FR2928968A1 - Internal combustion engine controlling method for drive train of motor vehicle, involves performing cross section determination, estimation of average temperature and calculation of absolute pressure, to estimate absolute pressure in line - Google Patents

Internal combustion engine controlling method for drive train of motor vehicle, involves performing cross section determination, estimation of average temperature and calculation of absolute pressure, to estimate absolute pressure in line Download PDF

Info

Publication number
FR2928968A1
FR2928968A1 FR0801549A FR0801549A FR2928968A1 FR 2928968 A1 FR2928968 A1 FR 2928968A1 FR 0801549 A FR0801549 A FR 0801549A FR 0801549 A FR0801549 A FR 0801549A FR 2928968 A1 FR2928968 A1 FR 2928968A1
Authority
FR
France
Prior art keywords
absolute pressure
motor vehicle
exhaust line
pressure
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0801549A
Other languages
French (fr)
Other versions
FR2928968B1 (en
Inventor
Philippe Recouvreur
Olivier Tigrine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0801549A priority Critical patent/FR2928968B1/en
Publication of FR2928968A1 publication Critical patent/FR2928968A1/en
Application granted granted Critical
Publication of FR2928968B1 publication Critical patent/FR2928968B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

The method involves determining a cross section of an exhaust line (1) of a motor vehicle, and estimating an average temperature (Tmoy) of the exhaust line. Absolute pressure (Pabsolue) in the exhaust line is calculated based on the estimated average temperature and the determined cross section, where the pressure is defined by exhaust gas pressure at an outlet of a particle filter (2). The determination of the cross section, the estimation of the average temperature and the calculation of the absolute pressure are preformed for estimating the absolute pressure in the exhaust line.

Description

REN075FR / PJ8702 - dépôt DA 1 L'invention concerne un procédé de gestion d'un moteur à combustion interne pour véhicule automobile, un groupe motopropulseur à combustion interne et un véhicule automobile en tant que tels mettant en oeuvre un tel procédé de gestion. The invention relates to a method for managing an internal combustion engine for a motor vehicle, an internal combustion powertrain and a motor vehicle as such implementing such a management method.

La gestion d'un moteur à combustion interne d'un véhicule automobile consiste à gérer différents actionneurs et capteurs relatifs à un moteur afin de déterminer les caractéristiques de la combustion interne du moteur. The management of an internal combustion engine of a motor vehicle consists in managing different actuators and sensors relating to an engine in order to determine the characteristics of the internal combustion of the engine.

Elle est généralement mise en oeuvre à l'aide d'un calculateur, appelé UCE (Unité de Contrôle Electronique), qui comprend dans une mémoire des lois de comrnande et des paramètres de calibration. Dans ce cadre, l'UCE met en oeuvre des modèles de calcul de grandeurs physiques représentant le fonctionnement du moteur, grâce à des moyens logiciels et/ou matériels. Ces modèles peuvent remplacer des capteurs ou valider les mesures de capteurs et/ou établir des lois de contrôle. Notamment, la gestion du moteur, particulièrement diesel, nécessite la connaissance de la pression absolue. Cette grandeur physique sert dans de nombreux modèles mis en oeuvre lors de la gestion d'un moteur, comme celui du calcul du chargement en particules de suies d'un filtre à particules d'un système de post-traitement des gaz d'échappement, sur la base de la variation de pression différentielle entre l'amont et l'aval du filtre à particules. Elle peut aussi servir à retrouver la pression aval turbine du turbocompresseur. It is generally implemented using a computer, called ECU (Electronic Control Unit), which includes in a memory control laws and calibration parameters. In this context, the UCE implements models for calculating physical quantities representing the operation of the engine, by means of software and / or hardware. These models can replace sensors or validate sensor measurements and / or establish control laws. In particular, the engine management, particularly diesel, requires the knowledge of the absolute pressure. This physical quantity is used in many models implemented during the management of an engine, such as the calculation of the soot particle loading of a particulate filter of an exhaust gas aftertreatment system. based on differential pressure variation between upstream and downstream of the particulate filter. It can also be used to recover the downstream turbine pressure of the turbocharger.

