EP3810915A1 - Method for determining a power setpoint of a compressor of an internal combustion engine - Google Patents

Method for determining a power setpoint of a compressor of an internal combustion engine

Info

Publication number
EP3810915A1
EP3810915A1 EP19742429.4A EP19742429A EP3810915A1 EP 3810915 A1 EP3810915 A1 EP 3810915A1 EP 19742429 A EP19742429 A EP 19742429A EP 3810915 A1 EP3810915 A1 EP 3810915A1
Authority
EP
European Patent Office
Prior art keywords
engine
compressor
air
air flow
cons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19742429.4A
Other languages
German (de)
French (fr)
Inventor
Moustansir Taibaly
Mathieu Selle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Auto SAS
Original Assignee
PSA Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSA Automobiles SA filed Critical PSA Automobiles SA
Publication of EP3810915A1 publication Critical patent/EP3810915A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0411Volumetric efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the field of internal combustion engines.
  • the invention relates more particularly to a method for determining a power setpoint of an internal combustion engine compressor.
  • the power required for the compressor can be determined from the current air flow, however this implies
  • the compressor power should be of a niche type, that it goes directly to the value that we see when we are on a stabilized point.
  • An object of the present invention is to propose a method which makes it possible to improve the precision of estimation of the power required from the compressor of such a turbocharger.
  • a method for determining a power setpoint of a compressor equipping an intake line connected to an internal combustion engine at an air distributor, the engine comprising an exhaust gas recirculation line, the intake line comprising, downstream of the compressor, an air metering valve for controlling the flow of air admitted into the engine, in which the compressor power setpoint is determined from an air flow,
  • this air flow is an air flow instruction, this air flow instruction being obtained from the relation:
  • -Tp and Pp respectively the temperature and the pressure in the inlet distributor (9), -Psural_cons and Psural_cour respectively the boost pressure setpoint and the current boost pressure,
  • the technical effect is to create a set air flow which is consistent with the set pressure of the boost pressure, which avoids the risk of divergence in air flow and boost pressure.
  • Various additional characteristics can be provided, alone or in combination:
  • the current volumetric efficiency filtered by a low-pass filter is determined from the current volumetric efficiency.
  • the low-pass filter takes into account a filtering coefficient which depends on the difference between the filtered and unfiltered value of the current volumetric efficiency.
  • the filtering coefficient is obtained by means of a map which establishes this filtering coefficient as a function of the difference between the filtered and unfiltered value of the current volumetric efficiency.
  • the method is activated when the current rate of recirculating exhaust gas is less than or equal to 5%.
  • the invention also relates to an engine assembly comprising:
  • an air intake line equipped with a compressor and connected to the internal combustion engine at an air distributor, the intake line comprising downstream of the compressor an air metering valve for the control of the air flow admitted into the engine,
  • the invention also relates to a vehicle comprising such an engine assembly for its movement.
  • FIG. 1 is a schematic representation of a heat engine according to the invention.
  • FIG. 2 is a schematic representation of the process of the invention.
  • FIG. 1 shows a heat engine 1, for example an internal combustion engine with compression ignition, comprising an engine block with at least one cylinder 2, for example here four cylinders, for combustion.
  • a heat engine can equip a vehicle, for example a vehicle to allow movement thereof.
  • the heat engine 1 further comprises a computer, not shown, comprising the means of acquisition, of processing by software instructions stored in a memory as well as the control means required for implementing the method detailed below.
  • the heat engine 1 is connected to an air intake line 3 and to a burnt gas exhaust line 4.
  • the heat engine 1 also comprises a turbocharger 5, with its compressor 6 arranged in the intake line and its turbine 7 disposed in the exhaust line 4.
  • the intake line 3 also comprises an air metering valve 8 for controlling the flow of air admitted into the engine 1, which can for example be conventionally a throttle body, and a distributor 9 of air to the cylinders 2 of the engine.
  • the intake line 3 may also include an air filter 10 placed upstream of the compressor 6 and a charge air cooler 11 placed downstream of the compressor 6.
  • the heat engine 1 also includes an exhaust gas recirculation line 12 connecting the exhaust line 4 to the intake line 3.
  • the exhaust gas recirculation line 12 is connected at one of its ends to the exhaust line 4 by a nozzle located upstream of the turbine 7, relative to the direction of flow of the exhaust gases.
