FR2935146A1 - POLYNUCLEOTIDES REGULATING NEGATIVELY THE EXPRESSION OF SBI PROTEIN - Google Patents

POLYNUCLEOTIDES REGULATING NEGATIVELY THE EXPRESSION OF SBI PROTEIN Download PDF

Info

Publication number
FR2935146A1
FR2935146A1 FR0855686A FR0855686A FR2935146A1 FR 2935146 A1 FR2935146 A1 FR 2935146A1 FR 0855686 A FR0855686 A FR 0855686A FR 0855686 A FR0855686 A FR 0855686A FR 2935146 A1 FR2935146 A1 FR 2935146A1
Authority
FR
France
Prior art keywords
sequence
sequence seq
sbi
protein
fragments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0855686A
Other languages
French (fr)
Other versions
FR2935146B1 (en
Inventor
Brice Felden
Svetlana Chabelskaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Rennes 1
Institut National de la Sante et de la Recherche Medicale INSERM
Original Assignee
Universite de Rennes 1
Institut National de la Sante et de la Recherche Medicale INSERM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Rennes 1, Institut National de la Sante et de la Recherche Medicale INSERM filed Critical Universite de Rennes 1
Priority to FR0855686A priority Critical patent/FR2935146B1/en
Priority to PCT/EP2009/060844 priority patent/WO2010020694A1/en
Publication of FR2935146A1 publication Critical patent/FR2935146A1/en
Application granted granted Critical
Publication of FR2935146B1 publication Critical patent/FR2935146B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/10Production naturally occurring

Abstract

L'invention concerne notamment un polynucléotide isolé particulier, une composition le comprenant et son utilisation non thérapeutique pour inhiber l'expression du gène codant la protéine Sbi.The invention relates in particular to a particular isolated polynucleotide, a composition comprising it and its non-therapeutic use for inhibiting the expression of the gene encoding the Sbi protein.

Description

POLYNUCLEOTIDES REGULANT NEGATIVEMENT L'EXPRESSION DE LA PROTÉINE SBI La présente invention est relative à des polynucléotides capables de réguler négativement l'expression de la protéine Sbi et à leur application notamment pour la détection, la prévention et/ou le traitement d'une infection staphylococcique. Les infections staphylococciques sont très répandues dans le monde entier, affectant aussi bien l'homme que les animaux. Les bactéries du genre Staphylococcus ont été découvertes par Louis Pasteur en 1880. À ce jour, une vingtaine d'espèces ont été identifiées. Parmi celles-ci, les plus rencontrées en pathologie humaine et/ou animale sont Staphylococcus epidermidis, Staphylococcus saprophyticus, Staphylococcus hyicus, Staphylococcus intermedius et Staphylococcus aureus. Ces espèces commensales sont dites pathogènes opportunistes puisqu'elles peuvent entraîner des infections dans des conditions particulières. The present invention relates to polynucleotides capable of negatively regulating the expression of the Sbi protein and to their application, in particular for the detection, prevention and / or treatment of a staphylococcal infection. . Staphylococcal infections are widespread throughout the world, affecting both humans and animals. The bacteria of the genus Staphylococcus were discovered by Louis Pasteur in 1880. To date, about twenty species have been identified. Of these, the most commonly encountered in human and / or animal pathology are Staphylococcus epidermidis, Staphylococcus saprophyticus, Staphylococcus hyicus, Staphylococcus intermedius and Staphylococcus aureus. These commensal species are called opportunistic pathogens since they can cause infections under particular conditions.

Ainsi, Staphylococcus epidermidis peut être responsable d'infections de la peau, nasales et aussi d'endocardites et d'infections localisées chez les patients immunodéprimés. Staphylococcus saprophyticus a été identifiée comme responsable de certaines infections urinaires. Staphylococcus hyicus et Staphylococcus intermedius peuvent être responsables d'infections diverses chez l'animal telles que la dermite exsudative du porcelet (S. hyicus) ou encore la furonculose du chien (S. intermedius). L'espèce la plus pathogène des bactéries du genre Staphylococcus est Staphylococcus aureus (S. aureus). S. aureus est un membre de la flore commensale humaine. Cependant, si des barrières mucosales sont franchies ou si les défenses immunes de l'hôte sont altérées, S.aureus peut devenir un pathogène opportuniste et l'une des principales causes des infections nosocomiales et des infections acquises en communauté chez l'homme et les animaux (Lowy, 1998). La pathogenèse de la maladie associée à S. aureus débute habituellement par une infection locale (par exemple, infection d'une blessure, furoncle, cellulite), puis peut se poursuivre par une diffusion systémique (bactériémie), puis par des infections métastatiques (par exemple endocardite, ostéomyélite et arthrite septique). Thus, Staphylococcus epidermidis may be responsible for infections of the skin, nasal and also of endocarditis and localized infections in immunocompromised patients. Staphylococcus saprophyticus has been identified as responsible for some urinary tract infections. Staphylococcus hyicus and Staphylococcus intermedius may be responsible for various infections in animals such as exudative piglet dermatitis (S. hyicus) or furunculosis of the dog (S. intermedius). The most pathogenic species of Staphylococcus bacteria is Staphylococcus aureus (S. aureus). S. aureus is a member of human commensal flora. However, if mucosal barriers are breached or the host's immune defenses are altered, S.aureus can become an opportunistic pathogen and one of the leading causes of nosocomial infections and community-acquired infections in humans and humans. animals (Lowy, 1998). The pathogenesis of S. aureus-associated disease usually begins with a local infection (eg, infection of a wound, boil, cellulitis) and can then be followed by systemic spread (bacteremia) followed by metastatic infections (eg example endocarditis, osteomyelitis and septic arthritis).

S. aureus est également l'un des agents pathogènes isolés le plus fréquemment lors de mammites bovines aussi bien aux Etats-Unis qu'en Europe. Les vaches atteintes présentent alors une chute de production laitière qui entraîne de lourdes conséquences économiques sur les exploitations agricoles. S. aureus is also one of the pathogens most frequently isolated from bovine mastitis in both the United States and Europe. Affected cows then have a drop in milk production which has serious economic consequences for farms.

L'étude des mécanismes moléculaires permettant à l'infection staphylococcique de se mettre en place et de perdurer dans l'organisme colonisé a permis de montrer qu'une des causes principales de succès des infections staphylococciques, en particulier à S. aureus, est leur capacité à produire un grand nombre de facteurs de virulence. Certains de ces facteurs sont exportés à la surface des cellules et d'autres sont excrétés dans le milieu extracellulaire de l'hôte. Ainsi, par exemple, S. aureus est capable de contourner les défenses de l'hôte par la production de pièges de la réponse immunitaire de l'hôte infecté telles que la protéine SpA ( Staphylococcal protein A , Moks et al., 1986) et la protéine Sbi ( S. aureus IgG binding protein ). The study of the molecular mechanisms allowing staphylococcal infection to develop and persist in the colonized organism has shown that one of the main causes of success of staphylococcal infections, in particular S. aureus, is their ability to produce a large number of virulence factors. Some of these factors are exported to the surface of cells and others are excreted in the extracellular environment of the host. Thus, for example, S. aureus is able to bypass the defenses of the host by producing traps of the immune response of the infected host such as the SpA protein (Staphylococcal protein A, Moks et al., 1986) and Sbi protein (S. aureus IgG binding protein).

La protéine Sbi a été identifiée à l'origine chez S. aureus, comme une protéine de liaison aux immunoglobulines IgG (Zhang et al., 1998). Il a été montré par la suite que son expression est induite par la présence d'IgG humaines (Zhang et al, 2000) et qu'elle précipite avec des IgG humaines (Atkins et al., 2008). Il est désormais établi que la protéine Sbi a également la capacité d'interagir avec des composants du système immunitaire inné de l'hôte. En effet, Sbi est une protéine sécrétée qui piège le système du complément en fixant et titrant le facteur C3 du complément (Burman et al, 2008 ; Upadhyay et al, 2008), molécule centrale des trois voies d'activation du complément. Ainsi, la protéine multifonctionnelle Sbi interfère directement avec le système immunitaire adaptatif de l'hôte via ses deux premiers domaines de liaison aux IgG (Sbi-I et Sbi-II ; Atkins et al., 2008) et module le système immunitaire inné de l'hôte en consommant la voie alternative de l'activation du complément via ses troisième et quatrième domaines (Sbi-III et Sbi-IV ; Burman et al. 2008), en particulier par l'interaction entre son quatrième domaine et la protéine C3 du complément (Upadhyay et al, 2008). Jusqu'à présent, le traitement le plus répandu à une infection staphylococcique est à base d'antibiotiques tels que les pénicillines (pénicilline G, méthicilline, oxacilline céphalosporines) les macrolides et les tétracyclines. Cependant, avec l'utilisation répandue des antibiotiques, la diffusion de souches de bactéries du genre Staphylococcus, en particulier S. aureus, fortement résistantes aux antibiotiques, notamment à la méthicilline (SRM), a considérablement augmenté ces dernières années et constitue un défi clinique et épidémiologique mondial, notamment dans les hôpitaux. Dans une optique de traitement mais également de prévention d'infection staphylococcique, il existe un besoin, tant chez l'homme que chez l'animal de disposer de nouvelles classes d'agents antistaphylococcique comme alternatives aux antibiotiques. Sbi protein was originally identified in S. aureus as an IgG immunoglobulin binding protein (Zhang et al., 1998). It has been shown later that its expression is induced by the presence of human IgG (Zhang et al, 2000) and that it precipitates with human IgG (Atkins et al., 2008). It is now established that the Sbi protein also has the ability to interact with components of the innate immune system of the host. Indeed, Sbi is a secreted protein that traps the complement system by fixing and titrating the complement C3 factor (Burman et al, 2008, Upadhyay et al, 2008), the central molecule of the three complement activation pathways. Thus, the Sbi multifunctional protein directly interferes with the host's adaptive immune system via its first two IgG binding domains (Sbi-I and Sbi-II, Atkins et al., 2008) and modulates the innate immune system of the host. host by using the alternative pathway of complement activation via its third and fourth domains (Sbi-III and Sbi-IV, Burman et al., 2008), in particular by the interaction between its fourth domain and the C3 protein of the complement (Upadhyay et al, 2008). So far, the most common treatment for staphylococcal infection is antibiotics such as penicillins (penicillin G, methicillin, oxacillin cephalosporins), macrolides and tetracyclines. However, with the widespread use of antibiotics, the spread of bacterial strains of the genus Staphylococcus, particularly S. aureus, highly resistant to antibiotics, including methicillin (SRM), has increased significantly in recent years and is a clinical challenge. and epidemiological, especially in hospitals. With a view to treatment but also to preventing staphylococcal infection, there is a need in both humans and animals to have new classes of antistaphylococcal agents as alternatives to antibiotics.

Les inventeurs ont à présent isolé des polynucléotides qui permettent de résoudre en tout ou partie les problèmes évoqués ci-dessus. Ces polynucléotides présentent la capacité de réguler négativement l'expression de la protéine Sbi. Les inventeurs ont mis en évidence que ces polynucléotides s'hybrident spécifiquement, sans l'aide de protéine chaperonne associée, avec une séquence particulière qu'ils ont localisée à l'extrémité 5' de l'ARN messager (ARNm) codant la protéine Sbi. En analysant cette séquence particulière, les inventeurs ont identifié la séquence shine-Dalgarno prédite d'interaction avec l'ARN ribosomique 16S et le codon d'initiation de la traduction de l'ARNm codant la protéine Sbi. Les inventeurs ont montré que l'hybridation spécifique de ces polynucléotides avec cette séquence particulière de l'ARNm codant la protéine Sbi, empêche la liaison des ribosomes 70S audit ARNm. Les inventeurs ont mis en évidence que ces polynucléotides permettent de réduire la quantité de protéines Sbi présentes dans le milieu intracellulaire mais aussi la quantité de protéines Sbi libérée dans le milieu extracellulaire et ainsi de diminuer la capacité des bactéries du genre Staphylococcus à interférer avec le système immunitaire de l'hôte en interagissant avec certains de ses composants (IgG, protéine C3). Ces polynucléotides sont donc particulièrement utiles pour la prévention et/ou le traitement d'infections staphylococciques, en particulier de souches résistantes aux antibiotiques. En outre, les polynucléotides selon l'invention présentent l'avantage contrairement à des traitements putatifs, d'avoir une action ciblée sur les bactéries du genre Staphylococcus optimisant ainsi leur action et limitant les risques d'effets secondaires. The inventors have now isolated polynucleotides which make it possible to solve all or part of the problems mentioned above. These polynucleotides have the ability to negatively regulate the expression of the Sbi protein. The inventors have demonstrated that these polynucleotides hybridize specifically, without the aid of associated chaperone protein, with a particular sequence that they have located at the 5 'end of the messenger RNA (mRNA) encoding the Sbi protein. . By analyzing this particular sequence, the inventors have identified the shine-Dalgarno sequence predicted to interact with 16S ribosomal RNA and the translation initiation codon of the mRNA encoding the Sbi protein. The inventors have shown that the specific hybridization of these polynucleotides with this particular sequence of the mRNA encoding the Sbi protein, prevents the binding of 70S ribosomes to said mRNA. The inventors have demonstrated that these polynucleotides make it possible to reduce the amount of Sbi proteins present in the intracellular medium but also the amount of Sbi proteins released into the extracellular medium and thus to reduce the ability of bacteria of the genus Staphylococcus to interfere with the system. immunity of the host by interacting with some of its components (IgG, C3 protein). These polynucleotides are therefore particularly useful for the prevention and / or treatment of staphylococcal infections, in particular antibiotic-resistant strains. In addition, the polynucleotides according to the invention have the advantage unlike putative treatments, to have a targeted action on bacteria of the genus Staphylococcus thus optimizing their action and limiting the risk of side effects.

Ainsi, selon un premier aspect, l'invention a pour objet, un premier polynucléotide isolé comprenant une séquence choisie dans le groupe comprenant : - la séquence SEQ ID N°1, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°l et les fragments de celles-ci ; et - la séquence ID N°2, les séquences dérivées ayant au moins 70 % d'identité avec la 25 séquence SEQ ID N° 2 et les fragments de celles-ci ; et - la séquence complémentaire de la séquence SEQ ID N°3, les séquences dérivées ayant au moins 70 % d'identité avec ladite séquence complémentaire et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider 30 spécifiquement avec la séquence SEQ ID N°3. On entend par polynucléotide au sens de la présente invention, un polymère composé de plusieurs nucléotides liés par des liaisons phosphodiesters, tel que l'ADN (Acide DésoxyriboNucléique) et l'ARN (Acide RiboNucléique). Thus, according to a first aspect, the subject of the invention is a first isolated polynucleotide comprising a sequence chosen from the group comprising: the sequence SEQ ID No. 1, the derived sequences having at least 70% identity with the sequence SEQ ID NO: 1 and fragments thereof; and the sequence ID No. 2, the derived sequences having at least 70% identity with the sequence SEQ ID No. 2 and the fragments thereof; and the sequence complementary to the sequence SEQ ID No. 3, the derived sequences having at least 70% identity with said complementary sequence and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID NO: 3. For the purposes of the present invention, the term "polynucleotide" is intended to mean a polymer composed of several nucleotides linked by phosphodiester bonds, such as DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).

Les polynucléotides selon l'invention peuvent être un ADN ou un ARN. L'ADN présente l'avantage d'être plus stable que l'ARN. La séquence ID N°l correspond à la séquence suivante : 5' -ttcattttttatgtattgctccnnttcgggctagtntattaaatttatttttgc-3' dans laquelle le nucléotide en position 23 peut être c ou t ; le nucléotide en position 24 peut être c ou t ; et le nucléotide en position 36 peut être a ou t. On entend désigner ici par a, t, c, g, u , respectivement les nucléotides adénine, thymine, cytosine, guanine et uracile. The polynucleotides according to the invention may be a DNA or an RNA. DNA has the advantage of being more stable than RNA. The sequence ID No. 1 corresponds to the following sequence: embedded image in which the nucleotide at position 23 can be c or t; the nucleotide at position 24 may be c or t; and the nucleotide at position 36 may be a or t. Here is meant by a, t, c, g, u, the nucleotides adenine, thymine, cytosine, guanine and uracil, respectively.

En particulier, le premier polynucléotide isolé selon l'invention comprend une séquence choisie dans le groupe comprenant : - la séquence SEQ ID N°1, dans laquelle les nucléotides en positions 23, 24 et 36 sont t ; - la séquence SEQ ID N°1, dans laquelle les nucléotides en positions 23 et 24 sont c et le nucléotide en position 36 est t ; et - la séquence SEQ ID N°1, dans laquelle les nucléotides en positions 23, 24 sont c et le nucléotide en position 36 est a. La séquence ID N°2 correspond à la séquence suivante : 5 ' -uucauuuuuuauguauugcuccnnuucgggcuagunuauuaaauuuauuuuugc-3 ' dans laquelle le nucléotide en position 23 peut être c ou u; le nucléotide en position 24 peut être c ou u; et le nucléotide en position 36 peut être a ou u. En particulier, le premier polynucléotide isolé selon l'invention comprend une séquence choisie dans le groupe comprenant : - la séquence SEQ ID N°6, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°6 et les fragments de celles-ci ; et - la séquence SEQ ID N°7, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°7 et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°3. In particular, the first isolated polynucleotide according to the invention comprises a sequence chosen from the group comprising: the sequence SEQ ID No. 1, in which the nucleotides in positions 23, 24 and 36 are t; the sequence SEQ ID No. 1, in which the nucleotides in positions 23 and 24 are c and the nucleotide in position 36 is t; and the sequence SEQ ID No. 1, in which the nucleotides in positions 23, 24 are c and the nucleotide in position 36 is a. The sequence ID No. 2 corresponds to the following sequence: embedded image in which the nucleotide at position 23 can be c or u; the nucleotide at position 24 may be c or u; and the nucleotide at position 36 may be a or u. In particular, the first isolated polynucleotide according to the invention comprises a sequence chosen from the group comprising: the sequence SEQ ID No. 6, the derived sequences having at least 70% identity with the sequence SEQ ID No. 6 and the fragments of these; and the sequence SEQ ID No. 7, the derived sequences having at least 70% identity with the sequence SEQ ID No. 7 and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID NO: 3.

En particulier, le premier polynucléotide isolé selon l'invention est un ARN comprenant une séquence choisie dans le groupe comprenant : - la séquence SEQ ID N°2, dans laquelle les nucléotides en positions 23, 24 et 36 sont u ; - la séquence SEQ ID N°2, dans laquelle les nucléotides en positions 23 et 24 sont c et le nucléotide en position 36 est u ; et - la séquence SEQ ID N°2, dans laquelle les nucléotides en positions 23, 24 sont c et le nucléotide en position 36 est a ; et - la séquence SEQ ID N°7, dans laquelle les nucléotides en positions 44, 45 et 57 sont u ; - la séquence SEQ ID N°7, dans laquelle les nucléotides en positions 44 et 45 sont c et le 10 nucléotide en position 57 est u ; et - la séquence SEQ ID N°7, dans laquelle les nucléotides en positions 44, 45 sont c et le nucléotide en position 57 est a. La première isoforme des séquences SEQ ID N°2 et SEQ ID N°7 telle que définie ci- dessus (la séquence SEQ ID N°2, dans laquelle les nucléotides en positions 23, 24 et 36 sont u et 15 la séquence SEQ ID N°7, dans laquelle les nucléotides en positions 44, 45 et 57 sont u) a été identifiée notamment dans la souche S. aureus N315. La seconde isoforme des séquences SEQ ID N°2 et SEQ ID N°7 telle que définie ci-dessus (la séquence SEQ ID N°2, dans laquelle les nucléotides en positions 23 et 24 sont c et le nucléotide en position 36 est u et la séquence SEQ ID N°7, dans laquelle les nucléotides en 20 positions 44 et 45 sont c et le nucléotide en position 57 est u) a été identifiée notamment dans les souches S. aureus MRSA252, Newman. La troisième isoforme des séquences SEQ ID N°2 et SEQ ID N°7 telle que définie ci-dessus a été identifiée notamment dans les souches S. aureus NCTC8325, Mu50, Mu3, MSSA476, JH1, JH9, MW2, USA300 TCH1516, USA300 FPR3757. 25 La séquence SEQ ID N°3 correspond à la séquence suivante : 5 ' -gcauacaauaaauuuaauauguaaaaagaaagggaauacacaugaaaaauaaa-3 ' Les inventeurs ont identifié dans cette séquence SEQ ID N°3, le premier nucléotide g correspondant à l'extrémité 5' de l'ARNm codant la protéine Sbi, les nucléotides gaaaggg localisés de la position 28 à 34 correspondant à la séquence Shine-Dalgarno prédite 30 d'interaction avec l'ARN ribosomique 16S et les nucléotides aug localisés de la position 42 à 44 correspondant au codon d'initiation de la traduction. In particular, the first isolated polynucleotide according to the invention is an RNA comprising a sequence chosen from the group comprising: the sequence SEQ ID No. 2, in which the nucleotides in positions 23, 24 and 36 are u; the sequence SEQ ID No. 2, in which the nucleotides in positions 23 and 24 are c and the nucleotide in position 36 is u; and the sequence SEQ ID No. 2, in which the nucleotides in positions 23, 24 are c and the nucleotide in position 36 is a; and the sequence SEQ ID No. 7, in which the nucleotides at positions 44, 45 and 57 are u; the sequence SEQ ID No. 7, in which the nucleotides at positions 44 and 45 are c and the nucleotide at position 57 is u; and the sequence SEQ ID No. 7, in which the nucleotides at positions 44, 45 are c and the nucleotide at position 57 is a. The first isoform of the sequences SEQ ID No. 2 and SEQ ID No. 7 as defined above (the sequence SEQ ID No. 2, in which the nucleotides in positions 23, 24 and 36 are u and the sequence SEQ ID No. 7, in which the nucleotides at positions 44, 45 and 57 are u) has been identified in particular in S. aureus strain N315. The second isoform of the sequences SEQ ID No. 2 and SEQ ID No. 7 as defined above (the sequence SEQ ID No. 2, in which the nucleotides in positions 23 and 24 are c and the nucleotide in position 36 is and the sequence SEQ ID No. 7, in which the nucleotides at positions 44 and 45 are c and the nucleotide at position 57 is u) has been identified in particular in S. aureus strains MRSA252, Newman. The third isoform of the sequences SEQ ID No. 2 and SEQ ID No. 7 as defined above has been identified in particular in S. aureus strains NCTC8325, Mu50, Mu3, MSSA476, JH1, JH9, MW2, USA300 TCH1516, USA300. FPR3757. The sequence SEQ ID No. 3 corresponds to the following sequence: embedded image The inventors have identified in this sequence SEQ ID No. 3, the first nucleotide corresponding to the 5 'end of the coding mRNA. the Sbi protein, gaaaggg nucleotides localized from position 28 to 34 corresponding to the Shine-Dalgarno sequence predicted to interact with 16S ribosomal RNA and nucleotides Aug located at position 42 to 44 corresponding to the initiation codon of the translation.

