique présente aussi l'inconvénient de conduire à l'apparition, après quelques heures de remise à l'air ambiant de la structure, de résidus oxyfluorures métalliques du type MXFyOZ (avec M = Ti, Ta, etc), non seulement sur la surface et les flancs du masque dur mais également sur le fond et les flancs des tranchées formées par la gravure. Les études menées par les Inventeurs leur ont permis d'identifier les mécanismes responsables de la formation et de la croissance de ces résidus. Au cours de la gravure, il se produit une réaction physicochimique entre le métal du masque dur métallique et le fluor présent dans le plasma de gravure, qui conduit à la formation de fluorures métalliques du type MXFy. Ces fluorures sont présents non seulement à la surface et sur les flancs du masque dur mais également sur le fond et les flancs des tranchées formées par la gravure du fait que la pulvérisation du masque dur par le plasma de gravure s'accompagne d'une projection de particules de ce masque dans ces tranchées. Lorsque la structure est ensuite exposée à l'air ambiant, le métal présent dans les fluorures métalliques ainsi formés s'oxyde au contact de l'air et c'est cette réaction d'oxydation, qui est catalysée par l'humidité ambiante, qui conduit à la formation et à la croissance des résidus oxyfluorures métalliques. Les Inventeurs ont également mis en évidence que ces résidus commencent à se former dès que la structure est exposée à l'air ambiant et qu'ils sont d'autant plus importants que cette structure est maintenue plus longtemps à l'air ambiant.
La présence de résidus oxyfluorures métalliques sur le fond et les flancs des tranchées peut induire des problèmes de remplissage de ces tranchées lors des processus de métallisation, qui se traduisent par une réduction notable du rendement et de la fiabilité des circuits intégrés, tandis que la présence de ces résidus à la surface du masque dur peut, elle, être source de défaillances lors des opérations de polissage mécano-chimiques (suite à l'arrachage de morceaux de métal). Généralement, à chaque étape de gravure est associée une étape de nettoyage par voie humide qui est typiquement réalisée au moyen d'une solution acide du type solution d'acide fluorhydrique et dont le rôle est d'enlever les produits de réaction formés au cours de la gravure. Cependant, l'expérience montre que ce type de nettoyage ne permet pas d'éliminer efficacement les résidus oxyfluorures métalliques consécutifs à l'exposition d'une couche à base d'un métal à un plasma fluoré ou fluorocarboné. Il serait donc souhaitable de disposer d'un procédé qui empêche de tels résidus de se former. A cette fin, il a été proposé par Tsai et Wu (demande de brevet US publiée sous le n° 2007/0093069 [3]) de purger à l'issue de la gravure le réacteur dans lequel cette opération a été réalisée de manière à en extraire les produits de réaction qui dégazent en fin de gravure. Cette purge comprend l'introduction dans le réacteur d'un gaz inerte, typiquement de l'azote ou de l'hélium, puis le pompage des gaz présents dans ce réacteur, éventuellement complété par un traitement de la structure par un plasma d'argon. Cependant, les Inventeurs, qui ont testé cette solution, ont constaté qu'elle permet seulement de retarder la formation des résidus oxyfluorures métalliques mais en aucun cas de l'éviter. Il a, par ailleurs, été proposé de rendre le plasma de gravure plus sélectif vis-à-vis des matériaux diélectriques devant être gravé, de manière à réduire la pulvérisation du masque dur métallique par ce plasma. C'est ainsi qu'il a été proposé par Wu et al. d'une part (demande de brevet US publiée sous le n° 2006/0134921 [4]) et par Li et al. d'autre part (brevet US n° 6,969,685, [5]) d'ajouter respectivement de l'hélium et du monoxyde de carbone à un gaz du type CXHyFZ. Le plasma de gravure est alors effectivement plus sélectif vis-à-vis des matériaux diélectriques mais il ne permet toutefois pas d'empêcher les réactions entre le fluor et le métal, puis entre le métal et l'air ambiant de se produire et, partant, des résidus oxyfluorures métalliques d'apparaître, une fois la structure ramenée à l'air ambiant.
L'état de la technique n'offre donc à ce jour aucune solution permettant réellement d'éviter la présence de résidus oxyfluorures métalliques dans une structure à interconnexions lorsque cette structure est remise à l'air ambiant après avoir été exposée à un plasma de gravure contenant du fluor.
