FR2932832A1 - PHOTOVOLTAIC COVER ELEMENT - Google Patents

PHOTOVOLTAIC COVER ELEMENT Download PDF

Info

Publication number
FR2932832A1
FR2932832A1 FR0803486A FR0803486A FR2932832A1 FR 2932832 A1 FR2932832 A1 FR 2932832A1 FR 0803486 A FR0803486 A FR 0803486A FR 0803486 A FR0803486 A FR 0803486A FR 2932832 A1 FR2932832 A1 FR 2932832A1
Authority
FR
France
Prior art keywords
photovoltaic
module
tile
glass
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0803486A
Other languages
French (fr)
Other versions
FR2932832B1 (en
Inventor
Jean Baptiste Chevrier
Olivier Salasca
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LUSCOL PHOTOVOLTAICS SN, FR
Original Assignee
Jean Baptiste Chevrier
Olivier Salasca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jean Baptiste Chevrier, Olivier Salasca filed Critical Jean Baptiste Chevrier
Priority to FR0803486A priority Critical patent/FR2932832B1/en
Priority to PCT/IB2009/052675 priority patent/WO2010007546A2/en
Publication of FR2932832A1 publication Critical patent/FR2932832A1/en
Application granted granted Critical
Publication of FR2932832B1 publication Critical patent/FR2932832B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

Les éléments de couverture photovoltaïques dégradent en général l'aspect esthétique du bâtiment car ils ne respectent pas la géométrie des tuiles utilisées pour la toiture. De plus les contraintes imposées pour éviter les infiltrations d'eau dans les zones de raccordement avec les tuiles accentuent encore cette dégradation esthétique. L'invention remédie à ces inconvénients en conservant la géométrie des tuiles formant la toiture et apporte une grande protection de l'élément photovoltaïque contre le milieu extérieur et l'humidité ambiante. Pour cela une tuile transparente en verre moulé et présentant sur sa face inférieure dans sa partie centrale une zone plane d'épaisseur comprise entre 6 et 20 millimètres reçoit un module photovoltaïque, ce module étant rapporté sur le verre et collé sur ce verre par l'intermédiaire d'un polymère transparent sur la totalité de sa surface. Le module photovoltaïque peut être constitué d'un module réalisé avec des cellules en silicium polycristallin ou en technologie couches minces. Dans le cas d'un module en technologie couches minces, une structure inversée dont la face arrière correspond au substrat de verre servant de substrat de base au module est avantageuse.The photovoltaic roof elements generally degrade the aesthetic aspect of the building because they do not respect the geometry of the tiles used for the roof. In addition the constraints imposed to prevent water infiltration in the connection areas with the tiles further accentuate this aesthetic degradation. The invention overcomes these disadvantages by maintaining the geometry of the tiles forming the roof and provides a great protection of the photovoltaic element against the external environment and humidity. For this purpose, a transparent molded glass tile having on its lower face in its central part a flat area of thickness between 6 and 20 millimeters receives a photovoltaic module, this module being attached to the glass and glued to this glass by the intermediate of a transparent polymer on the whole of its surface. The photovoltaic module may consist of a module made with polycrystalline silicon cells or thin film technology. In the case of a module in thin film technology, an inverted structure whose rear face corresponds to the glass substrate serving as a base substrate for the module is advantageous.

Description

Elément de couverture photovoltaïque Domaine technique de l'invention L'invention concerne un élément photovoltaïque pour montage en toiture, et plus particulièrement la structure d'un élément appelé tuile photovoltaïque pouvant se substituer à un élément de couverture tel qu'une tuile, une ardoise ou une tôle. TECHNICAL FIELD OF THE INVENTION The invention relates to a photovoltaic element for roof mounting, and more particularly to the structure of an element called photovoltaic tile that can be substituted for a covering element such as a tile, a slate or a sheet.

10 État de la technique 10 State of the art

Un module photovoltaïque est formé par association de cellules photovoltaïques. Une cellule photovoltaïque fournit un courant dépendant de l'éclairement. La 15 tension électrique dépend du type du semi-conducteur formant la cellule. Cette tension est habituellement de l'ordre de 0,5 Volt à 0,7 Volt. Les tensions souhaitées en sortie de module photovoltaïque sont généralement supérieures à 6V et typiquement de plusieurs dizaines de volts. Pour cela, un module photovoltaïque est formé d'un assemblage de plusieurs cellules montées en 20 série. Une cellule photovoltaïque peut être réalisée selon deux technologies concurrentes suivant que le substrat est : un substrat de silicium monocristallin ou polycristallin, épais typiquement 200 à 300 micromètres 25 ou un substrat isolant électrique, notamment du verre, sur lequel sont déposées des couches minces semi-conductrices. A photovoltaic module is formed by association of photovoltaic cells. A photovoltaic cell provides a current depending on the illumination. The electrical voltage depends on the type of semiconductor forming the cell. This voltage is usually in the range of 0.5 volts to 0.7 volts. The desired voltages at the output of the photovoltaic module are generally greater than 6V and typically several tens of volts. For this, a photovoltaic module is formed of an assembly of several cells mounted in series. A photovoltaic cell may be produced according to two competing technologies depending on whether the substrate is: a monocrystalline or polycrystalline silicon substrate, typically 200 to 300 microns thick, or an electrical insulating substrate, in particular glass, on which thin semiconducting layers are deposited. conductive.