On entend par protéine Sbi au sens de la présente invention, la protéine de séquence SEQ ID N°5 et ses protéines homologues. On entend désigner ici par protéine homologue , les protéines apparentées sur le plan de l'évolution. Les protéines homologues peuvent avoir entre elles une homologie structurale et/ou une homologie de séquences d'aminoacides. Les séquences d'aminoacides des protéines homologues peuvent avoir entre elles au moins 50 % d'identité, de préférence au moins 70 % d'identité et tout préférentiellement au moins 90 % d'identité. Les protéines homologues de la protéine Sbi peuvent avoir une séquence d'aminoacides ayant au moins 50 % d'identité, de préférence au moins 70 % d'identité et tout préférentiellement au moins 90 % d'identité avec la séquence SEQ ID N°5. En particulier, les protéines homologues de la protéine Sbi ont la capacité de se lier spécifiquement à la protéine C3 du complément et/ou à des immunoglobulines IgG. À titre d'exemples de protéines homologues de la protéine Sbi on peut citer les inhibiteurs du complément Efb-C (Hammel et al., Nat. Immunol., 2007), Ehp (Hammel et al., J. Biol. Chem., 2007) et SCIN (Rooijakkers et al., 2007). Des études de structure tridimensionnelle par spectroscopie par RMN (Résonance Magnétique Nucléaire) ont montré que le domaine Sbi-IV de la protéine Sbi de séquence SEQ ID N°5 présente une conformation en faisceau à 3 hélices similaires à celles des inhibiteurs du complément Efb-C, Ehp et SCIN (Upadhyay et al., 2008). On entend désigner ici par séquence homologue , les séquences apparentées sur le plan de l'évolution ; les séquences homologues pouvant avoir entre elles au moins 50 % d'identité, de 20 préférence au moins 70 % d'identité et tout préférentiellement au moins 90 % d'identité. On entend par bactéries du genre Staphylococcus au sens de la présente invention, l'ensemble des souches bactériennes du genre Staphylococcus. En particulier, les bactéries du genre Staphylococcus selon l'invention sont choisies dans le groupe comprenant les souches bactériennes du genre Staphylococcus dont le génome contient : 25 - un gène codant la protéine Sbi de séquence SEQ ID N° 5 ou une protéine homologue ; et/ou - un gène codant un ARN comprenant la séquence SEQ ID N°3 ou une séquence homologue de la séquence SEQ ID N°3 et les fragments de celles-ci ; et/ou - un gène comprenant la séquence SEQ ID N°4 ou une séquence homologue de la 30 séquence SEQ ID N°4 et les fragments de celles-ci. Ces souches peuvent être aisément identifiées par l'Homme du Métier, par exemple, par des techniques de criblage de banques (d'ADN génomique ou d'ADNc de bactéries du genre Staphylococcus) à l'aide de sondes ou d'amorces spécifiques d'une séquence appartenant à des souches bactériennes du genre Staphylococcus telle que définies ci-dessus. De telles sondes ou amorces peuvent être sélectionnées à partir des séquences de polynucléotides selon l'invention. Par exemple, une sonde comprenant une séquence telle que définie selon le premier polynucléotide selon l'invention peut être utilisée. En particulier, l'Homme du Métier peut utiliser la méthode de détection, in vitro, d'ARNm du gène codant la protéine Sbi selon l'invention. Tout particulièrement, les bactéries du genre Staphylococcus selon l'invention sont des souches de Staphylococcus aureus. On entend par séquence complémentaire d'une deuxième séquence au sens de la présente invention, une séquence dont l'ensemble des nucléotides contigus ont la capacité de former des appariements Watson-Crick de type g-c, c-g, a-u, u-a, a-t, t-a et éventuellement des appariements wobble de type g-u, u-g avec l'ensemble des nucléotides contigus de la deuxième séquence. Le terme identité se réfère à l'identité existant entre deux séquences de polynucléotides. L'identité peut être déterminée par la comparaison des nucléotides présents à une position dans chacune des séquences de polynucléotide alignées dans ce but. Lorsque, à une position donnée un nucléotide est identifié comme identique sur les deux séquences alignées, lesdites séquences sont dites identiques à cette position. Le pourcentage d'identité entre deux séquences de polynucléotides est fonction du nombre de nucléotides identiques aux différentes positions sur les deux séquences de nucléotides alignées. Différents programmes peuvent être utilisés afin d'aligner des séquences de polynucléotides et calculer ainsi le pourcentage d'identité existant entre ces séquences, tels que FASTA ou BLAST. On entend par séquence dérivée d'une deuxième séquence , une séquence ayant au moins 70 % d'identité, de préférence au moins 80 % d'identité et tout préférentiellement au 25 moins 90 % d'identité avec une deuxième séquence. Les fragments de séquences du premier polynucléotide selon l'invention peuvent avoir une taille comprise entre 35 et 53, de préférence entre 35 et 50, et tout préférentiellement entre 36 et 45 nucléotides. De préférence, les fragments de séquences du premier polynucléotide selon l'invention comprennent les nucléotides localisés de la position 14 à la position 49 dans la 30 séquence SEQ ID N°l ou la séquence SEQ ID N°2, lesdits nucléotides correspondant aux nucléotides localisés de la position 35 à la position 70 dans la séquence SEQ ID N°6 ou la séquence SEQ ID N°7. For the purposes of the present invention, the term "Sbi protein" is intended to mean the protein of sequence SEQ ID No. 5 and its homologous proteins. Here is meant by homologous protein, the evolutionarily related proteins. Homologous proteins may have structural homology and / or amino acid sequence homology with each other. The amino acid sequences of the homologous proteins may have at least 50% identity with each other, preferably at least 70% identity and most preferably at least 90% identity. The homologous proteins of the Sbi protein may have an amino acid sequence having at least 50% identity, preferably at least 70% identity and most preferably at least 90% identity with the sequence SEQ ID No. 5 . In particular, homologous proteins of the Sbi protein have the ability to bind specifically to complement C3 protein and / or IgG immunoglobulins. As examples of homologous proteins of the Sbi protein, mention may be made of the Efb-C complement inhibitors (Hammel et al., Nat Immunol., 2007), Ehp (Hammel et al., J. Biol Chem., 2007) and SCIN (Rooijakkers et al., 2007). Three-dimensional structure studies by NMR (Nuclear Magnetic Resonance) spectroscopy have shown that the Sbi-IV domain of the Sbi protein of sequence SEQ ID No. 5 has a 3-helix beam conformation similar to that of the complement inhibitors Efb- C, Ehp and SCIN (Upadhyay et al., 2008). Here is meant by homologous sequence, the sequences related in evolution; the homologous sequences may have at least 50% identity between them, preferably at least 70% identity and most preferably at least 90% identity. Bacteria of the genus Staphylococcus within the meaning of the present invention are understood to mean all bacterial strains of the genus Staphylococcus. In particular, the bacteria of the genus Staphylococcus according to the invention are chosen from the group comprising bacterial strains of the genus Staphylococcus, the genome of which contains: a gene encoding the Sbi protein of sequence SEQ ID No. 5 or a homologous protein; and / or a gene encoding an RNA comprising the sequence SEQ ID No. 3 or a sequence homologous to the sequence SEQ ID No. 3 and the fragments thereof; and / or a gene comprising the sequence SEQ ID No. 4 or a sequence homologous to the sequence SEQ ID No. 4 and the fragments thereof. These strains can be easily identified by those skilled in the art, for example, by screening techniques of libraries (genomic DNA or cDNA of bacteria of the genus Staphylococcus) using probes or primers specific to a sequence belonging to bacterial strains of the genus Staphylococcus as defined above. Such probes or primers can be selected from the polynucleotide sequences according to the invention. For example, a probe comprising a sequence as defined according to the first polynucleotide according to the invention may be used. In particular, those skilled in the art can use the method for detecting, in vitro, mRNA of the gene encoding the Sbi protein according to the invention. In particular, the bacteria of the genus Staphylococcus according to the invention are strains of Staphylococcus aureus. The term "complementary sequence" of a second sequence within the meaning of the present invention means a sequence whose set of contiguous nucleotides have the capacity to form Watson-Crick pairings of gc, cg, au, ua, a-t type, ta and possibly wobble pairings of type gu, ug with the set of contiguous nucleotides of the second sequence. The term identity refers to the identity between two polynucleotide sequences. The identity can be determined by comparing the nucleotides present at one position in each of the polynucleotide sequences aligned for that purpose. When, at a given position, a nucleotide is identified as identical on the two aligned sequences, said sequences are said to be identical at this position. The percentage identity between two polynucleotide sequences is a function of the number of identical nucleotides at the different positions on the two aligned nucleotide sequences. Different programs can be used to align polynucleotide sequences and thus calculate the percentage identity between these sequences, such as FASTA or BLAST. Sequence derived from a second sequence is understood to mean a sequence having at least 70% identity, preferably at least 80% identity and most preferably at least 90% identity with a second sequence. The fragments of sequences of the first polynucleotide according to the invention may have a size of between 35 and 53, preferably between 35 and 50, and most preferably between 36 and 45 nucleotides. Preferably, the fragments of sequences of the first polynucleotide according to the invention comprise nucleotides localized from position 14 to position 49 in the sequence SEQ ID No. 1 or the sequence SEQ ID No. 2, said nucleotides corresponding to localized nucleotides. from position 35 to position 70 in the sequence SEQ ID No. 6 or the sequence SEQ ID No. 7.

La capacité d'hybridation spécifique d'une première séquence de polynucléotide avec une deuxième séquence de polynucléotide peut être déterminée in vitro, par des tests bien connus de l'Homme du Métier. À titre d'exemple, on peut citer le test décrit dans C. Pichon & B. Felden (2005 ; avec l'exemple de l'ARN régulateur sprA et sa cible ARNm SA2216), qui comprend les étapes suivantes : - une première séquence de polynucléotide est marquée radioactivement, purifiée et des quantités croissantes d'une deuxième séquence de polynucléotide non marquée sont ajoutées et analysées par gel d'électrophorèse en conditions natives. L'obtention d'un retard de migration sur ce gel implique la formation d'un complexe entre ces deux séquences de polynucléotides, par hybridation ; - l'effet de l'ajout d'un excès de 100 à 2000 fois, en rapports molaires, d'une troisième séquence de polynucléotide (par exemple un mélange d'ARN de transfert) sur la formation dudit complexe entre les deux premières séquences, est analysé ; - l'effet de l'ajout d'un excès de 100 à 2000 fois, en rapports molaires, de la première 15 séquence de polynucléotide non marqué sur la formation dudit complexe entre les deux premières séquences, est analysé ; - l'hybridation entre les deux premières séquences de polynucléotides sera considérée comme spécifique si (i) ledit complexe préformé entre les deux premières séquences de polynucléotide reste stable en présence de cet excès de troisième séquence de polynucléotide 20 (ex : ARNt) et si (ii) ledit complexe préformé est déstabilisé en présence de faibles quantités de la première séquence de polynucléotide non marquée. L'Homme du Métier pourra aisément déterminer les séquences dérivées et les fragments qui ont la capacité de s'hybrider spécifiquement à la séquence ID N°3 selon le premier polynucléotide isolé selon l'invention, en mettant en oeuvre un test d'hybridation spécifique tel 25 que décrit ci-dessus. En particulier, les séquences dérivées et les fragments qui ont la capacité de s'hybrider spécifiquement à la séquence ID N°3 selon le premier polynucléotide isolé selon l'invention, ont en outre la capacité de réguler négativement l'expression de la protéine Sbi. L'expression réduction ou régulation négative de l'expression d'une protéine est 30 utilisée ici pour désigner une diminution d'au moins 20 %, en particulier d'au moins 35 % et tout particulièrement d'au moins 50 % du niveau d'expression d'une protéine par rapport à son niveau d'expression en l'absence d'un premier polynucléotide selon l'invention. La réduction de l'expression d'une protéine peut être déterminée par des techniques bien connues de l'Homme du Métier telles que par Western-Blot , utilisant au moins un anticorps spécifique de ladite protéine. La présente invention englobe également les polynucléotides conformes à l'invention, synthétiques, hémi-synthétiques, recombinants et leurs analogues. Les analogues du premier polynucléotide selon l'invention ont la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°3. En particulier, les analogues du premier polynucléotide selon l'invention ont en outre la capacité de réguler négativement l'expression de la protéine Sbi. On entend par analogue au sens de la présente invention, des polynucléotides comprenant au moins une modification chimique au niveau de leur sucre, phosphate, de leur base ou de leurs extrémités 5' et 3' ; ladite modification pouvant être réalisée par synthèse chimique ou enzymatique. En effet, les polynucléotides selon l'invention, peuvent comprendre au moins une modification chimique destinée notamment à augmenter leur stabilité, leur résistance à la dégradation par les endo et exonucléases, favoriser leur capacité à entrer dans une cellule d'intérêt et/ou dans le cas du premier polynucléotide selon l'invention à augmenter sa capacité à réguler négativement l'expression de la protéine Sbi. L'augmentation de la capacité du premier polynucléotide selon l'invention à réguler négativement l'expression de la protéine Sbi peut être obtenu, par exemple, par une modification chimique permettant l'augmentation de la formation et/ou de la stabilité d'un complexe entre le premier polynucléotide selon l'invention et la séquence SEQ ID N°3, par hybridation spécifique. Ainsi, les polynucléotides selon l'invention peuvent comprendre des nucléotides modifiés au niveau de leur sucre, phosphate, de leur base et/ou peuvent présenter des modifications, notamment post-transcriptionnelle, aux niveaux de leurs extrémités 5' et 3'. De tels nucléotides modifiés peuvent être choisis dans le groupe comprenant : les 2'-O-methylnucléotides, les 2'-O-methoxyethylnucléotides, les déoxynucléotides tels que les 2'-déoxynucléotides et les 2'-deoxy-2'-fluoronucléotides, les nucléotides à liaisons peptidiques, des fluorochromes et des éléments radioactifs. Les polynucléotides selon l'invention peuvent également comprendre en outre, à leurs extrémités 5' et/ou 3' des éléments structuraux (tels que des hélices stables) renforçant leur stabilité et/ou leur résistance aux dégradations. The specific hybridization ability of a first polynucleotide sequence with a second polynucleotide sequence can be determined in vitro by tests well known to those skilled in the art. By way of example, mention may be made of the test described in C. Pichon & B. Felden (2005, with the example of the regulatory RNA sprA and its mRNA target SA2216), which comprises the following steps: a first sequence polynucleotide is radioactively labeled, purified and increasing amounts of a second unlabeled polynucleotide sequence are added and analyzed by electrophoresis gel under native conditions. Obtaining a migration delay on this gel involves the formation of a complex between these two polynucleotide sequences, by hybridization; the effect of adding an excess of 100 to 2000 times, in molar ratios, of a third polynucleotide sequence (for example a transfer RNA mixture) on the formation of said complex between the first two sequences , is analyzed; the effect of adding an excess of 100 to 2000 times, in molar ratios, of the first unlabeled polynucleotide sequence on the formation of said complex between the first two sequences is analyzed; the hybridization between the first two polynucleotide sequences will be considered specific if (i) said complex preformed between the first two polynucleotide sequences remains stable in the presence of this excess of the third polynucleotide sequence (ex: tRNA) and if ( ii) said preformed complex is destabilized in the presence of small amounts of the first unlabeled polynucleotide sequence. Those skilled in the art can easily determine the derived sequences and the fragments which have the capacity to hybridize specifically to the sequence ID No. 3 according to the first isolated polynucleotide according to the invention, by implementing a specific hybridization test. as described above. In particular, the derived sequences and fragments which have the capacity to hybridize specifically to the sequence ID No. 3 according to the first polynucleotide isolated according to the invention, also have the capacity to negatively regulate the expression of the Sbi protein. . The term reduction or downregulation of protein expression is used herein to refer to a decrease of at least 20%, particularly at least 35% and most preferably at least 50% of the level of protein. expression of a protein with respect to its level of expression in the absence of a first polynucleotide according to the invention. The reduction of the expression of a protein can be determined by techniques well known to those skilled in the art, such as by Western blotting, using at least one antibody specific for said protein. The present invention also encompasses the polynucleotides according to the invention, synthetic, semisynthetic, recombinant and their analogues. The analogs of the first polynucleotide according to the invention have the capacity to hybridize specifically with the sequence SEQ ID No. 3. In particular, the analogs of the first polynucleotide according to the invention also have the capacity to negatively regulate the expression of the Sbi protein. For the purposes of the present invention, the term "analogue" means polynucleotides comprising at least one chemical modification at the level of their sugar, phosphate, their base or their 5 'and 3' ends; said modification can be carried out by chemical or enzymatic synthesis. Indeed, the polynucleotides according to the invention may comprise at least one chemical modification intended in particular to increase their stability, their resistance to degradation by endo and exonucleases, to promote their ability to enter a cell of interest and / or the case of the first polynucleotide according to the invention to increase its capacity to negatively regulate the expression of the protein Sbi. The increase of the capacity of the first polynucleotide according to the invention to negatively regulate the expression of the protein Sbi can be obtained, for example, by a chemical modification allowing the increase of the formation and / or the stability of a protein. complex between the first polynucleotide according to the invention and the sequence SEQ ID No. 3, by specific hybridization. Thus, the polynucleotides according to the invention may comprise modified nucleotides in terms of their sugar, phosphate, base and / or may have modifications, particularly post-transcriptionally, at their 5 'and 3' ends. Such modified nucleotides may be chosen from the group comprising: 2'-O-methylnucleotides, 2'-O-methoxyethylnucleotides, deoxynucleotides such as 2'-deoxynucleotides and 2'-deoxy-2'-fluoronucleotides, nucleotides with peptide bonds, fluorochromes and radioactive elements. The polynucleotides according to the invention may also comprise, at their 5 'and / or 3' ends, structural elements (such as stable helices) reinforcing their stability and / or their resistance to degradation.

Les polynucléotides selon l'invention peuvent être obtenus par des méthodes bien connues de l'Homme du Métier telles que par des techniques de criblage de banques (d'ADN génomique ou d'ADNc de bactéries du genre Staphylococcus) par des sondes ou des amorces spécifiques desdits polynucléotides (sélectionnés par exemple à partir des séquences de polynucléotides selon l'invention), mais également, par synthèses chimiques (Beaucage SL., 2008) ou par réactions enzymatiques (Sherlin LD et al., 2001). L'invention a également pour objet une première cassette d'expression comprenant une séquence d'ADN choisie dans le groupe comprenant : - la séquence SEQ ID N°1, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°l et les fragments de celles-ci ; et - la séquence SEQ ID N°6, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°6 et les fragments de celles-ci ; et - une séquence d'ADN pouvant être transcrite en un premier polynucleotide isolé 10 selon l'invention, ledit polynucleotide étant un ARN. On entend par cassette d'expression au sens de la présente invention, une cassette comprenant un promoteur et une région de terminaison de la transcription dans laquelle une séquence d'ADN d'intérêt est liée de manière opérationnelle au promoteur afin de permettre la transcription de ladite séquence d'ADN. 15 Il peut s'agir de tout promoteur ou séquence dérivée, inductible ou non, permettant la transcription d'un polynucléotide selon l'invention. En particulier, le promoteur est choisi parmi les promoteurs permettant la transcription d'un polynucléotide selon l'invention dans au moins une souche bactérienne du genre Staphylococcus. À titre d'exemple de tels promoteurs, on peut citer le promoteur du bactériophage T7 (Milligan JF et al., 1989). 20 L'invention a également pour objet un premier vecteur recombinant comprenant un premier polynucléotide isolé selon l'invention ou une première cassette d'expression selon l'invention. Les vecteurs utilisables peuvent être des vecteurs viraux, tels que des bactériophages, ou non viraux, tels que des vecteurs plasmidiques. 25 À titre d'exemples de vecteurs plasmidiques utilisables selon l'invention, on peut citer l'ensemble des vecteurs dérivés de pCN décrits dans Charpentier et al. (2004). Certains de ces vecteurs, par exemple pCN51, permettent la transcription d'une séquence d'ADN d'intérêt en ARN par l'utilisation d'un promoteur inductible au Cadmium. En particulier, le vecteur plasmidique peut être choisi dans le groupe comprenant les 30 plasmides pCN35 et pCN38 décrits dans Charpentier et al. (2004). Ces plasmides présentent l'avantage d'être maintenus et ainsi de permettre l'expression de polynucléotides selon l'invention, dans des bactéries transformées du genre Staphylococcus. En effet, les inventeurs ont montré que des bactéries S. aureus, transformées par le vecteur pCN38 comprenant la séquence SEQ ID N°6 selon l'invention, sont capables de maintenir ce plasmide au cours de générations bactériennes successives après repiquages et ainsi de permettre l'expression d'un polynucléotide selon l'invention. The polynucleotides according to the invention can be obtained by methods well known to those skilled in the art, such as by screening methods of libraries (genomic DNA or cDNA of bacteria of the genus Staphylococcus) by probes or primers. specific of said polynucleotides (selected for example from the polynucleotide sequences according to the invention), but also, by chemical syntheses (Beaucage SL., 2008) or by enzymatic reactions (Sherlin LD et al., 2001). The subject of the invention is also a first expression cassette comprising a DNA sequence chosen from the group comprising: the sequence SEQ ID No. 1, the derived sequences having at least 70% identity with the sequence SEQ ID No. 1 and fragments thereof; and the sequence SEQ ID No. 6, the derived sequences having at least 70% identity with the sequence SEQ ID No. 6 and the fragments thereof; and a DNA sequence transcribable into a first isolated polynucleotide according to the invention, said polynucleotide being an RNA. An expression cassette within the meaning of the present invention is understood to mean a cassette comprising a promoter and a transcription termination region in which a DNA sequence of interest is operably linked to the promoter in order to allow the transcription of said DNA sequence. It can be any promoter or derived sequence, inducible or not, allowing the transcription of a polynucleotide according to the invention. In particular, the promoter is chosen from promoters allowing the transcription of a polynucleotide according to the invention in at least one bacterial strain of the genus Staphylococcus. By way of example of such promoters, mention may be made of the bacteriophage T7 promoter (Milligan JF et al., 1989). The subject of the invention is also a first recombinant vector comprising a first isolated polynucleotide according to the invention or a first expression cassette according to the invention. The vectors that may be used may be viral vectors, such as bacteriophages, or non-viral vectors, such as plasmid vectors. As examples of plasmid vectors that can be used according to the invention, mention may be made of all the pCN-derived vectors described in Charpentier et al. (2004). Some of these vectors, for example pCN51, allow the transcription of a DNA sequence of interest into RNA through the use of a cadmium inducible promoter. In particular, the plasmid vector may be chosen from the group comprising the plasmids pCN35 and pCN38 described in Charpentier et al. (2004). These plasmids have the advantage of being maintained and thus allow the expression of polynucleotides according to the invention in transformed bacteria of the genus Staphylococcus. Indeed, the inventors have shown that S. aureus bacteria, transformed with the vector pCN38 comprising the sequence SEQ ID No. 6 according to the invention, are capable of maintaining this plasmid during successive bacterial generations after transplanting and thus to allow the expression of a polynucleotide according to the invention.

En particulier, le vecteur selon l'invention est un bactériophage. De préférence, ledit bactériophage est capable d'infecter au moins une souche bactérienne du genre Staphylococcus. On entend par bactériophage capable d'infecter une souche bactérienne du genre Staphylococcus , tout virus de bactéries capable d'introduire une partie de son matériel génétique dans le génome d'une souche bactérienne du genre Staphylococcus (prophage) ou de permettre l'expression transitoire de ce matériel génétique dans la bactérie réceptrice sans intégration chromosomique. Les bactéries du genre Staphylococcus sont infectées par trois types de phages : lytiques obligatoires, tempérés et chroniques (Nicholas H. Mann, 2008). L'ensemble de ces phages est utilisable en tant que vecteur selon l'invention. In particular, the vector according to the invention is a bacteriophage. Preferably, said bacteriophage is capable of infecting at least one bacterial strain of the genus Staphylococcus. Bacteriophage capable of infecting a bacterial strain of the genus Staphylococcus is understood to mean any bacterial virus capable of introducing part of its genetic material into the genome of a bacterial strain of the genus Staphylococcus (prophage) or of allowing transient expression. of this genetic material in the recipient bacterium without chromosomal integration. Staphylococcus bacteria are infected by three types of phages: obligate, temperate and chronic phages (Nicholas H. Mann, 2008). All of these phages can be used as a vector according to the invention.

Dans le cadre de la prévention et/ou du traitement d'infection staphylococcique, les phages utilisables comme vecteur selon l'invention sont de préférence à large spectre et capable d'infecter le plus grand nombre possible de souches bactériennes du genre Staphylococcus responsables d'infections chez l'homme et/ou l'animal. À titre d'exemple de tels bactériophages, on peut citer le phage lytique obligatoire 11)812, les phages K et ItIMR11. In the context of the prevention and / or treatment of staphylococcal infection, the phages that can be used as vectors according to the invention are preferably broad-spectrum and capable of infecting as many as possible bacterial strains of the genus Staphylococcus responsible for infections in humans and / or animals. By way of example of such bacteriophages, mention may be made of the obligate lytic phage 11) 812, phages K and ItIMR11.

L'utilisation de bactériophage comme vecteur selon l'invention présente l'avantage d'optimiser la prévention et/ou le traitement d'une infection staphylococcique ou d'un trouble lié à au moins une bactérie du genre Staphylococcus. En effet, outre l'effet de régulation négative du premier polynucléotide selon l'invention sur l'expression de la protéine Sbi in vitro et in vivo, le bactériophage permet de lyser les bactéries lors de son cycle lytique. En outre, l'utilisation de bactériophage comme vecteur selon l'invention présente l'avantage que le bactériophage utilisé soit potentiellement efficace contre différentes souches bactériennes du genre Staphylococcus, même celles résistantes aux antibiotiques (Nicholas H. Mann, 2008) et de ne pas présenter d'effets secondaires, notamment en étant dénués d'effets néfastes sur les cellules eucaryotes de l'hôte infecté. The use of bacteriophage as a vector according to the invention has the advantage of optimizing the prevention and / or treatment of a staphylococcal infection or a disorder related to at least one bacterium of the genus Staphylococcus. Indeed, in addition to the negative regulatory effect of the first polynucleotide according to the invention on the expression of the Sbi protein in vitro and in vivo, the bacteriophage makes it possible to lyse the bacteria during its lytic cycle. In addition, the use of bacteriophage as a vector according to the invention has the advantage that the bacteriophage used is potentially effective against various bacterial strains of the genus Staphylococcus, even those resistant to antibiotics (Nicholas H. Mann, 2008) and not have side effects, including being devoid of adverse effects on the eukaryotic cells of the infected host.

Selon un autre aspect, l'invention a pour objet une première cellule hôte transformée par une première cassette d'expression selon l'invention ou un premier vecteur selon l'invention. La cellule hôte peut être en particulier un procaryote et avantageusement un bactériophage tel que décrit ci-dessus. According to another aspect, the subject of the invention is a first host cell transformed by a first expression cassette according to the invention or a first vector according to the invention. The host cell may be in particular a prokaryote and advantageously a bacteriophage as described above.

L'invention a également pour objet une composition comprenant au moins un composant choisi dans le groupe comprenant un premier polynucléotide isolé selon l'invention, une première cassette d'expression selon l'invention, un premier vecteur selon l'invention et une première cellule hôte selon l'invention. The subject of the invention is also a composition comprising at least one component selected from the group comprising a first isolated polynucleotide according to the invention, a first expression cassette according to the invention, a first vector according to the invention and a first cell. host according to the invention.

Ladite composition peut être utile notamment comme outil en biologie afin, par exemple, de sélectionner des sondes ou des amorces spécifiques des polynucléotides selon l'invention ou encore pour identifier de potentiels agents capables de moduler (activer ou inhiber) l'interaction entre le premier et les deuxième ou troisième polynucléotides selon l'invention. Avantageusement, la composition selon l'invention est une composition pharmaceutique. Said composition may be useful in particular as a tool in biology in order, for example, to select probes or primers specific for the polynucleotides according to the invention or else to identify potential agents capable of modulating (activating or inhibiting) the interaction between the first and the second or third polynucleotides according to the invention. Advantageously, the composition according to the invention is a pharmaceutical composition.

Les compositions pharmaceutiques selon l'invention présentent l'avantage contrairement aux médicaments putatifs d'avoir une action ciblée sur les bactéries du genre Staphylococcus, y compris les souches résistantes aux antibiotiques, optimisant ainsi leur action et limitant les risques d'effets secondaires. En particulier, lesdits composants sont présents dans la composition pharmaceutique selon l'invention en quantités thérapeutiques (quantités actives et non toxiques). De telles quantités thérapeutiques peuvent être déterminées par l'Homme du Métier par des tests de routine comprenant l'évaluation de l'effet de l'administration desdits composants susmentionnés sur des pathologies et/ou des troubles que l'on cherche à prévenir et/ou à traiter par l'administration de ladite composition pharmaceutique selon l'invention, par exemple une infection staphylococcique et sur la toxicité. Par exemple, de tels tests peuvent être mis en oeuvre en analysant de manière quantitative et qualitative l'effet de l'administration de différentes quantités desdits composants susmentionnés sur un ensemble de marqueurs (biologiques et/ou cliniques) caractéristiques de ces pathologies et/ ou de ces troubles, ainsi que par comptage bactériens dans des échantillons de prélèvements biologiques. The pharmaceutical compositions according to the invention have the advantage unlike putative drugs to have a targeted action on bacteria of the genus Staphylococcus, including strains resistant to antibiotics, optimizing their action and limiting the risk of side effects. In particular, said components are present in the pharmaceutical composition according to the invention in therapeutic amounts (active and non-toxic amounts). Such therapeutic amounts may be determined by those skilled in the art by routine tests comprising the evaluation of the effect of the administration of said components mentioned above on pathologies and / or disorders that one seeks to prevent and / or to be treated by the administration of said pharmaceutical composition according to the invention, for example a staphylococcal infection and on toxicity. For example, such tests can be implemented by quantitatively and qualitatively analyzing the effect of the administration of different amounts of said aforementioned components on a set of markers (biological and / or clinical) characteristic of these pathologies and / or of these disorders, as well as by bacterial counting in samples of biological samples.

