FR2938298A1 - ENGINE COOLING CIRCUIT - Google Patents

ENGINE COOLING CIRCUIT Download PDF

Info

Publication number
FR2938298A1
FR2938298A1 FR0857676A FR0857676A FR2938298A1 FR 2938298 A1 FR2938298 A1 FR 2938298A1 FR 0857676 A FR0857676 A FR 0857676A FR 0857676 A FR0857676 A FR 0857676A FR 2938298 A1 FR2938298 A1 FR 2938298A1
Authority
FR
France
Prior art keywords
radiator
coolant
cooling circuit
thermostatic valve
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0857676A
Other languages
French (fr)
Other versions
FR2938298B1 (en
Inventor
Pierre Dumoulin
Lievre Armel Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Priority to FR0857676A priority Critical patent/FR2938298B1/en
Priority to EP09173401A priority patent/EP2187015B1/en
Priority to AT09173401T priority patent/ATE536471T1/en
Publication of FR2938298A1 publication Critical patent/FR2938298A1/en
Application granted granted Critical
Publication of FR2938298B1 publication Critical patent/FR2938298B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/028Deaeration devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0285Venting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Abstract

The circuit (1) has cooling radiator (7) comprising a discharging outlet to discharge a cooling liquid. A cooling liquid inlet of a degassing case (18) is connected to the outlet of the radiator. A thermostatic valve (4) selectively blocks the flow of the liquid between the outlet of the radiator and the inlet of the case. The valve is opened when the temperature of the liquid exceeds a threshold value. A thermal expansion of cartridge of the valve releases the flow of the liquid between the outlet of the radiator and the inlet of the case when the temperature of the liquid exceeds the value.