La pression absolue dans la ligne d'échappement d'un véhicule est généralement calculée à partir de la perte de charges de la ligne d'échappement o,P et de la pression atmosphérique. La relation utilisée est: Pabsolue = Patmosphérique + tP La formulation de la perte de charge dans la ligne d'échappement REN075FR / PJ8702 - dépôt DA 2 s'exprime souvent sous la forme de polynômes du second ordre, fonction du débit des gaz: d'échappement (débit massique Qm ou débit volumique Qv). L'inconvénient majeur de cette approche est qu'elle ne tient pas compte du fait que la pression absolue dépend aussi de la température de la ligne d'échappement, ce qui donne des approximations imprécises et insatisfaisantes. Pour cela, il faudrait faire dépendre de la température les coefficients des polynômes. Cette méthode serait toutefois laborieuse à implémenter car elle exigerait une cartographie complexe, difficile à établir. The absolute pressure in the exhaust line of a vehicle is usually calculated from the loss of loads of the exhaust line o, P and the atmospheric pressure. The relationship used is: Pabsolue = Patmosphérique + tP The formulation of the pressure drop in the exhaust line REN075FR / PJ8702 - DA 2 deposition is often expressed in the form of second order polynomials, a function of the gas flow rate: d exhaust (mass flow Qm or volume flow Qv). The major disadvantage of this approach is that it does not take into account the fact that the absolute pressure also depends on the temperature of the exhaust line, which gives imprecise and unsatisfactory approximations. For that, it would be necessary to make depend on the temperature the coefficients of the polynomials. This method would however be laborious to implement because it would require a complex mapping, difficult to establish.

Ainsi, l'objet de l'invention est donc d'améliorer la gestion d'un moteur à combustion interne pour véhicule automobile. Plus précisément, l'objet de l'invention consiste à déterminer une solution de gestion qui exploite un procédé précis et simple de détermination de la pression absolue de la ligne d'échappement d'un véhicule automobile. Thus, the object of the invention is therefore to improve the management of an internal combustion engine for a motor vehicle. More specifically, the object of the invention is to determine a management solution that exploits a precise and simple method for determining the absolute pressure of the exhaust line of a motor vehicle.

A cet effet, l'invention repose sur un procédé de gestion d'un moteur de véhicule automobile, comprenant un procédé d'estimation de la pression absolue (Pabsoaue), caractérisé en ce que ce procédé d"estimation de la pression absolue comprend les étapes suivantes : -détermination de la section efficace (Se) de la ligne d'échappement ; -estimation de la température moyenne (Tmoy) de la ligne d'échappement ; -calcul de la pression absolue (Pabsolue) en fonction de la 25 température moyenne (Tmoy) et de la section efficace (Se) déterminées aux étapes précédentes. For this purpose, the invention is based on a motor vehicle engine management method, comprising a method for estimating the absolute pressure (Pabsoaue), characterized in that this method of estimating the absolute pressure comprises the following steps: determination of the effective section (Se) of the exhaust line, estimation of the average temperature (Tmoy) of the exhaust line, calculation of the absolute pressure (Pabsolue) as a function of the temperature. average (Tmoy) and cross section (Se) determined in the previous steps.

La pression absolue (Pabsolue) peut être déterminée par l'équation suivante : REN075FR / PJ8702 - dépôt DA 3 Pabsolue = Patmosphérique * [1 + ((Qm/ Se)2 r Tmoy / Patmosphérique2) Où Qm est le débit massique des gaz d'échappement et Patmosphérique la pression atmosphérique. The absolute pressure (Pabsolue) can be determined by the following equation: REN075EN / PJ8702 - DA3 deposit Pabsolue = atmosphere * [1 + ((Qm / Se) 2 r Tmoy / Patmosphérique2) Where Qm is the mass flow of the gases of d exhaust and atmospheric pressure.

La section efficace (Se) de la ligne d'échappement peut être obtenue par au moins un essai. The effective section (Se) of the exhaust line can be obtained by at least one test.

La température moyenne (Tmoy) peut être calculée sur la base d'un modèle d'évolution de la température dans la ligne d'échappement. The average temperature (Tmoy) can be calculated on the basis of an evolution model of the temperature in the exhaust line.

Le procédé peut de plus comprendre une estimation de la masse volumique des gaz d'échappement égale à une valeur moyenne obtenue à une pression moyenne (Pmoy) dans la ligne d'échappement définie par la relation Pmoy = Patmosphérique + OP/2 où AP représente la perte de charge au niveau de la ligne d'échappement. The method may further comprise an estimate of the density of the exhaust gas equal to an average value obtained at a mean pressure (Pmoy) in the exhaust line defined by the relation Pmoy = Patmosphérique + OP / 2 where AP represents the pressure drop at the exhaust line.

