FR2938838A1 - PROCESS FOR THE PRODUCTION OF A METHYL METHACRYLATE DERIVED FROM BIOMASS - Google Patents

PROCESS FOR THE PRODUCTION OF A METHYL METHACRYLATE DERIVED FROM BIOMASS Download PDF

Info

Publication number
FR2938838A1
FR2938838A1 FR0858044A FR0858044A FR2938838A1 FR 2938838 A1 FR2938838 A1 FR 2938838A1 FR 0858044 A FR0858044 A FR 0858044A FR 0858044 A FR0858044 A FR 0858044A FR 2938838 A1 FR2938838 A1 FR 2938838A1
Authority
FR
France
Prior art keywords
acetone
methanol
fraction
methyl methacrylate
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0858044A
Other languages
French (fr)
Other versions
FR2938838B1 (en
Inventor
Jean Luc Dubois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinseo Europe GmbH
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Priority to FR0858044A priority Critical patent/FR2938838B1/en
Priority to JP2011538021A priority patent/JP2012509927A/en
Priority to EP09768206A priority patent/EP2362853A1/en
Priority to PCT/FR2009/052200 priority patent/WO2010061097A1/en
Publication of FR2938838A1 publication Critical patent/FR2938838A1/en
Application granted granted Critical
Publication of FR2938838B1 publication Critical patent/FR2938838B1/en
Priority to JP2015091156A priority patent/JP2015134826A/en
Priority to JP2016220230A priority patent/JP2017066149A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/06Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/03Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/18Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group
    • C07C67/20Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group from amides or lactams
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/327Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Procédé de fabrication du méthacrylate de méthyle par réactionde l'alpha-hydroxyisobutyramide avec le formiate de méthyle pour donner de l'alpha-hydroxyisobutyrate de méthyle et du formamide, l'alpha-hydroxyisobutyrate de méthyle étant déshydraté en méthacrylate de méthyle, caractérisé par le fait qu'au moins une fraction du formiate de méthyle mis en jeu dans cette réaction et/ou au moins une fraction de l'alpha-hydroxyisobutyramide mis en jeu dans cette réaction a été obtenue par une réaction ou une succession de réactions à partir de la biomasse.A method of making methyl methacrylate by reacting alpha-hydroxyisobutyramide with methyl formate to give methyl alpha-hydroxyisobutyrate and formamide, the methyl alpha-hydroxyisobutyrate being dehydrated to methyl methacrylate, characterized by the at least a fraction of the methyl formate involved in this reaction and / or at least a fraction of the alpha-hydroxyisobutyramide involved in this reaction has been obtained by a reaction or a succession of reactions from the biomass.

Description

La présente invention porte sur un procédé de fabrication d'un méthacrylate de méthyle dérivé de la biomasse. The present invention relates to a process for producing a methyl methacrylate derived from biomass.

Le méthacrylate de méthyle est le produit de départ de nombreuses réactions de polymérisation ou copolymérisation. Il est le monomère de fabrication du poly(méthacrylate de méthyle) (PMMA), connu sous les marques ALTUGLAS et PLEXIGLAS . Il se présente sous forme de poudres, de granulés ou de plaques, les poudres ou granulés servant au moulage d'articles divers, tels que des articles pour l'automobile, des articles ménagers et de bureau, et les plaques trouvant utilisation dans les enseignes et présentoirs, dans les domaines du transport, du bâtiment, des luminaires et des sanitaires, comme murs anti-bruit, pour oeuvres d'art, les écrans plats, etc. Le méthacrylate de méthyle est également le produit de départ de la synthèse organique de méthacrylates supérieurs, lesquels, comme lui, entrent dans la préparation d'émulsions acryliques et de résines acryliques, servent d'additifs pour le poly(chlorure de vinyle), entrent comme comonomères dans la fabrication de nombreux copolymères tels que les copolymères méthacrylate de méthyle-butadiène-styrène, servent d'additifs pour lubrifiants, et ont beaucoup d'autres applications parmi lesquelles on pourrait citer les prothèses médicales, les floculants, les produits d'entretien, etc. Les émulsions et résines acryliques trouvent des applications dans les domaines des peintures, des adhésifs, du papier, du textile, des encres, etc. Les résines acryliques servent également à la fabrication de plaques, ayant les mêmes applications que le PMMA. Methyl methacrylate is the starting material for many polymerization or copolymerization reactions. It is the monomer for the manufacture of poly (methyl methacrylate) (PMMA), known under the trademarks ALTUGLAS and PLEXIGLAS. It is in the form of powders, granules or plates, the powders or granules used to mold various articles, such as articles for the automobile, household and office items, and the plates found use in the signs and displays, in the fields of transport, building, lighting and sanitary, as noise barriers, for works of art, flat screens, etc. Methyl methacrylate is also the starting material for the organic synthesis of higher methacrylates, which, like it, are used in the preparation of acrylic emulsions and acrylic resins, serve as additives for polyvinyl chloride, enter As comonomers in the manufacture of many copolymers such as methyl methacrylate-butadiene-styrene copolymers, serve as additives for lubricants, and have many other applications among which one could mention medical prostheses, flocculants, products of maintenance, etc. Acrylic emulsions and resins have applications in the fields of paints, adhesives, paper, textiles, inks, etc. Acrylic resins are also used for the manufacture of plates, having the same applications as PMMA.

Le méthacrylate de méthyle peut être obtenu de diverses manières, l'une de celles-ci consistant à hydrater l'acétone-cyanhydrine en a-hydroxyisobutyramide [ (H3C) (OH) (CH3) C-CO-NH2] , lequel, réagissant avec du formiate de méthyle [HCOOCH3], produit hydroxyisobutyrate de méthyle [ (H3C) (OH) (CH3) -COOCH3] et du formamide [HCONH2]. Le formamide est recyclé après conversion en HCN+H2O, HCN réagissant avec l'acétone pour donner l'acétone-cyanhydrine, et l'cc-hydroxyisobutyrate de méthyle est déshydraté en méthacrylate de méthyle. Les matières premières utilisées pour ces synthèses du méthacrylate de méthyle sont principalement d'origine pétrolière ou d'origine synthétique, comportant ainsi de nombreuses sources d'émission de CO2r lesquelles contribuent par conséquent à l'augmentation de l'effet de serre. Etant donné la diminution des réserves pétrolières mondiales, la source de ces matières premières va peu à peu s'épuiser. Les matières premières issues de la biomasse sont de source renouvelable et ont un impact réduit sur l'environnement. Elles ne nécessitent pas toutes les étapes de raffinage, très coûteuses en énergie, des produits pétroliers. La production de CO2 fossile est réduite de sorte qu'elles contribuent moins au réchauffement climatique. Surtout pour sa croissance, la plante a consommé du CO2 atmosphérique à raison de 44g de CO2 par mole de carbone (ou pour 12 g de carbone). Donc l'utilisation d'une source renouvelable commence par diminuer la quantité de CO2 atmosphérique. Les matières végétales présentent l'avantage de pouvoir être cultivées en grande quantité, selon la demande, sur la majeure partie du globe terrestre. Methyl methacrylate can be obtained in a variety of ways, one of which is to hydrate acetone-cyanohydrin to α-hydroxyisobutyramide [(H 3 C) (OH) (CH 3) C-CO-NH 2], which, reacting with methyl formate [HCOOCH3], produced methyl hydroxyisobutyrate [(H3C) (OH) (CH3) -COOCH3] and formamide [HCONH2]. Formamide is recycled after conversion to HCN + H2O, HCN reacts with acetone to give acetone-cyanohydrin, and methyl α-hydroxyisobutyrate is dehydrated to methyl methacrylate. The raw materials used for these syntheses of methyl methacrylate are mainly of petroleum origin or of synthetic origin, thus containing numerous sources of CO2r emissions which consequently contribute to the increase of the greenhouse effect. Given the decline in global oil reserves, the source of these raw materials will gradually run out. Raw materials from biomass are renewable and have a reduced impact on the environment. They do not require all the refining steps, very expensive in energy, petroleum products. The production of fossil CO2 is reduced so that they contribute less to global warming. Especially for its growth, the plant has consumed atmospheric CO2 at a rate of 44g of CO2 per mole of carbon (or for 12 g of carbon). So the use of a renewable source begins by decreasing the amount of atmospheric CO2. The vegetable matter has the advantage of being able to be cultivated in large quantity, according to the demand, on most of the terrestrial globe.

Il apparaît donc nécessaire de disposer de procédés de synthèse du méthacrylate de méthyle non dépendants de matière première d'origine fossile, mais utilisant plutôt comme matière première la biomasse. It therefore appears necessary to have synthetic methyl methacrylate synthesis processes that are not dependent on raw material of fossil origin, but instead using biomass as raw material.