En outre, l'index thérapeutique de la composition pharmaceutique selon l'invention peut être déterminée par des tests bien connus de l'Homme du Métier. Les polynucléotides selon l'invention peuvent être administrés directement, de préférence à l'aide d'un véhicule approprié permettant de faciliter leur entrée dans la cellule d'intérêt et/ou de les protéger de la dégradation par des endo- ou exo-nucléases. À titre d'exemples de tels véhicules utilisables, on peut citer des microsphères, des liposomes, des nanoparticules. Les polynucléotides selon l'invention peuvent également être administrés via un vecteur tel qu'avantageusement un bactériophage comme décrit ci-dessus. In addition, the therapeutic index of the pharmaceutical composition according to the invention can be determined by tests well known to those skilled in the art. The polynucleotides according to the invention can be administered directly, preferably using a suitable vehicle to facilitate their entry into the cell of interest and / or protect them from degradation by endo- or exo-nucleases . Examples of such usable vehicles include microspheres, liposomes, nanoparticles. The polynucleotides according to the invention may also be administered via a vector such as advantageously a bacteriophage as described above.

Les compositions pharmaceutiques selon l'invention peuvent être administrées par différentes voies compatibles avec l'effet recherché et de préférence par voie orale, parentérale, sous-cutanée, topique, intra-oculaire, sublinguale et tout préférentiellement intra-oculaire. Les compositions pharmaceutiques selon l'invention peuvent être administrées en une ou plusieurs fois ou en libération continue. Les compositions pharmaceutiques selon l'invention peuvent se présenter sous différentes formes bien connues de l'Homme du Métier et adaptées aux voies et modes d'administration utilisés. En particulier lorsque les compositions pharmaceutiques sont administrées à des animaux, elles peuvent être incluses dans des compositions alimentaires (par exemple sous forme de poudres ou de granulés). Selon un autre aspect, l'invention a également pour objet un premier polynucléotide isolé selon l'invention, ou une première cassette d'expression selon l'invention, ou un premier vecteur selon l'invention ou une première cellule hôte selon l'invention, pour son application en tant que médicament pour la prévention et/ou le traitement d'une infection staphylococcique. The pharmaceutical compositions according to the invention may be administered by different routes compatible with the desired effect and preferably orally, parenterally, subcutaneously, topically, intraocularly, sublingually and most preferably intraocularly. The pharmaceutical compositions according to the invention can be administered in one or more times or in continuous release. The pharmaceutical compositions according to the invention can be in various forms well known to those skilled in the art and adapted to the routes and modes of administration used. In particular, when the pharmaceutical compositions are administered to animals, they may be included in food compositions (for example in the form of powders or granules). According to another aspect, the subject of the invention is also a first isolated polynucleotide according to the invention, or a first expression cassette according to the invention, or a first vector according to the invention or a first host cell according to the invention. for its application as a medicament for the prevention and / or treatment of a staphylococcal infection.

L'invention a également pour objet l'utilisation d'un composant choisi dans le groupe comprenant un premier polynucléotide isolé selon l'invention, une première cassette d'expression selon l'invention, un premier vecteur selon l'invention, une première cellule hôte selon l'invention, pour la préparation d'un médicament destiné à la prévention et/ou au traitement d'une infection staphylococcique. The invention also relates to the use of a component selected from the group comprising a first isolated polynucleotide according to the invention, a first expression cassette according to the invention, a first vector according to the invention, a first cell. host according to the invention, for the preparation of a medicament for the prevention and / or treatment of a staphylococcal infection.

Les infections staphylococciques comprennent l'ensemble des infections dont sont responsables les bactéries du genre Staphylococcus. Ces infections comprennent l'ensemble des pathologies et/ou des troubles pouvant être améliorés et/ou évités par la réduction de l'expression de la protéine Sbi. En particulier, les infections staphylococciques comprennent les infections à Staphylococcus aureus parmi lesquelles on peut citer les folliculites superficielles ou profondes (tels que les furoncles, l'anthrax et le sycosis staphylococcique), le syndrome staphylococcique des enfants ébouillantés, les infections de blessures, un furoncle, une bactériémie, une endocardite, une ostéomyélite ou encore une arthrite septique. Selon un autre aspect, l'invention a également pour objet un produit contenant : - au moins un composant choisi dans le groupe comprenant un premier polynucléotide isolé selon l'invention, une première cassette d'expression selon l'invention, un premier vecteur selon l'invention, une première cellule hôte selon l'invention; et - au moins un autre agent antistaphylococcique, comme produit de combinaison pour une utilisation simultanée, séparée et/ou étalée dans le temps, pour la prévention et/ou le traitement d'une infection staphylococcique. On entend par agent antistaphylococcique au sens de la présente invention, un agent destiné à lutter contre au moins une souche bactérienne du genre Staphylococcus, en particulier contre au moins une souche bactérienne du genre Staphylococcus choisie dans le groupe comprenant les souches bactériennes du genre Staphylococcus dont le génome contient : - un gène codant la protéine Sbi de séquence SEQ ID N° 5 ou une protéine homologue ; et/ou - un gène codant un ARN comprenant la séquence SEQ ID N°3 ou une séquence dérivée ayant ou moins 70 % d'identité avec la séquence SEQ ID N°3 et les fragments de celles-ci ; et/ou - un gène comprenant la séquence SEQ ID N°4 ou une séquence dérivée ayant ou moins 70 % d'identité avec la séquence SEQ ID N°4 et les fragments de celles-ci ; et tout particulièrement contre au moins une souche de Staphylococcus aureus. Ledit agent antistaphylococcique peut être choisi dans le groupe comprenant : - des antibiotiques destinés à prévenir et/ou à traiter des infections locales tels que l'acide fusidique, la mupirocine ; - des antibiotiques destinés à prévenir et/ou traiter des infections systémiques tels que la rifampicine, les fluoroquinolones, l'acide fusidique, le trimethoprime-sulfaméthoxazole, les glycopeptides ; et - des bactériophages tels que 11)812, K et (pMR11. Les produits de combinaison selon l'invention comprenant un autre agent antistaphylococcique présentent les avantages d'optimiser la prévention et/ou le traitement d'une 25 infection staphylococcique et de pouvoir réduire la quantité thérapeutique de chaque composant. Selon un autre aspect, l'invention a pour objet un deuxième polynucléotide isolé comprenant une séquence choisie dans le groupe comprenant : - la séquence SEQ ID N°3, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°3 et les fragments de celles-ci ; et 30 - la séquence SEQ ID N°4, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°4 et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°l et/ou avec la séquence SEQ ID N°2. En particulier, le deuxième polynucléotide isolé selon l'invention comprend une séquence choisie dans le groupe comprenant : - la séquence SEQ ID N°8, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°8 et les fragments de celles-ci ; et - la séquence SEQ ID N°9, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°9 et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider 10 spécifiquement avec la séquence SEQ ID N°l et/ou avec la séquence SEQ ID N°2. En particulier, lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°l et/ou avec la séquence SEQ ID N°2, selon le deuxième polynucléotide selon l'invention, comprennent les nucléotides gaaaggg localisés en position 28 à 34 (correspondant à la séquence Shine-Dalgarno ) et les nucléotides 15 aug localisés en position 42 à 44 (correspondant au codon d'initiation de la traduction de l'ARNm codant la protéine Sbi) dans la séquence SEQ ID N°3 ou SEQ ID N°4. Les fragments de séquences du second polynucléotide selon l'invention peuvent avoir une taille comprise entre 14 et 50, de préférence entre 20 et 45 et tout préférentiellement entre 41 et 45. De préférence, les fragments de séquences du second polynucléotide selon l'invention 20 comprennent les 41 nucléotides localisés de la position 1 à la position 41 dans la séquence SEQ ID N°3 ou la séquence SEQ ID N°4. Les analogues du deuxième polynucléotide selon l'invention ont la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°l et/ou avec la séquence SEQ ID N°2. L'invention a également pour objet un troisième polynucléotide isolé, comprenant : 25 - une séquence contenant les nucléotides 1 à 41 de l'une des séquences SEQ ID N°3 ou SEQ ID N°4, couplée à son extrémité 3' à une séquence codante d'un gène d'intérêt. On entend par séquences couplées au sens de la présente invention, la liaison de deux séquences par des liaisons phosphodiesters. La liaison peut être effectuée par synthèse chimique ou enzymatique ou par construction par PCR (amplification en chaîne par polymérase). En 30 particulier, le troisième polynucléotide selon l'invention comprend une séquence codante d'un gène d'intérêt couplée à son extrémité 5' à l'extrémité 3' d'une séquence contenant les nucléotides 1 à 41 de l'une des séquences SEQ ID N°3 ou SEQ ID N°4. Staphylococcal infections include all infections that cause bacteria of the genus Staphylococcus. These infections include all pathologies and / or disorders that can be improved and / or avoided by reducing the expression of the Sbi protein. In particular, staphylococcal infections include Staphylococcus aureus infections including superficial or deep folliculitis (such as boils, anthrax and staphylococcal sycosis), staphylococcal syndrome of scalded children, wound infections, furuncle, bacteremia, endocarditis, osteomyelitis or septic arthritis. According to another aspect, the subject of the invention is also a product containing: at least one component selected from the group comprising a first isolated polynucleotide according to the invention, a first expression cassette according to the invention, a first vector according to the invention, a first host cell according to the invention; and at least one other antistaphylococcal agent, as a combination product for simultaneous, separate and / or spreading use for the prevention and / or treatment of a staphylococcal infection. For the purposes of the present invention, the term "antistaphylococcal agent" means an agent intended to control at least one bacterial strain of the genus Staphylococcus, in particular against at least one bacterial strain of the genus Staphylococcus selected from the group comprising the bacterial strains of the genus Staphylococcus of which the genome contains: a gene encoding the Sbi protein of sequence SEQ ID No. 5 or a homologous protein; and / or a gene encoding an RNA comprising the sequence SEQ ID No. 3 or a derived sequence having at least 70% identity with the sequence SEQ ID No. 3 and the fragments thereof; and / or a gene comprising the sequence SEQ ID No. 4 or a derived sequence having at least 70% identity with the sequence SEQ ID No. 4 and the fragments thereof; and most particularly against at least one strain of Staphylococcus aureus. The antistaphylococcal agent may be selected from the group consisting of: - antibiotics for preventing and / or treating local infections such as fusidic acid, mupirocin; antibiotics intended to prevent and / or treat systemic infections such as rifampicin, fluoroquinolones, fusidic acid, trimethoprim-sulfamethoxazole, glycopeptides; and bacteriophages such as 11) 812, K and (pMR11.) The combination products according to the invention comprising another antistaphylococcal agent have the advantages of optimizing the prevention and / or treatment of staphylococcal infection and In another aspect, the subject of the invention is a second isolated polynucleotide comprising a sequence chosen from the group comprising: the sequence SEQ ID No. 3, the derived sequences having at least 70% d identity with the sequence SEQ ID No. 3 and fragments thereof, and the sequence SEQ ID No. 4, the derived sequences having at least 70% identity with the sequence SEQ ID No. 4 and the fragments thereof, said derived sequences and said fragments having the capacity to hybridize specifically with the sequence SEQ ID No. 1 and / or with the sequence SEQ ID No. 2. In particular, the second isolated polynucleotide selo the invention comprises a sequence selected from the group comprising: the sequence SEQ ID No. 8, the derived sequences having at least 70% identity with the sequence SEQ ID No. 8 and the fragments thereof; and the sequence SEQ ID No. 9, the derived sequences having at least 70% identity with the sequence SEQ ID No. 9 and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID No. 1 and / or with the sequence SEQ ID No. 2. In particular, said derived sequences and said fragments having the capacity to hybridize specifically with the sequence SEQ ID No. 1 and / or with the sequence SEQ ID No. 2, according to the second polynucleotide according to the invention, comprise the nucleotides gaaaggg located at position 28 to 34 (corresponding to the Shine-Dalgarno sequence) and the nucleotides 15a, located at position 42 to 44 (corresponding to the codon for initiation of the translation of the mRNA encoding the Sbi protein) in the sequence SEQ ID No. 3 or SEQ ID No. 4. The fragments of sequences of the second polynucleotide according to the invention may have a size of between 14 and 50, preferably between 20 and 45 and most preferably between 41 and 45. Preferably, the fragments of sequences of the second polynucleotide according to the invention. comprise the 41 nucleotides located from position 1 to position 41 in the sequence SEQ ID No. 3 or the sequence SEQ ID No. 4. The analogues of the second polynucleotide according to the invention have the capacity to hybridize specifically with the sequence SEQ ID No. 1 and / or with the sequence SEQ ID No. 2. The invention also relates to a third isolated polynucleotide, comprising: a sequence containing nucleotides 1 to 41 of one of the sequences SEQ ID No. 3 or SEQ ID No. 4, coupled at its 3 'end to a coding sequence of a gene of interest. For the purposes of the present invention, the term "coupled sequences" means the linking of two sequences by phosphodiester bonds. The binding can be carried out by chemical or enzymatic synthesis or by PCR construction (polymerase chain reaction). In particular, the third polynucleotide according to the invention comprises a coding sequence of a gene of interest coupled at its 5 'end to the 3' end of a sequence containing nucleotides 1 to 41 of one of the sequences. SEQ ID No. 3 or SEQ ID No. 4.

On entend par une séquence contenant les nucléotides 1 à 41 de l'une des séquences SEQ ID N°3 ou SEQ ID N°4 au sens de la présente invention, une séquence contenant les 41 nucléotides localisés de la position 1 à la position 41 dans la séquence SEQ ID N°3 ou la séquence SEQ ID N°4. A sequence containing nucleotides 1 to 41 of one of the sequences SEQ ID No. 3 or SEQ ID No. 4 within the meaning of the present invention is understood to mean a sequence containing the 41 nucleotides located from position 1 to position 41 in the sequence SEQ ID No. 3 or the sequence SEQ ID No. 4.

On entend par séquence codante au sens de la présente invention, une séquence nucléotidique qui définit directement la séquence en acides aminés d'une protéine ou d'un fragment de la protéine correspondante codée par un gène d'intérêt. Une séquence codante d'un gène d'intérêt comprend notamment les codons d'initiation et de terminaison de la traduction de l'ARNm de ce gène en protéine. For the purposes of the present invention, the term "coding sequence" is intended to mean a nucleotide sequence which directly defines the amino acid sequence of a protein or fragment of the corresponding protein encoded by a gene of interest. A coding sequence of a gene of interest notably comprises the codons for initiation and termination of the translation of the mRNA of this gene into protein.

De préférence, dans le troisième polynucléotide selon l'invention, l'extrémité 5' du codon d'initiation de la traduction de l'ARNm du gène d'intérêt est lié directement par liaison phosphodiester au nucléotide c localisé en position 41 dans l'une des séquences SEQ ID N°3 ou SEQ ID N°4. Ainsi, dans le cas où le codon d'initiation de la traduction de l'ARNm du gène d'intérêt est aug, le nucléotide a de ce codon d'initiation est lié au nucléotide c en position 41 de l'une des séquences SEQ ID N°3 ou SEQ ID N°4 pour former l'enchaînement de nucléotides caug. Le gène d'intérêt peut être tout gène qui code pour une protéine ou un fragment protéique d'intérêt dont on souhaite réguler l'expression, en particulier négativement par la présence d'un premier polynucléotide selon l'invention. Preferably, in the third polynucleotide according to the invention, the 5 'end of the translation initiation codon of the mRNA of the gene of interest is directly linked by phosphodiester bond to nucleotide c located at position 41 in the one of the sequences SEQ ID No. 3 or SEQ ID No. 4. Thus, in the case where the translation initiation codon of the mRNA of the gene of interest is aug, nucleotide a of this initiation codon is linked to nucleotide c at position 41 of one of the SEQ sequences. ID No. 3 or SEQ ID No. 4 to form the sequence of nucleotides caug. The gene of interest may be any gene which encodes a protein or a protein fragment of interest whose expression it is desired to regulate, in particular negatively by the presence of a first polynucleotide according to the invention.

L'expression de la protéine ou du fragment protéique d'intérêt codé par le gène d'intérêt selon le troisième polynucléotide selon l'invention peut ainsi être régulée négativement par la présence d'un premier polynucléotide selon l'invention. En particulier, une séquence codante d'un gène d'intérêt peut être une séquence codant au moins un domaine de la protéine Sbi, ledit domaine étant capable de se lier spécifiquement à la 25 protéine C3 du complément et/ou à des immunoglobulines IgG. Le troisième polynucléotide selon l'invention peut comprendre en outre au moins une séquence non codante dudit gène d'intérêt. L'invention a également pour objet une deuxième cassette d'expression comprenant une séquence d'ADN choisie dans le groupe comprenant : 30 - la séquence SEQ ID N°4, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°4 et les fragments de celles-ci ; et - une séquence d'ADN pouvant être transcrite en un deuxième ou troisième polynucléotide selon l'invention, ledit polynucléotide étant un ARN. L'invention a également pour objet un deuxième vecteur recombinant comprenant une deuxième cassette d'expression selon l'invention. The expression of the protein or protein fragment of interest encoded by the gene of interest according to the third polynucleotide according to the invention can thus be negatively regulated by the presence of a first polynucleotide according to the invention. In particular, a coding sequence of a gene of interest may be a sequence coding for at least one domain of the Sbi protein, said domain being capable of binding specifically to the complement C3 protein and / or to IgG immunoglobulins. The third polynucleotide according to the invention may further comprise at least one non-coding sequence of said gene of interest. The subject of the invention is also a second expression cassette comprising a DNA sequence chosen from the group comprising: the sequence SEQ ID No. 4, the derived sequences having at least 70% identity with the sequence SEQ ID No. 4 and fragments thereof; and a DNA sequence that can be transcribed into a second or third polynucleotide according to the invention, said polynucleotide being an RNA. The subject of the invention is also a second recombinant vector comprising a second expression cassette according to the invention.

L'invention a également pour objet une deuxième cellule hôte selon l'invention transformée par une deuxième cassette d'expression selon l'invention ou un deuxième vecteur selon l'invention. La présente invention a également pour objet une composition pharmaceutique selon l'invention comprenant en outre : - un troisième polynucléotide isolé selon l'invention dans lequel ladite séquence codante est une séquence codant au moins un domaine de la protéine Sbi, et/ou - un vecteur d'expression comprenant un troisième polynucléotide isolé selon l'invention dans lequel ladite séquence codante est une séquence codant au moins un domaine de la protéine Sbi, ledit domaine de la protéine Sbi étant capable de se lier spécifiquement à la protéine C3 du complément et/ou à des immunoglobulines IgG. On entend par domaine de la protéine Sbi qui est capable de se lier spécifiquement à la protéine C3 du complément le domaine Sbi-IV tel que décrit dans Upadhyay et al. (JBC, 11 juin 2008), à savoir le domaine incluant les acides aminés 198 à 266 de la séquence SEQ ID N° 5, les domaines dérivés du domaine Sbi-IV, et les fragments de ceux-ci. Lesdits domaines dérivés du domaine Sbi-IV, et lesdits fragments ayant la capacité de se lier spécifiquement à la protéine C3 du complément. On entend par domaine de la protéine Sbi qui est capable de se lier spécifiquement à des immunoglobulines IgG , les domaines Sbi-I et Sbi-II tel que décrit dans Upadhyay et al. (JBC, 11 juin 2008), à savoir le domaine Sbi-I incluant les acides aminés 42 à 94 de la séquence SEQ ID N°5, le domaine Sbi-II incorporant les acides aminés 92 à 156 de la séquence SEQ ID N°4, les domaines dérivés des domaines Sbi-I et Sbi-II, et les fragments de ceux-ci. Lesdits domaines dérivés des domaines Sbi-I et Sbi-II, et lesdits fragments ayant la capacité de se lier spécifiquement à des immunoglobulines IgG. The subject of the invention is also a second host cell according to the invention transformed by a second expression cassette according to the invention or a second vector according to the invention. The subject of the present invention is also a pharmaceutical composition according to the invention further comprising: a third isolated polynucleotide according to the invention in which said coding sequence is a sequence coding for at least one domain of the Sbi protein, and / or expression vector comprising a third isolated polynucleotide according to the invention wherein said coding sequence is a sequence coding for at least one domain of the Sbi protein, said domain of the Sbi protein being capable of binding specifically to the complement C3 protein and / or IgG immunoglobulins. By domain of the Sbi protein which is capable of binding specifically to the complement C3 protein is meant the Sbi-IV domain as described in Upadhyay et al. (JBC, June 11, 2008), namely the domain including amino acids 198 to 266 of the sequence SEQ ID No. 5, domains derived from the Sbi-IV domain, and fragments thereof. Said domains derived from the Sbi-IV domain, and said fragments having the capacity to bind specifically to the complement C3 protein. By domain of the Sbi protein which is capable of binding specifically to IgG immunoglobulins, is meant the Sbi-I and Sbi-II domains as described in Upadhyay et al. (JBC, June 11, 2008), namely the Sbi-I domain including amino acids 42 to 94 of the sequence SEQ ID No. 5, the Sbi-II domain incorporating amino acids 92 to 156 of the sequence SEQ ID No. 4, domains derived from the Sbi-I and Sbi-II domains, and fragments thereof. Said domains derived from the Sbi-I and Sbi-II domains, and said fragments having the capacity to bind specifically to IgG immunoglobulins.

De telles compositions pharmaceutiques selon l'invention présentent l'avantage de permettre la modulation du système immunitaire de l'hôte notamment dans le temps. En effet, les composants de telles compositions pharmaceutiques peuvent être administrés de façon simultanée, séparée et/ou étalée dans le temps afin de moduler le système immunitaire. De telles compositions pharmaceutiques peuvent permettre de faire varier l'expression de la protéine Sbi en fonction de la quantité des composants (premier et troisième polynucléotides selon l'invention) et/ou en fonction du temps et ainsi de faire varier la réponse du système immunitaire adaptif et/ou inné de l'hôte (IgG, protéine C3). La présente invention a également pour objet une méthode de détection, in vitro, de la présence de bactéries du genre Staphylococcus dans un échantillon biologique, comprenant la détection d'au moins une séquence choisie dans le groupe comprenant : - les séquences telles que définies selon le premier polynucléotide selon l'invention; et - les séquences telles que définies selon le deuxième polynucléotide selon l'invention; avec au moins un moyen de détection approprié de ladite séquence. Ledit moyen de détection d'une séquence approprié peut être tout couple d'amorces spécifiques pour l'amplification de ladite séquence (par exemple par PCR ou RT-PCR), ou toute sonde spécifique de ladite séquence. Such pharmaceutical compositions according to the invention have the advantage of allowing the modulation of the immune system of the host, especially over time. Indeed, the components of such pharmaceutical compositions can be administered simultaneously, separately and / or spread over time in order to modulate the immune system. Such pharmaceutical compositions may make it possible to vary the expression of the Sbi protein as a function of the quantity of the components (first and third polynucleotides according to the invention) and / or as a function of time and thus to vary the response of the immune system. adaptive and / or innate host (IgG, C3 protein). The subject of the present invention is also a method for detecting, in vitro, the presence of bacteria of the genus Staphylococcus in a biological sample, comprising the detection of at least one sequence chosen from the group comprising: the sequences as defined according to the first polynucleotide according to the invention; and the sequences as defined according to the second polynucleotide according to the invention; with at least one appropriate detection means of said sequence. Said means for detecting an appropriate sequence may be any pair of specific primers for the amplification of said sequence (for example by PCR or RT-PCR), or any specific probe of said sequence.

Les séquences des polynucléotides selon l'invention peuvent être utiles pour sélectionner de telles amorces et sondes. En particulier, les séquences telles que définies selon le premier polynucléotide selon l'invention, peuvent être utiles pour sélectionner des sondes permettant la détection de séquences telles que définies selon le deuxième polynucléotide selon l'invention et inversement. The sequences of the polynucleotides according to the invention may be useful for selecting such primers and probes. In particular, the sequences as defined according to the first polynucleotide according to the invention may be useful for selecting probes allowing the detection of sequences as defined according to the second polynucleotide according to the invention and vice versa.

Ainsi, selon un mode de réalisation particulier de ladite méthode de détection, in vitro, de la présence de bactéries du genre Staphylococcus dans un échantillon biologique, la détection de ladite séquence peut comprendre les étapes suivantes : 1. la mise en contact dudit échantillon biologique avec au moins une sonde comprenant une séquence choisie dans le groupe comprenant : - les séquences telles que définies selon le premier polynucléotide selon l'invention : - la séquence SEQ ID N°1, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°l et les fragments de celles-ci ; et - la séquence ID N°2, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°2 et les fragments de celles-ci ; et - la séquence complémentaire de la séquence SEQ ID N°3, les séquences dérivées ayant au moins 70 % d'identité avec ladite séquence complémentaire et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°3; et - les séquences telles que définies selon le deuxième polynucléotide selon l'invention : - la séquence SEQ ID N°3, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°3 et les fragments de celles-ci ; et - la séquence SEQ ID N°4, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°4 et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°l et/ou avec la séquence SEQ ID N°2 ; et 2. la détection de l'hybridation de ladite sonde avec ladite séquence avec au moins un moyen de détection approprié de ladite hybridation. Thus, according to a particular embodiment of said method for detecting, in vitro, the presence of bacteria of the genus Staphylococcus in a biological sample, the detection of said sequence can comprise the following steps: 1. contacting said biological sample with at least one probe comprising a sequence chosen from the group comprising: the sequences as defined according to the first polynucleotide according to the invention: the sequence SEQ ID No. 1, the derived sequences having at least 70% identity with the sequence SEQ ID No. 1 and the fragments thereof; and the sequence ID No. 2, the derived sequences having at least 70% identity with the sequence SEQ ID No. 2 and the fragments thereof; and the sequence complementary to the sequence SEQ ID No. 3, the derived sequences having at least 70% identity with said complementary sequence and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID NO: 3; and the sequences as defined according to the second polynucleotide according to the invention: the sequence SEQ ID No. 3, the sequences derived having at least 70% identity with the sequence SEQ ID No. 3 and the fragments thereof; this ; and the sequence SEQ ID No. 4, the derived sequences having at least 70% identity with the sequence SEQ ID No. 4 and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID No. 1 and / or with the sequence SEQ ID No. 2; and 2. detecting the hybridization of said probe with said sequence with at least one appropriate detection means of said hybridization.