Description

CIRCUIT DE REFROIDISSEMENT MOTEUR ENGINE COOLING CIRCUIT

[0001 L'invention concerne les circuits de refroidissement de moteurs de véhicules automobiles, et en particulier le dégazage du liquide de refroidissement réchauffé en 5 provenance du moteur. [0002] Un circuit de refroidissement de moteur de véhicule automobile connu comprend un boîtier de sortie d'eau muni d'une sonde de température et d'un thermostat. Le boîtier de sortie d'eau comprend une canalisation principale de sortie pour transporter le liquide de refroidissement vers un radiateur dont la fonction est de 10 refroidir ce liquide. Le liquide de refroidissement ainsi refroidi est ensuite acheminé au moyen d'une canalisation vers l'entrée d'un boîtier de dégazage. Le boîtier de dégazage permet de retirer des bulles de gaz présentes dans le liquide de refroidissement. Des bulles de gaz apparaissent dans le liquide de refroidissement notamment lors d'un défaut de remplissage ou lors d'un dysfonctionnement du 15 moteur. Le liquide de refroidissement dégazé est ensuite acheminé au moyen d'une canalisation vers l'entrée d'une pompe à eau située en amont du moteur. La pompe contribue à faire circuler le liquide de refroidissement refroidi dans le moteur et le liquide de refroidissement ainsi réchauffé est ensuite récupéré dans le boîtier de sortie d'eau. Le boîtier de sortie d'eau comporte une première canalisation secondaire de 20 sortie de liquide de refroidissement destinée à alimenter un aérotherme en eau et dont la fonction est de créer du chauffage dans l'habitacle du véhicule automobile. Le liquide de refroidissement récupéré à la sortie de l'aérotherme est ramené dans le boîtier de sortie d'eau. Le boîtier de sortie d'eau possède une deuxième canalisation secondaire de sortie le reliant à l'entrée de la pompe, et constituant une portion de 25 dérivation court-circuitant le radiateur. Cette portion de dérivation permet d'envoyer directement du liquide de refroidissement réchauffé en provenance du moteur vers la partie amont du circuit de refroidissement positionnée avant ledit moteur, en traversant le boîtier de sortie d'eau. Une entrée du boîtier de sortie d'eau est raccordée au radiateur. Cette entrée est obturée par une vanne thermostatique 30 s'ouvrant seulement lorsque la température du liquide de refroidissement est élevée. La connexion entre le radiateur et le boîtier de sortie d'eau de dégazage permet de maintenir un faible écoulement à travers le radiateur même lorsque la vanne thermostatique placée à l'entrée du boîtier de sortie d'eau est fermée. [0003] Un tel circuit de refroidissement présente des inconvénients. Lorsque le moteur est froid et que la température extérieure est basse, le chauffage du liquide de refroidissement est relativement lent. Par conséquent, l'aérotherme ne pourra pas réchauffer suffisamment l'habitacle du véhicule. De plus, le moteur met plus de temps à atteindre sa température optimale de fonctionnement. [0004] Afin d'accélérer le réchauffage initial du liquide de refroidissement et d'améliorer l'efficacité de l'aérotherme, il est connu de dégrader le rendement de la combustion pour certains points de fonctionnement du moteur. [0005] Cette technique s'accompagne cependant d'une surconsommation pouvant atteindre 20 % sur ces points de fonctionnement. Une telle surconsommation est coûteuse pour l'utilisateur et nuisible à l'environnement. Il existe un besoin pour une solution simple et économique permettant d'éviter une telle surconsommation. [0006 L'invention vise à résoudre ces inconvénients. L'invention porte ainsi sur un circuit de refroidissement d'un moteur à combustion interne, notamment un moteur de véhicule automobile, comprenant un radiateur de refroidissement présentant une sortie d'évacuation de liquide de refroidissement ; un boîtier de dégazage présentant une entrée de liquide de refroidissement raccordée à la sortie d'évacuation du radiateur ; une vanne thermostatique obturant sélectivement l'écoulement entre la sortie d'évacuation du radiateur et l'entrée du boîtier de dégazage, la vanne thermostatique s'ouvrant lorsque la température du liquide de refroidissement dépasse un premier seuil. [0007] Selon une variante, la vanne thermostatique comprend un organe dont la dilatation thermique déplace un joint d'étanchéité et libère l'écoulement entre la sortie d'évacuation du radiateur et l'entrée du boîtier de dégazage lorsque ladite température du liquide de refroidissement dépasse le premier seuil. [0008] Selon encore une variante, ledit organe est réalisé en cire. [0009] Selon une autre variante, ledit premier seuil est compris entre 45 et 65°Celsius, et de préférence comprise entre 50 et 60° Celsius. [0010 Selon encore une autre variante, ladite vanne thermostatique est disposée au 30 niveau de la sortie d'évacuation du radiateur. [0011] Selon une autre variante, aucun échangeur de chaleur n'est connecté entre la vanne thermostatique et le radiateur. [0012] Selon encore une variante, ladite sortie du radiateur est ménagée dans la partie supérieure de ce radiateur. [0013] Selon encore une autre variante, le circuit comprend en outre un boîtier de sortie de liquide de refroidissement apte à recevoir du liquide de refroidissement en provenance du moteur ; une conduite raccordant le boîtier de sortie au radiateur ; une autre vanne thermostatique obturant la conduite et s'ouvrant lorsque la température du liquide de refroidissement qui lui est appliqué dépasse un deuxième seuil. [0014] Selon une variante, ladite conduite raccorde une autre sortie du radiateur au boîtier de sortie. [0015] Selon encore une variante, ledit deuxième seuil est supérieur au premier seuil. [0016] Selon une autre variante, le circuit comprend un aérotherme muni d'une entrée connectée au boîtier de sortie. [0017] D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en 20 référence aux dessins annexés, dans lesquels : • la figure 1 est une représentation schématique d'un circuit de refroidissement selon l'invention ; • la figure 2 est une vue en coupe d'un exemple de vanne thermostatique dans deux positions de fonctionnement ; 25 • la figure 3 représente schématiquement les connexions hydrauliques du circuit de refroidissement lorsque le moteur est froid ; • la figure 4 représente schématiquement les connexions hydrauliques du circuit de refroidissement au début de l'écoulement dans le radiateur ; • la figure 5 représente schématiquement les connexions hydrauliques du circuit de 30 refroidissement lorsque le moteur est chaud. [ools] L'invention propose un circuit de refroidissement de moteurs à combustion interne de véhicules automobiles. Ce circuit comprend un radiateur de refroidissement. Une entrée d'un boîtier de dégazage est raccordée à une sortie d'évacuation du radiateur. Une vanne thermostatique obture sélectivement l'écoulement entre la sortie du radiateur et