On entend par biomasse la matière première d'origine végétale ou animale produite naturellement. Cette matière végétale se caractérise par le fait que la plante pour sa croissance a consommé du CO2 atmosphérique tout en produisant de l'oxygène. Les animaux pour leur croissance ont de leur côté consommé cette matière première végétale et ont ainsi assimilé le carbone dérivé du CO2 atmosphérique. Le but de la présente invention est donc de répondre à certaines préoccupations de développement 15 durable. La présente invention a donc pour objet un procédé de fabrication du méthacrylate de méthyle par réaction de l'alpha-hydroxyisobutyramide avec le formiate de méthyle pour donner de l'alpha-hydroxyisobutyrate de 20 méthyle et du formamide, l'alpha-hydroxyisobutyrate de méthyle étant déshydraté en méthacrylate de méthyle, caractérisé par le fait qu'au moins une fraction du formiate de méthyle mis en jeu dans cette réaction et/ou au moins une fraction de l'alpha-hydroxyisobutyramide mis en 25 jeu dans cette réaction a été obtenue par une réaction ou une succession de réactions à partir de la biomasse. On a obtenu au moins une fraction du formiate de méthyle par carbonylation du méthanol à l'aide de monoxyde de carbone extrait à partir d'un gaz de synthèse composé 30 essentiellement de monoxyde de carbone et d'hydrogène, au moins une fraction du gaz de synthèse ayant été obtenue par gazéification de toutes matières d'origine animale ou végétale ou provenant de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques. On a obtenu au moins une fraction du formiate de méthyle par carbonylation du méthanol, au moins une fraction du méthanol ayant été obtenue par pyrolyse du bois ou par gazéification de toutes matières d'origine animale ou végétale conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène que l'on fait éventuellement réagir avec de l'eau par la réaction de gaz à l'eau pour ajuster le ratio H2/CO dans les proportions appropriées à la synthèse du méthanol, ou par fermentation à partir de cultures de plantes comme le blé, le maïs, la canne à sucre ou la betterave, donnant des produits fermentables et donc de l'alcool, au moins une fraction du gaz de synthèse pour préparer le méthanol pouvant également provenir de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques. On a obtenu au moins une partie de l'alpha- hydroxyisobutyramide par hydratation de l'acétonecyanhydrine, au moins une partie de l'acétone-cyanhydrine pouvant avoir été obtenue par réaction de l'acétone sur l'acide cyanhydrique, au moins une partie de celui-ci pouvant provenir du recyclage du formamide, au moins l'un parmi l'acétone et l'acide cyanhydrique ayant été obtenu par une réaction ou une succession de réactions à partir de la biomasse. On se reportera aux paragraphes suivants intitulés Valorisation de la biomasse en acétone et Valorisation de la biomasse en acide cyanhydrique pour le détail de ces réactions ou successions de réactions à partir de la biomasse. La présente invention a également pour objet l'utilisation du méthacrylate de méthyle fabriqué par le procédé tel que défini ci-dessus, comme monomère de fabrication du poly(méthacrylate de méthyle), comme produit de départ de la synthèse organique de méthacrylates supérieurs, comme produit entrant dans la préparation d'émulsions acryliques et de résines acryliques, comme additif pour le poly(chlorure de vinyle), comme comonomère dans la fabrication de copolymères et comme additif pour lubrifiants. Biomass is the raw material of plant or animal origin naturally produced. This plant material is characterized by the fact that the plant for its growth has consumed atmospheric CO2 while producing oxygen. The animals for their growth consumed this vegetable raw material and thus assimilated carbon derived from atmospheric CO2. The object of the present invention is therefore to respond to certain sustainable development concerns. The subject of the present invention is therefore a process for producing methyl methacrylate by reacting alpha-hydroxyisobutyramide with methyl formate to give methyl alpha-hydroxyisobutyrate and formamide, methyl alpha-hydroxyisobutyrate. being dehydrated to methyl methacrylate, characterized in that at least a fraction of the methyl formate involved in this reaction and / or at least a fraction of the alpha-hydroxyisobutyramide involved in this reaction has been obtained by a reaction or a succession of reactions from the biomass. At least a fraction of the methyl formate was obtained by carbonylation of methanol using carbon monoxide extracted from a synthesis gas composed essentially of carbon monoxide and hydrogen, at least a fraction of the gas. synthesis obtained by gasification of all materials of animal or vegetable origin or from the recovery of waste liquor and bleaching of the manufacture of cellulosic pulps. At least one fraction of the methyl formate was obtained by carbonylation of methanol, at least a fraction of the methanol having been obtained by pyrolysis of the wood or by gasification of any material of animal or vegetable origin leading to a synthesis gas consisting essentially of carbon monoxide and hydrogen which is optionally reacted with water by the reaction of gas with water to adjust the ratio H2 / CO in the proportions appropriate for the synthesis of methanol, or by fermentation from plant crops such as wheat, corn, sugar cane or beet, giving fermentable products and therefore alcohol, at least a fraction of the synthesis gas to prepare the methanol can also come from the recovery of liquor waste and bleaching of cellulosic pulp manufacturing. At least a portion of the alpha-hydroxyisobutyramide has been obtained by hydration of acetonecyanhydrin, at least a portion of the acetone-cyanohydrin having been obtained by reaction of acetone with hydrocyanic acid, at least a portion of which formamide can be recycled, at least one of acetone and hydrocyanic acid having been obtained by a reaction or a succession of reactions from the biomass. Refer to the following sections titled Valorization of Biomass in Acetone and Valorization of Biomass to Hydrocyanic Acid for details of these reactions or successions of reactions from biomass. The subject of the present invention is also the use of methyl methacrylate manufactured by the process as defined above, as a monomer for the manufacture of poly (methyl methacrylate), as a starting material for the organic synthesis of higher methacrylates, such as product used in the preparation of acrylic emulsions and acrylic resins, as an additive for polyvinyl chloride, as a comonomer in the manufacture of copolymers and as a lubricant additive.

Valorisation de la biomasse en méthanol Comme indiqué ci-dessus, on obtient le méthanol par pyrolyse du bois, par gazéification de toutes matières d'origine animale ou végétale, conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène que l'on fait éventuellement réagir avec de l'eau par la réaction de gaz à l'eau pour ajuster le ratio H2/CO dans les proportions appropriées à la synthèse du méthanol, ou par fermentation à partir de cultures de plantes comme le blé, le maïs, la canne à sucre ou la betterave, donnant des produits fermentables et donc de l'alcool. Les matières d'origine animale sont, à titre d'exemples non limitatifs, les huiles et graisses de poisson, telles que huile de foie de morue, huile de baleine, de cachalot, de dauphin, de phoque, de sardine, de hareng, de squales, les huiles et graisses de bovins, porcins, caprins, équidés, et volailles, telles que suif, saindoux, graisse de lait, lard, graisses de poulet, de boeuf, de porc, de cheval, et autres. Les matières d'origine végétale sont, à titre d'exemples non limitatifs, les résidus ligno-cellulosiques de l'agriculture, le fourrage de paille de céréales, comme paille de blé, paille ou résidus d'épis de maïs ; résidus de céréales, comme résidus de maïs ; farines de céréales, comme farine de blé ; céréales telles que le blé, l'orge, le sorgho, le maïs ; bois, déchets et rebuts de bois ; grains ; canne à sucre, résidus de canne à sucre ; sarments et tiges de pois ; betterave, mélasses telles que mélasses de betteraves ; topinambours ; pommes de terre, fanes de pommes de terre, résidus de pommes de terre ; amidon ; mélanges de cellulose, hémicellulose et lignine, et la liqueur noire de papeterie, qui est une matière riche en carbone. Selon un mode de réalisation particulier de l'invention, le gaz de synthèse pour préparer le méthanol provient de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques. On pourra se référer aux documents EP 666 831 et US 7,294,225 de Chemrec qui décrivent notamment la gazéification de liqueurs résiduaires de la fabrication et de blanchiment de cellulose, et l'obtention de méthanol, ainsi qu'aux pages 92-105 de l'ouvrage Procédés de pétrochimie Caractéristiques techniques et économiques- Tome 1 Editions Technip - le gaz de synthèse et ses dérivés, qui traite de l'obtention du méthanol à partir de gaz de synthèse. Valorisation of biomass in methanol As indicated above, methanol is obtained by pyrolysis of the wood, by gasification of all materials of animal or vegetable origin, leading to a synthesis gas consisting essentially of carbon monoxide and hydrogen that it is optionally reacted with water by the reaction of gas with water to adjust the ratio H2 / CO in the proportions appropriate to the synthesis of methanol, or by fermentation from crops of plants such as wheat, corn, sugar cane or beetroot, giving fermentable products and therefore alcohol. The materials of animal origin are, by way of non-limiting examples, fish oils and fats, such as cod liver oil, whale oil, sperm whale, dolphin oil, seal oil, sardine oil, herring oil, of squales, oils and fats of cattle, swine, goats, equines, and poultry, such as tallow, lard, milk fat, bacon, chicken fat, beef, pork, horse, and others. Plant-based materials are, by way of non-limiting examples, ligno-cellulosic residues from agriculture, cereal straw fodder, such as wheat straw, straw or maize residues; cereal residues as maize residues; cereal flours, such as wheat flour; cereals such as wheat, barley, sorghum, maize; wood, waste and scrap wood; grains; sugar cane, sugar cane residues; shoots and stems of peas; beetroot, molasses such as beet molasses; Jerusalem artichokes; potatoes, potato tops, potato residues; starch; mixtures of cellulose, hemicellulose and lignin, and the black liquor of stationery, which is a carbon-rich material. According to a particular embodiment of the invention, the synthesis gas for preparing the methanol comes from the recovery of residual liquor and the bleaching of the manufacture of cellulosic pulps. Reference may be made to documents EP 666 831 and US Pat. No. 7,294,225 to Chemrec, which notably describe the gasification of waste liquors from the manufacture and bleaching of cellulose, and the obtaining of methanol, as well as on pages 92-105 of the work. Petrochemical Processes Technical and Economic Characteristics - Volume 1 Editions Technip - synthesis gas and its derivatives, which deals with obtaining methanol from synthesis gas.

Valorisation de la biomasse en monoxyde de carbone Valorisation of biomass into carbon monoxide

On obtient le monoxyde de carbone par gazéification de toutes matières d'origine animale ou végétale, conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène, duquel on extrait le monoxyde de carbone. Carbon monoxide is obtained by gasification of all materials of animal or vegetable origin, leading to a synthesis gas composed essentially of carbon monoxide and hydrogen, from which carbon monoxide is extracted.