Selon un mode de réalisation particulier de ladite méthode de détection, in vitro, de la présence de bactéries du genre Staphylococcus dans un échantillon biologique, la détection de ladite séquence peut comprendre les étapes suivantes : 1. la mise en contact dudit échantillon biologique avec au moins un couple d'amorces spécifiques de ladite séquence dans des conditions permettant une hybridation des amorces à ladite séquence ; 2. l'amplification de ladite séquence ; et 3. la mise en évidence de l'amplification de fragments de ladite séquence correspondant au fragment encadré par les amorces incluant celles-ci. Les amorces spécifiques des séquences telles que définies selon le premier ou le deuxième 25 polynucléotide selon l'invention peuvent être sélectionnées par l'Homme du Métier par des tests de routine à partir desdites séquences. La présente invention a également pour objet une méthode de détection, in vitro, d'ARNm du gène codant la protéine Sbi présent dans un échantillon biologique, comprenant la détection de la séquence SEQ ID N°3, avec au moins un moyen de détection approprié de ladite séquence. 30 La méthode de détection in vitro, d'ARNm du gène codant la protéine Sbi présent dans un échantillon biologique selon l'invention présente l'avantage par rapport à une méthode de détection de l'ADN codant la protéine Sbi de permettre la détection d'infections actives staphylococciques. En effet, il a été montré que l'expression de la protéine Sbi est induite par la présence d'IgG humaines (Zhang et al, 2000). Les séquences telles que définies selon le premier polynucléotide selon l'invention, peuvent être utilisé comme sonde pour détecter, in vitro, spécifiquement et de manière directe de 5 l'ARNm du gène codant la protéine Sbi présent dans un échantillon biologique. Ainsi, selon un autre aspect, l'invention a pour objet une méthode de détection, in vitro, d'ARNm du gène codant la protéine Sbi présent dans un échantillon biologique, comprenant les étapes suivantes : - la mise en contact dudit échantillon biologique avec au moins une sonde comprenant 10 une séquence choisie dans le groupe comprenant : - la séquence SEQ ID N°1, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°l et les fragments de celles-ci ; et - la séquence ID N°2, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°2 et les fragments de celles-ci ; et 15 - la séquence complémentaire de la séquence SEQ ID N°3, les séquences dérivées ayant au moins 70 % d'identité avec ladite séquence complémentaire et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°3; et 20 - la détection de l'hybridation de ladite sonde avec le dit ARNm du gène codant la protéine Sbi avec au moins un moyen de détection de ladite hybridation approprié. La méthode de détection selon l'invention peut comprendre en outre préalablement à l'étape de mise en contact, au moins une des étapes suivantes : - la mise en culture de l'échantillon biologique, éventuellement après isolement 25 des bactéries du genre Staphylococcus sur un milieu sélectif, dans des conditions appropriées permettant la culture de bactéries du genre Staphylococcus ; - la centrifugation de l'échantillon biologique ; - la lyse de bactéries du genre Staphylococcus ; - l'extraction des polynucléotides présents dans ledit échantillon. 30 La présente invention a également pour objet un kit de détection d'ARNm du gène codant la protéine Sbi, comprenant: - au moins une sonde comprenant une séquence choisie dans le groupe comprenant : - la séquence SEQ ID N°1, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°l et les fragments de celles-ci ; et - la séquence ID N°2, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°2 et les fragments de celles-ci ; et - la séquence complémentaire de la séquence SEQ ID N°3, les séquences dérivées ayant au moins 70 % d'identité avec ladite séquence complémentaire et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°3; et - au moins un moyen de détection de l'hybridation de ladite sonde avec ledit ARNm du gène codant la protéine Sbi. Ledit moyen de détection approprié de l'hybridation de ladite sonde avec une séquence, notamment avec ledit ARNm du gène codant la protéine Sbi, peut être tout moyen permettant la détection d'une hybridation spécifique entre deux polynucléotides. Notamment, ledit moyen de détection peut être basé sur le marquage de la sonde. Les séquences non marquées peuvent être utilisées directement comme sondes. Cependant les séquences peuvent être marquées directement ou indirectement par un élément radioactif (32P, 35S) ou par une molécule non radioactive (biotine, fluorophore) pour obtenir des sondes utilisables dans de nombreuses applications, notamment dans des méthodes de détection telles que décrites ci-dessus. Les sondes peuvent être en solution ou immobilisés sur un support. La séquence SEQ ID N°3 peut également être utilisée pour sélectionner des amorces oligonucléotidiques, notamment pour les techniques de PCR (à partir d'ADN génomique) et RT- PCR (à partir d'extrait d'ARN total). Ces oligonucléotides pourront être utilisés pour détecter, in vitro, spécifiquement et de manière directe de l'ARNm du gène codant la protéine Sbi présent dans un échantillon biologique. Selon un autre aspect, l'invention a pour objet un kit de régulation de l'expression d'un gène d'intérêt comprenant : - au moins un premier composant choisi dans le groupe comprenant un deuxième ou troisième polynucléotide isolé selon l'invention, une deuxième cassette d'expression, un deuxième vecteur et une deuxième cellule hôte selon l'invention ; et - au moins un second composant choisi dans le groupe comprenant un premier polynucléotide selon l'invention, une première cassette d'expression, un premier vecteur et une première cellule hôte selon l'invention. L'invention a également pour objet l'utilisation, en particulier non thérapeutique, d'un 5 premier polynucléotide isolé selon l'invention pour inhiber l'expression du gène codant la protéine Sbi, notamment pour inhiber la traduction de l'ARNm codant la protéine Sbi. L'invention a également pour objet l'utilisation, en particulier non thérapeutique, d'un premier polynucléotide isolé selon l'invention en combinaison avec un deuxième et/ou troisième polynucléotide isolé selon l'invention pour inhiber l'expression d'un gène d'intérêt, notamment 10 pour inhiber la traduction d'un ARNm codant une protéine d'intérêt. D'autres avantages et caractéristiques de l'invention apparaîtront au regard des exemples qui suivent. Ces exemples sont donnés à titre illustratif et non limitatif. On entend par sprD au sens de la première invention, un premier polynucléotide selon 15 l'invention correspondant à la seconde isoforme de la séquence SEQ ID N°7 (à savoir la séquence SEQ ID N°7, dans laquelle les nucléotides en positions 44, 45 et 57 sont u). SprD a été identifiée notamment dans la souche S. aureus N315. La Figure 1 illustre la structure de sprD en solution et son emplacement cellulaire. (A-C) : Sondage structural de sprD. Des autoradiogrammes des produits de clivage de sprD 20 synthétique marqué en 5' par le plomb et les nucléases S1 et V1 après migrations électrophorétiques longue (A) et courte (B). Pistes C, témoins d'incubation ; Pistes GL, bandes obtenues par hydrolyse RNase Ti ; pistes AL, bandes obtenues par hydrolyse RNAse U2 ; pistes AH, bandes obtenues par hydrolyse alcaline. La séquence sprD est indexée au niveau des côtés droits. (C) Modèle de structure secondaire de sprD de la souche N315 de S. aureus, reposant sur 25 une cartographie structurale, montrant les données de sondage. Les triangles correspondent à des coupures par V1 ; les flèches coiffées d'un cercle sont des coupures par S1, les flèches non coiffées sont des coupures par l'acétate de plomb. L'intensité des coupures et des clivages est proportionnelle à la densité de coloration des symboles : un symbole vide (sans coloration), grisé et plein correspond à une coupure faible, moyenne et forte, respectivement. Les domaines 30 structuraux Hl-H4 et L 1-L4 sont indiqués. Le nucléotide encadré correspond à l'extrémité 5' déterminée expérimentalement (RACE) ainsi qu'au site d'initiation de la transcription. Les 36 nucléotides encadrés par les deux crochets noirs ont été délétés dans le mutant sprDA. (D) : Emplacement cellulaire de SprD, de l'ARNtm et de l'ARNIII in vivo, par des Northern-Blots des différentes fractions cellulaires en utilisant des sondes d'ADN spécifiques du brin marquées qui sont spécifiques pour chaque ARN. La fraction cytoplasmique (C) contient les ARNt, la fraction ribosomique (R) contient les trois ARN ribosomiques. La fraction membranaire (M) contient les protéines ErbS et ATPase, selon une analyse par immunoempreinte (Western immunoblot) des fractions cellulaires C, R, et M immunoempreintés (immunoblotted) avec des anticorps anti-ErbS et anti-ATPase. La Figure 2 illustre la régulation de l'expression de sprD in vivo. Analyse par Northern blot de l'expression de sprD, en utilisant une sonde d'ADN spécifique du brin marquée, dans des souches bactérienne RN4220 et SH1000, toutes deux dépourvues du gène sprD, transformées par les vecteurs pCN38 ou pCN51 permettant l'expression de sprD. L'expression de sprD dans la souche N315 est montrée en tant que témoin positif. En tant que témoins de chargement, les blots ont également été sondés pour l'ARNr 5S. La Figure 3 illustre la régulation négative des niveaux de protéine sbi in vivo par sprD. (A). Analyse SDS-PAGE des exoprotéines dans les souches de type sauvage RN4220 et SH1000 et leurs mutants isogéniques produisant sprD préparés à partir de la phase de croissance exponentielle (E). Le gel SDS-PAGE a été coloré au bleu de Coomassie. La flèche met en évidence les niveaux de protéines réduits lorsque sprD est exprimé, à un poids moléculaire d'environ 45 kD, identifié par spectrographie de masse comme la protéine sbi, basé sur 25 séquences peptidiques indépendantes. Une analyse par immunoempreinte (Western immunoblot) des fractions extracellulaires (B) et intracellulaires (C) provenant des souches bactériennes RN4220 et SH1000 exprimant, ou non, sprD à la fois aux phases exponentielle (E) et stationnaire (S). 50 g de protéine provenant des fractions cellulaires ont été chargées sur SDSPAGE 15 %, transférés sur une membrane en difluorure de polyvinylidène et immunoempreintés (immunoblotted) avec un anticorps anti-sbi, suivie d'une détection par chimioluminescence. La Figure 4 illustre le fait que SprD n'est pas impliqué dans l'induction des niveaux de protéine sbi par le sérum humain. (A) Analyse par immunoempreinte (Western immunoblot) des fractions extracellulaires provenant des souches bactériennes SH1000 et MRSA252 cultivées en présence ou en l'absence de sérum humain. La souche SH1000 exprime sprD (+), ou non (-). Les niveaux d'expression de la protéine A dans chaque bande sont fournis à titre de témoin de chargement interne. (B) Analyse par Northern blot de l'expression de sprD en utilisant une sonde d'ADN spécifique du brin marquée. À titre de témoins de chargement, les blots ont également été sondés pour l'ARNr 5S. La Figure 5 illustre la formation d'un complexe entre sprD et l'ARNm codant la protéine 35 Sbi. (A) L'appariement prédit entre sprD et l'ARNm de sbi, fondé sur (i) une prédiction informatique (ii) une analyse mutationnelle et de retard sur gel natif (iii) un sondage structural de sprD à l'intérieur du duplex. Les domaines structuraux provenant de sprD qui sont dépliés lors de la formation du complexe sont indiqués. Les signes (-) et (+) correspondent aux nucléotides provenant de sprD qui sont protégés (-) ou deviennent clivés (+) par des ribonucléases S1 ou V1 lors de la liaison à l'ARNm codant la protéine Sbi. Le rectangle noir montre l'extrémité 5' de l'ARNm de sbi comme déterminée expérimentalement par 5'RACE. La séquence heptanucléotidique encadrée (GAAAGGG) correspond au RBS (Ribosome Binding site : site de fixation de ribosomes) prédit et l'AUG encadré est le codon de d'initiation de la traduction de l'ARNm de sbi en protéine. (B) Essais de retard sur gel non dénaturant de l'ARN marqué purifié correspondant à 179 (ARNm de sbi) ou 118 (A61 de sbi) nucléotides à son extrémité 5', tous deux avec des quantités croissantes de sprD non marqué purifié, ou avec un mutant sprD dépourvu des nucléotides 35 à 70 (sprD A), ou avec un excès de 100 à 2000 fois d'ARN totaux non marqués purifiés provenant de levure. La Figure 6 représente la cartographie du changement conformationnel induit par la formation d'un complexe entre l'ARNm de sbi et sprD par des sondes structurales. Les autoradiogrammes des produits de clivage de sprD marqué en 5' par les ribonucléases S1 et V1, en présence (+) ou en l'absence (-) d'un excès molaire de 8 fois d'ARNm de sbi dérivé de migrations électrophorétiques courte (à gauche) et longue (à droite). Pistes C, témoins d'incubation ; Pistes GL, bandes obtenues par hydrolyse RNase Ti ; Pistes AL, bandes obtenues par hydrolyse RNase U2 ; la séquence est indexée sur les côtés droits. La zone d'appariement entre les deux ARN est indiquée, en fonction des données mutationnelles et de sondage. La Figure 7 illustre l'inhibition par sprD de l'initiation de la traduction de l'ARNm de sbi via les ribosomes 70S. La localisation par la technique du toeprinting du ribosome sur l'ARNm de sbi comme décrit dans la partie Matériels et Méthodes, ci-après. +1- indique la présence de ribosomes, de sprD de type sauvage (pistes 2, 5, 6 et 7) ou de sprD-A (pistes 3, 8, 9 et 10). Les concentrations de sprD et sprD-A étaient de 0,4 M (bandes 5 et 8), 2 M (bandes 6 et 9) et 10 M (bandes 7 et 10). Les toeprints (empreintes avant) déterminés expérimentalement sont indiqués. U, A, G et C, font référence aux échelles de séquençage de l'ARNm de sbi. According to a particular embodiment of said method for detecting, in vitro, the presence of bacteria of the genus Staphylococcus in a biological sample, the detection of said sequence may comprise the following steps: 1. bringing said biological sample into contact with minus a pair of primers specific for said sequence under conditions allowing hybridization of the primers to said sequence; 2. the amplification of said sequence; and 3. demonstrating the amplification of fragments of said sequence corresponding to the fragment flanked by the primers including these. The primers specific for the sequences as defined according to the first or second polynucleotide according to the invention may be selected by those skilled in the art by routine tests from said sequences. The subject of the present invention is also a method for detecting, in vitro, mRNA of the gene encoding the Sbi protein present in a biological sample, comprising the detection of the sequence SEQ ID No. 3, with at least one appropriate detection means. of said sequence. The in vitro detection method of mRNA of the gene encoding the Sbi protein present in a biological sample according to the invention has the advantage over a detection method of the DNA encoding the Sbi protein to allow the detection of staphylococcal active infections. Indeed, it has been shown that the expression of the Sbi protein is induced by the presence of human IgG (Zhang et al, 2000). The sequences as defined according to the first polynucleotide according to the invention may be used as a probe to detect, in vitro, specifically and directly the mRNA of the gene encoding the Sbi protein present in a biological sample. Thus, according to another aspect, the subject of the invention is a method for detecting, in vitro, mRNA of the gene encoding the Sbi protein present in a biological sample, comprising the following steps: contacting said biological sample with at least one probe comprising a sequence selected from the group consisting of: the sequence SEQ ID No. 1, the derived sequences having at least 70% identity with the sequence SEQ ID No. 1 and the fragments thereof; and the sequence ID No. 2, the derived sequences having at least 70% identity with the sequence SEQ ID No. 2 and the fragments thereof; and the sequence complementary to the sequence SEQ ID No. 3, the derived sequences having at least 70% identity with said complementary sequence and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID NO: 3; and detecting the hybridization of said probe with said mRNA of the gene encoding the Sbi protein with at least one means for detecting said appropriate hybridization. The detection method according to the invention may furthermore comprise, prior to the contacting step, at least one of the following steps: cultivation of the biological sample, optionally after isolation of bacteria of the genus Staphylococcus on a selective medium, under appropriate conditions allowing the culture of bacteria of the genus Staphylococcus; centrifugation of the biological sample; the lysis of bacteria of the genus Staphylococcus; extraction of the polynucleotides present in said sample. The subject of the present invention is also a kit for detecting mRNA of the gene encoding the Sbi protein, comprising: at least one probe comprising a sequence chosen from the group comprising: the sequence SEQ ID No. 1, the sequences derived having at least 70% identity with the sequence SEQ ID No. 1 and fragments thereof; and the sequence ID No. 2, the derived sequences having at least 70% identity with the sequence SEQ ID No. 2 and the fragments thereof; and the sequence complementary to the sequence SEQ ID No. 3, the derived sequences having at least 70% identity with said complementary sequence and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID NO: 3; and at least one means for detecting the hybridization of said probe with said mRNA of the gene encoding the Sbi protein. Said means of appropriate detection of the hybridization of said probe with a sequence, in particular with said mRNA of the gene encoding the Sbi protein, may be any means allowing the detection of a specific hybridization between two polynucleotides. In particular, said detection means may be based on the marking of the probe. Unmarked sequences can be used directly as probes. However, the sequences may be labeled directly or indirectly by a radioactive element (32P, 35S) or by a non-radioactive molecule (biotin, fluorophore) to obtain probes that can be used in numerous applications, in particular in detection methods as described below. above. The probes can be in solution or immobilized on a support. The sequence SEQ ID No. 3 can also be used to select oligonucleotide primers, in particular for PCR (from genomic DNA) and RT-PCR (from total RNA extract) techniques. These oligonucleotides may be used to detect, in vitro, specifically and in a direct manner, the mRNA of the gene encoding the Sbi protein present in a biological sample. According to another aspect, the subject of the invention is a kit for regulating the expression of a gene of interest comprising: at least one first component selected from the group comprising a second or third isolated polynucleotide according to the invention, a second expression cassette, a second vector and a second host cell according to the invention; and at least one second component chosen from the group comprising a first polynucleotide according to the invention, a first expression cassette, a first vector and a first host cell according to the invention. The subject of the invention is also the use, in particular non-therapeutic, of a first isolated polynucleotide according to the invention for inhibiting the expression of the gene coding for the Sbi protein, in particular for inhibiting the translation of the mRNA encoding the Sbi protein. Sbi protein. The subject of the invention is also the use, in particular non-therapeutic, of a first polynucleotide isolated according to the invention in combination with a second and / or third polynucleotide isolated according to the invention for inhibiting the expression of a gene. of interest, especially for inhibiting the translation of an mRNA encoding a protein of interest. Other advantages and features of the invention will become apparent from the following examples. These examples are given for illustrative and not limiting. For the purposes of the first invention, the term "SprD" means a first polynucleotide according to the invention corresponding to the second isoform of the sequence SEQ ID No. 7 (ie the sequence SEQ ID No. 7, in which the nucleotides at the 44-position , 45 and 57 are u). SprD has been identified in particular in S. aureus strain N315. Figure 1 illustrates the solution sprD structure and its cell location. (A-C): Structural survey of sprD. Autoradiograms of the 5 'lead labeled synthetic 5' dG cleavage products and the S1 and V1 nucleases after long (A) and short (B) electrophoretic migrations. Lanes C, incubation controls; GL tracks, bands obtained by RNase Ti hydrolysis; AL tracks, bands obtained by RNAse U2 hydrolysis; AH tracks, bands obtained by alkaline hydrolysis. The sprD sequence is indexed at the right sides. (C) Secondary sprD structure model of S. aureus strain N315, based on structural mapping, showing survey data. The triangles correspond to cuts by V1; the arrows capped with a circle are cuts by S1, the uncapped arrows are cuts by lead acetate. The intensity of the cuts and cleavages is proportional to the coloring density of the symbols: an empty symbol (without coloration), grayed out and full corresponds to a weak, medium and strong cut, respectively. Structural domains H1-H4 and L1-L4 are indicated. The framed nucleotide corresponds to the experimentally determined 5 'end (RACE) as well as to the transcription initiation site. The 36 nucleotides flanked by the two black hooks were deleted in the sprDA mutant. (D): Cell location of SprD, tRNA, and RNAIII in vivo, by Northern blots of different cell fractions using labeled strand-specific DNA probes that are specific for each RNA. The cytoplasmic fraction (C) contains the tRNAs, the ribosomal fraction (R) contains the three ribosomal RNAs. The membrane fraction (M) contains the ErbS and ATPase proteins, according to immunoblot immunoblot analysis of the immune-blotted C, R, and M cell fractions (immunoblotted) with anti-ErbS and anti-ATPase antibodies. Figure 2 illustrates the regulation of in vivo expression of SprD. Northern blot analysis of SprD expression, using a labeled strand specific DNA probe, in RN4220 and SH1000 bacterial strains, both lacking the sprD gene, transformed with pCN38 or pCN51 vectors allowing expression of DPRS. SprD expression in strain N315 is shown as a positive control. As loading controls, the blots were also probed for 5S rRNA. Figure 3 illustrates the downregulation of sbi protein levels in vivo by sprD. (AT). SDS-PAGE analysis of exoproteins in RN4220 and SH1000 wild type strains and their isogenic sprD mutants prepared from the exponential growth phase (E). The SDS-PAGE gel was stained with Coomassie blue. The arrow highlights the reduced protein levels when sprD is expressed, at a molecular weight of about 45 kD, identified by mass spectrometry as the sbi protein, based on independent peptide sequences. Western immunoblot analysis of the extracellular (B) and intracellular (C) fractions from bacterial strains RN4220 and SH1000 expressing, or not, sprD at both the exponential (E) and stationary (S) phases. 50 g of protein from the cell fractions were loaded onto 15% SDSPAGE, transferred to a polyvinylidene difluoride membrane and immunoblotted with an anti-sbi antibody, followed by chemiluminescence detection. Figure 4 illustrates that SprD is not involved in the induction of sbi protein levels by human serum. (A) Western immunoblot analysis of extracellular fractions from SH1000 and MRSA252 bacterial strains cultured in the presence or absence of human serum. The strain SH1000 expresses sprD (+), or not (-). Expression levels of protein A in each band are provided as an internal loading control. (B) Northern blot analysis of SprD expression using a labeled strand specific DNA probe. As loading controls, blots were also probed for 5S rRNA. Figure 5 illustrates the formation of a complex between SprD and mRNA encoding Sbi protein. (A) The predicted pairing between sprD and sbi mRNA, based on (i) a computational prediction (ii) a mutational and native gel delay analysis (iii) a sprD structural survey within the duplex . Structural domains from sprD that are unfolded during complex formation are indicated. The (-) and (+) signs correspond to nucleotides from sprD that are protected (-) or become cleaved (+) by S1 or V1 ribonucleases when binding to the mRNA encoding the Sbi protein. The black rectangle shows the 5 'end of the sbi mRNA as experimentally determined by RACE. The framed heptanucleotide sequence (GAAAGGG) is the predicted RBS (Ribosome Binding site) and the framed AUG is the initiation codon for translating sbi mRNA into protein. (B) Non-denaturing gel retardation assays of purified labeled RNA corresponding to 179 (sbi mRNA) or 118 (sbi) A61 nucleotides at its 5 'end, both with increasing amounts of purified unlabeled gDG, or with a sprD mutant lacking nucleotides 35-70 (SprD A), or with an excess of 100-2000 folds of purified unclassified total RNA from yeast. Figure 6 shows the mapping of the conformational change induced by the formation of a complex between sbi mRNA and sprD by structural probes. The autoradiograms of the 5'-labeled 5 'dimer cleavage products by S1 and V1 ribonucleases, in the presence (+) or absence (-) of an 8-fold molar excess of sbi mRNA derived from short electrophoretic migrations (left) and long (right). Lanes C, incubation controls; GL tracks, bands obtained by RNase Ti hydrolysis; AL tracks, bands obtained by RNase U2 hydrolysis; the sequence is indexed on the right sides. The area of matching between the two ARNs is indicated, based on mutational and survey data. Figure 7 illustrates the inhibition by sprD of translation initiation of sbi mRNA via 70S ribosomes. The localization by the toeprinting technique of the ribosome on sbi mRNA as described in the Materials and Methods section, hereinafter. + 1 indicates the presence of ribosomes, wild-type sprDs (lanes 2, 5, 6 and 7) or sprD-A (lanes 3, 8, 9 and 10). The concentrations of sprD and sprD-A were 0.4 M (bands 5 and 8), 2 M (bands 6 and 9) and 10 M (bands 7 and 10). The toeprints (forward impressions) determined experimentally are indicated. U, A, G and C refer to sequencing scales of sbi mRNA.