  • the exhaust gas recirculation line 12 is connected at the other of its ends to the intake line 3 by a connection located downstream of the compressor 6, relative to the direction of circulation of the intake air.
  • the exhaust gas recirculation line 12 conventionally comprises a valve 13 for metering the quantity of exhaust gas to be recirculated.
  • volumetric efficiency h no ⁇ current is calculated.
  • the volumetric efficiency corresponds to the ratio between the gas flow actually admitted into the engine, Qtotadmis, and the theoretical flow that can be admitted into the engine:
  • this current rate of recirculating exhaust gas is estimated as a function of the current air flow rate, Qair, and of the engine operating point.
  • N the engine speed, which can be obtained by measurement using a speed sensor, No. Cyiwear , the number of engine cylinders,
  • Pp the pressure in the plenum, in other words in the intake manifold 9, which can be measured by means of a pressure sensor, Tp, the temperature in the plenum, which can be measured by a sensor or estimated by calculation,
  • vol is then filtered via a low-pass filter (block 23), the filtering value of which depends on the difference between the value of the volumetric efficiency h no1 , and the value of the volumetric efficiency h ' no i filtered.
  • This difference between the unfiltered value and the filtered value of the volumetric efficiency is shown in FIG. 2 in block 21.
  • a filter coefficient is determined in block 22, which can be determined from a map which establishes the filter coefficient as a function of the difference between the unfiltered value and the filtered value of the yield. volumetric.
  • This filter makes it possible to attenuate the oscillations of the volumetric efficiency due to the various calculations.
  • This current boost pressure P on ai_coun can be estimated via Qair, the air flow current in line 3 of intake, current plenum pressure, Pp, and the position of the butterfly valve 8.
  • the target air flow rate is directly linked to the target boost pressure, the risk of divergence is eliminated because we no longer depend on the boost pressure achieved in calculating the power requested from the compressor.
  • the method is used when there is exhaust gas recirculation for a range of exhaust gas rate in low recirculation, that is to say in a range less than or equal to 5%.
  • a range of exhaust gas rate in low recirculation that is to say in a range less than or equal to 5%.
  • the power setpoint of the compressor 6 is determined, P ⁇ mp ⁇ ns. This power setpoint is obtained from the air flow setpoint, Q a ir_cons > the upstream and downstream pressure setpoints of the compressor, P a m_com P _cons and P av_comp_cons 3 as well as from Tam_comp 3 the air temperature setpoint upstream of compressor 6:
  • the upper pressure value of the compressor, P am _com _cons P is determined at block 25 from the air flow setpoint Q air _cons> and taking into account the load loss induced by the air filter 10 .
  • the downstream pressure value of the compressor, P av-COMP-cons is determined from the air flow setpoint Q air con s> taking into account the load loss induced by the charge air cooler 1 1 (block 26) and P SU rai_cons J a boost pressure setpoint (block 27).
  • the invention makes it possible to create a set air flow which is consistent with the set plenum pressure.
  • the invention has the advantage of eliminating the risk of divergence in air flow and boost pressure which means that when the boost pressure increases then the air flow increases which tends to cause the control law to diverge because the power demand at compressor level increases.
  • it makes it possible to have a power demanded from the compressor which is of the "slot" type when a torque slot is imposed on the engine, which makes it possible to improve the dynamics of the boost pressure.
  • This invention improves the quality of boost pressure and recirculating exhaust gas flow regulations, reducing the risk of oscillation and the response time of the boost pressure.
  • This invention does not entail any additional material cost because it is a simple control command to set up.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

The invention relates to a method for determining a power setpoint (Pcomp cons) of a compressor equipping an intake line connected to an internal combustion engine at an air distributor, the engine comprising a line for recirculating exhaust gases, the intake line comprising, downstream of the compressor, an air dosage valve, the power setpoint (Pcomp cons) of the compressor being determined on the basis of an air flow, said air flow being an air flow setpoint (Qair cons) obtained on the basis of the speed of the engine (N), the number of cylinders of the engine, the capacity of a single cylinder of the engine, the temperature (Tp) and the pressure (Pp) in the intake distributor, the supercharging pressure setpoint (Psural cons), the current supercharging pressure (Psural), the current rate of recirculating exhaust gas (Tegr), the specific constant of the gases in the intake distributor (rpi enum ), the filtered current volumetric efficiency (11 'vol).