7 Valorisation de la biomasse en acétone • Conformément à un premier mode de réalisation, on a pu obtenir l'acétone par fermentation acéto-butylique de sucres en C6 et C5, conduisant à un mélange acétone-butanol, le cas échéant avec de l'éthanol, à partir duquel l'acétone a été séparée par exemple par distillation, notamment distillation azéotropique ou par séparation membranaire (par exemple sur des membranes de pervaporation) ou séparation sur de la silicalite (Revue de l'Institut Français du Pétrole, Vol 36, n°3, 1981, pp 339-347 ; Biotechnology Letters Vol 4, n°11, pp 759-760 (1982) ; Advances in Applied Microbiology, Volume 31,1986, pp 61-92 ; Prog. Ind. Microbiol 3(190) 73-90 ; Separation, Science and Technology [28 (13 & 14), pp 2167-2178, 1993] ; Biotechnology Letters , Vol 4, N°11, 759-760 (1982)). Les sucres en C6 et en C5 ont avantageusement été obtenus à partir d'une matière à forte teneur en sucres choisie notamment parmi les résidus ligno-cellulosiques de l'agriculture et toutes matières d'origine végétale, tels que fourrage de paille de céréales, comme paille de blé, paille ou résidus d'épis de maïs ; résidus de céréales, comme résidus de maïs ; farines de céréales, comme farine de blé ; céréales telles que le blé, l'orge, le sorgho, le maïs ; bois, déchets et rebuts de bois ; grains ; canne à sucre, résidus de canne à sucre ; sarments et tiges de pois ; betterave, mélasses telles que mélasses de betteraves ; topinambours ; pommes de terre, fanes de pommes de terre, résidus de pommes de terre ; amidon ; mélanges de cellulose, hémicellulose et lignine ; que l'on a soumis le cas échéant à un traitement mécanique, tel que déchiquetage, broyage, extrusion, et/ou à un traitement chimique, tel que traitement à la vapeur d'eau par voie acide ou basique, et/ou à un traitement d'hydrolyse enzymatique pour libérer les sucres en C6 et C5. Les prétraitements mécanique et chimique visent à diminuer la cristallinité de la cellulose par rupture de liaisons et à augmenter la surface de contact de la cellulose avec les enzymes. L'étape d'hydrolyse permet notamment la saccharification de l'amidon pour le transformer en glucose ou la transformation du sucrose en glucose. Valorisation of the biomass in acetone According to a first embodiment, it was possible to obtain acetone by acetobutyl fermentation of C 6 and C 5 sugars, resulting in an acetone-butanol mixture, where appropriate with ethanol, from which the acetone was separated for example by distillation, in particular azeotropic distillation or by membrane separation (for example on pervaporation membranes) or separation on silicalite (Review of the French Institute of Petroleum, Vol 36 , No. 3, 1981, pp 339-347, Biotechnology Letters Vol 4, No. 11, pp 759-760 (1982), Advances in Applied Microbiology, Volume 31, 1986, pp 61-92, Prog Ind Microbiol 3 (190) 73-90 Separation, Science and Technology [28 (13 & 14), pp 2167-2178, 1993] Biotechnology Letters, Vol 4, No. 11, 759-760 (1982)). The C 6 and C 5 sugars have advantageously been obtained from a material with a high sugar content chosen in particular from the lignocellulosic residues of agriculture and all materials of plant origin, such as cereal straw fodder, as wheat straw, straw or corn husks; cereal residues as maize residues; cereal flours, such as wheat flour; cereals such as wheat, barley, sorghum, maize; wood, waste and scrap wood; grains; sugar cane, sugar cane residues; shoots and stems of peas; beetroot, molasses such as beet molasses; Jerusalem artichokes; potatoes, potato tops, potato residues; starch; mixtures of cellulose, hemicellulose and lignin; where appropriate subjected to mechanical treatment, such as shredding, grinding, extrusion, and / or chemical treatment, such as acid or alkaline water vapor treatment, and / or enzymatic hydrolysis treatment to release the C6 and C5 sugars. Mechanical and chemical pretreatments aim at decreasing the crystallinity of cellulose by breaking bonds and increasing the contact surface of cellulose with enzymes. The hydrolysis step notably allows the saccharification of the starch to transform it into glucose or the transformation of sucrose into glucose.

En particulier, on a conduit une fermentation acéto-butylique à l'aide de bactéries anaérobies telles que Clostridium beijerinckii, tel que VPI 5481 (ATCC 25732), 4635, 2697, 4419 (ATCC 11914), Clostridium butylicum, tel que VPI 13436 (NRRLB-592), Clostridium aurantibutyricum, tel que VPI 4633 (ATCC 17777), 10789 (NCIB 10659), Clostridium acetobutylicum, tel que VPI2673 (McClung 633), 13697 (ATCC 4259), 13698 (NRRL B -527 <û ATCC824), 13693 (ATCC8529), 2676 (McClung 635), Clostridium toanum, leurs mutants ou organismes génétiquement modifiés (Applied and Environmental Microbiology, Mar. 1983, p 1160-1163, Vol.45, n°3 ; Biotechnology Letters Vol 4, N°8 (1982) 477-482). Ces procédés de fermentation sont connus de l'homme du métier qui est à même de choisir les meilleures conditions de travail pour un type de matière végétale donné (Microbiological Reviews, Dec 1986, Vol 50 n°4, p 484-524 ; Bioresource Technology 42 (1992) 205-217 ; Appl Microbiol Biotechnol (1985) 23 :92-98 ; Energy from Biomass, W. Palz, Elsevier, Applied Science, London (1985) p 692-696). • Conformément à un second mode de réalisation, on a pu obtenir l'acétone par liquéfaction hydrothermale à 573 K de boues d'épuration pour obtenir une eau noire contenant des hydrocarbures, puis craquage catalytique de ladite eau noire dans une atmosphère de vapeur d'eau sur un catalyseur à base de zircone ou de zircone/alumine supportée sur un oxyde de fer, et ensuite séparation de l'acétone comme indiqué plus haut, à savoir par exemple par distillation, notamment distillation azéotopique, ou par séparation membranaire ou séparation sur de la silicalite (Applied Catalysis B : Environmental 68 (2006) 154-159). In particular, aceto-butyl fermentation was conducted using anaerobic bacteria such as Clostridium beijerinckii, such as VPI 5481 (ATCC 25732), 4635, 2697, 4419 (ATCC 11914), Clostridium butylicum, such as VPI 13436 ( NRRLB-592), Clostridium aurantibutyricum, such as VPI 4633 (ATCC 17777), 10789 (NCIB 10659), Clostridium acetobutylicum, such as VPI2673 (McClung 633), 13697 (ATCC 4259), 13698 (NRRL B -527 ATCC824) , 13693 (ATCC8529), 2676 (McClung 635), Clostridium toanum, their mutants or genetically modified organisms (Applied and Environmental Microbiology, Mar. 1983, p 1160-1163, Vol.45, No. 3, Biotechnology Letters Vol 4, N 8 (1982) 477-482). These fermentation processes are known to those skilled in the art who are able to choose the best working conditions for a given type of plant material (Microbiological Reviews, Dec 1986, Vol 50 No. 4, p 484-524, Bioresource Technology 42 (1992) 205-217, Appl Microbiol Biotechnol (1985) 23: 92-98, Energy from Biomass, W. Palz, Elsevier, Applied Science, London (1985) p 692-696). According to a second embodiment, it was possible to obtain acetone by hydrothermal liquefaction at 573 K of sewage sludge to obtain a black water containing hydrocarbons, and then catalytic cracking of said black water in a steam atmosphere. on a catalyst based on zirconia or zirconia / alumina supported on an iron oxide, and then separation of acetone as indicated above, namely for example by distillation, in particular azeotropic distillation, or by membrane separation or separation on silicalite (Applied Catalysis B: Environmental 68 (2006) 154-159).

Conformément à un troisième mode de réalisation, on a pu obtenir l'acétone par conversion catalytique de résidus d'huile de palme sur un catalyseur à base de zircone ou de zircone/alumine supportée sur un oxyde de fer et ensuite séparation de l'acétone comme indiqué plus haut à savoir par exemple par distillation, notamment distillation azéotopique, ou par séparation membranaire ou séparation sur de la silicalite (Applied Catalysis B : Environmental 68 (2006) 154-159). According to a third embodiment, it was possible to obtain acetone by catalytic conversion of palm oil residues on a zirconia or zirconia / alumina catalyst supported on an iron oxide and then separation of acetone. as indicated above, namely for example by distillation, in particular azeotopic distillation, or by membrane separation or separation on silicalite (Applied Catalysis B: Environmental 68 (2006) 154-159).

Valorisation de la biomasse en acide cyanhydrique Valorisation of biomass into hydrogen cyanide

• Conformément à un premier mode de réalisation, on a pu obtenir l'acide cyanhydrique par ammoxydation du méthane, le méthane ayant été obtenu par fermentation en l'absence d'oxygène de matières organiques animales et/ou végétales, telles que lisier de porc, ordures ménagères, déchets agro-industriels, conduisant à un biogaz composé essentiellement de méthane et de gaz carbonique, le gaz carbonique ayant été éliminé par lavage du biogaz à l'aide d'une solution aqueuse basique de soude, potasse ou amine, ou encore par de l'eau sous pression, ou par absorption dans un solvant tel que le méthanol. According to a first embodiment, it has been possible to obtain hydrocyanic acid by ammoxidation of methane, the methane having been obtained by fermentation in the absence of oxygen of animal and / or vegetable organic matter, such as pig slurry. , household waste, agro-industrial waste, leading to a biogas composed essentially of methane and carbon dioxide, the carbon dioxide having been removed by washing the biogas with a basic aqueous solution of sodium hydroxide, potassium hydroxide or amine, or again by pressurized water, or by absorption in a solvent such as methanol.

Cette fermentation, appelée aussi méthanisation, se produit naturellement ou spontanément dans les décharges contenant des déchets organiques, mais peut être effectuée dans des digesteurs, pour traiter par exemple des boues d'épuration, des déchets organiques industriels ou agricoles, des lisiers de porc, des ordures ménagères. De préférence, le mélange fermenté contient des déjections animales, qui servent d'intrant azoté nécessaire à la croissance des microorganismes assurant la fermentation de la biomasse en méthane. On pourra se référer aux différentes technologies de méthanisation de l'état de la technique, à l'article Review of Current Status of Anaerobic Digestion Technology for Treatment of Municipal Solid Waste , Novembre 1998, RISE-AT et aux différents procédés biologiques existants pour le traitement des eaux résiduaires, tels que, par exemple, le procédé Laran de Linde. On peut citer une ammoxydation du méthane suivant laquelle on fait réagir de l'ammoniac (le cas échéant obtenu à partir de la biomasse) avec du méthane en présence d'air et éventuellement d'oxygène sur un catalyseur composé de toiles de platine rhodié à une température allant de 1050 à 1150°C. Généralement, le rapport molaire CH4/NH3 va de 1,0 à 1,2, le rapport molaire (CH4 + NH3)/02 total va de 1,6 à 1,9 ; la pression est généralement de 1 à 2 bar. • Conformément à un deuxième mode de réalisation, on a pu obtenir l'acide cyanhydrique par ammoxydation du méthanol, le méthanol pouvant avoir été obtenu comme décrit au paragraphe ci-dessus intitulé Valorisation de la biomasse en méthanol . This fermentation, also called anaerobic digestion, occurs naturally or spontaneously in landfills containing organic waste, but can be carried out in digesters, for example to treat sewage sludge, industrial or agricultural organic waste, pig manure, garbage. Preferably, the fermented mixture contains animal droppings, which serve as a nitrogen input necessary for the growth of microorganisms that ferment the biomass into methane. Reference can be made to the various methanization technologies of the state of the art, in the article Review of Current Status of Anaerobic Digestion Technology for Municipal Solid Waste Treatment, November 1998, RISE-AT and to the various biological processes existing for the waste water treatment, such as, for example, the Laran process of Linde. Ammoxidation of methane can be mentioned in which ammonia (where appropriate obtained from the biomass) is reacted with methane in the presence of air and optionally with oxygen on a catalyst composed of platinum-containing rhodium-plated canvases. a temperature ranging from 1050 to 1150 ° C. Generally, the CH4 / NH3 molar ratio is from 1.0 to 1.2, the total (CH4 + NH3) /O2 molar ratio is from 1.6 to 1.9; the pressure is usually 1 to 2 bar. According to a second embodiment, it was possible to obtain hydrocyanic acid by ammoxidation of methanol, the methanol may have been obtained as described in the paragraph above titled Valorisation of biomass methanol.