Dans toute la description qui suit, la face avant d'une cellule est celle qui reçoit le rayonnement solaire. De même, la face avant d'un module est celle qui reçoit le 30 rayonnement solaire.5 Un module photovoltaïque peut être réalisé par association de cellules en silicium monocristallin ou polycristallin. Les cellules sont alors connectées entre elles par des conducteurs électriques et encapsulées entre deux substrats, un substrat avant transparent en verre et un substrat arrière en verre ou en polymère, par exemple un fluorure de polyvinylique comme le Tedlar . Un polymère transparent thermoplastique comme du polyvinylbutyrate (PVB) ou un copolymère éthylène-acétate de vinyle (EVA) assure la cohésion de l'ensemble. Throughout the following description, the front face of a cell is the one that receives solar radiation. Likewise, the front face of a module is the one that receives the solar radiation. A photovoltaic module can be made by combining monocrystalline silicon or polycrystalline silicon cells. The cells are then connected together by electrical conductors and encapsulated between two substrates, a transparent front glass substrate and a rear glass or polymer substrate, for example a polyvinyl fluoride such as Tedlar. A thermoplastic transparent polymer such as polyvinylbutyrate (PVB) or an ethylene-vinyl acetate copolymer (EVA) ensures the cohesion of the assembly.

Un module photovoltaïque peut également être réalisé par association de cellules ~o en couches minces semi-conductrices. L'ensemble de la structure est alors déposé sur un même substrat et les différentes cellules montées en série sont formées sur ce substrat par dépôt d'une succession de couches minces et par des découpes au laser. Un substrat peut recouvrir l'autre face à fin de protection mécanique. Le substrat qui sert de base au dépôt des couches minces est 15 généralement le substrat avant. Il peut aussi être le substrat arrière dans une structure inversée de cellule, structure dite up-side-down. A photovoltaic module can also be produced by associating cells ~ o in thin semiconductor layers. The entire structure is then deposited on the same substrate and the various cells connected in series are formed on this substrate by depositing a succession of thin layers and by laser cuts. One substrate may cover the other face for mechanical protection purposes. The substrate which serves as a base for deposition of the thin layers is generally the front substrate. It can also be the back substrate in an inverted cell structure, so-called up-side-down structure.

Les modules photovoltaïques sont destinés à de nombreuses applications, et sont ainsi installés en des emplacements très variés. L'installation en toiture a été 20 proposée depuis longtemps, notamment dans le brevet FR2354430 déposé en 1976. Ce brevet décrit l'empilement de cellules photovoltaïques en silicium polycristallin sur une tuile de toiture. Le brevet (DE4438858) décrit des moyens de connexion électrique pour des éléments de toiture photovoltaïques. The photovoltaic modules are intended for many applications, and are thus installed in a wide variety of locations. The roof installation has been proposed for a long time, in particular in the patent FR2354430 filed in 1976. This patent describes the stack of polycrystalline silicon photovoltaic cells on a roof tile. Patent (DE4438858) discloses electrical connection means for photovoltaic roof elements.

25 Les modules photovoltaïques placés en toiture sont de plusieurs types : des modules photovoltaïques de grande dimension, typiquement plus d'un demi mètre carré, réalisés soit en technologie silicium polycristallin sur substrat de silicium épais, typiquement 250 pm, soit en technologie couches minces de silicium amorphe ou d'autres semi-conducteurs comme CIS ou 30 CdTe. The photovoltaic modules placed on the roof are of several types: large photovoltaic modules, typically more than half a square meter, made either in polycrystalline silicon technology on a thick silicon substrate, typically 250 μm, or in thin film technology. amorphous silicon or other semiconductors such as CIS or CdTe.

Ces modules photovoltaïques de grande dimension sont installés soit en lieu et place de la couverture, qu'elle soit en tuiles, tôles, ou tout autre matière, soit en superposition à la couverture existante. des modules photovoltaïques de petite dimension qui sont installés en lieu et place d'un ou plusieurs éléments de la couverture, par exemple à la place d'une tuile ou plusieurs tuiles, généralement 1 à 5 tuiles. Ces modules photovoltaïques de petite dimension sont réalisés soit en technologie silicium polycristallin , soit en technologie couches minces . These large photovoltaic modules are installed either in place of the cover, whether it is in tiles, sheets, or any other material, or superimposed on the existing cover. small photovoltaic modules that are installed in place of one or more elements of the cover, for example in place of a tile or several tiles, generally 1 to 5 tiles. These small photovoltaic modules are made either in polycrystalline silicon technology or in thin film technology.

Des éléments de couverture, par exemple une tuile ou une ardoise, contenant un module photovoltaïque font également partie de l'état de l'art et sont commercialisés. Ces éléments peuvent être constitués : soit d'un module photovoltaïque rapporté par collage sur la partie supérieure de la tuile ou de l'ardoise soit formés par dépôt et interconnexion de cellules photovoltaïques sur l'élément de couverture et protection de ces cellules par un substrat en verre transparent. Cover elements, for example a tile or a slate, containing a photovoltaic module are also part of the state of the art and are marketed. These elements may consist of: either a photovoltaic module attached by gluing on the upper part of the tile or slate is formed by depositing and interconnecting photovoltaic cells on the cover element and protection of these cells by a substrate in transparent glass.

Lorsque la couverture de la toiture est réalisée en tuiles ou ardoises, l'utilisation de modules de petite dimension remplaçant une ou plusieurs tuiles ou ardoises, ou des tuiles ou ardoises contenant un module photovoltaïque est souvent préférée à de grands modules pour des raisons esthétiques. Il en résulte cependant plusieurs inconvénients. Premièrement l'exposition directe aux intempéries des modules nécessite des 25 protections importantes contre l'action de l'eau et de l'humidité qui dégradent les performances des cellules dans le temps. When the roof covering is made of tiles or slates, the use of small modules replacing one or more tiles or slates, or tiles or slates containing a photovoltaic module is often preferred to large modules for aesthetic reasons. However, this results in several disadvantages. Firstly, the direct exposure to the weather of the modules requires significant protection against the action of water and moisture which degrade the performance of cells over time.