EXPOSÉ DE L'INVENTION L'invention vise justement à combler ce manque et à fournir un procédé qui permet d'empêcher la formation, sur une couche à base d'un métal ayant été exposée à un plasma contenant du fluor, de résidus oxyfluorures métalliques lorsque cette couche est ensuite exposée à de l'air et ce, quelque soit la durée de cette exposition à l'air. Ce procédé, qui est notamment utilisable dans le cas où la couche à base d'un métal et le plasma contenant du fluor sont tous les deux employés pour réaliser une gravure, l'un en tant que masque dur, l'autre en tant que moyen de gravure, comprend, après que la couche à base d'un métal a été exposée au plasma contenant du fluor mais avant qu'elle ne soit exposée à l'air, le traitement de cette couche par un plasma réducteur qui contient un ou plusieurs composés choisis parmi les hydrocarbures et les composés constitués d'azote et d'hydrogène.
Conformément à l'invention, le traitement de la couche à base d'un métal par le plasma réducteur est avantageusement réalisé immédiatement après l'exposition de cette couche au plasma contenant du fluor, c'est-à-dire sans soumettre ladite couche à un quelconque traitement intermédiaire, et in situ, c'est-à-dire dans le même réacteur que celui dans lequel elle a été exposée au plasma contenant du fluor. En variante, toutefois, il est également possible de prévoir un transfert de la couche ayant été exposée au plasma contenant du fluor dans un autre réacteur, auquel cas ce transfert est réalisé sous vide 6 secondaire, c'est-à-dire typiquement à une pression inférieure à 10-5 torr. Bien que le plasma réducteur puisse a priori contenir n'importe quel hydrocarbure (alcane, alcène, alcyne ou composé aromatique), on préfère néanmoins utiliser un alcane ou un mélange d'alcanes et, mieux encore, un alcane qui ne comprend pas plus de 4 atomes de carbone, à savoir le méthane (CH4), l'éthane (C2H6), le propane (C3H8) et le butane (C4H1o), ou un mélange de tels alcanes. Parmi ces alcanes, on préfère tout particulièrement le méthane que l'on utilise avantageusement dilué dans un gaz neutre du type argon, azote, hélium ou xénon, ou dans un mélange de tels gaz, et ce pour éviter que l'exposition de la couche à base d'un métal au plasma réducteur ne conduise à la formation, sur cette couche, d'un dépôt carboné d'épaisseur trop importante, c'est-à-dire en pratique d'un dépôt d'épaisseur supérieure ou égale à 2 nm.
A plasma carboné identique, l'épaisseur du dépôt carboné susceptible de se former dépend du type de réacteur et des paramètres opératoires qui sont utilisés lors de l'exposition de la couche à base d'un métal à ce plasma. Il est, toutefois, facile à un homme du métier de déterminer préalablement s'il lui est nécessaire de diluer le méthane et, le cas échéant, dans quelles proportions s'il veut obtenir, compte tenu du réacteur et des paramètres opératoires qu'il entend utiliser, un dépôt carboné d'épaisseur inférieure à 2 nm. Ainsi, par exemple, il lui suffit d'exposer une plaque de silicium (ou d'un matériau diélectrique) à des plasmas contenant respectivement du méthane pur et du méthane dans un gaz diluant à différents taux de dilution, en utilisant le même réacteur que celui dans lequel il a prévu de traiter la couche à base d'un métal par le plasma réducteur et les mêmes paramètres opératoires que ceux qu'il a prévu d'utiliser pour effectuer ce traitement, puis de mesurer, par exemple par ellipsométrie, l'épaisseur du dépôt carboné formé avec chaque plasma.