Le procédé de fabrication de HCN par ammoxydation du méthanol : The method of manufacturing HCN by ammoxidation of methanol:

CH3OH + NH3 + 02 -* HCN + 3 H20 a été décrit notamment dans les années 1950-1960 dans les brevets GB 718,112 et GB 913,836 de Distillers Company. Il met en oeuvre un catalyseur à base d'oxyde de molybdène à une température allant de 340°C à 450°C, ou un catalyseur à base d'antimoine et d'étain à une température allant de 350°C à 600°C. On pourra se référer à l'article de Walter Sedriks dans Process Economics Reviews PEP'76-3, Juin 1977. Ce procédé a fait l'objet de différents perfectionnements, notamment au niveau des systèmes catalytiques mis en oeuvre ; on peut citer par exemple les systèmes à base d'oxydes mixtes de molybdène-bismuth-fer supportés sur silice (US 3,911,089 de Sumitomo, US 4,511,548 de The Standard Oil Company, JP 2002-097017 de Mitsubishi), les catalyseurs à base de Fe-Sb-O décrits par Nitto Chemical Industry (EP 340 909, EP 404 529, EP 476 579, Science and Technology in Catalysis 1998, pages 335-338, Applied Catalysis A : General 194-195, 2000, 497-505) ou par Mitsubishi (JP 2002-097015, JP 2002-097016, EP 832 877). CH 3 OH + NH 3 + O 2 - * HCN + 3 H 2 O was especially described in the years 1950-1960 in GB 718,112 and GB 913,836 of Distillers Company. It uses a catalyst based on molybdenum oxide at a temperature ranging from 340 ° C. to 450 ° C., or a catalyst based on antimony and tin at a temperature ranging from 350 ° C. to 600 ° C. . Reference can be made to the article by Walter Sedriks in Process Economics Reviews PEP'76-3, June 1977. This process has been the subject of various improvements, in particular with regard to the catalytic systems used; mention may be made, for example, of systems based on silica-supported mixed molybdenum-iron oxides (US Pat. No. 3,911,089, US Pat. No. 4,511,548 to The Standard Oil Company, JP 2002-097017 to Mitsubishi), Fe-based catalysts. -Sb-O described by Nitto Chemical Industry (EP 340 909, EP 404 529, EP 476 579, Science and Technology in Catalysis 1998, pages 335-338, Applied Catalysis A: General 194-195, 2000, 497-505) or by Mitsubishi (JP 2002-097015, JP 2002-097016, EP 832 877).

La présente invention permet donc d'obtenir un méthacrylate de méthyle ayant au moins une partie de ses carbones d'origine renouvelable. Une matière première renouvelable est une ressource naturelle, animale ou végétale, dont le stock peut se reconstituer sur une période courte à l'échelle humaine. Il faut en particulier que ce stock puisse se renouveler aussi vite qu'il est consommé. The present invention thus makes it possible to obtain a methyl methacrylate having at least a portion of its carbons of renewable origin. A renewable raw material is a natural resource, animal or vegetable, whose stock can be reconstituted over a short period on a human scale. In particular, this stock must be renewed as quickly as it is consumed.

A la différence des matériaux issus de matières fossiles, les matières premières renouvelables contiennent du 14C dans les mêmes proportions que le CO2 atmosphérique. Tous les échantillons de carbone tirés d'organismes vivants (animaux ou végétaux) sont en fait un mélange de 3 isotopes 2C (représentant environ 98,892 %), 13C (environ 1,108 %) et 14C (traces: 1,2.10-10 %). Le rapport 14C/12C des tissus vivants est identique à celui de l'atmosphère. Dans l'environnement, le 4C existe sous deux formes prépondérantes : sous forme minérale, c'est-à-dire de gaz carbonique (CO2), et sous forme organique, c'est-à-dire de carbone intégré dans des molécules organiques. Dans un organisme vivant, le rapport 14C/12C est maintenu constant par le métabolisme car le carbone est continuellement échangé avec l'environnement. La proportion de 14C étant constante dans l'atmosphère, il en est de même dans l'organisme, tant qu'il est vivant, puisqu'il absorbe ce 14C comme il absorbe le 12C. Le rapport moyen de 14C/12C est égal à 1,2x10-12. Le carbone 14 est issu du bombardement de l'azote atmosphérique (14), et s'oxyde spontanément avec l'oxygène de l'air pour donner le CO2. Dans notre histoire humaine, la teneur en 14CO2 a augmenté à la suite des explosions nucléaires atmosphériques, puis n'a cessé de décroître après l'arrêt de ces essais. Unlike materials derived from fossil materials, renewable raw materials contain 14C in the same proportions as atmospheric CO2. All carbon samples taken from living organisms (animals or plants) are in fact a mixture of 3 isotopes 2C (representing about 98.892%), 13C (about 1.108%) and 14C (traces: 1.2.10-10%). The 14C / 12C ratio of living tissues is identical to that of the atmosphere. In the environment, 4C exists in two main forms: in mineral form, that is to say carbon dioxide (CO2), and in organic form, that is to say carbon integrated in organic molecules . In a living organism, the 14C / 12C ratio is kept constant by metabolism because carbon is continuously exchanged with the environment. The proportion of 14C being constant in the atmosphere, it is the same in the organism, as long as it is alive, since it absorbs this 14C as it absorbs the 12C. The average ratio of 14C / 12C is equal to 1.2x10-12. Carbon 14 is derived from the bombardment of atmospheric nitrogen (14), and spontaneously oxidizes with oxygen in the air to give CO2. In our human history, the 14CO2 content has increased as a result of the atmospheric nuclear explosions, and has continued to decrease after stopping these tests.

Le 12C est stable, c'est-à-dire que le nombre d'atomes de 12C dans un échantillon donné est constant au cours du temps. Le 14C, lui, est radioactif (chaque gramme de carbone d'un être vivant contient suffisamment d'isotopes 14C pour donner 13,6 désintégrations par minute) et le nombre de tels atomes dans un échantillon décroît au cours du temps (t) selon la loi : n = no exp (-at) , dans laquelle: - no est le nombre de 14C à l'origine (à la mort de la créature, animal ou plante), n est le nombre d'atomes 14C restant au bout du temps t, a est la constante de désintégration (ou constante radioactive) ; elle est reliée à la demi-vie. La demi-vie (ou période) est la durée au bout de laquelle un nombre quelconque de noyaux radioactifs ou de particules instables d'une espèce donnée, est réduit de moitié par désintégration ; la demi-vie T1/2 est reliée à la constante de désintégration a par la formule aT1/2= ln 2. La demi-vie du 14C vaut 5730 ans. En 50 000 ans la teneur en 14C est inférieure à 0,2 % de la teneur initiale et devient donc difficilement décelable. Les produits pétroliers, ou le gaz naturel ou encore le charbon ne contiennent donc pas de 14C . Compte tenu de la demi-vie (T1/2) du 4C, la teneur en 4C est sensiblement constante depuis l'extraction des matières premières renouvelables, jusqu'à la fabrication du méthacrylate de méthyle selon l'invention et même jusqu'à la fin de son utilisation. Le méthacrylate de méthyle obtenu selon l'invention contient du carbone organique issu de matières premières renouvelables ; il est de ce fait caractérisé en ce qu'il contient du 14C. En particulier, au moins 1% en masse des carbones dudit méthacrylate de méthyle est d'origine renouvelable. 12C is stable, that is, the number of 12C atoms in a given sample is constant over time. 14C is radioactive (each gram of carbon in a living being contains enough 14C isotopes to give 13.6 disintegrations per minute) and the number of such atoms in a sample decreases over time (t) according to the law: n = no exp (-at), in which: - no is the number of 14C at the origin (at the death of the creature, animal or plant), n is the number of 14C atoms remaining at the end time t, a is the decay constant (or radioactive constant); it is connected to the half-life. The half-life (or period) is the time after which any number of radioactive nuclei or unstable particles of a given species are halved by disintegration; the half-life T1 / 2 is related to the decay constant a by the formula aT1 / 2 = ln 2. The half-life of 14C is 5730 years. In 50 000 years the 14C content is less than 0.2% of the initial content and therefore becomes difficult to detect. Petroleum products, or natural gas or coal therefore do not contain 14C. Given the half-life (T1 / 2) of 4C, the 4C content is substantially constant from the extraction of renewable raw materials, to the manufacture of methyl methacrylate according to the invention and even up to the end of use. The methyl methacrylate obtained according to the invention contains organic carbon derived from renewable raw materials; it is therefore characterized in that it contains 14C. In particular, at least 1% by weight of the carbon atoms of said methyl methacrylate is of renewable origin.