Deuxièmement, l'aspect esthétique de la toiture est dégradé du fait qu'un élément de couverture contenant un module photovoltaïque a un aspect très 30 différent de l'élément de couverture qu'il remplace. Second, the aesthetic appearance of the roof is degraded because a cover element containing a photovoltaic module looks very different from the cover element it is replacing.

Le brevet japonais JP5005344 décrit un arrangement dans lequel une cellule photovoltaïque est placée en arrière d'une tuile, transparente à la lumière et dont la surface est courbe, et espacée de cette tuile par un cadre d'adaptation de forme entre la tuile courbe et la cellule photovoltaïque plane. Dans cette configuration, une lame d'air est présente entre la tuile transparente et la cellule photovoltaïque ce qui provoque la multiplication des interfaces verre û air, avec une perte de l'ordre de 3% de l'intensité lumineuse à chaque interface. Dans cette configuration, la tuile constitue une barrière face au milieu extérieur et aux intempéries, mais la cellule photovoltaïque n'est pas protégée de l'humidité ambiante sous la tuile. Or celle-ci peut être importante et dégrader très rapidement le rendement de conversion de la cellule photovoltaïque. Japanese patent JP5005344 describes an arrangement in which a photovoltaic cell is placed behind a tile, transparent to light and whose surface is curved, and spaced from this tile by a shape matching frame between the curved tile and the photovoltaic cell is flat. In this configuration, an air gap is present between the transparent tile and the photovoltaic cell which causes the multiplication of glass-air interfaces, with a loss of the order of 3% of the light intensity at each interface. In this configuration, the tile is a barrier against the external environment and weather, but the photovoltaic cell is not protected from the ambient humidity under the tile. But it can be important and very quickly degrade the conversion efficiency of the photovoltaic cell.

Objet de l'invention L'invention a pour but de remédier à ces inconvénients et, en particulier, d'apporter une grande protection de l'élément photovoltaïque contre le milieu extérieur et l'humidité ambiante tout en limitant le nombre d'interfaces air-verre. OBJECT OF THE INVENTION The object of the invention is to remedy these drawbacks and, in particular, to provide a high degree of protection for the photovoltaic element against the external environment and the ambient humidity while limiting the number of air interfaces. -glass.

Dans la description suivante, la face avant d'une cellule est la face de la cellule qui reçoit directement le rayonnement solaire. De même, la face avant du module est la face du module qui reçoit directement le rayonnement solaire. Le substrat avant du module photovoltaïque est celui formant la face avant de ce module. Dans la description suivante, la face supérieure de l'élément de couverture est la face exposée au milieu extérieur. In the following description, the front face of a cell is the face of the cell which receives the solar radiation directly. Likewise, the front face of the module is the face of the module which receives the solar radiation directly. The front substrate of the photovoltaic module is the one forming the front face of this module. In the following description, the upper face of the cover element is the face exposed to the outside environment.

Selon l'invention, ce but est atteint par l'assemblage d'une tuile transparente en verre moulé et présentant sur sa face inférieure dans sa partie centrale une zone plane d'épaisseur comprise entre 6 et 20 millimètres qui reçoit un module photovoltaïque, ce module étant rapporté sur le verre et collé sur ce verre par l'intermédiaire d'un polymère transparent sur la totalité de sa surface. According to the invention, this object is achieved by assembling a transparent molded glass tile and having on its underside in its central part a flat area of thickness between 6 and 20 millimeters which receives a photovoltaic module, which module being attached to the glass and adhered to this glass via a transparent polymer on the entire surface thereof.

Selon un premier développement de l'invention, le module photovoltaïque rapporté sur la face inférieure de la tuile transparente en verre moulé est constitué d'un module de type bi-verre et réalisé en technologie couches minces. According to a first development of the invention, the photovoltaic module attached to the underside of the transparent molded glass tile consists of a bi-glass type module and made in thin film technology.

Selon un deuxième développement de l'invention, le module photovoltaïque rapporté sur la face inférieure de la tuile transparente en verre moulé est constitué d'un module de type mono-verre, réalisé en technologie couches minces et selon une structure dont la face arrière est en contact avec le substrat de verre. According to a second development of the invention, the photovoltaic module attached to the underside of the transparent molded glass tile consists of a mono-glass type module, made in thin film technology and according to a structure whose rear face is in contact with the glass substrate.