l'entrée du boîtier de dégazage. La vanne thermostatique s'ouvre lorsque la température du liquide de refroidissement lui étant appliquée dépasse un seuil. [0019] En interdisant au liquide de refroidissement de s'écouler vers le boîtier de dégazage, l'invention permet de limiter les déperditions de chaleur après un démarrage moteur froid. La montée en température du moteur est donc plus rapide. Il n'est alors pas nécessaire de dégrader certains points de fonctionnement du moteur pour accélérer la montée en température, ce qui induit une réduction de la consommation de carburant. De plus, ce résultat est obtenu avec une solution simple ayant un surcoût particulièrement réduit. [0020] La figure 1 illustre un mode de réalisation d'un circuit de refroidissement 1 selon l'invention. Les flèches illustrent le sens d'écoulement du liquide de refroidissement dans ce circuit 1. Un moteur à combustion interne 2 présente des tubulures destinées à être parcourues par du liquide de refroidissement. Ces tubulures parcourent notamment la culasse et le bloc du moteur 2. Un boîtier de sortie de liquide de refroidissement 3 est destiné à collecter le liquide de refroidissement ayant traversé les tubulures du moteur 2. Une sortie du boîtier de sortie 3 est raccordée à une entrée d'un radiateur principal 7 par l'intermédiaire d'une conduite 6. Le radiateur principal 7 est destiné à évacuer les calories du liquide de refroidissement le traversant, par échange thermique avec de l'air frais prélevé à l'extérieur du véhicule. Une première sortie du radiateur 7 est raccordée à une entrée du boîtier de sortie 3, par l'intermédiaire d'une conduite 9. Une vanne thermostatique 5 est disposée sur cette entrée du boîtier de sortie 3, et obture sélectivement l'écoulement de liquide de refroidissement dans la conduite 9. De façon connue en soi, la vanne thermostatique 5 s'ouvre à une température d'environ 90° Celsius pour permettre l'écoulement du liquide de refroidissement à l'intérieur du radiateur 7. [0021] Une conduite de dérivation 20 raccorde une sortie du boîtier de sortie 3 à une entrée d'une pompe de refoulement 8. La pompe 8 refoule du liquide de refroidissement dans les tubulures du moteur 2 et entraine donc le liquide de refroidissement dans le circuit 1. [0022] Le radiateur 7 présente une deuxième sortie. Cette deuxième sortie est avantageusement ménagée dans la partie supérieure du radiateur 7. Cette deuxième sortie permet d'évacuer du liquide de refroidissement vers un boîtier de dégazage 18. La deuxième sortie est connectée à l'entrée du boîtier de dégazage 18 par l'intermédiaire d'une conduite 17. Une vanne thermostatique 4 obture sélectivement l'écoulement dans la conduite 17. Lorsque la température du liquide de refroidissement qui est appliqué sur cette vanne 4 dépasse un premier seuil, la vanne 4 s'ouvre pour permettre l'écoulement entre le radiateur 7 et le boîtier de dégazage 18. Une sortie du boîtier de dégazage 18 est raccordée à une entrée de la pompe 8 par l'intermédiaire d'une conduite 19. [0023] Tant que la température du liquide de refroidissement appliqué sur la vanne thermostatique 4 est inférieure au premier seuil, l'écoulement à travers le boîtier de dégazage 18 est bloqué. Ainsi, la vanne thermostatique 4 sera maintenue fermée lorsque le moteur 2 sera froid. Le volume du liquide de refroidissement que le moteur 2 devra réchauffer sera ainsi réduit. La vitesse de réchauffage du liquide de refroidissement sera ainsi accrue. [0024] La vanne thermostatique 4 pourra comprendre de façon connue en soi un organe dont la dilatation thermique déplace un joint d'étanchéité et libère l'écoulement entre la sortie du radiateur 7 et l'entrée du boîtier de dégazage 18 au-delà dudit premier seuil de température. Cet organe pourra par exemple être réalisé en cire. [0025] La figure 2 est une vue en coupe d'un exemple de vanne thermostatique 4. Cette vanne thermostatique 4 présente un piston 41 actionné par la dilatation d'une cartouche de cire 43. La cartouche de cire 43 est disposée à l'intérieur de la conduite 17, orientée vers sa partie amont. Lorsque la cartouche de cire 43 est plongée dans le liquide de refroidissement, elle déplace le piston 41 lorsque la température de ce liquide franchit le premier seuil. Lorsque le piston 41 est déplacé (sur la partie droite de la figure 2), il écarte une membrane 42 d'un siège 45. Le liquide de refroidissement peut alors s'écouler comme illustré par la flèche en traits discontinus. Un ressort 44 rappelle la membrane 42 vers sa position de contact (sur la partie gauche de la figure 2) avec le siège 45 lorsque la température du liquide de refroidissement est inférieure audit seuil. Avantageusement, la cartouche de cire 43 fait saillie à l'intérieur même du radiateur, afin de détecter le plus tôt possible une augmentation de température. La vanne thermostatique 4 sera de préférence fixée directement sur le radiateur 7. [0026] Le seuil d'ouverture de la vanne thermostatique 4 est avantageusement compris entre 45 et 65° Celsius, et de préférence compris entre 50 et 60° Celsius. Pour un tel niveau de température, le liquide de refroidissement aura été suffisamment réchauffé et l'ouverture de la vanne thermostatique 4 garantira alors une sécurité contre la présence de gaz dans le liquide de refroidissement. [0027] Dans l'exemple, la vanne thermostatique 4 est placée au niveau de la sortie d'évacuation du radiateur 7. Ainsi, la température du liquide de refroidissement appliqué sur la vanne thermostatique 4 sera plus rapidement représentative de la température de ce liquide à la sortie du boîtier de sortie 3. Afin de garantir une température suffisante du liquide de refroidissement pour obtenir l'ouverture de la vanne thermostatique 4, avantageusement, le circuit de refroidissement 1 ne présente pas d'échangeur de chaleur connecté entre la vanne thermostatique 4 et le radiateur 7. [0028] La température d'ouverture de la vanne thermostatique 5 est de préférence supérieure à la température d'ouverture de la vanne thermostatique 4. Ainsi, dès lors que la vanne thermostatique 5 sera ouverte, la vanne thermostatique 4 s'ouvrira rapidement lors de l'élévation de température du liquide de refroidissement dans le radiateur 7. [0029] Le circuit de refroidissement 1 comprend un aérotherme 11. Cet aérotherme 11 est raccordé au boîtier de sortie 3 par l'intermédiaire de conduites 10 et 16. Cet aérotherme 11 comprend un échangeur destiné à alimenter l'habitacle du véhicule en air réchauffé par le liquide de refroidissement. Du fait de la fermeture de la vanne thermostatique 4 lorsque le moteur 2 est froid, la température du liquide de refroidissement traversant l'aérotherme augmente plus rapidement. Ainsi, le réchauffage de l'habitacle interviendra plus rapidement, sans nécessiter une surconsommation de carburant. [0030] Les figures 3 à 5 représentent schématiquement