Description

PROCEDE DE DETERMINATION D’UNE CONSIGNE DE PUISSANCE D’UN COMPRESSEUR DE MOTEUR A COMBUSTION INTERNE  METHOD FOR DETERMINING A POWER SETPOINT OF AN INTERNAL COMBUSTION ENGINE COMPRESSOR
La présente invention se rapporte au domaine des moteurs à combustion interne. L’invention concerne plus particulièrement un procédé de détermination d’une consigne de puissance d’un compresseur de moteur à combustion interne. The present invention relates to the field of internal combustion engines. The invention relates more particularly to a method for determining a power setpoint of an internal combustion engine compressor.
Les contraintes dues aux normes, par exemple les normes européennes dites Euro VI, relatives aux niveaux d’émissions polluantes générées par le fonctionnement des moteurs à combustion interne, deviennent de plus en plus en plus sévères. Constraints due to standards, for example European standards known as Euro VI, relating to the levels of polluting emissions generated by the operation of internal combustion engines, are becoming more and more severe.
Les niveaux de performance requis pour les fonctions de contrôle moteur étant par conséquent de plus en plus exigeant, il est intéressant de bien connaître l’état du système à contrôler en stabilisé et en transitoire. Cette connaissance passe actuellement par l’implantation de capteur complétée par une modélisation des phénomènes physiques présents. Une grandeur spécifique du système peut alors être estimée via la mesure du capteur et par le résultat de la modélisation. As the performance levels required for engine control functions are therefore more and more demanding, it is interesting to know the state of the system to be checked in stabilized and transient conditions. This knowledge currently involves the installation of sensors supplemented by modeling of the physical phenomena present. A specific quantity of the system can then be estimated via the measurement of the sensor and by the result of the modeling.
En particulier dans le cas d’un moteur à combustion interne à allumage par compression équipé d’un système de suralimentation tel qu’un turbocompresseur, l’estimation du débit d’air qui va traverser le compresseur du turbocompresseur est nécessaire pour contrôler correctement par exemple, la vanne de décharge, encore désignée communément « waste gâte » en anglais. Cette estimation demande de calculer la puissance que la turbine devra fournir au compresseur. In particular in the case of an internal combustion engine with compression ignition equipped with a supercharging system such as a turbocharger, the estimation of the air flow which will pass through the compressor of the turbocharger is necessary to correctly control by example, the discharge valve, also commonly known as “waste gâte” in English. This estimate requires calculating the power that the turbine will have to provide to the compressor.
La détermination de la puissance nécessaire au compresseur peut être réalisée à partir du débit d’air courant, cependant cela implique The power required for the compressor can be determined from the current air flow, however this implies
-une possible divergence car lorsque la pression de suralimentation va être plus élevée que la consigne, alors le débit d’air réalisé sera plus élevé que prévu. Or, si le débit d’air est plus élevé que prévu alors les pertes de charges du filtre à air et du refroidisseur d’air de suralimentation vont augmenter. La puissance nécessaire au compresseur va alors augmenter, ce qui va avoir pour conséquence d’augmenter la pression de suralimentation et donc d’amplifier le phénomène.  -a possible divergence because when the boost pressure will be higher than the setpoint, then the air flow achieved will be higher than expected. However, if the air flow rate is higher than expected then the pressure drops of the air filter and the charge air cooler will increase. The power required for the compressor will then increase, which will have the effect of increasing the boost pressure and therefore amplifying the phenomenon.
-Une réponse peu dynamique de la suralimentation. En effet en se basant sur le débit d’air courant, qui est dépendant de la pression de suralimentation réalisée, le calcul de la puissance compresseur va augmenter lorsque la pression de suralimentation va augmenter. Pour être plus dynamique il faudrait que la puissance compresseur soit d’une forme de type créneau, qu’elle passe directement à la valeur qu’on voit lorsque l’on est sur un point stabilisé. -A dynamic response of overeating. In fact, based on the current air flow, which is dependent on the boost pressure achieved, the calculation of the compressor power will increase when the boost pressure increase. To be more dynamic, the compressor power should be of a niche type, that it goes directly to the value that we see when we are on a stabilized point.