Selon un troisième développement de l'invention, le module photovoltaïque rapporté sur la face inférieure de la tuile transparente en verre moulé est constitué d'un module réalisé par association de plusieurs cellules en technologie de silicium polycristallin. Description sommaire des dessins D'autres avantages et caractéristiques ressortiront plus clairement de la 20 description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : La figure 1 représente un élément de couverture photovoltaïque selon l'invention 25 en vue de dessous. La figure 2 représente en section AA un élément de couverture photovoltaïque selon l'invention La figure 3 représente un élément de couverture photovoltaïque selon l'invention avec un module photovoltaïque de type bi-verre en technologie couche mince15 La figure 4 représente un élément de couverture photovoltaïque selon l'invention avec un module photovoltaïque en technologie couche mince et en structure inversée mono-verre. La figure 5 représente un élément de couverture photovoltaïque selon l'invention avec un module photovoltaïque de type bi-verre en technologie de cellules silicium polycristallin. La figure 6 représente un élément de couverture photovoltaïque selon l'invention de dimension double d'une tuile. According to a third development of the invention, the photovoltaic module attached to the underside of the transparent molded glass tile consists of a module made by combining several cells in polycrystalline silicon technology. BRIEF DESCRIPTION OF THE DRAWINGS Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of nonlimiting example and represented in the accompanying drawings, in which: FIG. a photovoltaic cover element according to the invention in view from below. FIG. 2 shows in section AA a photovoltaic cover element according to the invention. FIG. 3 represents a photovoltaic cover element according to the invention with a photovoltaic module of bi-glass type in thin film technology. FIG. 4 represents a cover element photovoltaic system according to the invention with a photovoltaic module in thin film technology and inverted mono-glass structure. FIG. 5 represents a photovoltaic cover element according to the invention with a photovoltaic module of bi-glass type in polycrystalline silicon cell technology. FIG. 6 represents a photovoltaic cover element according to the invention of double dimension of a tile.

Description de modes particuliers de réalisation. Description of particular embodiments.

Un élément de couverture photovoltaïque représenté en vue de face en figure 1 et en section AA en figure 2 est réalisé par l'assemblage d'une tuile transparente 1 et d'un module photovoltaïque 10. Selon l'invention, la tuile transparente est constituée d'un matériau vitreux ayant un fort coefficient de transmission des longueurs d'onde du spectre solaire entre le proche ultraviolet et le proche infrarouge. Ce coefficient de transmission est typiquement compris entre 80% et 95%. Le matériau vitreux est un verre dont la température de ramollissement est comprise entre 500°C et 800°C, en particulier un verre de type sodocalcique. La tuile transparente présente une géométrie compatible avec les tuiles qu'elle doit remplacer en toiture, notamment compatible avec les éléments de raccordement 4 et 5 destinés à interdire le cheminement de l'eau entre les tuiles. La face arrière de la tuile transparente présente une partie centrale plane 2 et de faible épaisseur, épaisseur typiquement comprise entre 6 et 20 millimètres. L'aire de cette partie plane est au moins égale à 50% de l'aire effective couverte par la tuile, c'est-à-dire de l'aire qui n'est pas recouverte par d'autres tuiles. La face arrière de la tuile transparente présente également des structures géométriques 3 destinées au positionnement de la tuile sur les liteaux de la charpente. A photovoltaic cover element shown in front view in FIG. 1 and in section AA in FIG. 2 is made by assembling a transparent tile 1 and a photovoltaic module 10. According to the invention, the transparent tile is constituted a vitreous material having a high transmission coefficient wavelengths of the solar spectrum between the near ultraviolet and the near infrared. This transmission coefficient is typically between 80% and 95%. The vitreous material is a glass whose softening temperature is between 500 ° C. and 800 ° C., in particular a soda-lime-type glass. The transparent tile has a geometry compatible with the tiles it must replace in the roof, including compatible with the connecting elements 4 and 5 to prohibit the flow of water between the tiles. The rear face of the transparent tile has a flat central portion 2 and of small thickness, typically between 6 and 20 millimeters thick. The area of this flat part is at least equal to 50% of the effective area covered by the tile, that is to say the area that is not covered by other tiles. The rear face of the transparent tile also has geometric structures 3 for positioning the tile on the battens of the frame.

Selon l'invention, un module photovoltaïque est rapporté sur la surface plane de la face inférieure de la tuile transparente, ce module étant collé sur la totalité de sa surface sur le matériau vitreux de la tuile à l'aide d'un polymère transparent, notamment du poly vinyle butyrate (PVB), de l'éthylène vinyle acétate (EVA), un silicone ou une colle à polymérisation sous rayonnement ultraviolet. Ce module photovoltaïque est relié par deux conducteurs 21 à un boîtier de connexion 20 rapporté sur la face arrière de la tuile. According to the invention, a photovoltaic module is attached to the flat surface of the lower face of the transparent tile, this module being adhered to its entire surface on the vitreous material of the tile using a transparent polymer, in particular polyvinyl butyrate (PVB), ethylene vinyl acetate (EVA), a silicone or a polymerization glue under ultraviolet radiation. This photovoltaic module is connected by two conductors 21 to a connection box 20 attached to the rear face of the tile.

Selon un premier développement de l'invention représenté en figure 3, le module photovoltaïque rapporté sur la face inférieure de la tuile transparente est réalisé technologie couches minces, c'est-à-dire par dépôts successifs de couches minces 12 conductrices et semi-conductrices comme du silicium, CGS, CGIS ou CdTe sur un substrat avant 14 en verre puis protection de cet ensemble par un substrat arrière 11 en verre ou en matériau polymère de type TEDLAR . Le substrat avant du module photovoltaïque est rapporté par collage à l'aide d'un polymère transparent 15 sur la partie plane de la face arrière de la tuile transparente, le collage ayant lieu sur la totalité de la surface du module. According to a first development of the invention shown in FIG. 3, the photovoltaic module attached to the underside of the transparent tile is made of thin film technology, that is to say by successive deposition of conductive and semiconductive thin layers 12. as silicon, CGS, CGIS or CdTe on a glass front substrate 14 and then protecting this assembly with a rear substrate 11 made of glass or TEDLAR-type polymer material. The front substrate of the photovoltaic module is attached by bonding with a transparent polymer 15 to the flat part of the rear face of the transparent tile, the bonding taking place over the entire surface of the module.