les connexions hydrauliques dans le circuit de refroidissement 1 dans différents cas de fonctionnement. À la figure 3, le moteur 2 est froid. Le liquide de refroidissement a une température inférieure à la température d'ouverture de la vanne 5. La vanne 5 reste donc fermée et aucun écoulement n'a lieu dans le radiateur. Le liquide de refroidissement a également une température inférieure à la température d'ouverture de la vanne 4. La vanne 4 reste donc fermée. [0031] À la figure 4, la température du liquide de refroidissement dans le boîtier de sortie 3 dépasse le seuil d'ouverture de la vanne 5. La vanne 5 s'ouvre donc et libère l'écoulement de liquide de refroidissement dans le radiateur 7. Au début de cet écoulement, le liquide de refroidissement appliqué sur la vanne thermostatique 4 a une température inférieure au seuil d'ouverture. La vanne thermostatique 4 reste donc initialement fermée. [0032] À la figure 5, la température du liquide de refroidissement dans le radiateur 7 augmente, du fait de la circulation de liquide de refroidissement. Le liquide de refroidissement appliqué sur la vanne thermostatique 4 a alors une température supérieure au seuil d'ouverture. La vanne thermostatique 4 s'ouvre donc et permet l'écoulement de liquide de refroidissement du radiateur 7 vers le boîtier de dégazage 18. The invention relates to motor vehicle engine cooling circuits, and in particular the degassing of the heated coolant coming from the engine. A known motor vehicle engine cooling system comprises a water outlet housing provided with a temperature sensor and a thermostat. The water outlet housing includes an outlet main line for transporting the coolant to a radiator whose function is to cool the liquid. The coolant thus cooled is then conveyed by means of a pipe to the inlet of a degassing box. The degassing box makes it possible to remove gas bubbles present in the coolant. Gas bubbles appear in the coolant in particular during a filling fault or during a malfunction of the engine. The degassed coolant is then piped to the inlet of a water pump located upstream of the engine. The pump helps to circulate the cooled coolant in the engine and the thus-heated coolant is then recovered in the water outlet housing. The water outlet housing comprises a first coolant outlet secondary duct for supplying a water heater with the function of which is to create heating in the passenger compartment of the motor vehicle. The coolant recovered at the outlet of the heater is returned to the water outlet housing. The water outlet housing has a second outlet line connecting it to the pump inlet, and constituting a bypass portion bypassing the radiator. This bypass portion makes it possible to directly send heated coolant from the engine to the upstream portion of the cooling circuit positioned before said engine, passing through the water outlet housing. An inlet of the water outlet housing is connected to the radiator. This inlet is closed by a thermostatic valve 30 opening only when the temperature of the coolant is high. The connection between the radiator and the degassing water outlet box allows a small flow to be maintained through the radiator even when the thermostatic valve at the inlet of the water outlet housing is closed. Such a cooling circuit has drawbacks. When the engine is cold and the outside temperature is low, coolant heating is relatively slow. As a result, the heater will not be able to warm the vehicle interior sufficiently. In addition, the engine takes longer to reach its optimum operating temperature. In order to accelerate the initial heating of the coolant and to improve the efficiency of the heater, it is known to degrade the combustion efficiency for certain operating points of the engine. This technique, however, is accompanied by an overconsumption of up to 20% on these operating points. Such overconsumption is expensive for the user and harmful to the environment. There is a need for a simple and economical solution to avoid such overconsumption. The invention aims to solve these disadvantages. The invention thus relates to a cooling circuit of an internal combustion engine, in particular a motor vehicle engine, comprising a cooling radiator having a coolant discharge outlet; a degassing housing having a coolant inlet connected to the exhaust outlet of the radiator; a thermostatic valve selectively sealing the flow between the radiator discharge outlet and the degassing box inlet, the thermostatic valve opening when the coolant temperature exceeds a first threshold. According to a variant, the thermostatic valve comprises a member whose thermal expansion displaces a seal and releases the flow between the discharge outlet of the radiator and the inlet of the degassing box when said temperature of the liquid of cooling exceeds the first threshold. According to another variant, said member is made of wax. According to another variant, said first threshold is between 45 and 65 ° Celsius, and preferably between 50 and 60 ° Celsius. According to yet another variant, said thermostatic valve is disposed at the outlet of the radiator outlet. According to another variant, no heat exchanger is connected between the thermostatic valve and the radiator. According to another variant, said radiator outlet is formed in the upper part of this radiator. According to yet another variant, the circuit further comprises a coolant outlet housing adapted to receive coolant from the engine; a pipe connecting the outlet box to the radiator; another thermostatic valve closing the pipe and opening when the temperature of the coolant applied to it exceeds a second threshold. Alternatively, said conduit connects another output of the radiator to the output housing. According to another variant, said second threshold is greater than the first threshold. According to another variant, the circuit comprises a heater with an input connected to the output housing. [0017] Other characteristics and advantages of the invention will become clear from the description which is given below, by way of indication and in no way limitative, with reference to the appended drawings, in which: FIG. 1 is a representation schematic of a cooling circuit according to the invention; FIG. 2 is a sectional view of an example of a thermostatic valve in two operating positions; Figure 3 schematically shows the hydraulic connections of the cooling circuit when the engine is cold; • Figure 4 schematically shows the hydraulic connections of the cooling circuit at the beginning of the flow in the radiator; • Figure 5 schematically shows the hydraulic connections of the cooling circuit when the engine is warm. [Ools] The invention provides a cooling circuit of internal combustion engines of motor vehicles. This circuit includes a cooling radiator. An inlet of a degassing box is connected to a discharge