Le procédé peut mettre en oeuvre un procédé de calcul du chargement en particules de suies d'un filtre à particules d'un système de post-traitement des gaz d'échappement, sur la base de la variation de pression différentielle entre l'amont et l'aval du filtre à particules, en calculant la pression absolue selon le procédé des revendications précédentes. The method can implement a method for calculating the soot particle loading of a particulate filter of an exhaust aftertreatment system, based on the differential pressure variation between upstream and downstream of the exhaust gas aftertreatment system. downstream of the particulate filter, calculating the absolute pressure according to the method of the preceding claims.

L'invention porte aussi sur un groupe motopropulseur pour véhicule automobile, comprenant une ligne d'échappement et une Unité de Contrôle Electrorlique (UCE), caractérisé en ce que l'UCE met en oeuvre un procédé de gestion du moteur tel que décrit précédemment. The invention also relates to a power unit for a motor vehicle, comprising an exhaust line and an Electro-Control Unit (ECU), characterized in that the ECU implements a motor management method as described above.

La ligne d'échappement peut comprendre un filtre à particules et la pression absolue (Pabsolue) peut être définie par la pression des gaz d'échappement à la sortie du filtre à particules. The exhaust line may comprise a particulate filter and the absolute pressure (Pabsolue) may be defined by the pressure of the exhaust gas at the outlet of the particulate filter.

REN075FR / PJ8702 - dépôt DA 4 L'invention porte aussi sur un véhicule automobile caractérisé en ce qu'il comprend un groupe motopropulseur tel que décrit précédemment. The invention also relates to a motor vehicle characterized in that it comprises a powertrain as described above.

Ces objets, caractéristiques et avantages de la présente invention seront exposés en détail dans la description suivante d'un rnode d'exécution particulier fait à titre non-limitatif en relation avec l'unique figure jointe qui représente schématiquement une ligne d'échappement d'un véhicule automobile. These objects, features and advantages of the present invention will be set forth in detail in the following description of a particular embodiment of a non-limiting embodiment in relation to the single attached figure which schematically shows an exhaust line of FIG. a motor vehicle.

La figure 1 illustre donc la ligne d'échappement 1 d'un véhicule automobile, qui comprend un filtre à particules 2 et une sortie 3 des gaz vers l'atmosphère, ces gaz provenant de la combustion d'un moteur 4. L'ensemble de ce groupe motopropulseur est géré par un calculateur UCE, qui met notamment en oeuvre un procédé de gestion incluant un procédé d'estimation de la pression absolue. Selon le procédé de gestion de l'invention, la perte de charge dans la ligne d'échappement 1 peut s'écrire selon les lois de Bernouilli par l'équation suivante : LP=0.5pv2 Où p représente la masse volumique des gaz dans la ligne d'échappement 1, V représente la vitesse des gaz dans la ligne d'échappement 1, et est le coefficient de perte de charges qui dépend principalement de la 25 géométrie de la ligne d'échappement. Pour une ligne d'échappement 1 donnée, nous supposons ce coefficient constant. FIG. 1 thus illustrates the exhaust line 1 of a motor vehicle, which comprises a particle filter 2 and an outlet 3 for the gases to the atmosphere, these gases coming from the combustion of a motor 4. The assembly of this powertrain is managed by an ECU calculator, which implements in particular a management method including a method for estimating the absolute pressure. According to the management method of the invention, the pressure drop in the exhaust line 1 can be written according to Bernouilli's laws by the following equation: LP = 0.5pv2 Where p represents the density of the gases in the Exhaust line 1, V represents the velocity of the gases in the exhaust line 1, and is the coefficient of loss of charge which depends mainly on the geometry of the exhaust line. For a given exhaust line 1, we assume this constant coefficient.