Il existe donc un besoin pour estimer avec précision la puissance demandée au compresseur, There is therefore a need to accurately estimate the power requested from the compressor,
Un but de la présente invention est de proposer un procédé qui permet d’améliorer la précision d’estimation de la puissance demandée au compresseur d’un tel turbocompresseur. An object of the present invention is to propose a method which makes it possible to improve the precision of estimation of the power required from the compressor of such a turbocharger.
Pour atteindre cet objectif, il est prévu selon l’invention un procédé de détermination d’une consigne de puissance d’un compresseur équipant une ligne d’admission reliée à un moteur à combustion interne au niveau d’un répartiteur d’air, le moteur comprenant une ligne de recirculation des gaz d’échappement, la ligne d’admission comprenant en aval du compresseur une vanne de dosage d’air pour le contrôle du débit d’air admis dans le moteur, dans lequel la consigne de puissance du compresseur est déterminée à partir d’un débit d’air, To achieve this objective, there is provided according to the invention a method for determining a power setpoint of a compressor equipping an intake line connected to an internal combustion engine at an air distributor, the engine comprising an exhaust gas recirculation line, the intake line comprising, downstream of the compressor, an air metering valve for controlling the flow of air admitted into the engine, in which the compressor power setpoint is determined from an air flow,
caractérisé en ce que ce débit d’air est une consigne de débit d’air, cette consigne de débit d’air étant obtenue à partir de la relation : characterized in that this air flow is an air flow instruction, this air flow instruction being obtained from the relation:
su knew
plénum plenum
ylunitaire b^cylindre N  ylunitary b ^ cylinder N
Avec :  With:
-N, le régime du moteur,  -N, the engine speed,
NbreCyiindre, le nombre de cylindre du moteur, No. Cyiindre , the number of cylinder of the engine,
Cylunitaire, la cylindrée d’un seul cylindre du moteur,  Cylindrical, the displacement of a single engine cylinder,
-Tp et Pp respectivement la température et la pression dans le répartiteur d’admission (9), -Psural_cons et Psural_cour respectivement la consigne de pression de suralimentation et la pression de suralimentation courante,  -Tp and Pp respectively the temperature and the pressure in the inlet distributor (9), -Psural_cons and Psural_cour respectively the boost pressure setpoint and the current boost pressure,
-Tegr , le taux courant de gaz d’échappement en recirculation, -T egr , the current rate of recirculating exhaust gas,
-rPienum, la constante spécifique des gaz dans le répartiteur d’admission, -r P ienum, the specific gas constant in the intake manifold,
- h'noΐ le rendement volumétrique courant filtré. - h ' noΐ the filtered current volumetric efficiency.
L’effet technique est de créer un débit d’air de consigne qui est cohérent avec la pression consigne de pression de suralimentation, ce qui évite le risque de divergence en débit d’air et pression de suralimentation. Diverses caractéristiques supplémentaires peuvent être prévues, seules ou en combinaisons : The technical effect is to create a set air flow which is consistent with the set pressure of the boost pressure, which avoids the risk of divergence in air flow and boost pressure. Various additional characteristics can be provided, alone or in combination:
Selon une réalisation, on détermine le rendement volumétrique courant filtré par un filtre passe-bas à partir du rendement volumétrique courant. According to one embodiment, the current volumetric efficiency filtered by a low-pass filter is determined from the current volumetric efficiency.
Selon une réalisation, le filtre passe-bas prend en compte un coefficient de filtrage qui dépend de l’écart entre la valeur filtrée et non filtrée du rendement volumétrique courant. According to one embodiment, the low-pass filter takes into account a filtering coefficient which depends on the difference between the filtered and unfiltered value of the current volumetric efficiency.
Selon une réalisation, le coefficient de filtrage est obtenu au moyen d’une cartographie qui établit ce coefficient de filtrage en fonction de l’écart entre la valeur filtrée et non filtrée du rendement volumétrique courant. According to one embodiment, the filtering coefficient is obtained by means of a map which establishes this filtering coefficient as a function of the difference between the filtered and unfiltered value of the current volumetric efficiency.
Selon une réalisation, le procédé est activé lorsque le taux courant de gaz d’échappement en recirculation est inférieur ou égal à 5%. According to one embodiment, the method is activated when the current rate of recirculating exhaust gas is less than or equal to 5%.