Selon un deuxième développement de l'invention représenté en figure 4, le module photovoltaïque rapporté sur la face inférieure de la tuile transparente en verre moulé est constitué d'un module de type mono-verre, réalisé en technologie couches minces et selon une structure inversée, c'est-à-dire par dépôts successifs de couches 12 minces conductrices et semi-conductrices comme du silicium, CGS, CGIS ou CdTe sur un substrat arrière 16 en verre. La face avant de ce module photovoltaïque qui n'est protégée par aucun substrat est rapportée par collage à l'aide d'un polymère transparent 15 sur la partie plane de la face arrière de la tuile transparente, le collage ayant lieu sur la totalité de la surface du module. According to a second development of the invention shown in FIG. 4, the photovoltaic module attached to the underside of the transparent molded glass tile consists of a mono-glass type module, made in thin film technology and in an inverted structure. that is to say by successive deposition of conductive and semiconducting thin films 12 such as silicon, CGS, CGIS or CdTe on a rear substrate 16 made of glass. The front face of this photovoltaic module which is not protected by any substrate is reported by gluing with the aid of a transparent polymer 15 on the flat part of the rear face of the transparent tile, the bonding taking place on the whole of the surface of the module.

Selon un troisième développement de l'invention représenté en figure 5, le module photovoltaïque rapporté sur la face inférieure de la tuile transparente en verre moulé est constitué d'un module réalisé par association de plusieurs cellules en technologie de silicium polycristallin. Ces cellules 13 sont disposées et connectées entre elles entre deux substrats arrière 11 et avant 14 cet ensemble étant maintenu à l'aide d'un polymère transparent 17. La substrat avant de ce module photovoltaïque est rapporté par collage à l'aide d'un polymère transparent 15 sur la partie plane de la face arrière de la tuile transparente, le collage ayant lieu sur la totalité de la surface du module. According to a third development of the invention shown in FIG. 5, the photovoltaic module attached to the underside of the transparent molded glass tile consists of a module made by combining several cells in polycrystalline silicon technology. These cells 13 are arranged and connected together between two rear substrates 11 and before 14 this assembly being maintained using a transparent polymer 17. The front substrate of this photovoltaic module is attached by gluing using a transparent polymer 15 on the flat portion of the rear face of the transparent tile, the bonding taking place on the entire surface of the module.

Selon une variante de l'invention représentée en figure 6, la tuile transparente 1 est une tuile couvrant la surface de deux tuiles élémentaires. Le ratio de surface couverte par le module photovoltaïque est alors plus important et peut atteindre 75 à 80% de la surface effective de la tuile transparente. According to a variant of the invention shown in FIG. 6, the transparent tile 1 is a tile covering the surface of two elementary tiles. The surface area covered by the photovoltaic module is then larger and can reach 75 to 80% of the effective surface of the transparent tile.

Exemple 1 Un élément de couverture photovoltaïque est réalisé par l'assemblage d'une tuile transparente et d'un module photovoltaïque. La tuile transparente est en verre sodocalcique. Elle présente sur sa face arrière une partie centrale plane 2 de 34 x 21 cm2, un ensemble de structures périphériques 4 et 5 qui s'assemblent avec les mêmes structures périphériques des tuiles voisines et destinées à interdire le cheminement de l'eau entre les tuiles ainsi que des butées 3. L'épaisseur de la tuile dans sa partie plane est de 10 mm et cette partie plane présente un coefficient de transmission des longueurs d'onde du spectre solaire entre le proche ultraviolet et le proche infrarouge de 91%. La partie centrale plane représente 71% de la surface de la tuile non recouverte par ses voisines lorsqu'elle est posée en toiture. Un module photovoltaïque contient un ensemble de motifs constitués de couches conductrices en oxyde d'indium et d'étain (ITO) et en aluminium et de couches semi-conductrices en silicium amorphe dopé. Les motifs sont assemblés en série pour fournir une tension de 20 volts en sortie du module. Les couches constituant les motifs sont déposées sur un substrat arrière 16 en verre de type sodocalcique de 2 millimètres d'épaisseur et de 34 x 21 cm2 de surface. Le module ne contient pas de substrat avant. La face avant du module est constituée par la dernière couche mince de l'empilement de couches minces 12. Deux fils conducteurs 21 de sortie électrique sont connectés aux extrémités électriques du module. Ce module photovoltaïque est ensuite rapporté et collé sur la partie centrale plane de la face arrière de la tuile transparente, la face avant du module, non protégée par un substrat, est mise en contact avec la face arrière de la tuile. Pour cela, un élastomère silicone bi-composants transparent est déposé en une couche 15 de 0.5 mm d'épaisseur par une racle d'enduction sur l'ensemble de la partie centrale plane de la tuile transparente. La tuile et le module photovoltaïque sont ensuite placés dans une enceinte où un vide primaire est imposé, la valeur de pression résiduelle étant d'environ 10 millibars. La face avant du module photovoltaïque est alors positionnée parallèlement à la surface plane de la tuile et amenée en contact avec la couche d'élastomère silicone déposé sur la tuile. Le vide est ensuite cassé et l'ensemble tuile-module est placé dans une enceinte thermique à une température de 140°C pendant 15 minutes afin de provoquer la polymérisation de l'élastomère. Example 1 A photovoltaic roofing element is made by assembling a transparent tile and a photovoltaic module. The transparent tile is made of soda-lime glass. It has on its rear face a flat central portion 2 of 34 x 21 cm 2, a set of peripheral structures 4 and 5 which are assembled with the same peripheral structures of the neighboring tiles and intended to prohibit the flow of water between the tiles as well as stops 3. The thickness of the tile in its planar portion is 10 mm and this flat portion has a transmission coefficient wavelengths of the solar spectrum between the near ultraviolet and the near infrared of 91%. The flat central part represents 71% of the surface of the tile not covered by its neighbors when it is placed on the roof. A photovoltaic module contains a set of patterns consisting of conductive layers of indium tin oxide (ITO) and aluminum and doped amorphous silicon semiconductor layers. The patterns are assembled in series to provide a voltage of 20 volts at the output of the module. The layers constituting the patterns are deposited on a rear substrate 16 made of soda-lime-type glass 2 millimeters thick and 34 × 21 cm 2 in area. The module does not contain a front substrate. The front face of the module consists of the last thin layer of the thin film stack 12. Two electrical output leads 21 are connected to the electrical ends of the module. This photovoltaic module is then attached and glued on the flat central portion of the rear face of the transparent tile, the front face of the module, unprotected by a substrate, is brought into contact with the rear face of the tile. For this, a transparent bicomponent silicone elastomer is deposited in a layer 15 of 0.5 mm thick by a coating doctor on the whole of the flat central part of the transparent tile. The tile and the photovoltaic module are then placed in an enclosure where a primary vacuum is imposed, the residual pressure value being approximately 10 millibars. The front face of the photovoltaic module is then positioned parallel to the flat surface of the tile and brought into contact with the silicone elastomer layer deposited on the tile. The vacuum is then broken and the tile-module assembly is placed in a thermal enclosure at a temperature of 140 ° C for 15 minutes to cause the polymerization of the elastomer.