REN075FR / PJ8702 - dépôt DA 5 De plus, dans la ligne d'échappement, le débit massique Qm des gaz d'échappement vérifie l'équation suivante: Qm = p V S où S représente la surface de passage des gaz. L'équation de Bernouilli peut ainsi s'écrire : 5 AP = (1/2p) (Qm/S)2 Comme la surface efficace Se est définie par Se = S/' , on obtient l'équation : A P = (1/2p) (Qm/ Se)2 Puisque le coefficient de perte de charges est constant pour une ligne 10 d'échappement donnée, la surface efficace Se est également constante. Selon une étape préalable du procédé, cette surface efficace Se est déterminée par un essai. La relation des gaz parfaits appliquée aux gaz d'échappement s'écrit: P=prT soit p=P/(r T) 15 Selon une caractéristique essentielle du procédé de gestion de l'invention, la masse volumique p et la température T des gaz sont déterminées comme égales à une valeur moyenne sur l'ensemble de la ligne d'échappement, depuis l'aval du filtre à particules jusqu'à la sortie 3 du silencieux. 20 Ainsi, cette masse volumique moyenne des gaz sera obtenue à la pression moyenne Pmoy de la ligne d'échappement définie par : Pmoy = Patmosphérique + AP/2 . Furthermore, in the exhaust line, the mass flow rate Qm of the exhaust gas satisfies the following equation: Qm = p V S where S represents the gas passing surface. The Bernouilli equation can be written as follows: 5 AP = (1 / 2p) (Qm / S) 2 Since the effective surface Se is defined by Se = S / ', we obtain the equation: AP = (1 / 2p) (Qm / Se) 2 Since the pressure loss coefficient is constant for a given exhaust line, the effective area Se is also constant. According to a preliminary step of the method, this effective surface Se is determined by a test. The perfect gas relation applied to the exhaust gas is written: P = prT = p = P / (r T) According to an essential characteristic of the management method of the invention, the density p and the temperature T of gas are determined as equal to an average value over the entire exhaust line, from the downstream of the particulate filter to the outlet 3 of the silencer. Thus, this average density of the gases will be obtained at the average pressure Pmoy of the exhaust line defined by: Pmoy = Patmosphérique + AP / 2.

REN075FR / PJ8702 - dépôt DA 6 La température moyenne Tmoy est calculée sur la base d'un modèle d'évolution de la température dans la ligne d'échappement. En intégrant ces derniers éléments dans l'équation de Bernouilli rappelée précédemment, nous obtenons : AP = 0.5 (Qm/ Se)2 [r Tmoy / (Patmosphérique + AP/2)] Cette équation est finalement un polynôme du second ordre dont l'inconnue est la perte de charge AP. Sa résolution permet d'obtenir la valeur de la perte de charge : AP = -Patmosphérique + [Patmosphérique2 + (Qm/ Se)2 r Tmoy] Comme la pression absolue est définie par : Pabsolue = Patmosphérique + AP Nous obtenons Pabsolue = Patmosphérique * [1 + Q,/ Se)2 r Tmoy / Patmosphérique2) ] (1 ) Ainsi, le procédé de gestion du moteur comprend un procédé de détermination de la pression absolue de la ligne d'échappement du véhicule, avantageusement mis en oeuvre par l'UCE du véhicule qui comprend un logiciel de calcul. Ce procédé comprend les étapes principales suivantes : -détermination de la section efficace (Se) de la ligne d'échappement ; -estimation de la température moyenne (Tmoy) de la ligne d'échappement ; -calcul de la pression absolue (Pabsolue) en fonction de la 25 température moyenne (Tmoy) et de la section efficace (Se) déterminées aux étapes précédentes. REN075EN / PJ8702 - DA 6 deposit The average temperature Tmoy is calculated on the basis of a model of evolution of the temperature in the exhaust line. By integrating these last elements in the Bernouilli equation mentioned earlier, we get: AP = 0.5 (Qm / Se) 2 [r Tmoy / (Atmospheric + AP / 2)] This equation is finally a second-order polynomial of which unknown is the AP pressure drop. Its resolution makes it possible to obtain the value of the pressure loss: AP = -Patmosphérique + [Patmosphérique2 + (Qm / Se) 2 r Tmoy] As the absolute pressure is defined by: Pabsolue = Patmosphérique + AP We obtain Pabsolue = Patmosphérique * [1 + Q, / Se) 2 R Tmoy / Patmosphérique2)] (1) Thus, the engine management method comprises a method for determining the absolute pressure of the vehicle exhaust line, advantageously implemented by the engine. ECU of the vehicle which includes calculation software. This method comprises the following main steps: determination of the effective section (Se) of the exhaust line; estimating the average temperature (Tmoy) of the exhaust line; calculation of the absolute pressure (Pabsolue) as a function of the mean temperature (Tmoy) and the effective cross-section (Se) determined in the preceding steps.