L’invention a aussi pour objet un ensemble moteur comprenant : The invention also relates to an engine assembly comprising:
-un moteur à combustion interne  -an internal combustion engine
-une ligne d’admission d’air équipée d’un compresseur et reliée au moteur à combustion interne au niveau d’un répartiteur d’air, la ligne d’admission comprenant en aval du compresseur une vanne de dosage d’air pour le contrôle du débit d’air admis dans le moteur,  an air intake line equipped with a compressor and connected to the internal combustion engine at an air distributor, the intake line comprising downstream of the compressor an air metering valve for the control of the air flow admitted into the engine,
- une ligne de recirculation des gaz d’échappement,  - an exhaust gas recirculation line,
caractérisé en ce qu’il comprend un calculateur électronique comprenant les moyens d’acquisition, de traitement par instructions logicielles stockées dans une mémoire ainsi que les moyens de commande requis à mise en œuvre d’un procédé selon l’une des variantes précédemment décrites. characterized in that it comprises an electronic computer comprising the means of acquisition, of processing by software instructions stored in a memory as well as the control means required for implementing a method according to one of the variants described above.
L’invention a aussi pour objet un véhicule comprenant un tel ensemble moteur pour son déplacement. The invention also relates to a vehicle comprising such an engine assembly for its movement.
D’autres particularités et avantages apparaîtront à la lecture de la description ci-après d’un mode particulier de réalisation, non limitatif de l’invention, faite en référence aux figures dans lesquelles : - La figure 1 est une représentation schématique d’un moteur thermique conforme à l’invention. Other particularities and advantages will appear on reading the following description of a particular, non-limiting embodiment of the invention, made with reference to the figures in which: - Figure 1 is a schematic representation of a heat engine according to the invention.
- La figure 2 est une représentation schématique du procédé de l’invention.  - Figure 2 is a schematic representation of the process of the invention.
La figure 1 présente un moteur thermique 1 , par exemple un moteur à combustion interne à allumage par compression, comprenant un bloc-moteur avec au moins un cylindre 2, par exemple ici quatre cylindres, pour la combustion. Un tel moteur thermique peut équiper un véhicule, par exemple un véhicule pour permettre un déplacement de celui-ci. FIG. 1 shows a heat engine 1, for example an internal combustion engine with compression ignition, comprising an engine block with at least one cylinder 2, for example here four cylinders, for combustion. Such a heat engine can equip a vehicle, for example a vehicle to allow movement thereof.
Le moteur thermique 1 comporte en outre un calculateur, non représenté, comprenant les moyens d’acquisition, de traitement par instructions logicielles stockées dans une mémoire ainsi que les moyens de commande requis à mise en oeuvre du procédé détaillé après. The heat engine 1 further comprises a computer, not shown, comprising the means of acquisition, of processing by software instructions stored in a memory as well as the control means required for implementing the method detailed below.
Le moteur thermique 1 est relié à une ligne 3 d’admission d’air et à une ligne 4 d’échappement des gaz brûlés. Le moteur thermique 1 comprend encore un turbocompresseur 5, avec son compresseur 6 disposé dans la ligne d’admission et sa turbine 7 disposée dans la ligne 4 d’échappement. La ligne 3 d’admission comprend encore une vanne 8 de dosage d’air pour le contrôle du débit d’air admis dans le moteur 1 , pouvant être par exemple classiquement un boîtier papillon, et un répartiteur 9 d’air vers les cylindres 2 du moteur thermique. La ligne 3 d’admission peut comprendre encore un filtre à air 10 placé en amont du compresseur 6 et un refroidisseur d’air de suralimentation 1 1 placé en aval du compresseur 6. The heat engine 1 is connected to an air intake line 3 and to a burnt gas exhaust line 4. The heat engine 1 also comprises a turbocharger 5, with its compressor 6 arranged in the intake line and its turbine 7 disposed in the exhaust line 4. The intake line 3 also comprises an air metering valve 8 for controlling the flow of air admitted into the engine 1, which can for example be conventionally a throttle body, and a distributor 9 of air to the cylinders 2 of the engine. The intake line 3 may also include an air filter 10 placed upstream of the compressor 6 and a charge air cooler 11 placed downstream of the compressor 6.