EXEMPLES 1. Matériels et méthodes 1.1 Souches et plasmides Les souches de S. aureus et les plasmides utilisés dans cette étude sont énumérés dans le tableau 1. Les souches de S. aureus ont été cultivées de manière habituelle à 37 °C dans un bouillon d'infusion de cerveau et de coeur (BHI, Oxoid). Si nécessaire, les inventeurs ont utilisé du chloramphénicol et de l'érythromycine à raison de 10 g/ml. La souche DH5a d'E. Coli a été utilisée en tant qu'hôte bactérien pour la construction du plasmide. Les souches d'E. Coli ont été cultivées dans un milieu de Luria-Bertani (LB). Dans le plasmide pCN38-sprD, le gène codant pour sprD est exprimé sous le contrôle de son propre promoteur. Pour construire ce plasmide, sprD avec 40 nucléotides en amont et 35 nucléotides en aval a été amplifié par une PCR à partir de l'ARN génomique de la souche N315 de S. aureus en tant que fragment de 217 paires de bases avec des sites de restriction flanquants Pst I et EcoR I. Le produit de la PCR a été cloné entre ces deux sites dans le vecteur pCN38 à faible nombre de copies (Charpentier et al., 2004). E. coli DH5a Sambrook et al. 1989 S. a ureus RN4220 Dérivé défectueux de restriction de 8325-4 Kreiswirth et al. 1983 SH1000 Dérivé fonctionnel rsbU de 8325-4 rsbU Horsburgh et al. 2002 Plasmides pCN51 Charpentier et al. 2004 pCN38 Charpentier et al. 2004 pCN51-sprD Cette étude pCN38-sprD Cette étude Tableau 1 EXAMPLES 1. Materials and Methods 1.1 Strains and Plasmids The strains of S. aureus and the plasmids used in this study are listed in Table 1. Strains of S. aureus were grown in the usual manner at 37 ° C. in a broth. Brain and heart infusion (BHI, Oxoid). If necessary, the inventors used chloramphenicol and erythromycin at the rate of 10 g / ml. The strain DH5a of E. Coli was used as a bacterial host for the construction of the plasmid. Strains of E. Coli were grown in a medium of Luria-Bertani (LB). In plasmid pCN38-SprD, the gene encoding SprD is expressed under the control of its own promoter. To construct this plasmid, sprD with 40 nucleotides upstream and 35 nucleotides downstream was amplified by PCR from genomic RNA of S. aureus strain N315 as a fragment of 217 base pairs with Pst I and EcoR I flanking restriction. The PCR product was cloned between these two sites in the low copy number vector pCN38 (Charpentier et al., 2004). E. coli DH5a Sambrook et al. 1989 S. ureus RN4220 Restricted restriction derivative of 8325-4 Kreiswirth et al. 1983 SH1000 8320-4 rsbU rsbU functional derivative Horsburgh et al. 2002 Plasmids pCN51 Charpentier et al. 2004 pCN38 Charpentier et al. 2004 pCN51-sprD This study pCN38-sprD This study Table 1

1.2 Fractionnements des cellules Les fractions cellulaires de la souche N315 de S. aureus ont été préparées comme décrit (Chesneau et al., 2005) avec certaines modifications. 300 à 400 ml de cultures bactériennes ont été cultivées jusqu'à la phase exponentielle (DO 600 = 2,0). Les protoplastes ont été recueillis par la lyse des parois cellulaires par la lysostaphine (100 l de solution mère 1 mg/ml) dans 10 ml de Tris-HC1 pH = 7,5 avec 30 % de sucrose. Ensuite, les protoplastes ont été lysés par choc osmotique dans de 1'HEPES 25 mM pH 7,6, MgC12 10 mM, NH4C1 30 mM, bêtamercaptoéthanol 4 mM et complexe ribonucléoside Vanadyl 10 mM (BioLabs). Les centrifugations ont été effectuées à 30 000 g pendant 30 minutes (P30 : fraction membranaire) et 100 000 g pendant 3 heures (P100 : fraction ribosomique, 5100 : fraction cytoplasmique). 1.2 Cell Fractions The cell fractions of S. aureus strain N315 were prepared as described (Chesneau et al., 2005) with some modifications. 300 to 400 ml of bacterial cultures were grown to the exponential phase (OD 600 = 2.0). Protoplasts were collected by lysostaphin lysing of cell walls (100 l of stock solution 1 mg / ml) in 10 ml of Tris-HCl pH = 7.5 with 30% sucrose. Then, the protoplasts were lysed by osmotic shock in 25 mM HEPES pH 7.6, 10 mM MgCl 2, 30 mM NH 4 Cl, 4 mM betamercaptoethanol and 10 mM Vanadyl ribonucleoside complex (BioLabs). Centrifugations were performed at 30,000 g for 30 minutes (P30: membrane fraction) and 100,000 g for 3 hours (P100: ribosomal fraction, 5100: cytoplasmic fraction).

1.3 Isolation de la protéine, spectrométrie de masse et western immunoblots Pour la préparation des extraits de protéines totales et des extraits extracellulaires, les bactéries ont été cultivées jusqu'aux phases de croissance exponentielle (DO600 = 2,0) ou stationnaire (DO600 = 5,0) et les cellules ont été séparées du surnageant par centrifugation pendant 10 minutes à 4 °C (8 000 g). Pour la purification des protéines extracellulaires, les surnageants ont été recueillis, filtrés (filtre stérilisé de 0,45 m) et précipités avec 10 % d'acide trichloroacétique. Les précipités ont été lavés avec de l'acétone glacée et chargés sur SDS-PAGE selon le procédé de Laemmli, 1970. Pour les extractions des protéines totales, des culots de 2 ml de cultures ont été lavés avec du TE (EDTA 50 mM, Tris 50 mM pH 7,5), et remis en suspension dans 0,2 ml du même tampon contenant 0,1 mg/ml de lysostaphine. Après une incubation à 37 °C pendant 10 minutes, les échantillons ont été mis à bouillir pendant 5 minutes dans un tampon d'échantillon, analysés par SDS-PAGE et colorés au bleu de Coomassie R-250. Les protéines d'intérêt ont été extraites par SDS-PAGE 1D, digérées avec de la tripsine et les peptides obtenus ont été identifiés par spectrométrie de masse Maldi-Toff et RPHPLC/NanoLC/ESI-SM-SM. Pour les analyses par immunoempreinte (immunoblot), les protéines ont été transférées sur une membrane en PVDF (Immobilon-P, Millipore). Les analyses par Western blots ont été effectuées en utilisant un anticorps polyclonal anti-Sbi (don du Dr van den Elsen, Université de Bath, RU) et également des anticorps anti-EbpS et anti-ATP-ase, comme décrit dans Downer et al., (2002). Les signaux ont été visualisés en utilisant un imageur STORM 840 Phosphor-Imager (Molecular Dynamics) et quantifiés en utilisant un logiciel Image-QuantNT 5.2. 1.4 Isolation de l'ARN et Northern blots Les ARN totaux ont été préparés à partir des phases de croissance exponentielle (DO600 = 2,0) ou stationnaire (DO600 = 5,0) de diverses souches de S. aureus comme décrit dans Oh et So (2003). Pour l'ARNs 5S et d'autres ARNs, des Northern blots ont été effectués avec 5 g d'ARN totaux dénaturés et purifiés sur gel PAGE 8 % dénaturant, comme décrit dans Pichon et Felden (2005). Pour l'ARNm de sbi, des Northern blots ont été effectués comme décrit dans McCallum et al. (2006). 1.3 Protein isolation, mass spectrometry and western immunoblots For the preparation of total protein extracts and extracellular extracts, the bacteria were cultured until the exponential (OD600 = 2.0) or stationary (OD600 = 5) growth phases. , 0) and the cells were removed from the supernatant by centrifugation for 10 minutes at 4 ° C (8000 g). For purification of the extracellular proteins, the supernatants were collected, filtered (0.45 m sterilized filter) and precipitated with 10% trichloroacetic acid. The precipitates were washed with ice-cold acetone and loaded on SDS-PAGE according to the Laemmli method, 1970. For total protein extractions, 2 ml pellets of cultures were washed with TE (50 mM EDTA, 50 mM Tris pH 7.5), and resuspended in 0.2 ml of the same buffer containing 0.1 mg / ml of lysostaphin. After incubation at 37 ° C for 10 minutes, the samples were boiled for 5 minutes in sample buffer, analyzed by SDS-PAGE and stained with Coomassie Blue R-250. The proteins of interest were extracted by 1D SDS-PAGE, digested with trypsin and the resulting peptides identified by Maldi-Toff mass spectrometry and RPHPLC / NanoLC / ESI-MS-MS. For immunoblot analyzes, the proteins were transferred to a PVDF membrane (Immobilon-P, Millipore). Western blots analyzes were performed using a polyclonal anti-Sbi antibody (donated by Dr. van den Elsen, University of Bath, UK) and also anti-EbpS and anti-ATP-ase antibodies, as described in Downer et al. ., (2002). The signals were visualized using a STORM 840 Phosphor-Imager (Molecular Dynamics) imager and quantified using Image-QuantNT 5.2 software. 1.4 Isolation of RNA and Northern blots Total RNAs were prepared from the exponential (OD600 = 2.0) or stationary (OD600 = 5.0) growth phases of various S. aureus strains as described in Oh and So (2003). For 5S-RNA and other RNAs, Northern blots were run with 5 g denatured total RNA and purified on denaturing PAGE 8% gel, as described in Pichon and Felden (2005). For sbi mRNA, Northern blots were performed as described in McCallum et al. (2006).

1.5 Essai de 5 '-RACE, transcription in vitro et marquage de l'extrémité 5' de l'ARN Des essais de 5'-RACE ont été effectués conformément au procédé de Antal et al., 2005 avec les amorces décrites dans le tableau 2. Des ARN de type sauvage et mutants pour le sondage de structure, des essais de retard sur gel et des expériences de toeprinting ont été transcrits à partir de fragments de PCR générés à partir de l'ADN génomique avec les amorces décrites dans le tableau 2. Tous les fragments contiennent une séquence promoteur de l'ARN polymérase T7. Pour produire la matrice d'ADN codant pour le mutant de délétion de l'ARN de sprD, sprDA, des oligonucléotides mutagénisés (Tableau 2) ont été utilisés dans un protocole en deux étapes. Tout d'abord, des ADN de sprDforTR et T7sprDdelrev ont produit un fragment amont par PCR et les deux ADN sprDrevTR et T7sprDdelfor ont généré un fragment d'ADN aval . Les fragments amont et aval se chevauchent partiellement. Le mélange des deux fragments purifiés par PCR (200 ng) a été utilisé comme matrice dans une troisième réaction de PCR en utilisant les deux oligonucléotides d'ADN sprDforTR et sprDrevTR pour produire un fragment codant pour sprDA. Tous les ARN ont été produits par une transcription in vitro en utilisant MEGAscript (Ambion). Des transcrits d'ARN à marquage radioactif ont été produits en ajoutant du [a32-P]UTP dans le mélange de réaction de la transcription. Le marquage des ARN à leurs extrémités 5' a été effectué comme décrit dans Antal et al. (2005). Les ARN marqués et non marqués ont été purifiés sur gel PAGE 8 %, élués, précipités à l'éthanol et stockés à -80 °C avant utilisation. ADNs Séquences Utilisations Antil640 ggcgctccttgaaaacgccc sprD northern/5' Antisprd3 gcccgaaaaggagcaatacat RACE Sbineg5 tcactcgcttttgcttcccca sprD 5' RACE Sbineg3 tcgcgtaatgttttgatgtattgg sbi 5' RACE SprD5PstI ttaaatctgcagagataatgcaatagtagccat pCN38-sprD SprD3EcoRI taaattg ag attccgacataccttattgtatttatag sprD ARNm sprDforTR transcription sprDrevTR Sbi ARNm T7sprD_delfor transcription T7sprD_delrev SBIforTR SBIrevTR SBIdeltaTR taatacgactcactataggggcgttttcaaggagcgcc aaggtaagcaccgaaatgcttac gcgcctttcattttttatgtttgcgctttccaaatcaa ttgatttggaaagcgcaaacataaaaaatgaaaggcgc taatacgactcactataggcatacaataaatttaatatgtaa gttgttttgagttgtttggtgct taatacgactcactataggcgaagttgctagttggggcagca Tableau 2 1.6 Essais de retard sur . et et sondai e de structure d 'ARN en solution Des essais de retard sur gel entre sprD et l'ARNm de sbi ont été effectués comme décrits dans Antal et al. (2005). A partir des essais de retard sur gel, 0,4 pmole d'ARNm de sbi de type sauvage marqué ou tronqué en 5' (SbiA61) ont été mis à incuber avec diverses concentrations (de 1,6 à 20 pmoles) de sprD de type sauvage non marqué ou tronqué (sprDA). Pour une analyse structurale en solution, des duplex d'ARN entre l'ARNm de sbi et sprD ont été préparés en mettant à incuber 0,4 pmole de sprD marqué et 1,6 pmole de l'ARNm de sbi dans un tampon contenant du Tris-HC1 10 mM (pH 7,5), du NaCl 6 mM, de 1'EDTA 10 mM et du dithiothréitol 5 mM pendant 15 minutes à 25 °C. Les analyses structurales d'un sprD marqué à l'extrémité 5' renaturé, soit seul soit dans un complexe avec sa cible, l'ARNm sbi, ont été effectuées comme décrit dans Antal et al. (2005). Les digestions ont été effectuées à 25 °C pendant 15 minutes en présence de 2,5 tg d'ARNt totaux de levure avec les enzymes suivantes : 0,2 ou 1 unité de nucléase S1 et 10-4 ou 5.10.5 unités de RNase V1. Des clivages par le plomb (II) ont été effectués avec 0,2 ou 0,4 mM d'acétate de Pb dans de l'Hepes 25 mM (pH 7,5), de l'acétate de Mg 7 mM et de l'acétate de potassium 35 mM pendant 10 minutes à 25 °C. Des bandes d'hydrolyse alcaline ont été obtenues en incubant sprD marqué dans du NaOH 0,1 M et de 1'EDTA 2 mM à 90 °C pendant 3 minutes. Les réactions ont été terminées par une précipitation à l'éthanol, les culots d'ARN ont été lavés deux fois dans de l'éthanol à 80 % et dissous dans un tampon de charge II d'Ambion. Les échantillons d'ARN ont été dénaturés pendant 5 minutes à 95 °C avant une séparation sur des gels de séquençage polyacrylamide 8 %/urée 8 M dans du TBE X 0,5. Les gels ont été séchés, exposés et visualisés en utilisant un imageur STORM 840 Phosphor-Imager. 1.5 '-RACE Assay, In Vitro Transcription and RNA 5' End Marking 5'-RACE assays were performed according to the method of Antal et al., 2005 with the primers described in the table. 2. Wild-type and mutant RNAs for structural probing, gel retardation assays and toeprinting experiments were transcribed from PCR fragments generated from genomic DNA with the primers described in the table. 2. All fragments contain a T7 RNA polymerase promoter sequence. To produce the DNA template encoding the sprD RNA deletion mutant, sprDA, mutagenized oligonucleotides (Table 2) were used in a two-step protocol. First, sprDforTR and T7sprDdelrev DNAs produced an upstream fragment by PCR and both sprDrevTR and T7sprDdelfor DNA generated a downstream DNA fragment. The upstream and downstream fragments overlap partially. The mixture of the two PCR purified fragments (200 ng) was used as a template in a third PCR reaction using both the sprDforTR and sprDrevTR DNA oligonucleotides to produce a fragment encoding sprDA. All RNAs were produced by in vitro transcription using MEGAscript (Ambion). Radiolabeled RNA transcripts were produced by adding [α 32-β] UTP to the transcription reaction mixture. RNA labeling at their 5 'ends was performed as described in Antal et al. (2005). Labeled and unlabeled RNAs were gel purified on 8% PAGE gel, eluted, ethanol precipitated and stored at -80 ° C before use. DNAs sequences uses Antil640 ggcgctccttgaaaacgccc Sprd northern / 5 'Antisprd3 gcccgaaaaggagcaatacat RACE Sbineg5 tcactcgcttttgcttcccca Sprd 5' RACE Sbineg3 tcgcgtaatgttttgatgtattgg sbi 5 'RACE SprD5PstI ttaaatctgcagagataatgcaatagtagccat pCN38-DPRS SprD3EcoRI taaattg ag attccgacataccttattgtatttatag Sprd mRNA sprDforTR transcription sprDrevTR Sbi mRNA T7sprD_delfor transcription T7sprD_delrev SBIforTR SBIrevTR SBIdeltaTR taatacgactcactataggggcgttttcaaggagcgcc aaggtaagcaccgaaatgcttac gcgcctttcattttttatgtttgcgctttccaaatcaa ttgatttggaaagcgcaaacataaaaaatgaaaggcgc taatacgactcactataggcatacaataaatttaatatgtaa gttgttttgagttgtttggtgct taatacgactcactataggcgaagttgctagttggggcagca Table 2 1.6 Tests for delay on. and RNA structure probe in solution Gel delay assays between SprD and sbi mRNA were performed as described in Antal et al. (2005). From the gel retardation assays, 0.4 pmole of 5 'truncated or truncated wild-type sbi mRNA (SbiA61) were incubated with various concentrations (from 1.6 to 20 pmol) of unlabeled or truncated wild type (sprDA). For structural analysis in solution, RNA duplexes between sbi mRNA and sprD were prepared by incubating 0.4 pmol of labeled sprD and 1.6 pmol of sbi mRNA in a buffer containing 10 mM Tris-HCl (pH 7.5), 6 mM NaCl, 10 mM EDTA and 5 mM dithiothreitol for 15 minutes at 25 ° C. Structural analyzes of a renatured 5'-labeled dWG, either alone or in a complex with its target, sbi mRNA, were performed as described in Antal et al. (2005). The digestions were carried out at 25 ° C for 15 minutes in the presence of 2.5 tg of total tRNA yeast with the following enzymes: 0.2 or 1 unit of S1 nuclease and 10-4 or 5.10.5 units of RNase V1. Lead (II) cleavages were performed with 0.2 or 0.4 mM Pb acetate in 25 mM Hepes (pH 7.5), 7 mM Mg acetate, and 1 mM PBS. 35 mM potassium acetate for 10 minutes at 25 ° C. Alkaline hydrolysis bands were obtained by incubating labeled dol labeled in 0.1 M NaOH and 2 mM EDTA at 90 ° C for 3 minutes. The reactions were terminated by ethanol precipitation, the RNA pellets were washed twice in 80% ethanol and dissolved in Ambion II loading buffer. RNA samples were denatured for 5 minutes at 95 ° C before separation on 8% polyacrylamide / 8 M urea sequencing gels in 0.5 X TBE. The gels were dried, exposed and visualized using a STORM 840 Phosphor-Imager imager.

1.7 Essais de Toeprinting Les essais de toeprinting ont été réalisés comme décrit dans Hartz et al. (1988), avec des modifications mineures. Les mélanges d'hybridation contenaient 0,2 pmole d'ARNm de sbi non marqué et 1 pmole d'amorce SBIrevTR marquée à l'extrémité 5' dans un tampon contenant du Tris-acétate 10 mM (pH 7,5) du NH4C1 60 mM et du DTT 1 mM. Pour les essais d'inhibition du chargement des ribosomes sur l'ARNm de sbi par sprD, différentes concentrations de sprD de type sauvage ou mutant (sprDA) ont été ajoutées avant d'ajouter les sous-unités 70S purifiées provenant d'E. Coli. Les ribosomes 70S ont été renaturés pendant 15 minutes à 37 °C puis dilués dans le tampon de réaction en présence de MgCl2 1 mM (pour favoriser la dissociation des sous-unités) 4 pmoles de sous-unités ribosomiques 70S ont été ajoutées dans chaque essai, mis à incuber pendant 5 minutes et la concentration de MgCl2 a été ajustée à 10 mM (pour favoriser la réassociation des sous-unités). Après 5 minutes d'incubation 10 pmoles d'ARNtfmEt non chargé ont été ajoutés et l'incubation a été prolongée pendant 15 minutes supplémentaires. L'ADNc a été synthétisé avec 2 UI d'AMV RT (Biolabs) par essai pendant 15 minutes. Les réactions ont été terminées en ajoutant 10 L de tampon de chargement II (Ambion). Les produits d'ADNc ont été chargés et séparés sur des gels de polyacrylamide 8 %/urée 8 M. Les toeprints (empreintes avant) ont été localisées sur la séquence d'ARNm de sbi par séquençage de l'ADN avec la même amorce d'ADN marquée à l'extrémité 5'. Les gels ont été séchés et analysés comme décrits ci-dessus. 1.7 Toeprinting Tests The toeprinting tests were performed as described in Hartz et al. (1988), with minor modifications. Hybridization mixtures contained 0.2 pmol of unlabeled sbi mRNA and 1 pmol of 5 'end labeled SBIrevTR primer in a buffer containing 10 mM Tris-acetate (pH 7.5) of NH4Cl. mM and 1 mM DTT. For ribbon inhibition assays on sbi mRNA by sprD, different concentrations of wild type or mutant sprD (sprDA) were added before adding the purified 70S subunits from E. Coli. The 70S ribosomes were renatured for 15 minutes at 37 ° C and then diluted in the reaction buffer in the presence of 1 mM MgCl 2 (to promote subunit dissociation). 4 pmoles of 70S ribosomal subunits were added in each assay. incubated for 5 minutes and the concentration of MgCl 2 was adjusted to 10 mM (to promote re-association of the subunits). After 5 minutes of incubation 10 pmol of unfilled tRNAfmEt was added and the incubation was continued for another 15 minutes. CDNA was synthesized with 2 IU AMV RT (Biolabs) per run for 15 minutes. Reactions were terminated by adding 10 L loading buffer II (Ambion). The cDNA products were loaded and separated on 8% polyacrylamide / 8M urea gels. The toeprints (forward imprints) were localized on the sbi mRNA sequence by sequencing the DNA with the same primer. DNA labeled at the 5 'end. The gels were dried and analyzed as described above.

II. Résultats 11.1 La structure de sprD et son emplacement cellulaire sont tous deux compatibles avec une régulation de l'ARNm cible Dans un premier temps, les extrémités 5' et 3' de sprD ont été déterminées. Son extrémité 5' a été identifiée en utilisant une 5'-RACE. A partir de plusieurs clones d'ADN, l'extrémité 5' de sprD a été cartographiée à la position G2007185 de la séquence de S. aureus N315 (Kuroda et al., 2001) extraite à partir de la base de données de génomes du Laboratoire européen de biologie moléculaire (EMBL, European Molecular Biology Laboratory). Sa longueur a été déduite à partir de Northern blots sur des gels polyacrylamides (voir figure 1D), ce qui a conduit à une hélice prédite de neuf paires de bases se terminant par une extension U6 agissant en tant que terminateur Rho-indépendant à l'extrémité 3' (H4-L4, figure 1C). L'ARN SprD contient 142 nucléotides. 12 séquences de SprD provenant des génomes des souches N315, MRSA252, Newman, NCTC8325, Mu50, Mu3, MSSA476, JH1, JH9, MW2, USA300 TCH1516 et USA300FPR3757 de S. aureus ont été alignées et possèdent une identité de séquences très élevée, excepté aux positions 44 et 45 (u ou c) et 57 (u ou a) de la séquence SEQ ID N°7. La variation des séquences est trop faible pour établir une structure secondaire de sprD par une analyse phylogénétique. C'est pourquoi, sa conformation a été analysée par des sondes structurales en solution, une approche qui a contribué à l'établissement des structures de bon nombre d'ARN (Felden 2007). Un transcrit sprD a été marqué à son extrémité et sa conformation en solution a été sondée par une RNase VI, qui clive les ARN double brin ou les nucléotides empilés, et par une nucléase S1 et par le plomb, qui tous deux clivent les ARN simple brin. La réactivité vis-à-vis de ses sondes a été étudiée pour chaque nucléotide (les deux panneaux A et B de la figure 1 sont représentatifs). Cinq expériences indépendantes ont été réalisées et leurs données sont résumées sur un modèle de structure secondaire qu'elles supportent (figure 1C). Des coupures spécifiques double brin à partir de U28-U30, G39-C40, A54, A62-A64, U79-U80, A89, G91, Al25-Al27, et l'absence de clivages par la nucléase S1 et le plomb au niveau de Gl-U8, G14-U21, G39-C42, G49-052, G76-U92, U101-U109, G113- U119, G121-U129 et G134-C142 suggèrent que quatre hélices d'ARN se forment en solution : une Hl de 8-pb, une H2 de 4-pb, une H3 de 17-pb et une H4 de 9-pb (figure 1C). L'hélice H2 a pu être allongée davantage et passer de 4 à 13 paires de bases mais sa portion inférieure (U28-U38/A54-A64) est lourdement coupée à la fois par les sondes spécifiques simple brin (U28-U38, G55-A64) et double brin (U28-U30, A62-A64), ce qui implique une instabilité importante en solution. Les clivages par S1 au niveau de U9-G13 (L1), U44-C48 (L2), A95-U100 (L3), C132-G133 (L4) et les coupures par le plomb au niveau de Ali-Al2 (Ll), U46-C48 (L2) et U94 (L3) sont cohérentes avec l'existence de quatre boucles (L 1-L4) coiffant respectivement les hélices Hl à H4. En se fondant sur la présence de plusieurs clivages par S1 et le plomb et sur l'absence de coupures par VI, les extensions de nucléotides U22-U27 et U65-C75 se replient comme des simples brins d'ARN en solution. Les coupures par le plomb au niveau de U110-U112 supportent la présence d'un renflement interne à l'intérieur de H3, A111 étant simple brin. Il n'existe aucun site de dégradation détectable à l'intérieur de la séquence de sprD. En résumé, la structure de sprD consiste en deux extrémités 5' (Hl) et 3' (H3-H4) repliées, qui flanquent un grand (d'une longueur de 54 nucléotides correspondant à la séquence SEQ ID N°2) domaine instable et largement non replié (à l'exception de H2), qui peut être disponible pour des interactions avec des cibles d'ARNm dédiées (voir ci-dessous). Un fractionnement cellulaire a été réalisé et l'emplacement cellulaire de sprD a été analysé par des Northern blots. Des lysats cellulaires provenant de cellules de la souche N315 de S. aureus ont été fractionnés par des centrifugations successives afin d'obtenir des fractions membranaires (M), cytoplasmiques (C) et ribosomiques (R) (pour les détails voir la section Matériels et Méthodes). Conformément à une analyse par immunoempreinte (Western immunoblot), la fraction M contient deux protéines membranaires, ErbS et ATPase, tandis que ces deux protéines sont absentes des fractions R et C (figure 1D). La fraction R contient les trois ARN ribosomiques (ARNr) et la fraction C contient les ARN de transfert (ARNt, figure 1D). L'ARN de transfert-messager (ARNtm) est responsable de la surveillance de la traduction et de la libération des ribosomes bloqués dans des eubactéries (Moore et Sauer 2007) mais cette fonction n'a pas été rapportée dans S. aureus. Comme montré ici, l'ARNtm de S. aureus est présent à la fois dans les fractions C et R in vivo (figure 1D), comme il est attendu d'un ARN qui se lie à, et libère les ribosomes bloqués. L'effecteur du système agr de S. aureus, ARNIII, codant pour la delta-hémolysine, est surtout associé aux ribosomes in vivo, avec uniquement une fraction cytoplasmique mineure qui est disponible pour la liaison de ses ARNm cibles dédiés (Boisset et al., 2007). SprD se situe principalement dans le cytoplasme, compatible avec des fonctions de régulations d'ARNm cible, mais une fraction mineure est associée aux ribosomes (figure 1D). II. Results 11.1 The SprD structure and its cell location are both compatible with a regulation of the target mRNA. At first, the 5 'and 3' ends of sprD were determined. Its 5 'end has been identified using a 5'-RACE. From several DNA clones, the 5 'end of sprD was mapped at position G2007185 of the sequence of S. aureus N315 (Kuroda et al., 2001) extracted from the genome database of European Molecular Biology Laboratory (EMBL, European Molecular Biology Laboratory). Its length was deduced from Northern blots on polyacrylamide gels (see Figure 1D), which led to a predicted nine-base-pair helix ending in a U6 extension acting as a Rho-independent terminator. 3 'end (H4-L4, Figure 1C). SprD RNA contains 142 nucleotides. 12 SprD sequences from the genomes of S. aureus strains N315, MRSA252, Newman, NCTC8325, Mu50, Mu3, MSSA476, JH1, JH9, MW2, USA300 TCH1516 and USA300FPR3757 were aligned and had very high sequence identity, except at positions 44 and 45 (u or c) and 57 (u or a) of the sequence SEQ ID No. 7. Sequence variation is too weak to establish a secondary structure of sprD by phylogenetic analysis. Therefore, its conformation has been analyzed by structural probes in solution, an approach that has contributed to the establishment of the structures of many RNAs (Felden 2007). A gDNA transcript was labeled at its end and its conformation in solution was probed by RNase VI, which cleaves double-stranded RNAs or stacked nucleotides, and by S1 nuclease and lead, both of which cleave single RNAs. strand. The reactivity with respect to its probes has been studied for each nucleotide (the two panels A and B of FIG. 1 are representative). Five independent experiments were carried out and their data are summarized on a model of secondary structure that they support (Figure 1C). Specific double-strand breaks from U28-U30, G39-C40, A54, A62-A64, U79-U80, A89, G91, Al25-Al27, and the absence of S1 nuclease and lead cleavages at Gl-U8, G14-U21, G39-C42, G49-052, G76-U92, U101-U109, G113-U119, G121-U129 and G134-C142 suggest that four RNA helices are formed in solution: 8-bp, a 4-bp H2, a 17-bp H3 and a 9-bp H4 (Figure 1C). The H2 helix could be further extended from 4 to 13 base pairs but its lower portion (U28-U38 / A54-A64) was severely cut by both single-stranded (U28-U38, G55- A64) and double-stranded (U28-U30, A62-A64), which implies significant instability in solution. S1 cleavages at U9-G13 (L1), U44-C48 (L2), A95-U100 (L3), C132-G133 (L4) and lead cleavage at Ali-Al2 (L1), U46-C48 (L2) and U94 (L3) are consistent with the existence of four loops (L 1 -L4) respectively capping helices H1 to H4. Based on the presence of several S1 and lead cleavages and the absence of cleavages by VI, the U22-U27 and U65-C75 nucleotide extensions fold as single strands of RNA in solution. Lead cleavages at U110-U112 support the presence of an internal bulge within H3, with A111 being single stranded. There is no detectable degradation site within the sprD sequence. In summary, the sprD structure consists of two folded 5 '(H1) and 3' (H3-H4) ends, which flank a large (54 nucleotides long corresponding to sequence SEQ ID No. 2) unstable domain. and largely unfolded (with the exception of H2), which may be available for interactions with dedicated mRNA targets (see below). Cell fractionation was performed and the cell location of sprD was analyzed by Northern blots. Cell lysates from cells of S. aureus strain N315 were fractionated by successive centrifugations to obtain membrane (M), cytoplasmic (C) and ribosomal (R) fractions (for details see the Materials and Methods section). Methods). According to immunoblot analysis, fraction M contains two membrane proteins, ErbS and ATPase, while these two proteins are absent from fractions R and C (Figure 1D). The R fraction contains the three ribosomal RNAs (rRNA) and the fraction C contains the transfer RNAs (tRNA, Figure 1D). Transfer-messenger RNA (mtRNA) is responsible for monitoring the translation and release of ribosomes blocked in eubacteria (Moore and Sauer 2007), but this function has not been reported in S. aureus. As shown here, S. aureus mtRNA is present in both the C and R fractions in vivo (Figure 1D), as is expected from RNA that binds to, and releases blocked ribosomes. The effector of the S. aureus, RNAIII, delta-haemolysin agrecosystem, is mainly associated with ribosomes in vivo, with only a minor cytoplasmic fraction that is available for the binding of its dedicated target mRNAs (Boisset et al. , 2007). SprD is predominantly in the cytoplasm, consistent with target mRNA regulatory functions, but a minor fraction is associated with ribosomes (Figure 1D).