outlet of the radiator. A thermostatic valve selectively closes the flow between the radiator outlet and the inlet of the degassing housing. The thermostatic valve opens when the temperature of the coolant applied to it exceeds a threshold. By preventing the coolant from flowing to the degassing box, the invention limits heat losses after a cold engine start. The temperature rise of the engine is therefore faster. It is not necessary to degrade certain points of operation of the engine to accelerate the rise in temperature, which leads to a reduction in fuel consumption. In addition, this result is obtained with a simple solution having a particularly low additional cost. Figure 1 illustrates an embodiment of a cooling circuit 1 according to the invention. The arrows illustrate the flow direction of the coolant in this circuit 1. An internal combustion engine 2 has nozzles intended to be traversed by coolant. These pipes run in particular through the cylinder head and the engine block 2. A coolant outlet box 3 is intended to collect the coolant having passed through the tubes of the engine 2. An output of the output box 3 is connected to an inlet a main radiator 7 through a pipe 6. The main radiator 7 is intended to evacuate the heat of the coolant therethrough, by heat exchange with fresh air taken from the outside of the vehicle. A first output of the radiator 7 is connected to an input of the output box 3, via a line 9. A thermostatic valve 5 is disposed on this input of the output box 3, and selectively closes the flow of liquid In a manner known per se, the thermostatic valve 5 opens at a temperature of about 90 ° Celsius to allow the flow of the cooling liquid inside the radiator 7. Bypass line 20 connects an outlet of the outlet housing 3 to an inlet of a delivery pump 8. The pump 8 delivers cooling liquid into the tubes of the engine 2 and thus causes the coolant in the circuit 1. [ 0022] The radiator 7 has a second output. This second outlet is advantageously formed in the upper part of the radiator 7. This second outlet makes it possible to discharge cooling liquid to a degassing box 18. The second outlet is connected to the inlet of the degassing box 18 via of a pipe 17. A thermostatic valve 4 selectively closes the flow in the pipe 17. When the temperature of the coolant that is applied to this valve 4 exceeds a first threshold, the valve 4 opens to allow the flow between the radiator 7 and the degassing housing 18. An outlet of the degassing housing 18 is connected to an inlet of the pump 8 via a line 19. [0023] As long as the temperature of the coolant applied to the thermostatic valve 4 is lower than the first threshold, the flow through the degassing housing 18 is blocked. Thus, the thermostatic valve 4 will be kept closed when the engine 2 will be cold. The volume of the coolant that the engine 2 will heat up will be reduced. The cooling rate of the coolant will be increased. The thermostatic valve 4 may comprise in known manner a member whose thermal expansion moves a seal and releases the flow between the outlet of the radiator 7 and the inlet of the degassing box 18 beyond said first temperature threshold. This organ may for example be made of wax. Figure 2 is a sectional view of an example of a thermostatic valve 4. This thermostatic valve 4 has a piston 41 actuated by the expansion of a wax cartridge 43. The wax cartridge 43 is disposed at the inside the pipe 17, oriented towards its upstream part. When the wax cartridge 43 is immersed in the coolant, it moves the piston 41 when the temperature of this liquid crosses the first threshold. When the piston 41 is moved (on the right side of Figure 2), it moves a membrane 42 of a seat 45. The coolant can then flow as illustrated by the arrow in broken lines. A spring 44 recalls the membrane 42 to its contact position (on the left side of Figure 2) with the seat 45 when the temperature of the coolant is below said threshold. Advantageously, the wax cartridge 43 protrudes inside the radiator, in order to detect as soon as possible an increase in temperature. The thermostatic valve 4 will preferably be fixed directly on the radiator 7. The opening threshold of the thermostatic valve 4 is advantageously between 45 and 65 ° Celsius, and preferably between 50 and 60 ° Celsius. For such a temperature level, the coolant has been heated sufficiently and the opening of the thermostatic valve 4 will then ensure a safety against the presence of gas in the coolant. In the example, the thermostatic valve 4 is placed at the exhaust outlet of the radiator 7. Thus, the temperature of the coolant applied to the thermostatic valve 4 will be more rapidly representative of the temperature of this liquid. at the outlet of the outlet box 3. In order to guarantee a sufficient temperature of the coolant to obtain the opening of the thermostatic valve 4, advantageously, the cooling circuit 1 does not have a heat exchanger connected between the thermostatic valve 4 and the radiator 7. The opening temperature of the thermostatic valve 5 is preferably greater than the opening temperature of the thermostatic valve 4. Thus, when the thermostatic valve 5 is opened, the thermostatic valve 4 will open quickly when the coolant temperature is raised in the radiator 7. [0029] The cooling circuit 1 comprises a heater 11. This heater 11 is connected to the outlet housing 3 via ducts 10 and 16. This heater 11 comprises an exchanger for supplying the cabin of the vehicle with air heated by the cooling liquid. Due to the closing of the thermostatic valve 4 when the engine 2 is cold, the temperature of the coolant passing through the heater increases more rapidly. Thus, the heating of the cabin will intervene more quickly, without requiring overconsumption of fuel. Figures 3 to 5 show schematically the hydraulic connections in the cooling circuit 1 in different cases of operation. In Figure 3, the engine 2 is cold. The coolant has a temperature below the opening temperature of the valve 5. The valve 5 remains closed and no flow takes place in the radiator. The coolant also has a temperature below the opening temperature of the valve 4. The valve 4 remains closed. In Figure 4, the temperature of the coolant in the outlet housing 3 exceeds the opening threshold of the valve 5. The valve 5 opens and releases the flow of coolant in the radiator 7. At the beginning of this flow, the coolant applied to the thermostatic valve 4 has a temperature below the opening threshold. The thermostatic valve 4 thus remains initially closed. In Figure 5, the temperature of the coolant in the radiator 7 increases, due to the circulation of coolant. The coolant applied to the thermostatic valve 4 then has a temperature above the opening threshold. The thermostatic valve 4 thus opens and allows the flow of cooling liquid from the radiator 7 to the degassing box 18.