En ce qui concerne les composés constitués d'azote et d'hydrogène, bien que là également, le plasma réducteur puisse a priori contenir n'importe quel composé de ce type ou mélange de composés de ce type, on préfère toutefois utiliser l'ammoniac que l'on utilise avantageusement pur, les risques de formation d'un dépôt sur la couche à traiter étant inexistants dans ce cas. Conformément à l'invention, la couche à base d'un métal peut être constituée soit d'un métal, soit d'un alliage métallique, soit d'un composé métallique, soit encore d'un mélange de plusieurs composés métalliques. Cette couche est préférentiellement à base de titane, de tantale, de tungstène, d'or, de nickel et/ou d'aluminium. Il peut donc s'agir d'une couche en titane, d'une couche en tantale, d'une couche en tungstène, d'une couche en or, d'une couche en nickel, d'une couche en aluminium, d'une couche en un alliage d'au moins deux de ces métaux, d'une couche en un composé de titane, de tantale, de tungstène, d'or, de nickel et/ou d'aluminium, ou bien encore d'une couche en un mélange de plusieurs composés de titane, de tantale, de tungstène, d'or, de nickel et/ou d'aluminium. De préférence, la couche à base d'un métal est en titane, en tantale, en nitrure de titane, en nitrure de tantale, en oxynitrure de titane ou en oxynitrure de tantale. Le réacteur dans lequel est réalisé le traitement de cette couche par le plasma réducteur peut indifféremment être un réacteur à plasma à couplage inductif ou un réacteur à plasma à couplage capacitif. Toutefois, dans la mesure où il s'agit, de préférence, du même réacteur que celui dans lequel la couche à base d'un métal a été exposée au plasma contenant du fluor, le choix de ce réacteur ainsi que les températures utilisées au cours du traitement de cette couche par le plasma réducteur (que ce soit au niveau du porte-substrat, des parois ou de l'électrode ou des électrodes) sont imposés par l'exposition de ladite couche au plasma contenant du fluor. Ainsi, par exemple, si l'exposition au plasma contenant du fluor correspond à une gravure, la température du porte-substrat est, de préférence, comprise entre 20 et 80°C non seulement pendant l'exposition de la couche à base d'un métal au plasma contenant du fluor mais également pendant le traitement subséquent de cette couche par le plasma réducteur. Les autres paramètres opératoires sont alors convenablement choisis de sorte que le traitement de la couche à base d'un métal par le plasma réducteur permette d'éliminer le fluor laissé sur cette couche par son exposition au plasma contenant du fluor et d'en passiver les surfaces libres sans pour autant former un dépôt sur ladite couche ni modifier les autres couches éventuellement présentes (par exemple, les couches sous-jacentes en matériau diélectrique dans le cas d'une structure à interconnexions). Ainsi, à titre d'exemple, dans le cas d'un réacteur capacitif à triple fréquence (2/27/60 MHz) du type de celui commercialisé par la société LAM Research Corporation sous la référence 2300 Exelan Flex45TM et d'une couche en TiN ayant été préalablement exposée à un plasma fluorocarboné standard du type Ar/CH3F/CF4/N2/O2r on utilise de préférence : si le plasma réducteur contient du méthane : une pression de l'ordre de 10 à 100 mtorrs (1,33 à 13,33 Pa), une puissance de l'ordre de 100 watts pour le générateur des basses fréquences (2 MHz), une puissance de l'ordre de 50 à 1000 watts pour les générateurs des hautes fréquences (27/60 MHz), un débit du plasma de l'ordre de 5 à 100 cm3/min, une dilution du méthane de l'ordre de 75% en volume ou supérieure, et une durée de traitement de l'ordre de 5 à 30 secondes ; et si le plasma réducteur contient de l'ammoniac : une pression de l'ordre de 10 à 200 mtorrs (1,33 à 26,66 Pa), une puissance nulle pour le générateur des basses fréquences (de sorte à produire un faible bombardement), une puissance de l'ordre de 50 à 500 watts pour le générateur des hautes fréquences (de sorte à obtenir une faible dissociation du plasma), un débit du plasma de l'ordre de 50 à 500 cm'/min et une durée de traitement de l'ordre de 5 à 60 secondes. En tout état de cause, il entre dans les compétences normales d'un homme du métier oeuvrant dans le domaine des plasmas de savoir ajuster au cas par cas, c'est-à-dire en fonction des caractéristiques du réacteur à plasma qu'il aura choisi d'utiliser, de la composition du plasma contenant du fluor auquel aura été exposée la couche à base d'un métal et de la nature de cette couche, les paramètres opératoires du traitement par le plasma réducteur, de manière à en optimiser l'efficacité. Le procédé selon l'invention présente de nombreux avantages.