Le moteur thermique 1 comprend encore une ligne 12 de recirculation des gaz d’échappement reliant la ligne 4 d’échappement à la ligne 3 d’admission. La ligne 12 de recirculation des gaz d’échappement est reliée à une de ses extrémités à la ligne 4 d’échappement par un piquage situé en amont de la turbine 7, relativement au sens d’écoulement des gaz d’échappement. La ligne 12 de recirculation des gaz d’échappement est reliée à l’autre de ses extrémités à la ligne 3 d’admission par un piquage situé en aval du compresseur 6, relativement au sens de circulation de l’air d’admission. La ligne 12 de recirculation des gaz d’échappement comprend classiquement une vanne 13 de dosage de la quantité de gaz d’échappement à faire recirculer. The heat engine 1 also includes an exhaust gas recirculation line 12 connecting the exhaust line 4 to the intake line 3. The exhaust gas recirculation line 12 is connected at one of its ends to the exhaust line 4 by a nozzle located upstream of the turbine 7, relative to the direction of flow of the exhaust gases. The exhaust gas recirculation line 12 is connected at the other of its ends to the intake line 3 by a connection located downstream of the compressor 6, relative to the direction of circulation of the intake air. The exhaust gas recirculation line 12 conventionally comprises a valve 13 for metering the quantity of exhaust gas to be recirculated.
La figure 2 détaille les étapes du procédé de l’invention. Au bloc 20 est calculé le rendement volumétrique hnoί courant. Le rendement volumétrique correspond au ratio entre le débit de gaz réellement admis dans le moteur, Qtotadmis, et le débit théorique pouvant être admis dans le moteur : Figure 2 details the steps of the method of the invention. In block 20, the volumetric efficiency h noί current is calculated. The volumetric efficiency corresponds to the ratio between the gas flow actually admitted into the engine, Qtotadmis, and the theoretical flow that can be admitted into the engine:
Qtotadmis  Qtotadmis
^lvol  ^ lvol
Qtotadmjs théorique Qtot theoretical admjs
Avec d’une part :  On the one hand:
Qtotadmis Qair + Qegr Qtot admitted Qair + Qegr
Et, And,
Qair, le débit d’air courant dans la ligne 3 d’admission. Ce débit d’air courant est par exemple mesuré par un débitmètre,  Qair, the current air flow in line 3 of intake. This current air flow is for example measured by a flow meter,
Qegr, le débit de gaz d’échappement en recirculation.  Qegr, the recirculating exhaust gas flow.
Le taux courant de gaz d’échappement en recirculation, Tegr , est donné par la relation : The current rate of recirculating exhaust gas, T egr , is given by the relation:
Qegr  Qegr
xegr = 100 X x egr = 100 X
Qtotadmis Q tot admitted
En pratique, ce taux courant de gaz d’échappement en recirculation est estimé en fonction du débit d’air courant, Qair, et du point de fonctionnement moteur.  In practice, this current rate of recirculating exhaust gas is estimated as a function of the current air flow rate, Qair, and of the engine operating point.