De préférence, au moins 20% des carbones dudit méthacrylate de méthyle sont d'origine renouvelable. De façon encore plus préférée, au moins 40% des carbones dudit méthacrylate de méthyle sont d'origine renouvelable. Plus particulièrement, au moins 60%, et même encore plus précisément au moins 80% des carbones dudit méthacrylate de méthyle, sont d'origine renouvelable. Le méthacrylate de méthyle obtenu selon l'invention contient au moins 0,01x10-10 % en masse, de préférence au moins 0,2x10-10 % de 14C sur la masse totale de carbone. De façon encore plus préférée, ledit méthacrylate de méthyle contient au moins 0,4x10-10 % de 14C, plus particulièrement, au moins 0,7x10-10 % de 14C, et encore plus précisément au moins 0,9x10° % de 14C. Dans un mode de réalisation préféré de l'invention, le méthacrylate de méthyle obtenu selon l'invention contient 100% de carbone organique issu de matières premières renouvelables et par conséquent 1,2x10-10 % en masse de 14C sur la masse totale de carbone. La teneur en 14C du méthacrylate de méthyle peut être mesurée par exemple selon les techniques suivantes : par spectrométrie à scintillation liquide : cette méthode consiste à compter des particules 'Bêta' issues de la désintégration du 14C. On mesure le rayonnement Bêta issu d'un échantillon de masse connue (nombre d'atomes de carbone connu) pendant un certain temps. Cette 'radioactivité' est proportionnelle au nombre d'atomes de 14C, que l'on peut ainsi déterminer. Le 14C présent dans l'échantillon émet des rayonnements 8-, qui, au contact du liquide scintillant (scintillateur), donnent naissance à des photons. Ces photons ont des énergies différentes (comprises entre 0 et 156 Kev) et forment ce que l'on appelle un spectre de 14C. Selon deux variantes de cette méthode, l'analyse porte soit sur le CO2 préalablement produit par combustion de l'échantillon carboné dans une solution absorbante 25 appropriée, soit sur le benzène après conversion préalable de l'échantillon carboné en benzène. par spectrométrie de masse : l'échantillon est réduit en graphite ou en CO2 gazeux, analysé dans un spectromètre de masse. Cette technique utilise un accélérateur et un spectromètre de masse pour séparer les ions 14C des 12C et donc déterminer le rapport des deux isotopes. Ces méthodes de mesure de la teneur en 14C des matériaux sont décrites précisément dans les normes ASTM D 6866 (notamment D6866-06) et dans les normes ASTMD 7026 (notamment 7026-04). Ces méthodes comparent les données mesurées sur l'échantillon analysé avec les données d'un échantillon référence d'origine 100% renouvelable, pour donner un pourcentage relatif de carbone d'origine renouvelable dans l'échantillon. La méthode de mesure préférentiellement utilisée dans le cas du méthacrylate de méthyle est la Spectrométrie de masse décrite dans la norme ASTM D6866-06. Preferably, at least 20% of the carbons of said methyl methacrylate are of renewable origin. Even more preferably, at least 40% of the carbons of said methyl methacrylate are of renewable origin. More particularly, at least 60%, and even more specifically at least 80% of the carbon atoms of said methyl methacrylate, are of renewable origin. The methyl methacrylate obtained according to the invention contains at least 0.01x10-10% by weight, preferably at least 0.2x10-10% of 14C on the total mass of carbon. Even more preferably, said methyl methacrylate contains at least 0.4x10-10% of 14C, more particularly at least 0.7x10-10% of 14C, and even more specifically at least 0.9x10 0% of 14C. In a preferred embodiment of the invention, the methyl methacrylate obtained according to the invention contains 100% organic carbon derived from renewable raw materials and consequently 1.2 × 10 -10% by weight of 14C on the total mass of carbon. . The 14 C content of methyl methacrylate can be measured, for example, according to the following techniques: by liquid scintillation spectrometry: this method consists in counting 'Beta' particles resulting from the decay of 14C. Beta radiation from a sample of known mass (number of known carbon atoms) is measured for a period of time. This 'radioactivity' is proportional to the number of 14C atoms, which can be determined. The 14C present in the sample emits 8- radiation, which, in contact with the scintillating liquid (scintillator), give rise to photons. These photons have different energies (between 0 and 156 Kev) and form what is called a spectrum of 14C. According to two variants of this method, the analysis relates either to the CO2 previously produced by combustion of the carbon sample in an appropriate absorbent solution or to benzene after prior conversion of the carbonaceous sample to benzene. by mass spectrometry: the sample is reduced to graphite or gaseous CO2, analyzed in a mass spectrometer. This technique uses an accelerator and a mass spectrometer to separate 14C ions from 12C and thus to determine the ratio of the two isotopes. These methods of measuring the 14C content of the materials are precisely described in ASTM D 6866 (including D6866-06) and ASTMD 7026 (including 7026-04) standards. These methods compare the measured data on the analyzed sample with the data from a 100% renewable source reference sample to give a relative percentage of renewable carbon in the sample. The measurement method preferably used in the case of methyl methacrylate is the mass spectrometry described in ASTM D6866-06.

Les Exemples suivants illustrent la présente invention sans toutefois en limiter la portée. Dans ces Exemples, les parties et pourcentages sont en poids sauf indication contraire. Exemple 1 : Fabrication de gaz de synthèse CO/H2 et isolement du monoxyde de carbone Dans le procédé de synthèse du formiate de 30 méthyle par carbonylation du méthanol, il n'est pas nécessaire de rechercher de hautes puretés du monoxyde de carbone, et notamment il est possible d'avoir de l'azote résiduel car les pressions auxquelles le procédé est mis en oeuvre sont relativement faibles. Cependant toute impureté inerte comme l'azote ou l'Argon, qui ne peut pas être consommée par la réaction, contribuera progressivement à une dilution du CO. Bien que l'azote et l'argon ne soient pas nuisibles chimiquement dans le procédé, il est donc préférable de limiter autant que possible la teneur en ces impuretés. La pression à laquelle le monoxyde de carbone est utilisé par la suite est aussi relativement peu élevée, néanmoins les traitements de purification conduisant à des pertes de charge, il est préférable d'opérer la gazéification de la biomasse sous pression. Dans le présent exemple, on utilise un mélange éthanol-eau, l'éthanol étant obtenu par fermentation éthanolique de sucre. On opère à une pression de 30 bars et à une température de 900 °C, avec un catalyseur Ni/Alumine. En sortie de réacteur, l'excès d'eau est condensé ainsi que les impuretés lourdes. Le mélange CO/H2 est séparé par cryogénie, en faisant passer le mélange dans un piège à azote liquide pour retenir le CO. Le gaz condensé est ensuite réchauffé pour séparer le CO des autres impuretés (Méthane, CO2r etc .) . The following Examples illustrate the present invention without however limiting its scope. In these Examples, parts and percentages are by weight unless otherwise indicated. EXAMPLE 1 Manufacture of CO / H2 Synthesis Gas and Isolation of Carbon Monoxide In the process for the synthesis of methyl formate by carbonylation of methanol, it is not necessary to look for high purities of carbon monoxide, and in particular it is possible to have residual nitrogen because the pressures at which the process is carried out are relatively low. However any inert impurity such as nitrogen or argon, which can not be consumed by the reaction, will gradually contribute to a dilution of the CO. Although nitrogen and argon are not chemically harmful in the process, it is therefore preferable to limit the content of these impurities as much as possible. The pressure at which carbon monoxide is subsequently used is also relatively low, however the purification treatments leading to pressure losses, it is preferable to operate the gasification of the biomass under pressure. In the present example, an ethanol-water mixture is used, the ethanol being obtained by ethanol fermentation of sugar. The reaction is carried out at a pressure of 30 bar and at a temperature of 900 ° C. with a Ni / Alumina catalyst. On leaving the reactor, the excess water is condensed as well as the heavy impurities. The CO / H2 mixture is cryogenically separated, passing the mixture through a liquid nitrogen trap to retain the CO. The condensed gas is then reheated to separate the CO from other impurities (methane, CO2r etc.).

Exemple 2 : Fabrication de méthanol à partir du gaz de synthèse Pour la synthèse de méthanol, le gaz de synthèse de l'Exemple 1 est utilisé. La composition de ce gaz est ajustée pour avoir un ratio H2/CO/CO2 de 71/23/6 et la teneur en CO2 est de 6 %. La pression totale du gaz est de 70 bars. Example 2 Manufacture of Methanol from the Synthesis Gas For the synthesis of methanol, the synthesis gas of Example 1 is used. The composition of this gas is adjusted to have an H2 / CO / CO2 ratio of 71/23/6 and the CO2 content is 6%. The total pressure of the gas is 70 bars.

On utilise un catalyseur commercial Cu-Zn-Al-O, MegaMax 700. Le réacteur est alimenté par le mélange gazeux à 70 bars avec une VVH de 10000h-1, et passe sur le catalyseur à une température de 240 °C. Le mélange des gaz produits est ensuite détendu à pression atmosphérique et le méthanol produit est isolé par distillation. La sélectivité en méthanol est de 99 % et le rendement en méthanol est de 95 %. A Cu-Zn-Al-O, MegaMax 700 commercial catalyst is used. The reactor is supplied with the gas mixture at 70 bar with a VVH of 10000 h -1, and passes over the catalyst at a temperature of 240 ° C. The mixture of the gases produced is then decompressed at atmospheric pressure and the methanol produced is isolated by distillation. The selectivity to methanol is 99% and the methanol yield is 95%.

Exemple 3 : Fabrication du formiate de méthyle Example 3 Manufacture of Methyl Formate

Le formiate de méthyle est obtenu par réaction de méthanol et de monoxyde de carbone en autoclave de 200 ml, avec le méthylate de sodium comme catalyseur. Methyl formate is obtained by reaction of methanol and carbon monoxide in a 200 ml autoclave, with sodium methoxide as a catalyst.

Dans un autoclave de 200 ml, on place 32 g de méthanol obtenu à l'exemple 2, à une température de 80 °C sous agitation et sous 60 bars de CO, le CO étant obtenu comme dans l'exemple 1, après 3 heures de réaction, en maintenant la pression de CO, on obtient un rendement en formiate de méthyle de 67 %. In a 200 ml autoclave, 32 g of methanol obtained in Example 2 are placed at a temperature of 80 ° C. with stirring and 60 bar of CO, the CO being obtained as in Example 1, after 3 hours. By maintaining the pressure of CO, a yield of methyl formate of 67% is obtained.

Exemple 4 : Fabrication de l'acétone à partir de paille de blé par hydrolyse enzymatique suivie d'une fermentation acéto-butylique On a procédé comme décrit dans la Revue de l'Institut Français du Pétrole, Vol 36, N 3, Mai -Juin 1981, pages 339-347. Dans un déchiqueteur, on a déchiqueté de paille de blé, puis on a broyé la paille déchiquetée dans un broyeur à marteau. On a fait suivre par un traitement à l'acide à une faible concentration à une température de 100°C pendant environ 1 heure. EXAMPLE 4 Manufacture of Acetone from Wheat Straw by Enzymatic Hydrolysis followed by Aceto-Butyl Fermentation It was carried out as described in the Review of the Institut Français du Pétrole, Vol 36, N 3, Mai -Juin 1981, pages 339-347. In a shredder, wheat straw was shredded and the shredded straw was crushed in a hammer mill. It was followed by acid treatment at a low concentration at a temperature of 100 ° C for about 1 hour.

Après neutralisation de l'acide, on a ramené le milieu au pH voisin de 5 qui est requis par l'hydrolyse enzymatique. On a préparé une solution de cellulase en présence d'éléments nutritifs dans des fermenteurs en série, la culture du microorganisme Trichoderma reesi s'effectuant dans les premiers fermenteurs à partir de paille préalablement broyée, et la cellulose étant produite dans les fermenteurs suivants. A partir du contenu du dernier fermenteur, on a séparé la solution enzymatique recherchée par centrifugation et filtration. On a conduit une hydrolyse enzymatique de la paille prétraitée ci-dessus par la solution enzymatique ci-dessus dans des réacteurs montés en série. After neutralization of the acid, the medium was brought back to the pH of about 5 which is required by the enzymatic hydrolysis. A cellulase solution was prepared in the presence of nutrients in serial fermentors, the culture of the microorganism Trichoderma reesi being carried out in the first fermenters from previously milled straw, and the cellulose being produced in the following fermentors. From the contents of the last fermenter, the desired enzymatic solution was separated by centrifugation and filtration. Enzymatic hydrolysis of straw pretreated above by enzymatic solution above was carried out in series-connected reactors.