En effet, dans la mesure où il permet d'annihiler totalement la formation de résidus oxyfluorures métalliques sur une couche à base d'un métal, ayant été exposée à un plasma contenant du fluor, lorsque cette couche est ensuite exposée à de l'air et ce, quelque soit la durée de cette exposition, il supprime la nécessité d'une part, de procéder à des opérations de nettoyage humide spécifique de la couche à base d'un métal après son exposition au plasma contenant du fluor et, d'autre part, de réaliser sans délai d'attente ( queue time ) l'étape suivante du processus de fabrication. Il en résulte une relaxation des contraintes d'enchaînement des étapes de ce processus. L'invention a également pour objet un 30 procédé de gravure utile pour la réalisation de structures à interconnexions de type double damascène, qui comprend : û la gravure d'au moins une couche en un matériau diélectrique en des zones prédéterminées de cette couche, cette gravure étant réalisée au moyen d'un plasma contenant du fluor et après avoir recouvert les zones de la couche en un matériau diélectrique ne devant pas être gravées d'une couche à base d'un métal ; puis û le traitement de la couche à base d'un métal par un plasma réducteur qui contient un ou plusieurs composés choisis parmi les hydrocarbures et les composés constitués d'azote et d'hydrogène. Dans ce procédé de gravure, le plasma contenant du fluor peut contenir l'un quelconque des gaz fluorés ou fluorocarbonés classiquement employés graver des matériaux diélectriques en microélectronique tels que l'hexafluorure de soufre (SF6), le tétrafluorométhane (CF4), l'hexafluoroéthane (C2F6), l'octa- fluorocyclopropane (C3F8), l' octafluorocyclobutane (C4F8), le fluorure de méthyle (CH3F), le difluoroéthane (CH2F2), l'hexafluorobutadiène (C4F6) ou le trifluorométhane (CHF3), ou un mélange de ces gaz, éventuellement dilué dans un gaz non fluoré comme, par exemple, l'argon, l'azote, l'oxygène ou l'hydrogène, ou un mélange de gaz non fluorés comme, par exemple, un mélange d'argon, d'azote et d'oxygène. Ainsi, par exemple, il peut s'agir d'un plasma Ar/N2/C4F8/02 ou Ar/CH3F/CF4/N2/O2.
Quand à la couche à base d'un métal, elle est, de préférence, une couche à base de titane ou de tantale et, plus particulièrement, une couche en titane, en tantale, en nitrure de titane, en nitrure de tantale, en oxynitrure de titane ou en oxynitrure de tantale.
Par ailleurs, dans ce procédé de gravure, les caractéristiques de mise en oeuvre du traitement de la couche à base d'un métal par le plasma réducteur, notamment pour ce qui concerne la composition du plasma et les paramètres opératoires, sont en tout point identiques à celles précédemment mentionnées. D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture du complément de description qui suit et qui se rapporte à des exemples de démonstration de l'aptitude du procédé selon l'invention à empêcher la formation de résidus oxyfluorures métalliques. Bien entendu, ces exemples ne sont donnés qu'à titre d'illustrations de l'objet de l'invention et ne constituent en aucun cas une limitation de cet objet. BRÈVE DESCRIPTION DES FIGURES La figure 1 est une photographie prise au microscope électronique à balayage qui montre la surface d'une couche de TiN ayant été exposée successivement à un plasma fluorocarboné et à un plasma contenant du méthane ou de l'ammoniac, puis remise à l'air ambiant pendant 20 heures. La figure 2 est une photographie prise au microscope électronique à balayage qui montre, à titre de comparaison, la surface d'une couche de TiN ayant été exposée à un plasma fluorocarboné puis remise à l'air ambiant pendant 20 heures. La figure 3 est une photographie prise au microscope électronique à balayage qui montre, également à titre de comparaison, la surface d'une couche de TiN n'ayant pas été exposée à un plasma fluorocarboné. La figure 4 illustre, sous la forme d'un histogramme, l'influence d'un traitement par le procédé selon l'invention sur le rendement électrique mesuré pour le deuxième niveau métallique dans des structures à interconnexions de type double damascène pour le noeud technologique 45 nm, dont les couches