REN075FR / PJ8702 - dépt DA 7 Cette pression absolue pourra avantageusement être précisément définie par l'équation (1) explicitée ci-dessus. This absolute pressure can advantageously be precisely defined by the equation (1) explained above.

Ainsi, la solution décrite atteint bien les objets recherchés et présente les 5 avantages suivants : le calcul de la pression absolue est précis car il tient compte de la température des gaz d'échappement ; ce calcul est de plus très simple car il ne nécessite l'identification que d'un seul paramètre, la section efficace ; 10 ce calcul permet un gain en précision de l'ordre de 30% lors de départ à froid par rapport aux méthodes de l'état de la technique. Thus, the described solution achieves the desired objects and has the following advantages: the calculation of the absolute pressure is accurate because it takes into account the temperature of the exhaust gas; this calculation is also very simple because it requires the identification of only one parameter, the cross section; 10 this calculation allows a gain in accuracy of the order of 30% during cold start compared to the methods of the state of the art.

Claims (9)

Revendicationsclaims 1. Procédé de gestion d'un moteur de véhicule automobile, comprenant un procédé d'estimation de la pression absolue (Pabsolue), caractérisé en ce que ce procédé d'estimation de la pression absolue comprend les étapes suivantes : - détermination de la section efficace (Se) de la ligne d'échappement ; -estimation de la température moyenne (Tmoy) de la ligne 10 d'échappement ; - calcul de la pression absolue (Pabsolue) en fonction de la température moyenne (Tmoy) et de la section efficace (Se) déterminées aux étapes précédentes. 15 1. A method for managing a motor vehicle engine, comprising a method for estimating the absolute pressure (Pabsolue), characterized in that this method for estimating the absolute pressure comprises the following steps: determining the section effective (Se) of the exhaust line; estimating the average temperature (Tmoy) of the exhaust line; calculation of the absolute pressure (Pabsolue) as a function of the average temperature (Tmoy) and the effective cross-section (Se) determined in the preceding steps. 15 2. Procédé de gestion d'un moteur de véhicule automobile selon la revendication 1, caractérisé en ce que la pression absolue (Pabsolue) est déterminée par l'équation suivante : Pabsolue = Patmosphérique * I [1 + ((QmI Se)2 r Tmoy / Patmosphérique) 1 Où Qm est le débit massique des gaz d'échappement et Patmosphérique la 20 pression atmosphérique. 2. A method for managing a motor vehicle engine according to claim 1, characterized in that the absolute pressure (Pabsolue) is determined by the following equation: Pabsolue = Patmosphérique * I [1 + ((QmI Se) 2 r Tmoy / Atmosphere) 1 Where Qm is the mass flow of the exhaust gases and atmospheric pressure. 3. Procédé de gestion d'un moteur de véhicule automobile selon la revendication 1 ou 2, caractérisé en ce que la section efficace (Se) de la ligne d'échappement est obtenue par au moins un essai. 3. A method of managing a motor vehicle engine according to claim 1 or 2, characterized in that the effective section (Se) of the exhaust line is obtained by at least one test. 4. Procédé de gestion d'un moteur de véhicule automobile selon l'une des revendications précédentes, caractérisé en ce que la température moyenne (Tmoy) est calculée sur la base d'un modèle d'évolution de la température dans la ligne d'échappement. 2525 REN075FR / PJ8702 - dépt DA 9 4. A method for managing a motor vehicle engine according to one of the preceding claims, characterized in that the average temperature (Tmoy) is calculated on the basis of a temperature evolution model in the line of exhaust. 2525 REN075EN / PJ8702 - deposit DA 9 5. Procédé de gestion d'un moteur de véhicule automobile selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une estimation de la masse volumique des gaz d'échappement égale à une valeur moyenne obtenue à une pression moyenne (Pmoy) dans la ligne d'échappement définie par la relation Pmoy = Patmosphérique + AP/2 où AP représente la perte de charge au niveau de la ligne d'échappement. 5. Management method of a motor vehicle engine according to one of the preceding claims, characterized in that it comprises an estimate of the density of the exhaust gas equal to an average value obtained at a mean pressure (Pmoy ) in the escape line defined by the relation Pmoy = Patmosphérique + AP / 2 where AP represents the pressure drop at the level of the exhaust line. 6. Procédé de gestion d'un moteur de véhicule automobile selon l'une des revendications précédentes, caractérisé en ce qu'il met en oeuvre un procédé de calcul du chargement en particules de suies d'un filtre à particules (2) d'un système de post-traitement des gaz d'échappement, sur la base de la variation de pression différentielle entre l'amont et l'aval du filtre à particules, en calculant la pression absolue selon le procédé des revendications précédentes. 6. A method for managing a motor vehicle engine according to one of the preceding claims, characterized in that it implements a method of calculating the soot particle loading of a particulate filter (2) of an exhaust aftertreatment system, based on the differential pressure variation between the upstream and downstream of the particulate filter, by calculating the absolute pressure according to the method of the preceding claims. 7. Groupe motopropulseur pour véhicule automobile, comprenant une ligne d'échappement (1) et une Unité de Contrôle Electronique (UCE), caractérisé en ce que l'UCE met en oeuvre un procédé de gestion du moteur selon l'une des revendications précédentes. 7. Power train for a motor vehicle, comprising an exhaust line (1) and an Electronic Control Unit (ECU), characterized in that the ECU implements a motor management method according to one of the preceding claims. . 8. Groupe motopropulseur selon la revendication précédente, caractérisé en ce que la ligne d'échappement (1) comprend un filtre à particules (2) et en ce que la pression absolue (Pabsolue) est définie par la pression des gaz d'échappement à la sortie du filtre à particules (2). 8. Powertrain according to the preceding claim, characterized in that the exhaust line (1) comprises a particulate filter (2) and in that the absolute pressure (Pabsolue) is defined by the pressure of the exhaust gases to the output of the particulate filter (2). 9. Véhicule automobile caractérisé en ce qu'il comprend un groupe motopropulseur selon l'une des revendications 7 ou 8. 30 9. Motor vehicle characterized in that it comprises a powertrain according to one of claims 7 or 8. 30
FR0801549A 2008-03-20 2008-03-20 METHOD FOR MANAGING AN ENGINE AND CALCULATING THE ABSOLUTE PRESSURE Active FR2928968B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0801549A FR2928968B1 (en) 2008-03-20 2008-03-20 METHOD FOR MANAGING AN ENGINE AND CALCULATING THE ABSOLUTE PRESSURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0801549A FR2928968B1 (en) 2008-03-20 2008-03-20 METHOD FOR MANAGING AN ENGINE AND CALCULATING THE ABSOLUTE PRESSURE