Claims (11)

REVENDICATIONS1. Circuit de refroidissement (1) d'un moteur à combustion interne (2), comprenant un radiateur (7) de refroidissement présentant une sortie d'évacuation de liquide de refroidissement ; un boîtier de dégazage (18) présentant une entrée de liquide de refroidissement raccordée à la sortie d'évacuation du radiateur ; caractérisé en ce qu'il comprend en outre une vanne thermostatique (4) obturant sélectivement l'écoulement entre la sortie d'évacuation du radiateur et l'entrée du boîtier de dégazage, la vanne thermostatique (4) s'ouvrant lorsque la température du liquide de refroidissement dépasse un premier seuil. REVENDICATIONS1. A cooling circuit (1) of an internal combustion engine (2), comprising a cooling radiator (7) having a coolant discharge outlet; a degassing housing (18) having a coolant inlet connected to the exhaust outlet of the radiator; characterized in that it further comprises a thermostatic valve (4) selectively closing the flow between the radiator discharge outlet and the inlet of the degassing housing, the thermostatic valve (4) opening when the temperature of the coolant exceeds a first threshold. 2. Circuit de refroidissement (1) selon la revendication 1, dans lequel la vanne thermostatique (4) comprend un organe (43) dont la dilatation thermique déplace un joint d'étanchéité (42) et libère l'écoulement entre la sortie d'évacuation du radiateur et l'entrée du boîtier de dégazage lorsque ladite température du liquide de refroidissement dépasse le premier seuil. Cooling circuit (1) according to claim 1, wherein the thermostatic valve (4) comprises a member (43) whose thermal expansion displaces a seal (42) and releases the flow between the outlet of evacuation of the radiator and the entry of the degassing housing when said coolant temperature exceeds the first threshold. 3. Circuit de refroidissement (1) selon la revendication 2, dans lequel ledit organe (43) est réalisé en cire. 3. Cooling circuit (1) according to claim 2, wherein said member (43) is made of wax. 4. Circuit de refroidissement (1) selon l'une quelconque des revendications précédentes, dans lequel ledit premier seuil est compris entre 45 et 65°Celsius, et de préférence comprise entre 50 et 60°Celsius. 4. Cooling circuit (1) according to any one of the preceding claims, wherein said first threshold is between 45 and 65 ° Celsius, and preferably between 50 and 60 ° Celsius. 5. Circuit de refroidissement selon l'une quelconque des revendications précédentes, dans lequel ladite vanne thermostatique (4) est disposée au niveau de la sortie d'évacuation du radiateur (7). Cooling circuit according to one of the preceding claims, wherein said thermostatic valve (4) is arranged at the radiator discharge outlet (7). 6. Circuit de refroidissement selon l'une quelconque des revendications précédentes, dans lequel aucun échangeur de chaleur n'est connecté entre la vanne thermostatique (4) et le radiateur (7). 6. Cooling circuit according to any one of the preceding claims, wherein no heat exchanger is connected between the thermostatic valve (4) and the radiator (7). 7. Circuit de refroidissement selon l'une quelconque des revendications précédentes, dans lequel ladite sortie du radiateur (7) est ménagée dans la partie supérieure de ce radiateur. 7. Cooling circuit according to any one of the preceding claims, wherein said radiator output (7) is formed in the upper part of this radiator. 8. Circuit de refroidissement selon l'une quelconque des revendications précédentes, comprenant en outre un boîtier de sortie (3) de liquide de refroidissement apte à recevoir du liquide de refroidissement en provenance du 40 moteur (2) ; une conduite (9 ) raccordant le boîtier de sortie (3) au radiateur (7) ; une autre vanne thermostatique (5) obturant sélectivement la conduite (9) et s'ouvrant lorsque la température du liquide de refroidissement qui lui est appliqué dépasse un deuxième seuil. 8. Cooling circuit according to any one of the preceding claims, further comprising a coolant outlet housing (3) adapted to receive coolant from the engine (2); a pipe (9) connecting the outlet box (3) to the radiator (7); another thermostatic valve (5) selectively closing the pipe (9) and opening when the temperature of the coolant applied to it exceeds a second threshold. 9. Circuit de refroidissement selon la revendication 8, dans lequel ladite conduite (9) raccorde une autre sortie du radiateur (7) au boîtier de sortie (3). The cooling circuit of claim 8, wherein said conduit (9) connects another radiator output (7) to the output housing (3). 10. Circuit de refroidissement selon la revendication 8 ou la revendication 9, dans lequel ledit deuxième seuil est supérieur au premier seuil. The cooling circuit of claim 8 or claim 9, wherein said second threshold is greater than the first threshold. 11. Circuit de refroidissement selon l'une quelconque des revendications 8 à 10, comprenant un aérotherme (11) muni d'une entrée connectée au boîtier de sortie (3). 11. Cooling circuit according to any one of claims 8 to 10, comprising a heater (11) having an input connected to the output housing (3).
FR0857676A 2008-11-13 2008-11-13 ENGINE COOLING CIRCUIT Expired - Fee Related FR2938298B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR0857676A FR2938298B1 (en) 2008-11-13 2008-11-13 ENGINE COOLING CIRCUIT
EP09173401A EP2187015B1 (en) 2008-11-13 2009-10-19 Engine cooling circuit
AT09173401T ATE536471T1 (en) 2008-11-13 2009-10-19 COOLANT CIRCUIT OF AN ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0857676A FR2938298B1 (en) 2008-11-13 2008-11-13 ENGINE COOLING CIRCUIT