Un boîtier de connexion 20 comportant deux bornes isolées entre elles est ensuite collé avec une colle à polymérisation sous rayonnement ultraviolet à la périphérie de la face arrière de la tuile transparente. Les deux fils de cuivre 21 sortant du module photovoltaïque sont soudés aux deux bornes du boîtier. Un élastomère silicone bi-composants 22 est ensuite déposé sur toute la périphérie du module et sur les fils de connexion 21. Cet élastomère silicone 22 polymérise à la température ambiante en deux heures environ. Ces éléments de couverture photovoltaïques sont mis en place sur la toiture en remplacement d'une tuile non photovoltaïque. Une dizaine de ces éléments de couverture photovoltaïques sont raccordés en série pour fournir une tension de 200 volts environ. A connection box 20 having two terminals insulated from each other is then glued with an ultraviolet radiation polymerization glue at the periphery of the rear face of the transparent tile. The two copper wires 21 coming out of the photovoltaic module are soldered to the two terminals of the housing. A bi-component silicone elastomer 22 is then deposited over the entire periphery of the module and on the connection wires 21. This silicone elastomer 22 polymerises at room temperature in about two hours. These photovoltaic roofing elements are put in place on the roof in replacement of a non-photovoltaic tile. About ten of these photovoltaic roofing elements are connected in series to provide a voltage of about 200 volts.

Exemple 2 Un élément de couverture photovoltaïque est réalisé par l'assemblage d'une tuile transparente et d'un module photovoltaïque. La tuile transparente est en verre sodocalcique. Elle présente sur sa face arrière une partie centrale plane 2 de 34 x 21 cm2, un ensemble de structures périphériques 4 et 5 qui s'assemblent avec les mêmes structures périphériques des tuiles voisines et destinées à interdire le cheminement de l'eau entre les tuiles ainsi que des butées 3. L'épaisseur de la tuile dans sa partie plane est de 10 mm et cette partie plane présente un coefficient de transmission des longueurs d'onde du spectre solaire entre le proche ultraviolet et le proche infrarouge de 91%. La partie centrale plane représente 71% de la surface de la tuile non recouverte par ses voisines lorsqu'elle est posée en toiture. Example 2 A photovoltaic roofing element is made by assembling a transparent tile and a photovoltaic module. The transparent tile is made of soda-lime glass. It has on its rear face a flat central portion 2 of 34 x 21 cm 2, a set of peripheral structures 4 and 5 which are assembled with the same peripheral structures of the neighboring tiles and intended to prohibit the flow of water between the tiles as well as stops 3. The thickness of the tile in its planar portion is 10 mm and this flat portion has a transmission coefficient wavelengths of the solar spectrum between the near ultraviolet and the near infrared of 91%. The flat central part represents 71% of the surface of the tile not covered by its neighbors when it is placed on the roof.

Un module photovoltaïque composé de six cellules carrées de 101 x 101 mm2 en silicium polycristallin montées en série et encapsulées par l'intermédiaire d'un polymère thermoplastique transparent EVA entre deux verres de 210 x 340 mm et de 3 mm d'épaisseur fournit une tension de 3,6 volts. Deux fils connectés aux cellules aux extrémités de l'assemblage forment les contacts de sortie électrique 21. A photovoltaic module consisting of six square cells of 101 x 101 mm2 made of polycrystalline silicon connected in series and encapsulated by means of a transparent thermoplastic polymer EVA between two glasses of 210 x 340 mm and 3 mm thick provides a voltage 3.6 volts. Two wires connected to the cells at the ends of the assembly form the electrical output contacts 21.

Ce module photovoltaïque est ensuite rapporté et collé sur la partie centrale plane de la face arrière de la tuile transparente. Pour cela, un élastomère silicone bi-composants transparent est déposé en une couche 15 de 0.5 mm d'épaisseur par un peigne d'enduction sur l'ensemble de la surface de la face avant du module photovoltaïque. This photovoltaic module is then attached and glued on the flat central part of the rear face of the transparent tile. For this, a transparent two-component silicone elastomer is deposited in a layer 15 of 0.5 mm thick by a coating comb over the entire surface of the front face of the photovoltaic module.