Publications (2)

Publication Number Publication Date
FR2928968A1 true FR2928968A1 (en) 2009-09-25
FR2928968B1 FR2928968B1 (en) 2011-08-19

Family

ID=39956148

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0801549A Active FR2928968B1 (en) 2008-03-20 2008-03-20 METHOD FOR MANAGING AN ENGINE AND CALCULATING THE ABSOLUTE PRESSURE

Country Status (1)

Country Link
FR (1) FR2928968B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016122956A1 (en) * 2016-11-29 2018-05-30 Ford Global Technologies, Llc A method of determining a pressure compensation value for an oxygen sensor and controlling operation of an exhaust gas recirculation internal combustion engine and oxygen sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849897A1 (en) * 2003-01-13 2004-07-16 Bosch Gmbh Robert Internal combustion engine operating method, involves determining curve of counter pressure of exhaust gas based on average pressure on exhaust valve for engine cycle, and average downstream pressure of friction charge unit
JP2005337040A (en) * 2004-05-25 2005-12-08 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
FR2874966A1 (en) * 2004-09-08 2006-03-10 Bosch Gmbh Robert METHOD FOR DETERMINING EXHAUST GAS SUPPRESSING IN THE EXHAUST GAS PIPING OF AN INTERNAL COMBUSTION ENGINE
WO2006123761A1 (en) * 2005-05-18 2006-11-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849897A1 (en) * 2003-01-13 2004-07-16 Bosch Gmbh Robert Internal combustion engine operating method, involves determining curve of counter pressure of exhaust gas based on average pressure on exhaust valve for engine cycle, and average downstream pressure of friction charge unit
JP2005337040A (en) * 2004-05-25 2005-12-08 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
FR2874966A1 (en) * 2004-09-08 2006-03-10 Bosch Gmbh Robert METHOD FOR DETERMINING EXHAUST GAS SUPPRESSING IN THE EXHAUST GAS PIPING OF AN INTERNAL COMBUSTION ENGINE
WO2006123761A1 (en) * 2005-05-18 2006-11-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016122956A1 (en) * 2016-11-29 2018-05-30 Ford Global Technologies, Llc A method of determining a pressure compensation value for an oxygen sensor and controlling operation of an exhaust gas recirculation internal combustion engine and oxygen sensor