I1.2 Activation et désactivation de l'expression de sprD in vivo Pour étudier la fonction de sprD, les inventeurs ont tiré parti de l'absence d'expression de sprD dans les souches RN4220 (souche de laboratoire, Kreiswirth et al., 1983) et SH1000 (souche virulente, Horsburgh et al., 2002), comme démontrée par des Northern blots à la fois dans les phases exponentielles (E) et stationnaires (S) (figure 2). Le gène sprD, avec sa séquence promoteur prédite en amont a été cloné dans deux vecteurs à faible nombre de copies E. coli-S. aureus, pCN38 et pCN51 (Charpentier et al., 2004) et transformé dans les souches RN4220 et SH1000. Dans les deux souches, aux deux phases E et S, ces deux vecteurs expriment sprD in vivo à sa taille attendue et à des niveaux d'expression comparables à ses niveaux d'expression endogène dans la souche N315 (figure 2). Dans les deux souches de S. aureus, il n'y a pas de phénotypes de croissance détectables que sprD soit, ou non, produit, (les courbes de croissance sont superposables ; non représenté). I1.2 Activation and Deactivation of In Vivo SprD Expression To study the function of SprD, the inventors took advantage of the lack of expression of sprD in strains RN4220 (laboratory strain, Kreiswirth et al., 1983). ) and SH1000 (virulent strain, Horsburgh et al., 2002), as demonstrated by Northern blots in both the exponential (E) and stationary (S) phases (Figure 2). The sprD gene, with its upstream predicted promoter sequence, was cloned into two low E. coli-S copy vectors. aureus, pCN38 and pCN51 (Charpentier et al., 2004) and transformed into strains RN4220 and SH1000. In both strains, at both E and S phases, these two vectors express in vivo in their expected size and expression levels comparable to their levels of endogenous expression in strain N315 (FIG. 2). In both strains of S. aureus, there are no detectable growth phenotypes regardless of whether or not sprD is produced (the growth curves are superimposable, not shown).

I1.3 SprD régule négativement (à la baisse) les niveaux de la protéine Sbi in vivo Les inventeurs ont réalisé une comparaison des extraits de protéines totales provenant des souches de S. aureus exprimant, ou non, sprD dans le but de révéler des différences dans les niveaux d'expression des protéines choisies qui pouvaient être extraites et identifiées par spectrométrie de masse (SM). A cette fin, des protéines totales provenant d'extraits extracellulaires et intracellulaires à la fois aux phases E et S ont été préparées à partir des souches RN4220 et SH1000 exprimant, ou non, sprD. De manière remarquable, une comparaison méticuleuse des extraits de protéines extracellulaires des deux souches par SDSPAGE met en évidence une bande protéique d'environ 45 kD dont le niveau diminue en présence de sprD à la phase E (figure 3A). Ce résultat est observé pour les deux vecteurs codant pour sprD, et pour les deux souches de S. aureus, avec une réduction plus prononcée des niveaux de protéines pour la souche SH1000 (figure 3A). La ou les protéines de cette bande ont été éluées, un produit de digestion triptyque a été préparé et les fragments de protéines ont été soumis à une Spectrométrie de Masse Maldi-Toff. Vingt-cinq peptides indépendants ont été identifiés, tous correspondant à la séquence d'acides aminés d'une protéine unique Sbi (tableau 3). Une deuxième confirmation, indépendante, de la régulation négativement (à la baisse) de la protéine Sbi par SprD a été obtenue en étudiant l'expression de la protéine Sbi endogène à la fois dans les extraits de protéine extracellulaire (figure 3B) et intracellulaire (figure 3C) par des Western blots, en utilisant un anticorps polycolonal contre la protéine Sbi. Comme il est attendu d'une protéine de surface cellulaire, sbi est identifiée dans la fraction extracellulaire, mais est également détectée dans le milieu intracellulaire des bactéries. La protéine est fortement exprimée à la phase E mais est également détectée à la phase S. Lorsque sprD est exprimé, dans les deux milieux intra- et extra- cellulaires, l'expression de la protéine sbi est réduite de manière significative à la fois dans les cellules de RN4220 et SH1000 et à la fois aux phases E et S, en accord avec les données provenant des gels SDS-PAGE et de la spectrométrie de masse. I1.3 SprD downregulates (down) Sbi protein levels in vivo The inventors made a comparison of total protein extracts from S. aureus strains expressing, or not, sprD in order to reveal differences in the expression levels of the selected proteins that could be extracted and identified by mass spectrometry (MS). To this end, total proteins from extracellular and intracellular extracts at both E and S phases were prepared from RN4220 and SH1000 strains expressing or not, sprD. Remarkably, a meticulous comparison of the extracellular protein extracts of the two strains by SDSPAGE reveals a protein band of about 45 kD whose level decreases in the presence of sprD at phase E (FIG. 3A). This result is observed for both the coding vectors for sprD, and for both strains of S. aureus, with a more pronounced reduction in protein levels for the SH1000 strain (Figure 3A). The protein (s) of this band were eluted, a triptych digest was prepared and the protein fragments were subjected to Maldi-Toff Mass Spectrometry. Twenty-five independent peptides were identified, all corresponding to the amino acid sequence of a single Sbi protein (Table 3). A second, independent confirmation of the downregulation of Sbi protein by SprD was obtained by studying endogenous Sbi protein expression in both extracellular (Figure 3B) and intracellular ( FIG. 3C) by Western blots, using a polycolonal antibody against the Sbi protein. As expected from a cell surface protein, sbi is identified in the extracellular fraction, but is also detected in the intracellular medium of the bacteria. The protein is strongly expressed in phase E but is also detected in phase S. When sprD is expressed, in both intra- and extra-cellular media, expression of the sbi protein is significantly reduced both in RN4220 and SH1000 cells and both E and S phases, in agreement with data from SDS-PAGE gels and mass spectrometry.

A la phase S, sprD réduit aussi le niveau d'expression d'une autre bande de protéines extracellulaire qui a un poids moléculaire apparent d'environ 80 KD. A partir des données de spectrométrie de masse, il ressort qu'elle contient deux protéines, le précurseur de la triacylglycérol lipase extracellulaire et la formate acétyltransférase intracellulaire (une contamination de la fraction extracellulaire par une protéine intracellulaire), respectivement onze et sept séquences peptidiques ont été détectées pour ces protéines . Observé Mr (attendu) Mr (calculé) Peptides 452.2365 902.4584 902.4385 K.YLTDTYK.S 493.2919 984.5692 984.5604 K.QLDALVAQK.D 539.7876 1077.5606 1077.5454 K.AIKDFQDNK.A 542.8126 1083.6107 1083.5964 K.LLGYYQSLK.D 559.8298 1117.6450 1117.6284 K.AFYQVLHLK.G 561.7985 1121.5825 1121.5716 K.VDDKNGYLAK.S 562.8242 1123.6338 1123.6237 K. VEVPQIQ SPK. V 565.8000 1129.5855 1129.5801 R.EVNKAPMDVK.E35 566.2913 1130.5680 1130.5641 R.EVNKAPMDVK.E + Deamidation (NQ) 569.3008 1136.5871 1136.5713 R.AQEVFSESLK.D 589.2702 1176.5259 1176.5127 K.YYYNTYYK.Y 609.3096 1216.6047 1216.6047 K.LNEKDSIENR.R 613.3108 1224.6071 1224.5986 R.NYVTES1NTGK.V 639.8308 1277.6470 1277.6615 K. SAAYEANSKLPK.D 653.3 601 1304.7057 1304.6976 K. SYIQPLKVDDK.N 697.8796 1393.7447 1393.7353 R.VAQQNAFYNVLK.N 734.3853 1466.7560 1466.7252 R.AQEVFSESLKDSK.N 746.3830 1490.7515 1490.7365 R.SQQVWVESVQSSK.A 773.4359 1544.8572 1544.8409 K.GAIDQTVLTVLGSGSK.S 775.9313 1549.8481 1549.8364 R.RVAQQNAFYNVLK.N 793.4562 1584.8978 1584.8551 K.VLYTFYQNPTLVK.T 846.4664 1690.9183 1690.9253 K. VEAPQIQ SPQIEKPK.A 852.9039 1703.7933 1703.7863 K.HQTTQNNYVTDQQK.A 919.0168 1836.0191 1835.9992 K.YKGAIDQTVLTVLGSGSK.S 1018.5161 2035.0177 2034.9857 K.NDNLTEQEKNNYIAQIK.E + Tableau 3 I1.4 SprD n'est pas impliqué dans la régulation des niveaux d'expression de sbi par le sérum humain Le niveau de protéine Sbi à la surface des cellules de S. aureus est faible mais augmente de manière significative après une croissance en présence de sérum humain, le composant du sérum responsable de l'induction de la synthèse de Sbi étant les IgG (Zhang et al., 2000). Etant donné que sprD régule à la baisse les niveaux de protéines sbi (figure 3), les inventeurs ont supposé que sprD pouvait être impliqué dans la régulation des niveaux de protéines sbi par l'IgG provenant de sérum humain. Une hypothèse raisonnable pourrait être que l'IgG humaine régule à la baisse sprD, qui à son tour élève les niveaux de protéines sbi pour agir en tant que récepteurs de détection de l'environnement . A la fois dans les souches SH1000 et MRSA252 de S. aureus, la présence de sérum humain augmente le niveau de protéine sbi, comme le montre une analyse par immunoblot en utilisant des anticorps polyclonaux dirigés contre sbi (figure 4A). La présence ou l'absence de sprD, toutefois, n'a aucune influence détectable sur l'effet de stimulation du sérum humain sur les niveaux de protéine sbi (figure 4A). Par ailleurs, les niveaux d'ARN de sprD sont essentiellement similaires en présence ou en l'absence de sérum humain comme le montrent les Northern blots (figure 4B). sprD n'est donc pas impliqué dans le mécanisme d'induction de l'expression de sbi par l'IgG humaine. ILS La régulation de sbi par sprD se produit par une interaction directe entre l'ARNm codant la protéine Sbi et l'ARNsprD Les inventeurs ont permis de répondre aux deux hypothèses suivantes : la régulation des niveaux de la protéine sbi par sprD est-elle effectuée directement ou indirectement, grâce à une liaison à une protéine supplémentaire ou à des régulateurs d'ARN ? Par ailleurs, la régulation médiée par sprD se produit-elle au niveau de l'ARNm et/ou au niveau de la protéine ? Pour établir une distinction entre ces hypothèses et pour comprendre la régulation au niveau moléculaire, des interactions d'appariement putatives entre sprD et l'ARNm de sbi ont été analysées in silico, en se focalisant sur le site de départ de la traduction de l'ARNm codant pour la protéine sbi. Les ARNs bactériens peuvent fonctionner comme des ARN antisens par appariement de bases avec des ARNm cibles (Majdalani et al., 2005). Des sites complémentaires entre sprD et la partie 5' de l'ARNm de sbi, incluant son codon d'initiation AUG et la séquence de Shine et Dalgarno (SD) en amont ont été détectés en utilisant FASTA3 (Pearson 2000). La région de sprD prédite comme étant impliquée dans l'appariement se situe entre Hl et H3, impliquant 43 nucléotides (en gras sur la figure 1C, nucléotides de H2, L2, et des jonctions Hl/H2 et H2/H3), prédits pour former 6 paires de bases GC, 33 paires de bases AU et 4 paires de bases GU (figure 5A) avec l'extrémité 5' de l'ARNm de sbi. L'extrémité 5' de l'ARNm de sbi a été déterminée expérimentalement en utilisant une 5'-RACE. A partir de plusieurs clones d'ADN, l'extrémité 5' de sprD a été cartographiée à la position G2476041 à partir de la séquence de S. aureus N315 (Kuroda et al., 2001) extraite de la base de données de génomes du Laboratoire européen de biologie moléculaire (EMBL, European Molecular Biology Laboratory) (encadré G de la figure 5A). Une formation de duplex in vitro entre sprD (un transcrit d'une longueur de 142 nucléotides purifiés) et un fragment d'ARNm de sbi synthétique d'une longueur de 179 nucléotides contenant sa séquence 5' UTR (41 nucléotides) suivis par 46 codons a été étudiée par des essais de retard sur gel. Les deux ARN ont été repliés séparément et indépendamment, refroidis à température ambiante et l'ARNm de sbi marqué a été mis à incuber avec des concentrations croissantes de sprD non marqué. Les réactions ont été analysées par une électrophorèse sur gel au moyen de gels de polyacrylamide non dénaturants (figure 5B). Le duplex ARNm sbi-sprD est observé à un rapport molaire de 1:4 et presque toute la protéine sbi se trouve dans le complexe avec son régulateur d'ARN à un rapport molaire de 1:20. C'est pourquoi, in vitro, cette interaction ARNm Sbi-ARNsprD se forme en l'absence de la protéine Hfq, apparentée aux protéines Sm, connue pour jouer un rôle clé dans bon nombre de ces transactions d'ARN chez certaines bactéries (Brennan et Link 2007). L'hybridation entre sprD et le fragment d'ARNm de sbi est spécifique parce qu'un excès molaire de 100 à 2 000 fois des ARNt totaux de levure ne déplace pas l'ARNm de sbi à partir d'un complexe spD-ARNm sbi préformé (figure 5B). Un mutant de délétion de l'ARNm de sbi a été produit, Sbi A61 auquel il manque 61 nucléotides à son extrémité 5' incluant ceux prédits comme étant impliqués dans l'interaction avec l'ARN sprD. Ce mutant de délétion devient incapable de s'hybrider à l'ARN sprD, même à un rapport molaire de 1:40 entre Sbi A61 et sprD, démontrant que les 61 premiers nucléotides à l'extrémité 5' de sbi sont essentiels pour que se produise l'hybridation avec sprD, en accord avec l'appariement proposé entre les deux ARN. Un mutant sprD contenant une délétion de 36 nucléotides dans la région prédite comme interagissant avec l'ARNm de sbi (sprDA est dépourvu des nucléotides des positions 35 à 70, voir figure 1C pour plus de détails) n'a pas été à même de s'hybrider spécifiquement à l'ARNm de sbi (figure 5B). Il démontre l'implication des domaines H2, L2 et de la jonction H2/H3 provenant de sprD dans la reconnaissance et l'hybridation spécifique de l'ARNm codant la protéine Sbi. In phase S, sprD also reduces the level of expression of another extracellular protein band that has an apparent molecular weight of about 80 KD. From the mass spectrometry data, it appears that it contains two proteins, the precursor of extracellular triacylglycerol lipase and intracellular formate acetyltransferase (a contamination of the extracellular fraction by an intracellular protein), respectively eleven and seven peptide sequences have have been detected for these proteins. Observed Mr (expected) Mr (calculated) Peptides 452.2365 902.4584 902.4385 K.YLTDTYK.S 493.2919 984.5692 984.5604 K.QLDALVAQK.D 539.7876 1077.5606 1077.5454 K.AIKDFQDNK.A 542.8126 1083.6107 1083.5964 K.LLGYYQSLK.D 559.8298 1117.6450 1117.6284 K.AFYQVLHLK.G 561.7985 1121.5825 1121.5716 K.VDDKNGYLAK.S 562.8242 1123.6338 1123.6237 K. VEVPQIQ SPK. V 565.8000 1129.5855 1129.5801 R.EVNKAPMDVK.E35 566.2913 1130.5680 1130.5641 R.EVNKAPMDVK.E + Deamidation (NQ) 569.3008 1136.5871 1136.5713 R.AQEVFSESLK.D 589.2702 1176.5259 1176.5127 K.YYYNTYYK.Y 609.3096 1216.6047 1216.6047 K.LNEKDSIENR.R 613.3108 1224.6071 1224.5986 R .NYVTES1NTGK.V 639.8308 1277.6470 1277.6615 K. SAAYEANSKLPK.D 653.3 601 1304.7057 1304.6976 1393.7447 1393.7353 K. SYIQPLKVDDK.N R.VAQQNAFYNVLK.N 697.8796 734.3853 1466.7560 1466.7252 1490.7515 1490.7365 R.SQQVWVESVQSSK.A R.AQEVFSESLKDSK.N 746.3830 773.4359 1544.8572 1544.8409 K. GAIDQTVLTVLGSGSK.S 775.9313 1549.8481 1549.8364 1584.8978 1584.8551 793.4562 R.RVAQQNAFYNVLK.N K.VLYTFYQNPTLVK.T 846.4664 1690.9183 1690.9253 1703.7933 K. VEAPQIQ SPQIEKPK.A 852.9039 919.0168 1836.0191 1835.9992 1703.7863 K.HQTTQNNYVTDQQK.A K.YKGAIDQTVLTVLGSGSK.S 1018.5161 2035.0177 2034.9857 K.NDNLTEQEKNNYIAQIK .E + Table 3 I1.4 SprD is not involved in the regulation of sbi expression levels by human serum The level of prot Sbi on the surface of S. aureus cells is low but increases significantly after growth in the presence of human serum, the serum component responsible for induction of Sbi synthesis being IgG (Zhang et al., 2000). Since sprD downregulates sbi protein levels (FIG. 3), the inventors have assumed that sprD may be involved in the regulation of sbi protein levels by IgG from human serum. A reasonable hypothesis could be that human IgG downregulates, which in turn raises the levels of sbi proteins to act as receptors for environmental detection. In both SH1000 and MRSA252 strains of S. aureus, the presence of human serum increases the level of sbi protein, as shown by immunoblotting analysis using polyclonal antibodies against sbi (Figure 4A). The presence or absence of sprD, however, has no detectable influence on the stimulatory effect of human serum on sbi protein levels (Figure 4A). On the other hand, the levels of sprD RNA are essentially similar in the presence or absence of human serum as shown by Northern blots (Figure 4B). SprD is therefore not involved in the mechanism of induction of sbi expression by human IgG. ILS The regulation of sbi by sprD occurs by a direct interaction between the mRNA encoding the Sbi protein and the ssRNA The inventors have made it possible to answer the following two hypotheses: is the regulation of the levels of the protein sbi by sprD carried out directly or indirectly, through binding to an additional protein or to RNA regulators? Furthermore, does gDp-mediated regulation occur at the mRNA level and / or at the protein level? To distinguish between these hypotheses and to understand regulation at the molecular level, putative pairing interactions between sprD and sbi mRNA were analyzed in silico, focusing on the starting site of the translation of the MRNA encoding the sbi protein. Bacterial RNAs can function as antisense RNAs by base pairing with target mRNAs (Majdalani et al., 2005). Complementary sites between SprD and the 5 'portion of sbi mRNA, including its AUG initiation codon and the upstream Shine and Dalgarno (SD) sequence were detected using FASTA3 (Pearson 2000). The region of sprD predicted to be involved in the pairing is between H1 and H3, involving 43 nucleotides (in bold in Figure 1C, nucleotides of H2, L2, and H1 / H2 and H2 / H3 junctions), predicted for form 6 base pairs GC, 33 base pairs AU and 4 base pairs GU (Figure 5A) with the 5 'end of sbi mRNA. The 5 'end of sbi mRNA was determined experimentally using a 5'-RACE. From several DNA clones, the 5 'end of sprD was mapped at position G2476041 from the sequence of S. aureus N315 (Kuroda et al., 2001) extracted from the genome database of European Molecular Biology Laboratory (EMBL) (box G of Figure 5A). In vitro duplex formation between sprD (a transcript of a length of 142 purified nucleotides) and a synthetic sbi mRNA fragment of a length of 179 nucleotides containing its 5 'UTR sequence (41 nucleotides) followed by 46 codons has been studied by gel retardation tests. Both RNAs were separately and independently folded, cooled to room temperature, and labeled sbi mRNA was incubated with increasing concentrations of unlabeled sprD. The reactions were analyzed by gel electrophoresis using non-denaturing polyacrylamide gels (FIG. 5B). The sbi-sprD mRNA duplex is observed at a molar ratio of 1: 4 and almost all of the sbi protein is in the complex with its RNA regulator at a molar ratio of 1:20. This is why, in vitro, this Sbi-ssRNA mRNA interaction is formed in the absence of the Sm protein-related protein Hfq, known to play a key role in many of these RNA transactions in certain bacteria (Brennan and Link 2007). Hybridization between SprD and the sbi mRNA fragment is specific because a 100 to 2000-fold molar excess of yeast tRNAs does not displace sbi mRNA from a sbi spD-mRNA complex. preformed (Figure 5B). A deletion mutant of sbi mRNA was produced, Sbi A61 which lacks 61 nucleotides at its 5 'end including those predicted to be involved in the interaction with the sprD RNA. This deletion mutant becomes unable to hybridize to the sprD RNA, even at a 1:40 molar ratio between Sbi A61 and SprD, demonstrating that the first 61 nucleotides at the 5 'end of sbi are essential for produce hybridization with sprD, consistent with the proposed pairing between the two RNAs. A mutant sprD containing a deletion of 36 nucleotides in the region predicted to interact with sbi mRNA (sprDA is lacking nucleotides of positions 35 to 70, see Figure 1C for details) was not able to hybridize specifically to sbi mRNA (Figure 5B). It demonstrates the involvement of the H2, L2 and H2 / H3 junction domains from sprD in the recognition and specific hybridization of the mRNA encoding the Sbi protein.