Après filtration, on a recueilli des solutions de sucres en C6 et C5 . On a séché le filtrat qui contient de la lignine pour servir de combustible. On a conduit une fermentation acéto-butylique des solutions de sucres en C6 et C5 ci-dessus à l'aide du microorganisme Clostridium acetobutylicum dans des conditions aseptiques. La fermentation comprend deux phases successives, la première conduisant à la production des acides acétique et butylique et la deuxième, à la production d'acétone, butanol et éthanol dans les proportions en poids suivantes : butanol 68 % ; acétone 29 % ; et éthanol 3 % On a separé l'acétone par distillation azéotropique. After filtration, solutions of C6 and C5 sugars were collected. The filtrate which contains lignin was dried as a fuel. Acetobutyl fermentation of the above C6 and C5 sugar solutions was conducted using the microorganism Clostridium acetobutylicum under aseptic conditions. The fermentation comprises two successive phases, the first leading to the production of acetic and butyl acids and the second to the production of acetone, butanol and ethanol in the following proportions by weight: butanol 68%; acetone 29%; and ethanol 3%. The acetone was separated by azeotropic distillation.

Exemple 5 : Synthèse d'acétone cyanhydrine Example 5 Synthesis of acetone cyanohydrin

Pour cette synthèse batch, on utilise un réacteur en verre double enveloppe de 1 litre, équipé d'une 30 agitation mécanique et surmonté d'un réfrigérant. La température est contrôlée via une circulation d'eau glycolée froide dans la double enveloppe (cryostat). Dans le réacteur préalablement refroidi (environ 0 °C) , on introduit 69,5 g de HCN pur et 149,4 g d'acétone préalablement obtenu par fermentation selon l'Exemple 4 (mélange équimolaire). Dès que le mélange atteint la température de 0°C, on introduit 34 mg du catalyseur diéthylamine (DEA). La température passe par un maximum de 18°C en 6 minutes environ puis se stabilise rapidement vers 0°C. Des prélèvements manuels sont effectués (environ 1 g) au cours du temps pour suivre la quantité de HCN non réagi. Le dosage de HCN libre est réalisé selon la méthode Charpentier-Volhard basée sur la précipitation des ions cyanures CN- à l'aide d'une solution de nitrate d'argent N/10 en excès et titrage de l'excès de nitrate d'argent par une solution de KSCN N/10 en présence d'un indicateur Fe(SO4)3 en solution. Après 150 minutes de réaction, on a obtenu un mélange comprenant 1,53 % en poids de HCN libre, soit 0,533 mole/l, ce qui équivaut à 10,855 mole/1 de HCN transformé et un taux de conversion en acétone cyanhydrine de 95,32 %. Le produit brut est neutralisé par ajout d'acide sulfurique en excès (neutralisation du catalyseur basique) puis purifié par distillation sous vide. L'acétone et HCN non convertis sont éliminés en tête (vide progressif de 760 à 30mm Hg et température maximum de 100°C environ). For this batch synthesis, a 1-liter jacketed glass reactor equipped with mechanical stirring and surmounted by a refrigerant is used. The temperature is controlled via a circulation of cold brine in the double jacket (cryostat). In the previously cooled reactor (approximately 0 ° C.), 69.5 g of pure HCN and 149.4 g of acetone previously obtained by fermentation according to Example 4 (equimolar mixture) are introduced. As soon as the mixture reaches the temperature of 0 ° C., 34 mg of the diethylamine catalyst (DEA) are introduced. The temperature goes through a maximum of 18 ° C in about 6 minutes and then stabilizes quickly to 0 ° C. Manual samples are taken (about 1 g) over time to track the amount of unreacted HCN. The determination of free HCN is carried out according to the Charpentier-Volhard method based on the precipitation of CN- cyanide ions with the aid of a solution of nitrate of silver N / 10 in excess and titration of the excess nitrate of silver with a solution of KSCN N / 10 in the presence of a Fe (SO4) 3 indicator in solution. After 150 minutes of reaction, a mixture comprising 1.53% by weight of free HCN, ie 0.533 mol / l, which equals 10.855 mol / l of transformed HCN and a degree of conversion to acetone cyanohydrin of 95, is obtained. 32%. The crude product is neutralized by adding excess sulfuric acid (neutralization of the basic catalyst) and then purified by distillation in vacuo. Unconverted acetone and HCN are removed at the top (progressive vacuum of 760 to 30mm Hg and maximum temperature of about 100 ° C).

Exemple 6 : Synthèse d'acétone cyanhydrine On reproduit l'exemple précédent avec 69,5 g de HCN issu de l'ammoxydation du méthane provenant de biogaz et 149,4 g d'acétone préalablement obtenu par fermentation selon l'Exemple 4. La température de réaction visée est de - 15 °C (un pic d'exothermie à - 9 °C est observé pour 9 minutes de réaction). Le suivi de HCN libre est réalisé comme dans l'exemple précédent. Après 340 minutes de réaction, on obtient un mélange comprenant 1,20 % en poids de HCN libre, soit 0,418 mole/l, ce qui équivaut à 10,667 mole/1 de HCN transformé et un taux de conversion en acétone cyanhydrine de 96,23 %. Après distillation du produit réactionnel selon l'exemple précédent, on obtient de l'acétone cyanhydrine purifiée à 99.0 - 99.5 %. EXAMPLE 6 Synthesis of Acetone Cyanohydrin The preceding example is reproduced with 69.5 g of HCN resulting from the ammoxidation of methane from biogas and 149.4 g of acetone previously obtained by fermentation according to Example 4. target reaction temperature is -15 ° C (an exothermic peak at -9 ° C is observed for 9 minutes of reaction). Free HCN monitoring is performed as in the previous example. After 340 minutes of reaction, a mixture comprising 1.20% by weight of free HCN is obtained, ie 0.418 mol / l, which is equivalent to 10.667 mol / l of transformed HCN and a degree of conversion to acetone cyanohydrin of 96.23. %. After distillation of the reaction product according to the preceding example, purified acetone cyanohydrin is obtained at 99.0 - 99.5%.

Exemple 7 : Fabrication de l'cc-hydroxyisobutyramide Example 7 Manufacture of α-hydroxyisobutyramide

50 g de Mn02 de granulométrie de 0.5 à 0.8 mm sont placés dans un réacteur tubulaire en verre de diamètre intérieur de 15 mm, et de longueur de 450 mm. Le réacteur est chauffé à 60 °C. Une solution contenant 30 % pds de cyanhydrine d'acétone, 10 % pds d'acétone, et 60 % pds d'eau déionisée est alimentée au réacteur avec un débit de 30 g/h. La réaction conduit à un rendement en alpha- hydroxyisobutyramide de 86 % 50 g of MnO2 with a particle size of 0.5 to 0.8 mm are placed in a tubular glass reactor with an internal diameter of 15 mm and a length of 450 mm. The reactor is heated to 60 ° C. A solution containing 30% by weight of acetone cyanohydrin, 10% by weight of acetone, and 60% by weight of deionized water is fed to the reactor at a rate of 30 g / h. The reaction leads to a yield of alpha-hydroxyisobutyramide of 86%

Exemple 8 : Fabrication de l'alpha-hydroxyisobutyrate de méthyle Dans un tube en quartz de 15 mm de diamètre intérieur et de 300 mm de long, on place 50 ml de billes de verre de 1 mm de diamètre environ. On alimente le réacteur avec une solution de alpha-hydroxyisobutyramide obtenu selon l'exemple 7, formiate de méthyle préalablement obtenu selon l'exemple 3, et méthanol de l'exemple 2 (ratios molaires 1 :2 :3) avec un débit de 17 g/hr en chauffant à 50 °C. Simultanément une solution de méthylate de sodium à 28 % 5 dans le méthanol est alimentée dans le réacteur avec un débit de 0.5 g/hr. Les produits sont condensés et analysés par chromatographie. Un rendement en alphahydroxyisobutyrate de méthyle de 49 % est ainsi mesuré. Exemple 9 : Fabrication du méthacrylate de méthyle EXAMPLE 8 Manufacture of methyl alpha-hydroxyisobutyrate In a quartz tube 15 mm in diameter and 300 mm long, 50 ml of glass beads about 1 mm in diameter are placed. The reactor is supplied with a solution of alpha-hydroxyisobutyramide obtained according to Example 7, methyl formate previously obtained according to Example 3, and methanol of Example 2 (molar ratios 1: 2: 3) with a flow rate of 17. g / hr by heating at 50 ° C. At the same time a solution of 28% sodium methylate in methanol is fed into the reactor with a flow rate of 0.5 g / hr. The products are condensed and analyzed by chromatography. A yield of methyl alpha-hydroxyisobutyrate of 49% is thus measured. Example 9 Manufacture of Methyl Methacrylate

Dans cet exemple, on utilise comme catalyseur une zéolithe commerciale de Zeolyst, référence C8V100, ayant un 10 paramètre de maille de 2,465 nm. Dans un tube en quartz de 15 mm de diamètre intérieur et de 450 mm de long, on place 10 g du catalyseur mis en forme de granulés de 1 mm de diamètre environ. Le catalyseur est chauffé à 250 °C, puis une solution à 50 % pds d' alpha- 15 hydroxyisobutyrate de méthyle dans le méthanol est envoyée dans le réacteur après avoir été vaporisée, avec un débit de 10 g/h. Les produits sont condensés et analysés par chromatographie, donnant un rendement en méthacrylate de méthyle de 75 %. La présence de méthanol permet de limiter 20 les réactions d'hydrolyse de l'ester. In this example, Zeolyst commercial zeolite C8V100 having a mesh size of 2.655 nm is used as a catalyst. In a quartz tube with a diameter of 15 mm and a length of 450 mm, 10 g of the granular shaped catalyst approximately 1 mm in diameter are placed. The catalyst is heated to 250 ° C and then a 50% by weight solution of methyl alpha-hydroxyisobutyrate in methanol is sent to the reactor after being sprayed at a flow rate of 10 g / hr. The products are condensed and analyzed by chromatography, giving a yield of methyl methacrylate of 75%. The presence of methanol makes it possible to limit the hydrolysis reactions of the ester.