La tuile et le module photovoltaïque sont ensuite placés dans une enceinte où un vide primaire est imposé, la valeur de pression résiduelle étant d'environ 25 millibars. Le substrat avant du module photovoltaïque muni de sa couche d'élastomère silicone est alors positionné parallèlement à la surface plane de la tuile et amené en contact avec la tuile. Le vide est ensuite cassé et l'ensemble tuile-module est placé dans une enceinte thermique à une température de 120°C pendant 30 minutes afin de provoquer la polymérisation de l'élastomère. Un boîtier de connexion 20 comportant deux lames ressort isolées entre elles est ensuite collé avec une colle à polymérisation sous rayonnement ultraviolet à la périphérie de la face arrière de la tuile transparente. Les deux fils de cuivre 21 sortant du module photovoltaïque sont soudés aux deux lames ressort du boîtier. Un élastomère silicone bi-composants 22 est ensuite déposé sur toute la périphérie du module et sur les fils de connexion 21. Cet élastomère silicone 22 polymérise à la température ambiante en deux heures environ. Ces éléments de couverture photovoltaïques sont mis en place sur la toiture en remplacement d'une tuile non photovoltaïque. Ils sont connectés par l'intermédiaire des lames ressort à un connecteur plat formé de deux conducteurs plat 51 et 52 disposés sur un isolant 50. Ce connecteur plat est fixé par collage ou agrafage sur le liteau et permet de connecter tous les éléments photovoltaïques placés sur ce liteau. The tile and the photovoltaic module are then placed in an enclosure where a primary vacuum is imposed, the residual pressure value being approximately 25 millibars. The front substrate of the photovoltaic module provided with its silicone elastomer layer is then positioned parallel to the flat surface of the tile and brought into contact with the tile. The vacuum is then broken and the tile-module assembly is placed in a thermal enclosure at a temperature of 120 ° C for 30 minutes to cause polymerization of the elastomer. A connection box 20 having two spring blades insulated from each other is then glued with an ultraviolet radiation polymerization glue at the periphery of the rear face of the transparent tile. The two copper wires 21 coming out of the photovoltaic module are soldered to the two spring blades of the housing. A bi-component silicone elastomer 22 is then deposited over the entire periphery of the module and on the connection wires 21. This silicone elastomer 22 polymerises at room temperature in about two hours. These photovoltaic roofing elements are put in place on the roof in replacement of a non-photovoltaic tile. They are connected via spring blades to a flat connector formed of two flat conductors 51 and 52 arranged on an insulator 50. This flat connector is fixed by gluing or stapling on the batt and allows to connect all the photovoltaic elements placed on this liteau.

Claims (5)

Revendications1. Elément de couverture photovoltaïque composé d'un module photovoltaïque et d'une tuile transparente en verre présentant sur sa face inférieure dans sa partie centrale une zone plane d'épaisseur comprise entre 6 et 20 millimètres caractérisée en ce que la tuile est en verre moulé et en ce que le module est rapporté sur le verre et collé sur ce verre par l'intermédiaire d'un polymère transparent sur la totalité de sa surface. Revendications1. Photovoltaic roofing element consisting of a photovoltaic module and a transparent glass tile having on its underside in its central part a flat area of thickness between 6 and 20 millimeters characterized in that the tile is made of molded glass and in that the module is attached to the glass and adhered to this glass by means of a transparent polymer on its entire surface. 2. Elément de couverture photovoltaïque selon la revendication 1 caractérisé en ce que le module photovoltaïque rapporté sur la face inférieure de la tuile transparente en verre est constitué d'un module réalisé en technologie couches minces. 2. Photovoltaic cover element according to claim 1 characterized in that the photovoltaic module attached to the underside of the transparent glass tile consists of a module made of thin film technology. 3. Elément de couverture photovoltaïque selon la revendication 2 caractérisé en ce que le module photovoltaïque en technologie couches minces est réalisé selon une structure dont la face arrière est en contact avec le substrat de verre et la face avant est collée directement sur la face plane de la tuile en verre. Photovoltaic roofing element according to claim 2, characterized in that the photovoltaic module in thin film technology is produced in a structure whose rear face is in contact with the glass substrate and the front face is bonded directly to the flat face of the glass substrate. the glass tile. 4. Elément de couverture photovoltaïque selon la revendication 1 caractérisé en ce que le module photovoltaïque rapporté sur la face inférieure de la tuile transparente en verre est constitué d'un module réalisé par association de plusieurs cellules en technologie de silicium polycristallin. 4. Photovoltaic cover element according to claim 1 characterized in that the photovoltaic module attached to the underside of the transparent glass tile consists of a module made by combining several cells in polycrystalline silicon technology. 5. Elément de couverture photovoltaïque selon les revendications 1 ou 2 caractérisé en ce que la tuile transparente est une tuile couvrant la surface de deux tuiles élémentaires et en ce que le ratio de surface couverte par le module photovoltaïque est supérieur à 75% de la surface effective de la tuile transparente. 1230 Photovoltaic roofing element according to claim 1 or 2, characterized in that the transparent tile is a tile covering the surface of two elementary tiles and in that the surface area covered by the photovoltaic module is greater than 75% of the surface area. effective of the transparent tile. 1230
FR0803486A 2008-06-23 2008-06-23 PHOTOVOLTAIC COVER ELEMENT Active FR2932832B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0803486A FR2932832B1 (en) 2008-06-23 2008-06-23 PHOTOVOLTAIC COVER ELEMENT
PCT/IB2009/052675 WO2010007546A2 (en) 2008-06-23 2009-06-22 Photovoltaic roofing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0803486A FR2932832B1 (en) 2008-06-23 2008-06-23 PHOTOVOLTAIC COVER ELEMENT