11 .6 Étude du complexe sprD-ARNm de sbi par des sondes structurales Pour obtenir une compréhension plus approfondie de l'interaction entre l'ARNm de sbi et sprD à un niveau moléculaire, un complexe entre les deux ARN a été formé à un rapport molaire de 1:10 entre sbi et sprD marqué et soumis à des clivages par RNases S1 et V1 (figure 6). En présence de l'ARNm de sbi (figure 4), les clivages S1 aux positions U23-U30 (jonction Hl/H2 et H2), U37-G39 et U56-U61 (H2), U44-C48 (boucle L2) et A68-U73 (jonction H2/H3) disparaissent dans la séquence sprD, tandis que les coupures S1 apparaissent au niveau de C51- U53 (H2). Lors de la formation du complexe, des coupures V1 au niveau de C40 et A54 disparaissent (la partie supérieure de H2) tandis que deux coupures V1 apparaissent au niveau de U44-U45 (L2). Tous les changements structuraux identifiés expérimentalement se situent dans la zone H2-L2 de sprD et dans ses environs, sans aucun changement conformationnel détectable pour les tiges-boucles Hl-L1, H2-L2 et H3-L3. Ces résultats de sondage structuraux confèrent un fort appui expérimental au modèle de structure secondaire de l'interaction entre les deux ARN présentés sur la figure 5A. Lors de la formation du complexe, la tige H2 instable se déplie, permettant des appariements extensifs mais interrompus à partir des nucléotides 22 à 75. Dans le complexe, la boucle L2 se replie comme une hélice d'ARN, comme mis en évidence par l'apparition des coupures V1 (U44-U45) et la disparition des coupures S1 (U44-C48). La relative instabilité en solution de H2 dans la structure sprD seule est bien comprise étant donné que H2 doit se déplier pour un appariement extensif avec une séquence complémentaire provenant de l'ARNm de sbi (U28-C42 et U53-A64 provenant des paires sprD avec A47-C34 et A23-U13 provenant de sbi, respectivement, figure 5A). L'hybridation spécifique de sprD à l'ARNm de sbi conduit à une inhibition de l'initiation de la traduction de l'ARNm de sbi en protéine sbi(Voir figure 7) 11 .6 Study of the sbi sprD-mRNA complex by structural probes To gain a deeper understanding of the interaction between mRNA of sbi and sprD at a molecular level, a complex between the two RNAs was formed at one ratio. molar ratio of 1:10 between sbi and labeled sprD and cleaved by RNases S1 and V1 (Figure 6). In the presence of sbi mRNA (FIG. 4), cleavages S1 at positions U23-U30 (H1 / H2 and H2 junction), U37-G39 and U56-U61 (H2), U44-C48 (L2 loop) and A68 -U73 (junction H2 / H3) disappear in the sequence sprD, while the cuts S1 appear at the level of C51-U53 (H2). During formation of the complex, cuts V1 at C40 and A54 disappear (the upper part of H2) while two cuts V1 appear at U44-U45 (L2). All of the structurally identified structural changes are in and around the H2-L2 zone of sprD, with no detectable conformational changes for the H1-L1, H2-L2 and H3-L3 loop rods. These structural survey results provide strong experimental support for the secondary structure model of the interaction between the two RNAs shown in Figure 5A. Upon formation of the complex, the unstable H2 stem unfolds, allowing extensive but interrupted pairings from nucleotides 22 to 75. In the complex, the L2 loop folds as an RNA helix, as evidenced by appearance of the cuts V1 (U44-U45) and the disappearance of the cuts S1 (U44-C48). The relative instability in H2 solution in the sprD structure alone is well understood since H2 must unfold for extensive pairing with a complementary sequence from sbi mRNA (U28-C42 and U53-A64 from sprD pairs with A47-C34 and A23-U13 from sbi, respectively, Figure 5A). The specific hybridization of SprD with sbi mRNA leads to an inhibition of the translation initiation of sbi mRNA into sbi protein (see Figure 7).

11 .7 Le complexe sprD-ARNm de sbi empêche la liaison des ribosomes 70S SprD, lorsqu'il interagit avec l'ARNm de sbi, couvre le site de liaison des ribosomes (RBS) et le codon d'initiation AUG (figure 5A). C'est pourquoi, étant donné que les sites d'interaction de sprD avec l'ARNm de sbi coïncident avec la région des ARNm qui est couverte par les ribosomes au cours de l'initiation de la traduction (Hüttenhofer et Noller 1994), les inventeurs ont testé si ce complexe était capable d'empêcher une liaison des ribosomes 70S en utilisant des essais de toeprinting . Le complexe d'initiation ternaire constitué par des ribosomes 70S d'E. coli purifiés, l'initiateur ARNtfm" et l'ARNm de sbi bloque l'élongation d'une amorce d'ADNc par transcriptase inverse (RT) et produit deux toeprints de 14 et 17 nucléotides en aval du codon d'initiation (figure 7, bande 4), ce qui confirme expérimentalement le positionnement du codon de départ de sbi comme représenté sur la figure 5A. La présence de sprD réduit l'interaction des ribosomes 70S avec l'ARNm de sbi, d'une manière dépendante de la concentration (figure 7, bandes 5 à 7). L'addition de quantités croissantes d'un mutant de délétion de sprD, spr-A, qui ne peut former un complexe avec l'ARNm de sbi in vitro (figure 5B), n'évite pas l'interaction des ribosomes 70S avec l'ARNm de sbi. C'est pourquoi, l'ARN sprD inhibe la traduction de l'ARNm de sbi en évitant l'interaction des ribosomes avec l'ARNm via une interaction d'appariement antisense directe avec l'ARNm de sbi cible. The sbi sprD-mRNA complex prevents binding of 70S SprD ribosomes, when interacting with sbi mRNA, covers the ribosome binding site (RBS) and the AUG initiation codon (Figure 5A). . Therefore, since the sites of interaction of sprD with sbi mRNA coincide with the mRNA region that is covered by ribosomes during the initiation of translation (Hüttenhofer and Noller 1994), inventors tested whether this complex was able to prevent binding of 70S ribosomes using toeprinting assays. The ternary initiation complex consisting of E 70S ribosomes purified coli, the ssRNA-mRNA initiator and the sbi mRNA blocked the elongation of a cDNA primer by reverse transcriptase (RT) and produced two toeprints of 14 and 17 nucleotides downstream of the initiation codon (FIG. , band 4), which experimentally confirms the positioning of the sbi start codon as shown in Figure 5. The presence of sprD reduces the interaction of 70S ribosomes with sbi mRNA, in a concentration-dependent manner. (Figure 7, lanes 5-7) The addition of increasing amounts of a deletion mutant of sprD, spr-A, which can not complex with sbi mRNA in vitro (Figure 5B), does not occur. does not avoid the interaction of 70S ribosomes with sbi mRNA, therefore, sprD RNA inhibits translation of sbi mRNA by avoiding interaction of ribosomes with mRNA via a pairing interaction direct antisense with target sbi mRNA.

III. Discussion La variété des symptômes cliniques d'infections staphylococciques dépend de l'expression des facteurs de virulence qui sont sous le contrôle de protéines de régulation intracellulaires spécifiques et de l'ARN. Le seul régulateur d'ARN connu et bien caractérisé de la pathogénèse de S. aureus est l'ARNIII qui contrôle l'expression d'un grand nombre de gènes de virulence (Huntzinger et al. 2005 ; Boisset et al. 2007). Les inventeurs ont mis en évidence qu'il existe un autre ARN exprimé notamment par S. aureus, sprD, qui est également impliqué dans la régulation des gènes de virulence. SprD agit comme un ARN antisens et provoque une répression directe de la traduction de l'ARNm codant la protéine sbi. Les inventeurs ont montré que l'expression de la protéine sbi est modulée par au moins deux régulateurs qui sont indépendants l'un de l'autre (figure 4) : une régulation positive (à la hausse) déclenchée par l'IgG humaine et une régulation négative (à la baisse) médiée par sprD, suggérant que la quantité et la chronologie de production de la protéine sbi sont restreintes à une fenêtre étroite pour que les bactéries du genre Staphylococcus, notamment S. aureus réussisse à se soustraire à la fois au système immunitaire adaptatif et au système immunitaire inné au cours des infections humaines et animales. Les inventeurs ont mis en évidence le rôle régulateur et le mécanisme d'un ARN exprimé notamment par S. aureus, SprD, et ont identifié un ARNm cible : l'ARNm codant la protéine Sbi. SprD a au moins un ARNm cible supplémentaire qui sera soumis à une caractérisation biochimique supplémentaire par les inventeurs. Le domaine central (nucléotides 22-75 de la séquence SEQ ID N°7) de sprD se replie comme une structure tige-boucle flanquée par des simples brins d'ARN (figure 1C) et provoque une répression directe de la traduction de l'ARNm de sbi par des appariements extensifs avec son ARNm cible codant la protéine sbi (figure 5A), formant un long duplex. Sur les 142 nucléotides de la séquence de SprD, 96 sont impliqués dans des interactions d'appariement (figure 1C), indiquant qu'environ 68 % de sa séquence n'est pas accessible pour une digestion par exonucléase, ce qui rend compte de sa stabilité in vivo (figure 2). L'interaction moléculaire entre sprD et l'ARNm codant la protéine sbi est étayée par une analyse mutationnelle des deux ARN (figure 5B) ainsi que par l'utilisation de sondes structurales en solution (figure 6). La séquence leader en 5' de l'ARNm de sbi, d'une longueur de 41 nucléotides (nucléotides 1 à 41 de lé séquence SEQ ID N°3), est capitale pour la régulation parce que sprD est incapable d'interagir avec le mutant de délétion de l'ARNm, sbi061 (figure 5B). Le motif en épingle à cheveux H2-L2 provenant de sprD pourrait faciliter le contact sprD-ARNm de sbi initial qui se prolongerait ensuite davantage en amont et en aval, d'une manière similaire aux régulations de RNAIII-ARNm (Boisset et al. 2007). En réalité, des appariements efficaces entre des ARN interagissant se produisent initialement entre des interactions limitées de boucle à boucle ou de séquence non appariées-boucle (Wagner et al. 2002). A la fois, la séquence leader en 5' de l'ARNm de sbi et le domaine central de l'ARNm de sbi ont été soumis à de fortes contraintes d'évolution afin de maintenir l'interaction d'appariement (la séquence nucléotidique leader de l'ARNm de sbi est conservée parmi les séquences de S. aureus). Lorsque ce complexe ARN antisens-cible est formé, les ribosomes sont incapables de se lier à la région d'initiation de la traduction de l'ARNm de sbi (figure 7). La formation d'un complexe entre sprD et l'ARNm cible augmente la quantité d'ARNm de sbi détectée in vivo, comme cela est mis en évidence par des Northern blots (données non représentées). Ce résultat pourrait être dû soit à une stimulation directe de sprD pour la transcription de l'ARNm de sbi soit à une conséquence indirecte d'une augmentation de la stabilité de l'ARNm cible en raison d'un appariement extensif avec son ARN régulateur. Des expériences effectuées par les inventeurs sont en cours pour essayer de faire un choix entre ces hypothèses. La formation d'un complexe entre sprD et l'ARNm codant la protéine sbi in vitro ne nécessite pas la présence de la protéine Hfq apparentée aux protéines Sm (figure 5B), et les niveaux d'expression in vivo de sprD ne sont pas affectés par la présence ou l'absence de la protéine Hfq (données non représentées). Ces résultats sont en accord avec des études antérieures étant donné que la protéine Hfq est exprimée à de faibles niveaux dans S. aureus, sans aucun effet détectable sur l'expression du gène de virulence (Geisinger et al. 2006 ; Bohn et al. 2007) et étant donné que Hfq n'a aucun effet majeur sur la stabilité de l'ARNIII et ses cibles d'ARNm in vivo et sur la formation d'un complexe ARNIII-ARNm in vitro (Boisset et al, 2007). III. Discussion The variety of clinical symptoms of staphylococcal infections depends on the expression of virulence factors that are under the control of specific intracellular regulatory proteins and RNA. The only known and well-characterized RNA regulatory mechanism for the pathogenesis of S. aureus is RNAIII, which controls the expression of a large number of virulence genes (Huntzinger et al., 2005, Boisset et al., 2007). The inventors have demonstrated that there is another RNA expressed in particular by S. aureus, SprD, which is also involved in the regulation of virulence genes. SprD acts as an antisense RNA and causes a direct repression of the translation of the mRNA encoding the sbi protein. The inventors have shown that the expression of the sbi protein is modulated by at least two regulators which are independent of each other (FIG. 4): upregulation (upwards) triggered by human IgG and a downregulation (downward) mediated by sprD, suggesting that the amount and timing of production of the sbi protein is restricted to a narrow window for bacteria of the genus Staphylococcus, including S. aureus, to successfully evade both adaptive immune system and innate immune system during human and animal infections. The inventors have demonstrated the regulatory role and the mechanism of an RNA expressed in particular by S. aureus, SprD, and identified a target mRNA: the mRNA encoding the Sbi protein. SprD has at least one additional target mRNA that will be subjected to additional biochemical characterization by the inventors. The central domain (nucleotides 22-75 of sequence SEQ ID No. 7) of sprD folds as a stem-loop structure flanked by single RNA strands (FIG. 1C) and causes a direct repression of the translation of the Sbi mRNA by extensive pairing with its target mRNA encoding the sbi protein (Figure 5A), forming a long duplex. Of the 142 nucleotides of the SprD sequence, 96 are involved in pairing interactions (Figure 1C), indicating that about 68% of its sequence is not accessible for exonuclease digestion, which accounts for its stability in vivo (Figure 2). The molecular interaction between SprD and mRNA encoding the sbi protein is supported by mutational analysis of the two RNAs (Figure 5B) as well as the use of structural probes in solution (Figure 6). The 5 'leader sequence of sbi mRNA, 41 nucleotides in length (nucleotides 1-41 of sequence SEQ ID No. 3), is crucial for regulation because sprD is unable to interact with the mutant deletion of mRNA, sbi061 (Figure 5B). The H2-L2 hairpin motif from sprD could facilitate the sprD-mRNA interaction of initial sbi, which would then further extend upstream and downstream, in a manner similar to RNAIII-mRNA regulations (Boisset et al., 2007). ). In fact, effective pairings between interacting RNAs initially occur between limited loop-to-loop or unpaired-loop sequence interactions (Wagner et al., 2002). At the same time, the 5 'leader sequence of sbi mRNA and the central domain of sbi mRNA were subjected to strong evolutionary constraints in order to maintain the pairing interaction (the leader nucleotide sequence sbi mRNA is conserved among S. aureus sequences). When this antisense-target RNA complex is formed, ribosomes are unable to bind to the translation initiation region of sbi mRNA (Figure 7). Formation of a complex between SprD and target mRNA increases the amount of sbi mRNA detected in vivo, as evidenced by Northern blots (data not shown). This result could be due either to a direct stimulation of sprD for sbi mRNA transcription or to an indirect consequence of an increase in the stability of the target mRNA due to extensive pairing with its regulatory RNA. Experiments performed by the inventors are under way to try to make a choice between these hypotheses. The formation of a complex between SprD and the mRNA encoding the sbi protein in vitro does not require the presence of the Sm protein-related Hfq protein (Figure 5B), and the in vivo expression levels of SprD are not affected. by the presence or absence of the Hfq protein (data not shown). These results are consistent with previous studies since the Hfq protein is expressed at low levels in S. aureus, with no detectable effect on virulence gene expression (Geisinger et al 2006, Bohn et al., 2007). ) and since Hfq has no major effect on the stability of RNAIII and its mRNA targets in vivo and on the formation of an RNAIII-mRNA complex in vitro (Boisset et al, 2007).

Les inventeurs ont ainsi mis en évidence un autre exemple de régulation sophistiquée des gènes codant pour des facteurs de virulence dans les bactéries du genre Staphylococcus, notamment S. aureus, suggérant que la chronologie et la quantité de synthèse des facteurs de virulence sont précisément contrôlées pendant le processus infectieux. The inventors have thus demonstrated another example of sophisticated regulation of genes coding for virulence factors in bacteria of the genus Staphylococcus, in particular S. aureus, suggesting that the chronology and the amount of synthesis of the virulence factors are precisely controlled during the infectious process.

Références Antal, M., Bordeau, V., Douchin, V., and Felden, B. 2005. A small bacterial RNA regulates a putative ABC transporter. J. Biol. Chem. 280: 7901-7908. Atkins, K.L., Burman, J.D., Chamberlain, E.S., Cooper, J.E., Poutrel, B., Bagby, S., Jenkins, 10 A.T., Feil, E.J., and van den Elsen, J.M. 2008. S. aureus IgG-binding proteins SpA and Sbi: Host specificity and mechanisms of immune complex formation. Mol. Immunol. 45: 1600- 1611. Beaucage SL. 2008, Solid-phase synthesis of siRNA oligonucleotides, Curr Opin Drug Discov Devel. 11:203-216 15 Bohn, C., Rigoulay, C., and Bouloc, P. 2007. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol. 7: 10. Boisset, S., Geissmann, T., Huntzinger, E., Fechter, P., Bendridi, N., Possedko, M., Chevalier, C., Helfer, A.C., Benito, Y., Jacquier, A., Gaspin, C., Vandenesch, F., and Romby, P. 2007. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and 20 the transcription regulator Rot by an antisense mechanism. Genes Dev. 21: 1353-1366. Brennan, R.G. and Link, T.M. 2007. Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 10: 125-133. Burman, J.D., Leung, E., Atkins, K.L., O'Seaghdha, M.N., Lango, L., Bernadô, P., Bagby, S., Svergun, D.I., Foster, T.J., Isenman, D.E., and van den Elsen, J.M. 2008. Interaction of 25 human complement with SBI, a staphylococcal immunoglobulin-binding protein: Indications of a novel mechanism of complement evasion by Staphylococcus aureus. J. Biol. Chem. 283: 17579-17593. Charpentier, E., Anton, A.I., Barry, P., Alfonso, B., Fang, Y., and Novick, R.P. 2004. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol. 30 70: 6076-6085. Chesneau, O., Ligeret, H., Hosan-Aghaie, N., Morvan, A., and Dassa, E. 2005. Molecular Analysis of Resistance to Streptogramin A Compounds Conferred by the Vga Proteins of Staphylococci. Antimicrob. Agents Chemother. 49: 973-980. References Antal, M., Bordeau, V., Douchin, V., and Felden, B. 2005. A small bacterial RNA regulates a putative ABC transporter. J. Biol. Chem. 280: 7901-7908. Atkins, KL, Burman, JD, Chamberlain, ES, Cooper, JE, Poutrel, B., Bagby, S., Jenkins, AT, Feil, EJ, and van den Elsen, JM 2008. S. aureus IgG-binding proteins SpA and Sbi: Host Specificity and Mechanisms of Immune Complex Training. Mol. Immunol. 45: 1600-1611. Beaucage SL. 2008, Solid-phase synthesis of siRNA oligonucleotides, Curr Opin Drug Discov Devel. 11: 203-216 Bohn, C., Rigoulay, C., and Bouloc, P. 2007. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol. 7:10. Boisset, S., Geissmann, T., Huntzinger, E., Fechter, P., Bendridi, N., Possedko, M., Chevalier, C., Helfer, AC, Benito, Y., Jacquier, A., Gaspin, C., Vandenesch, F., and Romby, P. 2007. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev. 21: 1353-1366. Brennan, R.G. and Link, T.M. 2007. Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 10: 125-133. Burman, JD, Leung, E., Atkins, KL, O'Seaghdha, MN, Lango, L., Bernado, P., Bagby, S., Svergun, DI, Foster, TJ, Isenman, DE, and van den Elsen , JM 2008. Interaction of 25 human complement with SBI, a staphylococcal immunoglobulin-binding protein: Indications for a novel mechanism of supplementation by Staphylococcus aureus. J. Biol. Chem. 283: 17579-17593. Charpentier, E., Anton, A.I., Barry, P., Alfonso, B., Fang, Y., and Novick, R.P. 2004. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. About. Microbiol. 70: 6076-6085. Chesneau, O., Ligeret, H., Hosan-Aghaie, N., Morvan, A., and Dassa, E. 2005. Molecular Analysis of Resistance to Streptogramin A Compounds Conferred by the Vga Proteins of Staphylococci. Antimicrob. Agents Chemother. 49: 973-980.

Downer, R., Roche, F., Park, P.W., Mecham, R.P., and Foster, T.J. 2002. The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J. Biol. Chem. 277: 243-250. Felden, B. 2007. RNA structure: experimental analysis. Curr. Opin. Microbiol. 10: 286-291. Downer, R., Roche, F., Park, PW, Mecham, RP, and Foster, TJ 2002. The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed in the cell surface as an integral membrane protein. cell wall-associated protein. J. Biol. Chem. 277: 243-250. Felden, B. 2007. RNA structure: experimental analysis. Curr. Opin. Microbiol. 10: 286-291.

Geisinger, E., Adhikari, R.P., Jin, R., Ross, H.F., and Novick, R.P. 2006. Inhibition of rot translation by RNAIII, a key feature of agr function. Mol. Microbiol. 61: 1038-1048. Hammel et al., 2007, A structural basis for complement inhibition by Staphylococcus aureus., Nat. Immunol. 8, 430-437. Hammel et al., 2007, Characterization of Ehp, a secreted complement inhibitory protein from Staphylococcus aureus, J. Biol. Chem., 282, 30051-30061. Hartz, D., McPheeters, D.S., Traut, R., and Gold, L. 1988. Extension inhibition analysis of translation initiation complexes. Methods Enzymol.164: 419-425. Horsburgh, M.J., Aish, J.L., White, I.J., Shaw, L., Lithgow, J.K., and Foster, S.J. 2002. aB Modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus J. Bacteriol. 184: 5457-5467. Huntzinger, E., Boisset, S., Saveanu, C., Benito, Y., Geissmann, T., Namane, A., Lina, G., Etienne, J., Ehresmann, B., Ehresmann, C., et al. 2005. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J. 24: 824-835. Hüttenhofer, A. and Noller, H.F. 1994. Footprinting mRNA-ribosome complexes with chemical probes. EMBO J. 13: 3892-3901. Kreiswirth, B.N., Lofdahl, S., Betley, M.J., O'Reilly, M., Schlievert, P.M., Bergdoll, M.S., and Novick, R.P. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305: 709-712. Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., Cui, L., Oguchi, A., Aoki, K., Nagai, Y., Lian, J., Ito, T., Kanamori, M., Matsumaru, H., Maruyama, A., Murakami, H., Hosoyama, A., Mizutani-Ui, Y., Takahashi, N.K., Sawano, T., Inoue, R., Kaito, C., Sekimizu, K., Hirakawa, H., Kuhara, S., Goto, S., Yabuzaki, J., Kanehisa, M., Yamashita, A., Oshima, K., Furuya, K., Yoshino, C., Shiba, T., Hattori, M., Ogasawara, N., Hayashi, H., and Hiramatsu, K. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357: 1225-1240. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. Lowy FD. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532. Majdalani, N., Vanderpool, C.K., Gottesman, S. 2005. Bacterial small RNA regulators. Crit. Geisinger, E., Adhikari, R.P., Jin, R., Ross, H.F., and Novick, R.P. 2006. Inhibition of rot translation by RNAIII, a key feature of agr function. Mol. Microbiol. 61: 1038-1048. Hammel et al., 2007, A structural basis for complement inhibition by Staphylococcus aureus., Nat. Immunol. 8, 430-437. Hammel et al., 2007, Characterization of Ehp, a secreted complement inhibitory protein from Staphylococcus aureus, J. Biol. Chem., 282, 30051-30061. Hartz, D., McPheeters, D.S., Traut, R., and Gold, L. 1988. Inhibition. Methods Enzymol.164: 419-425. Horsburgh, M.J., Aish, J.L., White, I.J., Shaw, L., Lithgow, J.K., and Foster, S.J. 2002. aB Modulates virulence determinant expression and stress resistance: Characterization of a functional strain derived from Staphylococcus aureus J. Bacteriol. 184: 5457-5467. Huntzinger, E., Boisset, S., Saveanu, C., Benito, Y., Geissmann, T., Namane, A., Lina, G., Etienne, J., Ehresmann, B., Ehresmann, C., et al. 2005. Staphylococcus aureus RNAIII and the endoribonuclease III. EMBO J. 24: 824-835. Hüttenhofer, A. and Noller, H.F. 1994. Footprinting mRNA-ribosome complexes with chemical probes. EMBO J. 13: 3892-3901. Kreiswirth, B.N., Lofdahl, S., Betley, M.J., O'Reilly, M., Schlievert, P.M., Bergdoll, M.S., and Novick, R.P. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by prophage. Nature 305: 709-712. Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., Cui, L., Oguchi, A., Aoki, K., Nagai, Y., Lian, J., Ito, T., Kanamori, M., Matsumaru, H., Maruyama, A., Murakami, H., Hosoyama, A., Mizutani-Ui, Y., Takahashi, NK, Sawano, T. , Inoue, R., Kaito, C., Sekimizu, K., Hirakawa, H., Kuhara, S., Goto, S., Yabuzaki, J., Kanehisa, M., Yamashita, A., Oshima, K. , Furuya, K., Yoshino, C., Shiba, T., Hattori, M., Ogasawara, N., Hayashi, H., and Hiramatsu, K. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357: 1225-1240. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227: 680-685. Lowy FD. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532. Majdalani, N., Vanderpool, C.K., Gottesman, S. 2005. Bacterial small RNA regulators. Crit.

Rev. Biochem. Mol. Biol. 40: 93-113. Rev. Biochem. Mol. Biol. 40: 93-113.

McCallum, N., Karauzum, H., Getzmann, R., Bischoff, M., Majcherczyk, P., Berger-Bchi, B., and Landmann, R. 2006. In vivo survival of teicoplanin-resistant staphylococcus aureus and fitness cost of teicoplanin resistance. Antimicrob Agents Chemother. 50: 2352-2360. Milligan JF, Uhlenbeck OC. 1989, Synthesis of small RNAs using T7 RNA polymerase.Methods Enzymol. ; 1 8 0 : 5 1-62. Moks, T., Abrahmsen, L., Nilsson, B., Hellman, U., Sjoquist, J., and Uhlen, M. 1986. Staphylococcal protein A consists of five IgG-binding domains. Eur. J. Biochem. 156: 637-643. Moore, S.D. and Sauer, R.T. 2007. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76: 101-124. Nicholas H. Mann, 2008 The potential of phages to prevent MRSA infections, Research in Microbiology Novick, R.P., Ross, H.F., Projan, S.J., Kornblum, J., Kreiswirth, B., and Moghazeh, S. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. McCallum, N., Karauzum, H., Getzmann, R., Bischoff, M., Majcherczyk, P., Berger-Bchi, B., and Landmann, R. 2006. In vivo survival of teicoplanin-resistant staphylococcus aureus and fitness cost of teicoplanin resistance. Antimicrob Agents Chemother. 50: 2352-2360. Milligan JF, Uhlenbeck OC. 1989, Synthesis of Small RNAs Using T7 RNA Polymerase.Methods Enzymol. ; 1 8 0: 5 1-62. Moks, T., Abrahmsen, L., Nilsson, B., Hellman, U., Sjoquist, J., and Uhlen, M. 1986. Staphylococcal protein A consists of five IgG-binding domains. Eur. J. Biochem. 156: 637-643. Moore, S.D. and Sauer, R.T. 2007. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76: 101-124. Nicholas H. Mann, 2008 The potential of phages to prevent MRSA infections, Research in Microbiology Novick, RP, Ross, HF, Projan, SJ, Kornblum, J., Kreiswirth, B., and Moghazeh, S. 1993. Synthesis of Staphylococcal virulence factors is controlled by a regulatory RNA molecule.