Le débit de gaz réellement admis dans le moteur, Qtotadmis, s’écrit alors : The gas flow rate actually admitted to the engine, Qtotadmis, is then written:
100  100
Qtotadmis X Qa Qtot admitted X Qa
100 - xegr air 100 - x egr air
Le débit total théorique au moteur, Qtotadmis théorique’ corresPond à : The theoretical total flow to the engine, VARtot th ed admitted orical 'cor P ond to:
Avec : With:
N, le régime du moteur, qui peut être obtenu par mesure à l’aide d’un capteur de régime, NbreCyiindre, le nombre de cylindre du moteur, N, the engine speed, which can be obtained by measurement using a speed sensor, No. Cyiindre , the number of engine cylinders,
Cylunitaire, la cylindrée d’un seul cylindre du moteur, Unit cylinder, the displacement of a single engine cylinder,
Pp, la pression dans le plénum, autrement dit dans le répartiteur d’admission 9, qui peut être mesurée au moyen d’un capteur de pression, Tp, la température dans le plénum, qui peut être mesurée par un capteur ou estimée par calcul, Pp, the pressure in the plenum, in other words in the intake manifold 9, which can be measured by means of a pressure sensor, Tp, the temperature in the plenum, which can be measured by a sensor or estimated by calculation,
ï"plenum 3 la constante spécifique des gaz dans le plénum, ï " plenum 3 the specific constant of the gases in the plenum,
Le rendement volumétrique s’écrit alors de la manière suivante : The volumetric efficiency is then written as follows:
100 100
On fait ici comme hypothèse que la constante spécifique des gaz dans le plénum est égale à celle de l’air : We assume here that the specific constant of the gases in the plenum is equal to that of the air:
^plénum rajr—287 J/kg/K ^ plenum r ajr —287 J / kg / K
Ce rendement volumétrique r|volest ensuite filtré via un filtre passe-bas (bloc 23), dont la valeur du filtrage dépend de l’écart entre la valeur du rendement volumétrique hno1, et la valeur de rendement volumétrique h'noi filtrée. Cet écart entre la valeur non filtrée et la valeur filtrée du rendement volumétrique est réalisé sur le figure 2 au bloc 21 . A partir de cet écart, il est déterminé au bloc 22 un coefficient de filtrage, qui peut être déterminé à partir d’une cartographie qui établit le coefficient de filtrage en fonction de l’écart entre la valeur non filtrée et la valeur filtrée du rendement volumétrique. This volumetric efficiency r | vol is then filtered via a low-pass filter (block 23), the filtering value of which depends on the difference between the value of the volumetric efficiency h no1 , and the value of the volumetric efficiency h ' no i filtered. This difference between the unfiltered value and the filtered value of the volumetric efficiency is shown in FIG. 2 in block 21. From this difference, a filter coefficient is determined in block 22, which can be determined from a map which establishes the filter coefficient as a function of the difference between the unfiltered value and the filtered value of the yield. volumetric.
Ce filtre permet d’atténuer les oscillations du rendement volumétrique dues aux différents calculs. This filter makes it possible to attenuate the oscillations of the volumetric efficiency due to the various calculations.
Sur la figure 2, le débit d’air de consigne est ensuite calculé au bloc 24, de la manière suivante : consigne consigne In Figure 2, the target air flow is then calculated in block 24, as follows: setpoint
Qtotadmis ^ V°1 Qtotadmis théorique Q tot admitted ^ V ° 1 Q tot admitted theoretical
Avec le rendement volumétrique h'noi filtré, et With the volumetric efficiency h ' no i filtered, and
Qtot admis consigne , la consigne de débit total de gaz à admettre dans le moteur, Q tot admitted setpoint , the total gas flow setpoint to be admitted into the engine,
Qtotadmis théorique C°nSlgnela eohd'9hq de débit total de 9az pouvant être admis dans le moteur, En utilisant la pression plénum de consigne, PpienumCOnSlgne . °n Peut calculer le débit total, Qtotadmis the0riqueCOnSigne correspondant à cette pression : Qtot admitted th ed orical ° C nSlgne 'the eohd' 9 hq total flow rate of 9 az can be admitted into the engine, Using the set plenum pressure, P p ienum COnSlgne . N ° P was calculating total flow, VARtot admitted the0 America point corresponding to this pressure:
Pour calculer la pression plénum de consigne : p consigne _ p _ A D consigneTo calculate the setpoint plenum pressure: p setpoint _ p _ A D setpoint
^plénum sural_cons ^“doseur ^ plenum - sural_cons ^ “dispenser
Avec _ consigne de pression de suralimentation, et, APdoseur consigne , la consigne d’écart de pression au niveau du doseur d’air 8. Cette consigne, APd0seurC0nsi3ne , d’écart de pression au niveau du doseur d’air 8 étant impossible à prédire, nous faisons l’hypothèse que la valeur courante correspond à la valeur de consigne : With _ boost pressure setpoint, and, AP dosing setpoint , the pressure deviation setpoint at the air metering device 8. This setpoint, AP d0 sor C0nsi3ne , pressure deviation at the air metering unit 8 being impossible to predict, we assume that the current value corresponds to the set value:
« p consigne _ > p courant _ p _ p"P set point _> p current _ p _ p
^cdoseur — ^ï doseur — rSural_cour * p ^ c doser - ^ ï doser - r S ural_cour * p
Avec Pp la pression plénum courante, et PSUrai_coun 'a pression courante de suralimentation , en aval du compresseur 6 et en amont du doseur 8. Cette pression courante de suralimentation Psurai_coun peut être estimée via Qair, le débit d’air courant dans la ligne 3 d’admission, la pression plénum courante, Pp, et la position du papillon du doseur 8. With P p the current plenum pressure, and P SU rai_coun ' at the current boost pressure, downstream of the compressor 6 and upstream of the metering device 8. This current boost pressure P on ai_coun can be estimated via Qair, the air flow current in line 3 of intake, current plenum pressure, Pp, and the position of the butterfly valve 8.