Also Published As

Publication number Publication date
FR2928968B1 (en) 2011-08-19

Similar Documents

Publication Publication Date Title
US7793538B2 (en) Apparatus for diagnosing abnormal operation of pressure difference detection apparatus of internal combustion engine exhaust system
FR2886345A1 (en) METHOD OF ESTIMATING AN ADAPTIVE NON-LINEAR FILTER OF WEALTH IN A CYLINDER OF A COMBUSTION ENGINE
EP1729000B1 (en) Method for estimating the air/fuel ratio in a cylinder of an internal combustion engine using an extended Kalman filter
FR2874237A1 (en) Supercharged internal combustion engine e.g. gasoline engine, controlling method, involves comparing values of mass air flow, and estimating defect if values have amplitude difference higher than predefined threshold
US20200123958A1 (en) Method for determining the loading of a soot filter
JP4778876B2 (en) Engine measuring device
WO2018202977A2 (en) Method for updating a dynamic for adjusting a richness value to a set value in an engine
FR2955893A1 (en) METHOD AND COMBINATION OF CONTROL INSTALLATIONS FOR DETERMINING THE EXHAUST GAS TEMPERATURE OF A THERMAL ENGINE
FR3074524A1 (en) SYSTEM AND METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE EQUIPPED WITH A SELECTIVE CATALYSIS-TYPE EXHAUST GAS POST-PROCESSING SYSTEM
EP2148979B1 (en) Method of controlling the combustion of a diesel engine
EP3060784A1 (en) System and method for estimating the flow of nitrogen oxides in the exhaust gases of an internal combustion engine for a motor vehicle
EP2699778B1 (en) Fault diagnosis method of supercharged motor and supercharged motor
FR2928968A1 (en) Internal combustion engine controlling method for drive train of motor vehicle, involves performing cross section determination, estimation of average temperature and calculation of absolute pressure, to estimate absolute pressure in line
EP1671023B1 (en) Engine air supply control method which is intended, for example, for the control of a turbocharged engine
EP1607605B1 (en) Pressure estimating system in the exhaust manifold of a diesel engine and method for calibrating said system
FR2903147A1 (en) Internal combustion engine e.g. supercharged oil engine, controlling method for motor vehicle, involves determining, by calculation, set point value of expansion rate of turbine and position of waste gate for adjusting boost pressure
WO2009019345A1 (en) Method and device for diagonosing a leaky injector in an internal combustion engine
FR2849897A1 (en) Internal combustion engine operating method, involves determining curve of counter pressure of exhaust gas based on average pressure on exhaust valve for engine cycle, and average downstream pressure of friction charge unit
EP0639704B1 (en) Method for calculating the mass of air admitted to an internal combustion engine
FR2925674A3 (en) Temperature sensor or estimator functioning state diagnosing method for diesel engine, involves calculating difference between temperature delivered by measuring unit and temperature delivered by temperature sensor or estimator
FR2936838A1 (en) Soot mass determining method for four-cylinder diesel engine of motor vehicle, involves determining estimated value of pressure by calculating average of measurements of pressure that are separated by time interval
FR2987072A1 (en) Method for correcting calculating system for calculating consumption of lubricating oil of diesel engine for car, involves determining mass of estimated oil from pressure difference in exhaust line to calculate mass of consumed oil
EP3810915A1 (en) Method for determining a power setpoint of a compressor of an internal combustion engine
FR2953559A1 (en) SYSTEM AND METHOD FOR ESTIMATING THE MASS OF PARTICLES STORED IN A PARTICLE FILTER OF A MOTOR VEHICLE
FR2909762A1 (en) Cylinder combustion noise determining system for internal combustion engine of motor vehicle, has determining module determining combustion noise in cylinder from selected pressure values in chamber of cylinder in real time

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10