en matériau diélectrique ont été gravées en utilisant un plasma de gravure fluorocarboné standard et un masque de gravure en TiN. La figure 5 illustre, sous la forme d'un histogramme, l'influence d'un traitement par le procédé selon l'invention sur le nombre de défauts par cm2 relevé au niveau du deuxième niveau métallique dans des structures à interconnexions de type double damascène pour le noeud technologique 45 nm, dont les couches en matériau diélectrique ont été gravées en utilisant un plasma de gravure fluorocarboné standard et un masque de gravure en TiN. La figure 6 illustre, sous la forme d'un histogramme, l'influence d'un traitement par le procédé selon l'invention sur le rendement électrique mesuré au niveau du premier via dans des structures à inter- connexions de type double damascène pour le noeud technologique 45 nm, dont les couches en matériau diélectrique ont été gravées en utilisant un plasma de gravure fluorocarboné standard et un masque de gravure en TiN. La figure 7 illustre, sous la forme d'un histogramme, l'influence d'un traitement par le procédé selon l'invention sur le nombre de défauts par cm2 relevé au niveau du premier via dans des structures à interconnexions de type double damascène pour le noeud technologique 45 nm, dont les couches en matériau diélectrique ont été gravées en utilisant un plasma de gravure fluorocarboné standard et un masque de gravure en TiN. Sur les figures 4 à 7 : û les colonnes notées STD Oh carres- pondent aux valeurs obtenues, en termes de rendement électrique (figures 4 et 6) ou de nombre de défauts par cm2 (figures 5 et 7), pour des structures servant de référence et n'ayant été ni traitées par le procédé selon l'invention ni exposées à l'air ambiant à l'issue des gravures ; û les colonnes notées STD 20h correspondent aux valeurs obtenues, en termes de rendement électrique (figures 4 et 6) ou de nombre de défauts par cm2 (figures 5 et 7), pour des structures n'ayant pas été traitées par le procédé selon l'invention à l'issue des gravures mais ayant été exposées à l'air ambiant pendant 20 heures, après normalisation de ces valeurs par rapport à la valeur donnée de la colonne STD Oh de la même figure ; û les colonnes notées CH4 20h correspondent aux valeurs obtenues, en termes de rendement électrique (figures 4 et 6) ou de nombre de défauts par cm2 (figures 5 et 7), pour des structures ayant été traitées par un plasma contenant du méthane à l'issue des gravures, puis exposées à l'air ambiant pendant 20 heures, après normalisation de ces valeurs par rapport à la valeur de la colonne STD Oh de la même figure ; tandis que ù les colonnes notées NH3 20h correspondent aux valeurs obtenues, en termes de rendement électrique (figures 4 et 6) ou de nombre de défauts par cm2 (figures 5 et 7), pour des structures ayant été traitées par un plasma contenant de l'ammoniac à l'issue des gravures, puis exposées à l'air ambiant pendant 20 heures, après normalisation de ces valeurs par rapport à la valeur de la colonne STD Oh de la même figure. EXEMPLES Exemple 1 : L'efficacité du procédé selon l'invention a été mise en évidence en étudiant par microscopie électronique à balayage la surface d'une couche Cl de TiN ayant été exposée successivement à un plasma fluorocarboné et à un plasma contenant du méthane ou de l'ammoniac, puis remise à l'air ambiant pendant 20 heures, et en comparant cette surface avec : * d'une part, la surface d'une couche C2 de TiN ayant été exposée au même plasma fluorocarboné et dans les mêmes conditions, mais ayant été remise directement à l'air ambiant pendant 20 heures, et * d'autre part, la surface d'une couche C3 de TiN n'ayant pas été exposée au plasma fluorocarboné. L'exposition des couches Cl et C2 au plasma fluorocarboné a été réalisée dans un réacteur à couplage capacitif et à triple fréquence (2/27/60 MHz) 2300 Exelan Flex45TM de la société LAM Research Corporation, en utilisant les paramètres opératoires suivants . Plasma : Ar/N2/C4F8/02 Durée de l'exposition : 60 s Température du porte-substrat : 60°C Pression : 350 mT (46,6 Pa) Puissance du générateur à 27 MHz : 100 W Puissance du générateur à 2 MHz : 300 W.