Publications (2)

Publication Number Publication Date
FR2938298A1 true FR2938298A1 (en) 2010-05-14
FR2938298B1 FR2938298B1 (en) 2010-11-12

Family

ID=40637137

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0857676A Expired - Fee Related FR2938298B1 (en) 2008-11-13 2008-11-13 ENGINE COOLING CIRCUIT

Country Status (3)

Country Link
EP (1) EP2187015B1 (en)
AT (1) ATE536471T1 (en)
FR (1) FR2938298B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009429A1 (en) * 1987-05-18 1988-12-01 Bayerische Motoren Werke Aktiengesellschaft Liquid cooling circuit for driving and working engines, in particular for internal combustion engines
EP0374038A1 (en) * 1988-12-14 1990-06-20 Automobiles Peugeot Cooling device for an internal-combustion engine
US5241926A (en) * 1991-08-09 1993-09-07 Mazda Motor Corporation Engine cooling apparatus
WO2001057373A1 (en) * 2000-02-03 2001-08-09 Peugeot Citroen Automobiles Method and device for cooling a motor vehicle engine
FR2908830A1 (en) * 2006-11-16 2008-05-23 Renault Sas Air/water type exhaust gas recirculation heat exchanger emptying device for e.g. diesel engine of motor vehicle, has valves independent with respect to each other and closing cooling circuit, and hose to aspirate liquid in decantation loop