Claims (10)

REVENDICATIONS1 - Procédé de fabrication du méthacrylate de méthyle par réaction de l'alpha-hydroxyisobutyramide avec le formiate de méthyle pour donner de l'alpha- hydroxyisobutyrate de méthyle et du formamide, l'alpha- hydroxyisobutyrate de méthyle étant déshydraté en méthacrylate de méthyle, caractérisé par le fait qu'au moins une fraction du formiate de méthyle mis en jeu dans cette réaction et/ou au moins une fraction de l'alpha-hydroxyisobutyramide mis en jeu dans cette réaction a été obtenue par une réaction ou une succession de réactions à partir de la biomasse. CLAIMS1 - A process for producing methyl methacrylate by reacting alpha-hydroxyisobutyramide with methyl formate to give methyl alpha-hydroxyisobutyrate and formamide, the methyl alpha-hydroxyisobutyrate being dehydrated to methyl methacrylate, characterized in that at least a fraction of the methyl formate involved in this reaction and / or at least a fraction of the alpha-hydroxyisobutyramide involved in this reaction has been obtained by a reaction or a succession of reactions from biomass. 2 - Procédé selon la revendication 1, caractérisé par le fait que l'on a obtenu au moins une fraction du formiate de méthyle par carbonylation du méthanol à l'aide de monoxyde de carbone extrait à partir d'un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène, au moins une fraction du gaz de synthèse ayant été obtenue par gazéification de toutes matières d'origine animale ou végétale ou provenant de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques. 2 - Process according to claim 1, characterized in that at least a fraction of methyl formate is obtained by carbonylation of methanol using carbon monoxide extracted from a synthesis gas composed essentially of carbon monoxide and hydrogen, at least a fraction of the synthesis gas has been obtained by gasification of any material of animal or vegetable origin or from the recovery of waste liquor and bleaching of the manufacture of cellulosic pulps. 3 - Procédé selon l'une revendications 1 et 2, caractérisé par le fait que l'on a obtenu au moins une fraction du formiate de méthyle par carbonylation du méthanol, au moins une fraction du méthanol ayant été obtenue par pyrolyse du bois ou par gazéification de toutes matières d'origine animale ou végétale conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène, ou encore par fermentation à partir de cultures de plantes comme le blé, le maïs, la canne à sucreou la betterave, donnant des produits fermentables et donc de l'alcool, au moins une fraction du gaz de synthèse pour préparer le méthanol pouvant également provenir de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques. 3 - Process according to one of claims 1 and 2, characterized in that at least a fraction of the methyl formate is obtained by carbonylation of methanol, at least a fraction of the methanol having been obtained by pyrolysis of wood or by gasification of all materials of animal or vegetable origin leading to a synthesis gas consisting essentially of carbon monoxide and hydrogen, or by fermentation from crops of plants such as wheat, corn, sugar cane or beet , giving fermentable products and therefore alcohol, at least a fraction of the synthesis gas to prepare the methanol may also come from the recovery of waste liquor and bleaching of the manufacture of cellulosic pastes. 4 - Procédé selon l'une des revendications 1 à 3, caractérisé par le fait que l'on a obtenu au moins une partie de l'alpha-hydroxyisobutyramide par hydratation de l'acétone-cyanhydrine, au moins une partie de l'acétonecyanhydrine pouvant avoir été obtenue par réaction de l'acétone sur l'acide cyanhydrique, au moins une partie de celui-ci pouvant provenir du recyclage du formamide, au moins l'un parmi l'acétone et l'acide cyanhydrique ayant été obtenu par une réaction ou une succession de réactions à partir de la biomasse. 4 - Process according to one of claims 1 to 3, characterized in that at least a portion of the alpha-hydroxyisobutyramide is obtained by hydration of acetone-cyanohydrin, at least a portion of the acetonecyanhydrin which may have been obtained by reaction of acetone with hydrocyanic acid, at least a part of which may be derived from the recycling of formamide, at least one of acetone and hydrocyanic acid having been obtained by reaction or a succession of reactions from the biomass. 5 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acétone par fermentation acéto-butylique de sucres en C6 et C5 , conduisant à un mélange acétone-butanol, le cas échéant avec de l'éthanol, à partir duquel l'acétone a été séparée, par exemple par distillation, notamment distillation azéotropique ou par séparation membranaire ou séparation sur de la silicalite. 5 - Process according to claim 4, characterized in that acetone is obtained by acetobutyl fermentation of C6 and C5 sugars, resulting in an acetone-butanol mixture, where appropriate with ethanol, from which the acetone has been separated, for example by distillation, in particular azeotropic distillation or by membrane separation or separation on silicalite. 6 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acétone par liquéfaction hydrothermale à 573 K de boues d'épuration pour obtenir une eau noire contenant des hydrocarbures, puis craquage catalytique de ladite eau noire dans une atmosphère de vapeur d'eau sur un catalyseur à base de zircone ou de zircone/alumine supportée sur un oxyde de fer, et ensuite séparation de l'acétone, par exemple par distillation, notamment distillation azéotropique ou par séparation membranaire ou séparation sur de la silicalite. 6 - Process according to claim 4, characterized in that the acetone was obtained by hydrothermal liquefaction at 573 K of sewage sludge to obtain a black water containing hydrocarbons, then catalytic cracking of said black water in a water vapor atmosphere on a zirconia or zirconia / alumina catalyst supported on an iron oxide, and then separation of the acetone, for example by distillation, in particular azeotropic distillation or by membrane separation or separation on the silicalite. 7 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acétone par conversion catalytique de résidus d'huile de palme sur un catalyseur de zircone ou de zircone/alumine supportée sur un oxyde de fer, et ensuite séparation de l'acétone par exemple par distillation, notamment distillation azéotropique ou par séparation membranaire ou séparation sur de la silicalite. 7 - Process according to claim 4, characterized in that acetone is obtained by catalytic conversion of palm oil residues on a zirconia or zirconia / alumina catalyst supported on an iron oxide, and then separation of acetone for example by distillation, in particular azeotropic distillation or by membrane separation or separation on silicalite. 8 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acide cyanhydrique par ammoxydation du méthane, le méthane ayant été obtenu par fermentation en l'absence d'oxygène de matières organiques animales et/ou végétales, telles que lisier de porc, ordures ménagères, déchets industriels, conduisant à un biogaz composé essentiellement de méthane et de gaz carbonique, le gaz carbonique ayant été éliminé par lavage du biogaz à l'aide d'une solution aqueuse basique de soude, potasse ou amine, ou encore par de l'eau sous pression, ou par absorption dans un solvant tel que le méthanol. 8 - Process according to claim 4, characterized in that the hydrocyanic acid is obtained by ammoxidation of methane, the methane having been obtained by fermentation in the absence of oxygen of animal and / or vegetable organic matter, such as pig manure, household waste, industrial waste, leading to a biogas composed essentially of methane and carbon dioxide, the carbon dioxide having been removed by washing the biogas with a basic aqueous solution of sodium hydroxide, potassium hydroxide or amine, or by water under pressure, or by absorption in a solvent such as methanol. 9 - Procédé selon la revendication 4, caractérisé par le fait que l'on a obtenu l'acide cyanhydrique par ammoxydation du méthanol, le méthanol ayant été obtenu par pyrolyse du bois ou par gazéification de toutes matières d'origine animale et/ou végétale, conduisant à un gaz de synthèse composé essentiellement de monoxyde de carbone et d'hydrogène, ou par fermentation à partir de cultures de plantes comme le blé, la canne à sucre ou la betterave, donnant des produits fermentables et donc de l'alcool, au moins une fraction du gaz de synthèse pour préparer le méthanol pouvant également provenir de la récupération de liqueur résiduaire et du blanchiment de la fabrication des pâtes cellulosiques. 9 - Process according to claim 4, characterized in that the hydrocyanic acid has been obtained by ammoxidation of methanol, the methanol having been obtained by pyrolysis of wood or by gasification of any material of animal origin and / or vegetable , leading to a synthesis gas composed essentially of carbon monoxide and hydrogen, or by fermentation from crops of plants such as wheat, sugar cane or beet, giving fermentable products and therefore alcohol, at least a fraction of the synthesis gas for preparing the methanol may also come from the recovery of waste liquor and bleaching of the manufacture of cellulosic pastes. 10 - Utilisation du méthacrylate de méthyle fabriqué par le procédé tel que défini à l'une desrevendications 1 à 9, comme monomère de fabrication du poly(méthacrylate de méthyle), comme produit de départ de la synthèse organique de méthacrylates supérieurs, comme produit entrant dans la préparation d'émulsions acryliques et de résines acryliques, comme additif pour le poly(chlorure de vinyle), comme comonomère dans la fabrication de copolymères et comme additif pour lubrifiants.10 10 - Use of methyl methacrylate manufactured by the process as defined in one of Claims 1 to 9, as monomer for the manufacture of poly (methyl methacrylate), as starting material for the organic synthesis of higher methacrylates, as an input product in the preparation of acrylic emulsions and acrylic resins, as an additive for polyvinyl chloride, as a comonomer in the manufacture of copolymers and as a lubricant additive.
FR0858044A 2008-11-27 2008-11-27 PROCESS FOR THE PRODUCTION OF A METHYL METHACRYLATE DERIVED FROM BIOMASS Active FR2938838B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FR0858044A FR2938838B1 (en) 2008-11-27 2008-11-27 PROCESS FOR THE PRODUCTION OF A METHYL METHACRYLATE DERIVED FROM BIOMASS
JP2011538021A JP2012509927A (en) 2008-11-27 2009-11-17 Method for producing biomass-derived methyl methacrylate
EP09768206A EP2362853A1 (en) 2008-11-27 2009-11-17 Method for the production of a biomass-derived methyl methacrylate
PCT/FR2009/052200 WO2010061097A1 (en) 2008-11-27 2009-11-17 Method for the production of a biomass-derived methyl methacrylate
JP2015091156A JP2015134826A (en) 2008-11-27 2015-04-28 Production method of methyl methacrylate derived from biomass
JP2016220230A JP2017066149A (en) 2008-11-27 2016-11-11 Method for production of biomass-derived methyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0858044A FR2938838B1 (en) 2008-11-27 2008-11-27 PROCESS FOR THE PRODUCTION OF A METHYL METHACRYLATE DERIVED FROM BIOMASS

Publications (2)

Publication Number Publication Date
FR2938838A1 true FR2938838A1 (en) 2010-05-28
FR2938838B1 FR2938838B1 (en) 2012-06-08