L'exposition de la couche Cl au plasma contenant du méthane ou de l'ammoniac a été réalisée in situ, c'est-à-dire dans le même réacteur que celui utilisé pour l'exposition au plasma fluorocarboné, en utilisant les paramètres suivants : * dans le cas d'un plasma contenant du méthane : Plasma : CH4/N2 Durée de l'exposition : 30 s Température du porte-substrat : 60°C Pression : 50 mT (6,66 Pa) Puissance du générateur à 60 MHz : 300 W Puissance du générateur à 2 MHz : 100 W * dans le cas d'un plasma contenant de l'ammoniac : Plasma : NH3 (500 cm3/min) Durée de l'exposition : 30 s Température du porte-substrat : 60°C Pression : 200 mT (26,66 Pa) Puissance du générateur à 27 MHz : 500 W. Les résultats sont illustrés sur les figures 1 à 3, la figure 1 correspondant à la couche Cl, la figure 2 correspondant à la couche C2 et la figure 3 correspondant à la couche C3. Comme le montrent ces figures, la surface de la couche Cl est identique à la surface de la couche C3 et, comme elle, ne présente aucun résidu. Par contre, la surface de la couche C2 présente de nombreux résidus. Exemple 2 : L'efficacité du procédé selon l'invention a également été mise en évidence en mesurant le rendement électrique et en déterminant le nombre de défauts par cm2, d'une part, pour le deuxième niveau métallique et, d'autre part, au niveau du premier via, dans des structures à interconnexions de type double damascène pour le noeud technologique 45 nm, dont les couches en matériau diélectrique ont été gravées en utilisant un plasma de gravure fluorocarboné standard et un masque de gravure en TiN et qui : soit n'ont été ni traitées par un plasma contenant du méthane ou de l'ammoniac ni exposées à l'air ambiant à l'issue des gravures ; soit n'ont pas été traitées par un plasma contenant du méthane ou de l'ammoniac à l'issue des gravures mais ont été exposées à l'air ambiant pendant 20 heures ; soit ont été traitées par un plasma contenant du méthane à l'issue des gravures, puis exposées à l'air ambiant pendant 20 heures ; û soit encore ont été traitées par un plasma contenant de l'ammoniac à l'issue des gravures, puis exposées à l'air ambiant pendant 20 heures. Les gravures par le plasma fluorocarboné ont été réalisées dans le même réacteur que celui mentionné dans l'exemple 1 ci-avant, en utilisant les paramètres opératoires suivants : Plasma : Ar/N2/C4F8/02 Durée de l'exposition : 60 s Température du porte-substrat : 60°C Pression : 350 mT (46,6 Pa) Puissance du générateur à 27 MHz : 100 W Puissance du générateur à 2 MHz : 300 W. Les traitements des structures par le plasma contenant du méthane ou de l'ammoniac ont également été réalisés dans ce réacteur, en utilisant les mêmes paramètres opératoires que ceux mentionnés dans l'exemple 1 ci-avant. Les résultats sont illustrés sur les figures 4 à 7, les figures 4 et 5 correspondant respectivement aux rendements électriques et aux nombres de défauts obtenus pour le deuxième niveau métallique, et les figures 6 et 7 correspondant respectivement aux rendements électriques et aux nombres de défauts par cm2 obtenus au niveau du premier via. Sur ces figures, les valeurs des colonnes notées STD 20h , CH4 20h et NH3 20h ont été normalisées par rapport à la valeur de la colonne STD Oh de la même figure. Comme le montrent les figures 4 à 7, les rendements électriques et le nombre de défauts par cm' sont satisfaisants pour les structures qui n'ont pas été exposées à l'air ambiant à l'issue des gravures (colonnes notées STD Oh ). Ils le sont également pour les structures ayant été traitées par le plasma contenant du méthane ou de l'ammoniac à l'issue des gravures, puis exposées à l'air ambiant pendant 20 heures (colonnes notées CH4 20h et NH3 20h ). Par contre, on observe que le rendement électrique est significativement abaissé pour le deuxième niveau métallique et est nul au niveau du premier via pour les structures ayant été directement exposées à l'air ambiant pendant 20 heures à l'issue des gravures (colonnes notées STD 20h ) et que ces structures présentent un nombre très élevé de défauts, tant pour le deuxième niveau métallique qu'au niveau du premier via. REFERENCES CITEES [1] Possémé et al., Proceedings of International Conference on Microelectronics and Interfaces (ICMI), 2005 [2] Darnon et al., J. Vac. Sci. Technol. B, 24(5), 2262-2270, 2006 [3] Demande de brevet US 2007/0093069 [4] Demande de brevet US 2006/0134921 [5] Brevet US 6,969,685

Claims (20)

  1. REVENDICATIONS1. Procédé pour empêcher la formation, sur une couche à base d'un métal et ayant été exposée à un plasma contenant du fluor, de résidus oxyfluorures métalliques lorsque cette couche est ensuite exposée à de l'air, qui comprend, après l'exposition de ladite couche au plasma contenant du fluor mais avant son exposition à l'air, son traitement par un plasma réducteur contenant un ou plusieurs composés choisis parmi les hydrocarbures et les composés constitués d'azote et d'hydrogène.
  2. 2. Procédé selon la revendication 1, dans lequel le traitement de la couche à base d'un métal par le plasma réducteur est réalisé immédiatement après l'exposition de cette couche au plasma contenant du fluor.
  3. 3. Procédé selon la revendication 1 ou la revendication 2, dans lequel le traitement de la couche à base d'un métal par le plasma réducteur est réalisé dans le même réacteur à plasma que celui dans lequel cette couche a été exposée au plasma contenant du fluor.