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009429A1 (en) * 1987-05-18 1988-12-01 Bayerische Motoren Werke Aktiengesellschaft Liquid cooling circuit for driving and working engines, in particular for internal combustion engines
EP0374038A1 (en) * 1988-12-14 1990-06-20 Automobiles Peugeot Cooling device for an internal-combustion engine
US5241926A (en) * 1991-08-09 1993-09-07 Mazda Motor Corporation Engine cooling apparatus
WO2001057373A1 (en) * 2000-02-03 2001-08-09 Peugeot Citroen Automobiles Method and device for cooling a motor vehicle engine
FR2908830A1 (en) * 2006-11-16 2008-05-23 Renault Sas Air/water type exhaust gas recirculation heat exchanger emptying device for e.g. diesel engine of motor vehicle, has valves independent with respect to each other and closing cooling circuit, and hose to aspirate liquid in decantation loop

Also Published As

Publication number Publication date
EP2187015A1 (en) 2010-05-19
FR2938298B1 (en) 2010-11-12
EP2187015B1 (en) 2011-12-07
ATE536471T1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
WO2008029058A2 (en) Device for distributing cooling fluid in a motor vehicle engine
EP2112347A1 (en) Engine cooling circuit
FR2938297A1 (en) ENGINE COOLING CIRCUIT
FR2844224A1 (en) Cooling system for hybrid drive vehicle includes radiator with mixing valve and two circuits for different temperatures in electrical and thermal engines
FR3036135A1 (en) ENGINE COOLING CIRCUIT
FR2890697A1 (en) Vehicle engine has Exhaust Gas Recirculation (EGR) circuit equipped with supplementary cooler
EP2187015B1 (en) Engine cooling circuit
WO2017212134A1 (en) Method for filling a cooling circuit with a heat-transfer fluid
FR2949509A1 (en) Internal combustion engine for motor vehicle i.e. passenger car, has thermostatic valve comprising thermally expandable member immersed in coolant, where temperature of expandable member is above threshold while releasing flow of coolant
EP2102466A1 (en) Cooling system for the internal combustion engine of a vehicle
WO2014167199A1 (en) Cooling circuit for an internal combustion engine
FR2914026A1 (en) Air intake device for use in internal combustion engine of motor vehicle, has heating unit i.e. resistive heater, is arranged near zone of duct to melt ice formed in zone, and fixed on duct
EP1892389B1 (en) Device making it possible to control a circuit for circulation of a coolant liquid and a circuit for circulation of lubrication oil of a heat engine of a vehicle
FR2914356A1 (en) SYSTEM AND METHOD FOR COOLING A MOTOR POWERTRAIN OF A MOTOR VEHICLE.
FR2949508A1 (en) Internal combustion engine for motor vehicle, has heating unit heating rod, where application of electric drive on heating unit provokes connection of low temperature circuit with high temperature circuit and casing
EP4069956B1 (en) Heat transfer circuit for a drivetrain
FR3047514A1 (en) METHOD FOR PROTECTING A COOLING FLUID CIRCUIT OF A MOTOR AGAINST INTERNAL OVERPRESSURE
FR2932845A1 (en) Heat engine cooling method for vehicle, involves delivering part of heat-transfer liquid to heat-transfer liquid inlet from cooling cavities of cylinder head with respect to temperature of heat-transfer liquid so as to exit pump
EP2090763B1 (en) Engine cooling circuit
FR2838477A1 (en) I.C. engine cooling circuit comprises radiator and additional exchanger connected to radiator outlet conduit which comprises nozzle, between inlet and outlet connections from exchanger, with sealing element
FR2736385A1 (en) Two-phase cooling system for motor vehicle engine - has expansion and filling bottle integral with heat exchanger fluid storage, connected through thermostatically controlled valve
FR2757800A1 (en) COCKPIT HEATING SYSTEM FOR A DIRECT INJECTION DIESEL ENGINE MOTOR VEHICLE
FR2938295A1 (en) DEVICE AND METHOD FOR THERMAL CONTROL OF AN ENGINE
FR2933906A1 (en) Passenger compartment's temperature rise improving method for small-size motor vehicle, involves closing exhaust line to degrade efficiency of engine for rapidly increasing heat transfer fluid temperature to increase compartment temperature
FR2875885A1 (en) Automatic transmission cooling system for motor vehicle, has two conduits connecting control unit to main circuit conduit upstream of calibrating unit, where direction of fluid flow in main conduit is controlled by position of control unit

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20130731