EMBO J. 12: 3967-3975. Pearson, W. R. 2000. Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol. 132: 185-219. Pichon, C. and Felden, B. 2005. Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc. EMBO J. 12: 3967-3975. Pearson, W.R. 2000. Flexible sequence similarity searching for the FASTA3 program package. Methods Mol. Biol. 132: 185-219. Pichon, C. and Felden, B. 2005. Small RNA genes expressed by Staphylococcus aureus genomic and pathogenicity with specific expression among pathogenic strains. Proc.

Natl. Acad. Sci. USA. 102: 14249-14254. Rooijakkers et al., 2007, J. immunol., 179, 2989-2998 Romby, P., Vandenesch, F., and Wagner, E.G. 2006. The role of RNAs in the regulation of virulence-gene expression. Curr. Opin. Microbiol. 9: 229-236. Sherlin LD, Bullock TL, Nissan TA, Perona JJ, Lariviere FJ, Uhlenbeck OC, 2001 Scaringe SA.Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization.RNA. 7:1671-1678 Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular Cloning - A Laboratory Manual, 2nd Edition. Cold Spring Habour Laboratory Press, New York. Upadhyay, A., Burman, J.D., Clark, E.A., Leung, E., Isenman, D.E., van den Elsen, J.M., and Bagby, S. 2008. Structure-Function Analysis of the C3 Binding Region of Staphylococcus aureus Immune Subversion Protein Sbi. J. Biol. Chem. 283: 22113-22120. Wagner, E.G.H., Altuvia, S., and Romby, P. 2002. Antisense RNAs in bacteria and their genetic elements. Adv. Genet. 46: 361-398. Zhang, L., Jacobsson, K., Vasi, J., Lindberg, M., and Frykberg L. 1998. A second IgG-binding protein in Staphylococcus aureus. Microbiology 145: 985-991. Natl. Acad. Sci. USA. 102: 14249-14254. Rooijakkers et al., 2007, J. Immunol., 179, 2989-2998 Romby, P., Vandenesch, F., and Wagner, E.G. 2006. The role of RNAs in the regulation of virulence-gene expression. Curr. Opin. Microbiol. 9: 229-236. Sherlin LD, Bullock TL, Nissan TA, Perona JJ, Lariviere FJ, Uhlenbeck OC, 2001 Scaringe SA.Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization.RNA. 7: 1671-1678 Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning - A Laboratory Manual, 2nd Edition. Cold Spring Habour Laboratory Press, New York. Upadhyay, A., Burman, JD, Clark, EA, Leung, E., Isenman, DE, Van den Elsen, JM, and Bagby, S. 2008. Structure-Function Analysis of the C3 Binding Region of Staphylococcus aureus Immune Subversion Protein Sbi. J. Biol. Chem. 283: 22113-22120. Wagner, E.G.H., Altuvia, S., and Romby, P. 2002. Antisense RNAs in bacteria and their genetic elements. Adv. Broom. 46: 361-398. Zhang, L., Jacobsson, K., Vasi, J., Lindberg, M., and Frykberg L. 1998. A second IgG-binding protein in Staphylococcus aureus. Microbiology 145: 985-991.

Zhang, L., Jacobsson, K., Strôm, K., Lindberg, M., and Frykberg L. 1999. Staphylococcus aureus expresses a cell surface protein that binds both IgG and beta2-glycoprotein I. Microbiology 145: 177-183. Zhang, L., Rosander, A., Jacobsson, K., Lindberg, M., and Frykberg L. 2000. Expression of 5 staphylococcal protein Sbi is induced by human IgG. FEMS Immunol. Med. Microbiol. 28: 211-218. Zhang, L., Jacobsson, K., Strom, K., Lindberg, M., and Frykberg L. 1999. Staphylococcus aureus expressing cell surface protein that binds both IgG and beta2-glycoprotein I. Microbiology 145: 177-183. Zhang, L., Rosander, A., Jacobsson, K., Lindberg, M., and Frykberg, L. 2000. Expression of S. staphylococcal protein. FEMS Immunol. Med. Microbiol. 28: 211-218.

Claims (17)

REVENDICATIONS1. Polynucléotide isolé caractérisé en ce qu'il comprend une séquence choisie dans le 5 groupe comprenant : - la séquence SEQ ID N°1, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°l et les fragments de celles-ci ; et - la séquence SEQ ID N°2, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°2 et les fragments de celles-ci ; et 10 - la séquence complémentaire de la séquence SEQ ID N°3, les séquences dérivées ayant au moins 70 % d'identité avec ladite séquence complémentaire et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°3. REVENDICATIONS1. Isolated polynucleotide characterized in that it comprises a sequence selected from the group comprising: - the sequence SEQ ID No. 1, the derived sequences having at least 70% identity with the sequence SEQ ID No. 1 and the fragments of these; and the sequence SEQ ID No. 2, the derived sequences having at least 70% identity with the sequence SEQ ID No. 2 and the fragments thereof; and the sequence complementary to the sequence SEQ ID No. 3, the derived sequences having at least 70% identity with said complementary sequence and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID NO: 3. 2. Polynucléotide isolé selon la revendication 1, caractérisé en ce qu'il comprend une séquence choisie dans le groupe comprenant : - la séquence SEQ ID N°6, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°6 et les fragments de celles-ci ; et 20 - la séquence SEQ ID N°7, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°7 et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider spécifiquement avec la séquence SEQ ID N°3. 25 2. isolated polynucleotide according to claim 1, characterized in that it comprises a sequence selected from the group comprising: the sequence SEQ ID No. 6, the derived sequences having at least 70% identity with the sequence SEQ ID N 6 and fragments thereof; and the sequence SEQ ID No. 7, the derived sequences having at least 70% identity with the sequence SEQ ID No. 7 and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID NO: 3. 25 3. Polynucléotide isolé selon l'une des revendications 1 ou 2, caractérisé en ce qu'il s'agit d'un ARN. 3. isolated polynucleotide according to one of claims 1 or 2, characterized in that it is an RNA. 4. Polynucléotide isolé selon la revendication 3, caractérisé en ce qu'il s'agit d'un ARN comprenant une séquence choisie dans le groupe comprenant : 30 - la séquence SEQ ID N°2, dans laquelle les nucléotides en positions 23, 24 et 36 sont u ; 15- la séquence SEQ ID N°2, dans laquelle les nucléotides en positions 23 et 24 sont c et le nucléotide en position 36 est u ; et - la séquence SEQ ID N°2, dans laquelle les nucléotides en positions 23, 24 sont c et le nucléotide en position 36 est a ; et - la séquence SEQ ID N°7, dans laquelle les nucléotides en positions 44, 45 et 57 sont u ; - la séquence SEQ ID N°7, dans laquelle les nucléotides en positions 44 et 45 sont c et le nucléotide en position 57 est u ; et - la séquence SEQ ID N°7, dans laquelle les nucléotides en positions 44, 45 sont c et le nucléotide en position 57 est a. 4. Isolated polynucleotide according to claim 3, characterized in that it is an RNA comprising a sequence chosen from the group comprising: the sequence SEQ ID No. 2, in which the nucleotides in positions 23, 24 and 36 are u; The sequence SEQ ID No. 2, in which the nucleotides in positions 23 and 24 are c and the nucleotide in position 36 is u; and the sequence SEQ ID No. 2, in which the nucleotides in positions 23, 24 are c and the nucleotide in position 36 is a; and the sequence SEQ ID No. 7, in which the nucleotides at positions 44, 45 and 57 are u; the sequence SEQ ID No. 7, in which the nucleotides at positions 44 and 45 are c and the nucleotide at position 57 is u; and the sequence SEQ ID No. 7, in which the nucleotides at positions 44, 45 are c and the nucleotide at position 57 is a. 5. Cassette d'expression comprenant une séquence d'ADN choisie dans le groupe comprenant : - la séquence SEQ ID N°1, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°l et les fragments de celles-ci ; et 15 - la séquence SEQ ID N°6, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°6 et les fragments de celles-ci ; et - une séquence d'ADN pouvant être transcrite en un ARN selon l'une des revendications 3 ou 4. 20 An expression cassette comprising a DNA sequence chosen from the group comprising: the sequence SEQ ID No. 1, the derived sequences having at least 70% identity with the sequence SEQ ID No. 1 and the fragments of these; and the sequence SEQ ID No. 6, the derived sequences having at least 70% identity with the sequence SEQ ID No. 6 and the fragments thereof; and a DNA sequence that can be transcribed into an RNA according to one of claims 3 or 4. 6. Vecteur recombinant comprenant un polynucléotide isolé selon l'une quelconque des revendications 1 à 4 ou une cassette d'expression selon la revendication 5. A recombinant vector comprising an isolated polynucleotide according to any one of claims 1 to 4 or an expression cassette according to claim 5. 7. Vecteur selon la revendication 6, caractérisé en ce qu'il s'agit d'un bactériophage. 7. Vector according to claim 6, characterized in that it is a bacteriophage. 8. Cellule hôte transformée par une cassette d'expression selon la revendication 5 ou un vecteur selon l'une des revendications 6 ou 7. 8. Host cell transformed by an expression cassette according to claim 5 or a vector according to one of claims 6 or 7. 9. Composition comprenant au moins un composant choisi dans le groupe 30 comprenant un polynucléotide isolé selon l'une quelconque des revendications 1 à 4, une 25cassette d'expression selon la revendication 5, un vecteur selon l'une des revendications 6 ou 7 et une cellule hôte selon la revendication 8. A composition comprising at least one component selected from the group consisting of an isolated polynucleotide according to any one of claims 1 to 4, an expression cassette according to claim 5, a vector according to one of claims 6 or 7 and a host cell according to claim 8. 10. Composition selon la revendication 9, caractérisé en ce qu'il s'agit d'une 5 composition pharmaceutique. 10. Composition according to claim 9, characterized in that it is a pharmaceutical composition. 11. Polynucléotide isolé selon l'une quelconque des revendications 1 à 4, ou cassette d'expression selon la revendication 5, ou vecteur selon l'une des revendications 6 ou 7 ou cellule hôte selon la revendication 8, pour son application en tant que médicament pour la 10 prévention et/ou le traitement d'une infection staphylococcique. An isolated polynucleotide according to any one of claims 1 to 4, or an expression cassette according to claim 5, or a vector according to one of claims 6 or 7 or a host cell according to claim 8, for its application as a drug for the prevention and / or treatment of a staphylococcal infection. 12. Utilisation d'un composant choisi dans le groupe comprenant un polynucléotide isolé selon l'une quelconque des revendications 1 à 4, une cassette d'expression selon la revendication 5, un vecteur selon l'une des revendications 6 ou 7, une cellule hôte selon 15 la revendication 8, pour la préparation d'un médicament destiné à la prévention et/ou au traitement d'une infection staphylococcique. 12. Use of a component selected from the group comprising an isolated polynucleotide according to any one of claims 1 to 4, an expression cassette according to claim 5, a vector according to one of claims 6 or 7, a cell A host according to claim 8 for the preparation of a medicament for the prevention and / or treatment of a staphylococcal infection. 13. Polynucléotide isolé caractérisé en ce qu'il comprend une séquence choisie dans le groupe comprenant : 20 - la séquence SEQ ID N°3, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°3 et les fragments de celles-ci ; et - la séquence SEQ ID N°4, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°4 et les fragments de celles-ci ; lesdites séquences dérivées et lesdits fragments ayant la capacité de s'hybrider 25 spécifiquement avec la séquence SEQ ID N°l et/ou avec la séquence SEQ ID N°2. 13. Isolated polynucleotide characterized in that it comprises a sequence selected from the group comprising: the sequence SEQ ID No. 3, the derived sequences having at least 70% identity with the sequence SEQ ID No. 3 and the fragments of these; and the sequence SEQ ID No. 4, the derived sequences having at least 70% identity with the sequence SEQ ID No. 4 and the fragments thereof; said derived sequences and said fragments having the ability to hybridize specifically with the sequence SEQ ID No. 1 and / or with the sequence SEQ ID No. 2. 14. Polynucléotide isolé, caractérisé en ce qu'il comprend : - une séquence contenant les nucléotides 1 à 41 de l'une des séquences SEQ ID N°3 ou SEQ ID N°4, couplée à son extrémité 3' à une séquence codante d'un gène d'intérêt. 30 14. Isolated polynucleotide, characterized in that it comprises: a sequence containing nucleotides 1 to 41 of one of the sequences SEQ ID No. 3 or SEQ ID No. 4, coupled at its 3 'end to a coding sequence of a gene of interest. 30 15. Polynucléotide isolé selon l'une des revendications 13 ou 14, caractérisé en ce qu'il s'agit d'un ARN. 15. Isolated polynucleotide according to one of claims 13 or 14, characterized in that it is an RNA. 16. Cassette d'expression comprenant une séquence d'ADN choisie dans le groupe 5 comprenant : - la séquence SEQ ID N°4, les séquences dérivées ayant au moins 70 % d'identité avec la séquence SEQ ID N°4 et les fragments de celles-ci ; et - une séquence d'ADN pouvant être transcrite en un polynucléotide selon la revendication 15. 19. Vecteur recombinant comprenant une cassette d'expression selon la revendication 16. 20. Cellule hôte transformée par une cassette d'expression selon la revendication 16 15 ou un vecteur selon la revendication 16. An expression cassette comprising a DNA sequence chosen from the group 5 comprising: the sequence SEQ ID No. 4, the derived sequences having at least 70% identity with the sequence SEQ ID No. 4 and the fragments; of these; and a DNA sequence transcribable to a polynucleotide according to claim 15. A recombinant vector comprising an expression cassette according to claim 16. A host cell transformed with an expression cassette according to claim 16 or a vector according to the claim 17. 21. Produit contenant : - au moins un composant choisi dans le groupe comprenant un polynucléotide isolé selon l'une quelconque des revendications 1 à 4, une cassette d'expression selon la revendication 5, un 20 vecteur selon l'une des revendications 6 ou 7, une cellule hôte selon la revendication 8; et - au moins un autre agent antistaphylococcique, comme produit de combinaison pour une utilisation simultanée, séparée et/ou étalée dans le temps, pour la prévention et/ou le traitement d'une infection staphylococcique. 25 20. Composition pharmaceutique selon la revendication 10, caractérisée en ce qu'elle comprend en outre : - un polynucléotide isolé selon la revendication 14 dans lequel ladite séquence codante est une séquence codant au moins un domaine de la protéine Sbi, et/ou 10- un vecteur d'expression comprenant un polynucléotide isolé selon la revendication 14 dans lequel ladite séquence codante est une séquence codant au moins un domaine de la protéine Sbi, ledit domaine de la protéine Sbi étant capable de se lier spécifiquement à la protéine C3 du 5 complément et/ou à des immunoglobulines IgG. 21. Méthode de détection, in vitro, de la présence de bactéries du genre Staphylococcus dans un échantillon biologique, caractérisée en ce qu'elle comprend la détection d'au moins une séquence choisie dans le groupe comprenant : 10 - les séquences telles que définies selon l'une quelconque des revendications 1 à 4; et - les séquences telles que définies selon la revendication 13; avec au moins un moyen de détection approprié de ladite séquence. 22. Méthode de détection, in vitro, d'ARNm du gène codant la protéine Sbi présent 15 dans un échantillon biologique, caractérisée en ce qu'elle comprend les étapes suivantes : - la mise en contact dudit échantillon biologique avec au moins une sonde comprenant une séquence choisie parmi les séquences définies selon la revendication 1; et - la détection de l'hybridation de ladite sonde avec le dit ARNm du gène codant la protéine Sbi avec au moins un moyen de détection de ladite hybridation approprié. 23. Kit de détection d'ARNm du gène codant la protéine Sbi, caractérisé en ce qu'il comprend : - au moins une sonde telle que définie selon la revendication 22; et - au moins un moyen de détection de l'hybridation de ladite sonde avec ledit ARNm du 25 gène codant la protéine Sbi. 24. Kit de régulation de l'expression d'un gène d'intérêt caractérisé en ce qu'il comprend : - au moins un premier composant choisi dans le groupe comprenant un polynucléotide 30 selon l'une quelconque des revendications 13 à 15, une cassette d'expression selon la 20 10revendication 16, un vecteur selon la revendication 17, une cellule hôte selon la revendication 18; et - au moins un second composant choisi dans le groupe comprenant un polynucléotide isolé selon l'une quelconque des revendications 1 à 4, une cassette d'expression selon la revendication 5, un vecteur selon l'une des revendications 6 ou 7, une cellule hôte selon la revendication 8. 25. Utilisation non thérapeutique d'un polynucléotide isolé selon l'une quelconque des revendications 1 à 4 pour inhiber l'expression du gène codant la protéine Sbi. 26. Utilisation non thérapeutique d'un polynucléotide isolé selon l'une quelconque des revendications 13 à 15 en combinaison avec un polynucléotide isolé selon l'une quelconque des revendications 1 à 4 pour inhiber l'expression d'un gène d'intérêt. 17. A product containing: at least one component selected from the group comprising an isolated polynucleotide according to any one of claims 1 to 4, an expression cassette according to claim 5, a vector according to one of the claims 6 or 7, a host cell according to claim 8; and at least one other antistaphylococcal agent, as a combination product for simultaneous, separate and / or spreading use for the prevention and / or treatment of a staphylococcal infection. 20. The pharmaceutical composition according to claim 10, characterized in that it further comprises: - an isolated polynucleotide according to claim 14 wherein said coding sequence is a sequence coding for at least one domain of the Sbi protein, and / or an expression vector comprising an isolated polynucleotide according to claim 14 wherein said coding sequence is a sequence coding for at least one domain of the Sbi protein, said domain of the Sbi protein being capable of binding specifically to the C3 protein of the complement and / or immunoglobulin IgG. 21. A method for detecting, in vitro, the presence of bacteria of the genus Staphylococcus in a biological sample, characterized in that it comprises the detection of at least one sequence chosen from the group comprising: the sequences as defined according to any one of claims 1 to 4; and the sequences as defined in claim 13; with at least one appropriate detection means of said sequence. 22. A method for detecting, in vitro, mRNA of the gene encoding the Sbi protein present in a biological sample, characterized in that it comprises the following steps: contacting said biological sample with at least one probe comprising a sequence selected from the sequences defined in claim 1; and detecting the hybridization of said probe with said mRNA of the gene encoding the Sbi protein with at least one means for detecting said appropriate hybridization. 23. mRNA detection kit of the gene encoding the Sbi protein, characterized in that it comprises: at least one probe as defined according to claim 22; and at least one means for detecting the hybridization of said probe with said mRNA of the gene encoding the Sbi protein. 24. Kit for regulating the expression of a gene of interest characterized in that it comprises: at least one first component selected from the group comprising a polynucleotide according to any one of claims 13 to 15, a an expression cassette according to claim 16, a vector according to claim 17, a host cell according to claim 18; and at least one second component selected from the group comprising an isolated polynucleotide according to any one of claims 1 to 4, an expression cassette according to claim 5, a vector according to one of claims 6 or 7, a cell Host according to claim 8. 25. Non-therapeutic use of an isolated polynucleotide according to any one of claims 1 to 4 for inhibiting the expression of the gene encoding the Sbi protein. The non-therapeutic use of an isolated polynucleotide according to any one of claims 13 to 15 in combination with an isolated polynucleotide according to any one of claims 1 to 4 for inhibiting the expression of a gene of interest.
FR0855686A 2008-08-22 2008-08-22 POLYNUCLEOTIDES REGULATING NEGATIVELY THE EXPRESSION OF SBI PROTEIN Expired - Fee Related FR2935146B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0855686A FR2935146B1 (en) 2008-08-22 2008-08-22 POLYNUCLEOTIDES REGULATING NEGATIVELY THE EXPRESSION OF SBI PROTEIN
PCT/EP2009/060844 WO2010020694A1 (en) 2008-08-22 2009-08-21 Polynucleotides which down-regulate the expression of the sbi protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0855686A FR2935146B1 (en) 2008-08-22 2008-08-22 POLYNUCLEOTIDES REGULATING NEGATIVELY THE EXPRESSION OF SBI PROTEIN

Publications (2)

Publication Number Publication Date
FR2935146A1 true FR2935146A1 (en) 2010-02-26
FR2935146B1 FR2935146B1 (en) 2013-03-01

Family

ID=40202186

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0855686A Expired - Fee Related FR2935146B1 (en) 2008-08-22 2008-08-22 POLYNUCLEOTIDES REGULATING NEGATIVELY THE EXPRESSION OF SBI PROTEIN

Country Status (2)

Country Link
FR (1) FR2935146B1 (en)
WO (1) WO2010020694A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958942B1 (en) * 2010-04-16 2015-04-17 Univ Rennes INHIBITORS OF ACCUMULATION OF SPRD TRANSCRIPTS AT S. AUREUS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024467A1 (en) * 1997-11-12 1999-05-20 Biostapro Ab IgG-BINDING PROTEIN FROM STAPHYLOCOCCUS AND NUCLEOTIDE SEQUENCE ENCODING THIS PROTEIN

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024467A1 (en) * 1997-11-12 1999-05-20 Biostapro Ab IgG-BINDING PROTEIN FROM STAPHYLOCOCCUS AND NUCLEOTIDE SEQUENCE ENCODING THIS PROTEIN

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AIBA ET AL: "Mechanism of RNA silencing by Hfq-binding small RNAs", CURRENT OPINION IN MICROBIOLOGY, CURRENT BIOLOGY LTD, GB, vol. 10, no. 2, 18 April 2007 (2007-04-18), pages 134 - 139, XP022034077, ISSN: 1369-5274 *
ATKINS ET AL: "S. aureus IgG-binding proteins SpA and Sbi: Host specificity and mechanisms of immune complex formation", MOLECULAR IMMUNOLOGY, PERGAMON, GB, vol. 45, no. 6, 3 December 2007 (2007-12-03), pages 1600 - 1611, XP022476940, ISSN: 0161-5890 *
BURMAN J D ET AL: "Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: Indications of a novel mechanism of complement evasion by Staphylococcus aureus", JOURNAL OF BIOLOGICAL CHEMISTRY 20080620 AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY INC. US, vol. 283, no. 25, 20 June 2008 (2008-06-20), pages 17579 - 17593, XP002510280 *
OSTARECK DIRK H ET AL: "Lipoxygenase mRNA silencing in erythroid differentiation: The 3'UTR regulatory complex controls 60S ribosomal subunit joining", CELL, vol. 104, no. 2, 26 January 2001 (2001-01-26), pages 281 - 290, XP002510281, ISSN: 0092-8674 *
UPADHYAY A ET AL: "Structure-function analysis of the C3 binding region of Staphylococcus aureus immune subversion protein Sbi", JOURNAL OF BIOLOGICAL CHEMISTRY 20080808 AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY INC. US, vol. 283, no. 32, 8 August 2008 (2008-08-08), pages 22113 - 22120, XP002510279 *

Also Published As

Publication number Publication date
FR2935146B1 (en) 2013-03-01
WO2010020694A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
Christiansen et al. Identification of small Hfq-binding RNAs in Listeria monocytogenes
Kevany et al. Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus
Garandeau et al. The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence
KR20200058509A (en) Composition and method for TTR gene editing and treatment of ATTR amyloidosis
KR20200064980A (en) Microorganisms programmed to produce immunomodulators and anti-cancer drugs in tumor cells
WO2001040497A2 (en) Method for obtaining nucleic acids from an environment sample
KR20220034109A (en) Reagents and methods for cloning, transcription and translation of semisynthetic organisms
Augagneur et al. Analysis of the CodY RNome reveals RsaD as a stress‐responsive riboregulator of overflow metabolism in Staphylococcus aureus
TWI327067B (en) Antifungal protein and usage thereof
Dhiman et al. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis
WO2013086331A1 (en) High efficiency di-nucleotide cyclase
EP3630979A2 (en) Genetic systems that defend against foreign dna and uses thereof
KR20230111189A (en) Reprogrammable ISCB nuclease and uses thereof
Payne et al. Inhibition of bacterial gene transcription with an RpoN-based stapled peptide
KR101508219B1 (en) Rna aptamers for teichoic acid of staphylococcus
KR102224897B1 (en) Novel Polypeptide and Antibiotics against Gram-Negative Bacteria Comprising the Polypeptide
WO2016123628A1 (en) Sequence specific and organism specific antimicrobials and related materials and methods
US7538208B2 (en) Type III secretion pathway in Aeromonas salmonicida, and uses therefor
FR2935146A1 (en) POLYNUCLEOTIDES REGULATING NEGATIVELY THE EXPRESSION OF SBI PROTEIN
JP2001501809A (en) Novel TFIIB transcription factor from Candida albicans, nucleic acid sequence encoding the same, and screening method for inhibiting Candida albicans growth
Garcia et al. Differential RNA-dependent ATPase activities of four rRNA processing yeast DEAD-box proteins
JP2002320494A (en) Polypeptide implicated in expression of resistance to, particularly, glycopeptide in gram-positive bacterium, nucleotide sequence encoding the polypeptide, and use in diagnosis
Wang et al. RelA-dependent (p) ppGpp production controls exoenzyme synthesis in Erwinia carotovora subsp. atroseptica
WO2023015232A1 (en) Sars-cov-2 virus-like particles
FR3016888A1 (en) SYNTHETASES OF THE COLISTINE AND CLUSTER OF CORRESPONDING GENES

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

ST Notification of lapse

Effective date: 20220405