  4. 4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le plasma réducteur contient un alcane.30
  5. 5. Procédé selon la revendication 4, dans lequel le plasma réducteur contient un alcane ne comportant pas plus de 4 atomes de carbone.
  6. 6. Procédé selon la revendication 5, dans lequel le plasma réducteur contient du méthane dilué dans un gaz neutre ou un mélange de gaz neutres.
  7. 7. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le plasma réducteur contient de l'ammoniac.
  8. 8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel la couche à base d'un métal est une couche à base de titane, de tantale, de tungstène, d'or, de nickel et/ou d'aluminium.
  9. 9. Procédé selon la revendication 7, dans lequel la couche à base d'un métal est une couche en titane, en tantale, en nitrure de titane, en nitrure de tantale, en oxynitrure de titane ou en oxynitrure de tantale.
  10. 10. Procédé de gravure utile pour la réalisation de structures à interconnexions de type double damascène, qui comprend : ù la gravure d'au moins une couche en un matériau diélectrique en des zones prédéterminées de cette couche, cette gravure étant réalisée au moyen d'un plasma contenant du fluor et après avoir recouvert les zones de la couche en un matériau diélectrique nedevant pas être gravées d'une couche à base d'un métal ; puis le traitement de la couche à base d'un métal par un plasma réducteur qui contient un ou plusieurs composés choisis parmi les hydrocarbures et les composés constitués d'azote et d'hydrogène.
  11. 11. Procédé selon la revendication 10, dans lequel le plasma contenant du fluor contient un gaz choisi parmi l'hexafluorure de soufre, le tétrafluorométhane, l' hexafluoroéthane, l' octafluorocyclopropane, l'octafluorocyclobutane, le fluorure de méthyle, le difluoroéthane, le trifluorométhane et leur mélange, éventuellement dilué dans un gaz non fluoré ou un mélange de gaz non fluorés.
  12. 12. Procédé selon la revendication 10 ou la revendication 11, dans lequel le plasma contenant du fluor est un mélange d'argon, d'azote, d'octafluoro- cyclobutane et d'oxygène ou un mélange d'argon, de fluorure de méthyle, de tétrafluorométhane, d'azote et d'oxygène.
  13. 13. Procédé selon l'une quelconque des revendications 10 à 12, dans lequel la couche à base d'un métal est une couche à base de titane ou de tantale.
  14. 14. Procédé selon la revendication 13, dans 30 lequel la couche à base d'un métal est une couche en titane, en tantale, en nitrure de titane, en nitrure detantale, en oxynitrure de titane ou en oxynitrure de tantale.
  15. 15. Procédé selon l'une quelconque des revendications 10 à 14, dans lequel le traitement de la couche à base d'un métal par le plasma réducteur est réalisé immédiatement après la gravure de la couche en un matériau diélectrique.
  16. 16. Procédé selon l'une quelconque des revendications 10 à 15, dans lequel la gravure de la couche en un matériau diélectrique et le traitement de la couche à base d'un métal par le plasma réducteur sont réalisés dans le même réacteur à plasma.
  17. 17. Procédé selon l'une quelconque des revendications 10 à 16, dans lequel le plasma réducteur contient un alcane.
  18. 18. Procédé selon la revendication 17, dans lequel le plasma réducteur contient un alcane ne comportant pas plus de 4 atomes de carbone.
  19. 19. Procédé selon la revendication 18, dans lequel le plasma réducteur contient du méthane dilué dans un gaz neutre ou un mélange de gaz neutres.
  20. 20. Procédé selon l'une quelconque des revendications 10 à 16, dans lequel le plasma réducteur contient de l'ammoniac.