Publications (2)

Publication Number Publication Date
FR2932832A1 true FR2932832A1 (en) 2009-12-25
FR2932832B1 FR2932832B1 (en) 2011-04-29

Family

ID=40336556

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0803486A Active FR2932832B1 (en) 2008-06-23 2008-06-23 PHOTOVOLTAIC COVER ELEMENT

Country Status (2)

Country Link
FR (1) FR2932832B1 (en)
WO (1) WO2010007546A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117481A1 (en) * 2010-03-23 2011-09-29 Luxol Photovoltaics Highly curved photovoltaic element
US10505492B2 (en) 2016-02-12 2019-12-10 Solarcity Corporation Building integrated photovoltaic roofing assemblies and associated systems and methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970492B1 (en) 2011-01-14 2013-12-06 Luxol Photovoltaics COMPOSITE PHOTOVOLTAIC TILE
CN108322184A (en) * 2018-05-04 2018-07-24 王志东 A kind of photovoltaic light skill integral system and construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2354430A1 (en) * 1976-06-09 1978-01-06 Radiotechnique Compelec Photovoltaic power generating panel - using solar cells arranged on panels used as roofing tiles for buildings
WO2002101839A1 (en) * 2001-06-11 2002-12-19 Powertile Limited Photovoltaic tiles
GB2431773A (en) * 2005-10-28 2007-05-02 Enigma Glass Ltd Solar panel devices
DE102006041603A1 (en) * 2006-09-05 2008-03-06 Plichta, Peter, Dr. Glass roofing tile representation and utilization method, involves providing photo silicon layer between two parts of glass roofing tile, such that lower side and upper side are stuck together, where photo silicon is made of sand and slate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2354430A1 (en) * 1976-06-09 1978-01-06 Radiotechnique Compelec Photovoltaic power generating panel - using solar cells arranged on panels used as roofing tiles for buildings
WO2002101839A1 (en) * 2001-06-11 2002-12-19 Powertile Limited Photovoltaic tiles
GB2431773A (en) * 2005-10-28 2007-05-02 Enigma Glass Ltd Solar panel devices
DE102006041603A1 (en) * 2006-09-05 2008-03-06 Plichta, Peter, Dr. Glass roofing tile representation and utilization method, involves providing photo silicon layer between two parts of glass roofing tile, such that lower side and upper side are stuck together, where photo silicon is made of sand and slate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117481A1 (en) * 2010-03-23 2011-09-29 Luxol Photovoltaics Highly curved photovoltaic element
FR2957952A1 (en) * 2010-03-23 2011-09-30 Luxol Photovoltaics HIGHLY GALBE PHOTOVOLTAIC ELEMENT
US10505492B2 (en) 2016-02-12 2019-12-10 Solarcity Corporation Building integrated photovoltaic roofing assemblies and associated systems and methods

Also Published As

Publication number Publication date
WO2010007546A3 (en) 2010-12-16
FR2932832B1 (en) 2011-04-29
WO2010007546A2 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
AU768057B2 (en) Integrated thin-film solar battery
KR101205627B1 (en) Solar cell module and method of encapsulating same
KR100325955B1 (en) Solar Cell Module and Reinforcing Member for Solar Cell Module
US20130306130A1 (en) Solar module apparatus with edge reflection enhancement and method of making the same
FR2550385A1 (en) SOLAR MODULE
US20070200192A1 (en) Photovoltaic apparatus
CN102347381A (en) Solar cell module and solar cell module manufacturing method
FR2922362A1 (en) IMPROVEMENTS TO A CONNECTION HOUSING FOR ELEMENTS CAPABLE OF COLLECTING LIGHT.
EP2926388B1 (en) Laminated organic electronic or optoelectronic device
EP2212925B1 (en) Improvements made to seals for light-capturing elements
KR100983951B1 (en) Solar cell module
FR2932832A1 (en) PHOTOVOLTAIC COVER ELEMENT
EP2259336A2 (en) Structure element for solar panel, and structure comprising such an element
FR2957952A1 (en) HIGHLY GALBE PHOTOVOLTAIC ELEMENT
JP2009099883A (en) Thin film solar cell module
US20110030790A1 (en) Solar cell modules and methods of manufacturing the same
FR3024591A1 (en) METHOD FOR MANUFACTURING A PHOTOVOLTAIC PANEL
FR2940523A1 (en) Photovoltaic roofing element e.g. transparent glass tile, for use on e.g. roof of building, has central portion covering specific percentages of area of element, and photovoltaic cells arranged in central portion of element
WO2014050193A1 (en) Photoelectric conversion module
JPH09331079A (en) Frameless solar cell module
JPH0945946A (en) Solar cell and fabrication thereof
JP2013527622A (en) Solar cell module and manufacturing method therefor
WO2010046180A3 (en) Semiconductor device and method of producing a semiconductor device
JP4077456B2 (en) Integrated thin film solar cell
JP3715876B2 (en) Thin film solar cell module

Legal Events

Date Code Title Description
TP Transmission of property
TP Transmission of property

Owner name: LUSCOL PHOTOVOLTAICS SN, FR

Effective date: 20150116

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10