Family

ID=40565052

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0858044A Active FR2938838B1 (en) 2008-11-27 2008-11-27 PROCESS FOR THE PRODUCTION OF A METHYL METHACRYLATE DERIVED FROM BIOMASS

Country Status (4)

Country Link
EP (1) EP2362853A1 (en)
JP (3) JP2012509927A (en)
FR (1) FR2938838B1 (en)
WO (1) WO2010061097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084149A1 (en) * 2022-10-19 2024-04-25 Arkema France Improved process for producing high-purity butyl acrylate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219476A1 (en) 2012-10-24 2014-04-24 Hilti Aktiengesellschaft Vinyl ester urethane resin-based resin composition and use thereof
EP3489205A1 (en) 2017-11-28 2019-05-29 HILTI Aktiengesellschaft Isosorbide derivatives as reactive additives in reactive resins and chemical dowels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407811A2 (en) * 1989-07-14 1991-01-16 Mitsubishi Gas Chemical Company, Inc. Process for producing methyl methacrylate
US5239109A (en) * 1991-12-16 1993-08-24 Mobil Oil Corporation Formate synthesis
EP0666831A1 (en) * 1992-11-02 1995-08-16 Kvaerner Pulping Ab Process associated with the gasification of cellulose spent liquors
WO2004050587A2 (en) * 2002-12-04 2004-06-17 Basf Aktiengesellschaft Hydrocyanic acid consisting of formamide

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB718112A (en) 1951-11-06 1954-11-10 Distillers Co Yeast Ltd Manufacture of hydrogen cyanide
GB913836A (en) 1960-06-21 1962-12-28 Distillers Co Yeast Ltd Improvements in and relating to the synthesis of hydrogen cyanide
US3911089A (en) 1972-10-06 1975-10-07 Sumitomo Chemical Co Process for preparing hydrogen cyanide
JPS5665690A (en) * 1979-11-05 1981-06-03 Hitachi Ltd Control device of anaerobic digestion vessel
US4511548A (en) 1981-12-18 1985-04-16 The Standard Oil Company Ammoxidation of methanol to produce hydrogen cyanide
EP0130210A1 (en) * 1983-01-03 1985-01-09 Biosystem E Ab Apparatus for the production of methane
US4613684A (en) * 1983-10-06 1986-09-23 Mitsubishi Gas Chemical Company, Inc. Process for the preparation of carboxylic acid esters
JPS62278989A (en) * 1986-05-27 1987-12-03 Mitsubishi Heavy Ind Ltd Production of acetone and butanol
JPH0764555B2 (en) 1988-04-05 1995-07-12 日東化学工業株式会社 Prussic acid manufacturing method
JP2629266B2 (en) * 1988-05-16 1997-07-09 三菱瓦斯化学株式会社 Method for producing methyl methacrylate
JP2950851B2 (en) 1989-06-23 1999-09-20 三菱レイヨン株式会社 Iron / antimony / phosphorus-containing metal oxide catalyst composition and method for producing the same
JP3371112B2 (en) 1990-09-18 2003-01-27 ダイヤニトリックス株式会社 Iron / antimony-containing metal oxide catalyst composition and method for producing the same
JPH0741767A (en) * 1993-07-26 1995-02-10 Osaka Gas Co Ltd Thermal decomposition of biomass
JP3437864B2 (en) * 1994-01-21 2003-08-18 三菱レイヨン株式会社 Method for producing hydrocyanic acid
EP0832877B1 (en) 1996-09-25 2001-11-21 Mitsubishi Rayon Co., Ltd. Ammoxidation method in fluidized-bed reactor
JPH11255710A (en) * 1998-03-11 1999-09-21 Mitsubishi Gas Chem Co Inc Production of methyl methacrylate
JPH11319782A (en) * 1998-05-22 1999-11-24 Kubota Corp Methane fermentation process
JP3872270B2 (en) 2000-09-21 2007-01-24 三菱レイヨン株式会社 Production method of hydrogen cyanide
JP3872268B2 (en) 2000-09-21 2007-01-24 三菱レイヨン株式会社 Production process of hydrogen cyanide
JP3872269B2 (en) 2000-09-21 2007-01-24 三菱レイヨン株式会社 Method for producing hydrogen cyanide
SE0004185D0 (en) 2000-11-15 2000-11-15 Nykomb Synergetics B V New process
JP2002193858A (en) * 2000-12-28 2002-07-10 Mitsubishi Heavy Ind Ltd Method and plant for producing methanol using biomass feedstock
SE526429C2 (en) * 2003-10-24 2005-09-13 Swedish Biofuels Ab Intensifying fermentation of carbohydrate substrate for, e.g. producing one to five carbon alcohols, involves using amino acid leucine, isoleucine, and/or valine as source of nitrogen
EP1732874A1 (en) * 2004-04-02 2006-12-20 Ciba Speciality Chemicals Water Treatments Limited Preparation of acrylic acid derivatives from alpha or beta-hydroxy carboxylic acids
JP4748409B2 (en) * 2004-10-15 2011-08-17 独立行政法人産業技術総合研究所 Industrial raw material production method from wood
US7998339B2 (en) * 2005-12-12 2011-08-16 Neste Oil Oyj Process for producing a hydrocarbon component
BRPI0605173A (en) * 2006-12-05 2008-07-22 Braskem Sa process of producing one or more olefins, olefin, and polymer
FR2912742B1 (en) * 2007-02-16 2010-03-05 Arkema France PROCESS FOR THE SYNTHESIS OF ACRYLONITRILE FROM GLYCEROL
FR2934264B1 (en) * 2008-07-22 2012-07-20 Arkema France MANUFACTURE OF VINYL ESTERS FROM RENEWABLE MATERIALS, VINYL ESTERS OBTAINED AND USES THEREOF

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407811A2 (en) * 1989-07-14 1991-01-16 Mitsubishi Gas Chemical Company, Inc. Process for producing methyl methacrylate
US5239109A (en) * 1991-12-16 1993-08-24 Mobil Oil Corporation Formate synthesis
EP0666831A1 (en) * 1992-11-02 1995-08-16 Kvaerner Pulping Ab Process associated with the gasification of cellulose spent liquors
WO2004050587A2 (en) * 2002-12-04 2004-06-17 Basf Aktiengesellschaft Hydrocyanic acid consisting of formamide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUMOTO E ET AL: "Production of ketones from sewage sludge over zirconia-supporting iron oxide catalysts in a steam atmosphere", APPLIED CATALYSIS B: ENVIRONMENTAL, ELSEVIER, vol. 68, no. 3-4, 7 November 2006 (2006-11-07), pages 154 - 159, XP025141787, ISSN: 0926-3373, [retrieved on 20061107] *
SONI B K ET AL: "Bioconversion of agro-wastes into acetone butanol", BIOTECHNOLOGY LETTERS, KEW, SURREY, GB, vol. 4, no. 1, 1 January 1982 (1982-01-01), pages 19 - 22, XP002511277, ISSN: 0141-5492 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084149A1 (en) * 2022-10-19 2024-04-25 Arkema France Improved process for producing high-purity butyl acrylate
FR3141174A1 (en) * 2022-10-19 2024-04-26 Arkema France IMPROVED PROCESS FOR MANUFACTURING HIGH PURITY BUTYL ACRYLATE

Also Published As

Publication number Publication date
WO2010061097A1 (en) 2010-06-03
JP2015134826A (en) 2015-07-27
EP2362853A1 (en) 2011-09-07
FR2938838B1 (en) 2012-06-08
JP2012509927A (en) 2012-04-26
JP2017066149A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
FR2940801A1 (en) PROCESS FOR THE PRODUCTION OF A METHYL METHACRYLATE DERIVED FROM BIOMASS
WO2010058119A1 (en) Method for manufacturing a biomass-derived methyl methlyacrylate
FR2931822A1 (en) BIOMASS - DERIVED METHYL METHACRYLATE, PROCESS FOR PRODUCING THE SAME, USES AND CORRESPONDING POLYMERS.
JP5551605B2 (en) Integrated process for the production of ethylene-butylene copolymers, ethylene-butylene copolymers and the use of 1-butylene as ethylene and comonomers supplied from renewable natural sources
TWI537389B (en) A fermentation process for controlling butanediol production
EP2361239B1 (en) Method for manufacturing methylmercaptopropionaldehyde and methionine using renewable raw materials
EA019575B1 (en) Process for the production of bio-oil from biomass
EP2271764B1 (en) Method for the enzymatic production of fatty alcohol and/or fatty acid
TW200946679A (en) Process for the production of ethanol
Akpan et al. The production of ethanol from maize cobs and groundnut shells
JP2017066149A (en) Method for production of biomass-derived methyl methacrylate
SG190122A1 (en) Mixed super critical fluid hydrolysis and alcoholysis of cellulose to form glucose and glucose derivatives
FR3004727A1 (en) PROCESS FOR PRODUCING HYDROCARBONS
JP2023126755A (en) Gas fermentation for the production of protein-based bioplastics
FR2931477A1 (en) CYANHYDRIC ACID DERIVED FROM RENEWABLE RAW MATERIAL
RU2405829C2 (en) Method of preparing organic solvents
Wu et al. Novel anaerobic fermentation paradigm of producing medium-chain fatty acids from food wastes with self-produced ethanol as electron donor
Narayanaswami et al. Biomethanation of Leucaena leucocephala: a potential biomass substrate
FR3075796A1 (en) PROCESS FOR THE PRODUCTION OF OXYGEN COMPOUNDS AND / OR ALKENES, HYDROGEN AND METHANE FROM LIGNOCELLULOSIC BIOMASS
Kyzy et al. Biotechnological valorization of sugar beet wastes into value-added products
Intanoo et al. Ethanol Production from Sago Palm Residue Pretreated with Two-Stage Chemical Process by Using Seed Sludge
Arroussi et al. VALORIZATION OF DATE WASTE (HMIRA CULTIVAR) FOR THE PRODUCTION OF BIOALCOHOL AND BIOGAS
Velichkova et al. Complex transformation of acid hydrolysates of primary and secondary biomass to bioenergy
FR2976293A1 (en) PROCESS FOR THE SYNTHESIS OF BI-FUNCTIONAL HYDROCARBON COMPOUNDS FROM BIOMASS
FR3111914A1 (en) IBE FERMENTATION PROCESS OPTIMIZED TO RECOVER ACETONE

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

TP Transmission of property

Owner name: TRINSEO EUROPE GMBH, CH

Effective date: 20210921

PLFP Fee payment

Year of fee payment: 14

PLFP Fee payment

Year of fee payment: 15