FR0950503A 2009-01-28 2009-01-28 Procede pour empecher la formation de residus sur une couche a base d'un metal apres exposition de cette couche a un plasma contenant du fluor Withdrawn FR2941560A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0950503A FR2941560A1 (fr) 2009-01-28 2009-01-28 Procede pour empecher la formation de residus sur une couche a base d'un metal apres exposition de cette couche a un plasma contenant du fluor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0950503A FR2941560A1 (fr) 2009-01-28 2009-01-28 Procede pour empecher la formation de residus sur une couche a base d'un metal apres exposition de cette couche a un plasma contenant du fluor

Publications (1)

Publication Number Publication Date
FR2941560A1 true FR2941560A1 (fr) 2010-07-30

Family

ID=40532236

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0950503A Withdrawn FR2941560A1 (fr) 2009-01-28 2009-01-28 Procede pour empecher la formation de residus sur une couche a base d'un metal apres exposition de cette couche a un plasma contenant du fluor

Country Status (1)

Country Link
FR (1) FR2941560A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3047605A1 (fr) * 2016-02-09 2017-08-11 Commissariat Energie Atomique Procede de realisation de connexions d'une puce electronique
EP4006203A1 (fr) * 2020-11-27 2022-06-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé pour augmenter la rugosité de surface d'une couche métallique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851474A2 (fr) * 1996-12-12 1998-07-01 Texas Instruments Inc. Améliorations relatives aux circuits intégrés
US20010030169A1 (en) * 2000-04-13 2001-10-18 Hideo Kitagawa Method of etching organic film and method of producing element
US20080045024A1 (en) * 2006-08-21 2008-02-21 Kabushiki Kaisha Toshiba. Method for manufacturing semiconductor device
US20080146036A1 (en) * 2006-12-18 2008-06-19 Yu-Tsung Lai Semiconductor manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851474A2 (fr) * 1996-12-12 1998-07-01 Texas Instruments Inc. Améliorations relatives aux circuits intégrés
US20010030169A1 (en) * 2000-04-13 2001-10-18 Hideo Kitagawa Method of etching organic film and method of producing element
US20080045024A1 (en) * 2006-08-21 2008-02-21 Kabushiki Kaisha Toshiba. Method for manufacturing semiconductor device
US20080146036A1 (en) * 2006-12-18 2008-06-19 Yu-Tsung Lai Semiconductor manufacturing process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3047605A1 (fr) * 2016-02-09 2017-08-11 Commissariat Energie Atomique Procede de realisation de connexions d'une puce electronique
WO2017137682A1 (fr) * 2016-02-09 2017-08-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation de connexions d'une puce electronique
US10381264B2 (en) 2016-02-09 2019-08-13 Commissariat à l'énergie atomique et aux énergies alternatives Process for producing connections to an electronic chip
EP4006203A1 (fr) * 2020-11-27 2022-06-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé pour augmenter la rugosité de surface d'une couche métallique
FR3116836A1 (fr) * 2020-11-27 2022-06-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé pour augmenter la rugosité de surface d’une couche métallique

Similar Documents

Publication Publication Date Title
TW546707B (en) Plasma cleaning of processing chamber residues using duo-step wafer-less auto clean method
EP2939262B1 (fr) Procédé microélectronique de gravure d'une couche
TWI610364B (zh) 圖案化低k介電膜的方法
FR2872342A1 (fr) Procede de fabrication d'un dispositif semiconducteur
EP2750169A2 (fr) Procédé de gravure d'un matériau diélectrique poreux
TW200818306A (en) Etch method in the manufacture of an integrated circuit
TW200949929A (en) Method of etching a high aspect ratio contact
US20070020952A1 (en) Repairing method for low-k dielectric materials
EP2750168B1 (fr) Procédé de gravure anisotrope
TW201140795A (en) Interlayer insulation film and wiring structure, and method of producing the same
TWI257644B (en) Method of manufacturing semiconductor device
FR2941560A1 (fr) Procede pour empecher la formation de residus sur une couche a base d'un metal apres exposition de cette couche a un plasma contenant du fluor
TWI423331B (zh) 電漿處理方法
FR2789804A1 (fr) Procede de gravure anisotrope par plasma gazeux d'un materiau polymere dielectrique organique et application a la microelectronique
EP3671814B1 (fr) Procédé de gravure d'une couche diélectrique
FR3037712A1 (fr) Methode de realisation de motifs par implantation
FR2811474A1 (fr) Procede de realisation d'une grille pour une structure de transistor cmos a canal de longueur reduite
EP2922088B1 (fr) Procédé de gravure d'un matériau diélectrique poreux
EP2750166A1 (fr) Traitement de surface par plasma chloré dans un procédé de collage
EP0586301B1 (fr) Procédé de prétraitement de l'enceinte de dépÔt et/ou du substrat pour le dépÔt sélectif de tungstène
FR2933106A1 (fr) Procede d'obtention de tapis de nanotubes de carbone sur substat conducteur ou semi-conducteur
JP2007116167A (ja) 特徴画成部を形成する方法
EP3414775B1 (fr) Procede de realisation de connexions d'une puce electronique
CN101930916B (zh) 形成沟槽的方法
EP3671815A1 (fr) Procédé de gravure d'une couche diélectrique tridimensionnelle

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20100930