La pression plénum de consigne, PpienumC°nSlgne > s’écrit alors : p consigne _ p _ p _ p The setpoint plenum pressure, P p ienum C ° nSlgne > is then written: p setpoint _ p _ p _ p
rplenum rsural_cons vrsural_cour rp J rplenum r sural_cons v r sural_cour r p J
Soit pour le débit total : r> consigne Or for the total flow: r> setpoint
^totadmis r_cons ^ totadmis r_cons
Avec Tegr consigne, la consigne de taux de gaz d’échappement en recirculation. Cette consigne de taux de gaz d’échappement en recirculation étant impossible à prédire, nous faisons également l’hypothèse que la valeur courante correspond à la valeur de consigne : With T egr setpoint , the recirculation exhaust gas rate setpoint. This recirculation exhaust gas rate setpoint being impossible to predict, we also assume that the current value corresponds to the setpoint:
_ consigne _ _ deposit _
Legr Legr L egr L egr
On obtient alors pour le débit d’air de consigne, Q air_cons We then obtain for the set air flow, Q air_cons
100 - t, egr consigne 100 - t, setpoint egr
lair cons 100 Qt°tadmis Qt air cons 100 ° t a DMIS
Soit en définitive : In short:
X Oylunitaire * Nbrecylindre * N X Oylunit * Nbr e cylinder * N
Le débit d’air de consigne étant directement liée à la pression de suralimentation de consigne, le risque de divergence est supprimé car on ne dépend plus de la pression de suralimentation réalisée dans le calcul de la puissance demandée au compresseur. Since the target air flow rate is directly linked to the target boost pressure, the risk of divergence is eliminated because we no longer depend on the boost pressure achieved in calculating the power requested from the compressor.
Avantageusement, le procédé est utilisé lorsqu’il y a recirculation de gaz d’échappement pour une plage de taux de gaz d’échappement en recirculation faible, c’est-à-dire dans une plage inférieure à ou égale à 5%. En effet si l’estimation de taux de gaz d’échappement en recirculation est entachée d’erreur, cela permet de limiter cette erreur et donc en définitive celle de la consigne de puissance du compresseur 6. Advantageously, the method is used when there is exhaust gas recirculation for a range of exhaust gas rate in low recirculation, that is to say in a range less than or equal to 5%. Indeed, if the estimate of the exhaust gas recirculation rate is tainted with an error, this makes it possible to limit this error and therefore ultimately that of the power setpoint of the compressor 6.
Au bloc 28 on détermine, P¥mp ¥ns, la consigne de puissance du compresseur 6. Cette consigne de puissance est obtenue à partir la consigne de débit d’air, Q air_cons > des consignes de pression amont et aval du compresseur, Pam_comP_cons et P av_comp_cons3 ainsi que de Tam_comp3 la consigne de température d’air en amont du compresseur 6 : In block 28, the power setpoint of the compressor 6 is determined, P ¥ mp ¥ ns. This power setpoint is obtained from the air flow setpoint, Q a ir_cons > the upstream and downstream pressure setpoints of the compressor, P a m_com P _cons and P av_comp_cons 3 as well as from Tam_comp 3 the air temperature setpoint upstream of compressor 6:
Avec, ricomp e rendement compresseur, With, ricomp e compressor efficiency,
cPajr, la capacité calorifique de l’air, c Pajr , the heat capacity of the air,
yair, coefficient adiabatique de l’air y air , adiabatic coefficient of air
La consigne de pression en amont du compresseur, Pam_comP_cons est déterminée au bloc 25 à partir de la consigne de débit d’air, Qair_cons > et en prenant en compte les pertes de charge induites par le filtre à air 10. The upper pressure value of the compressor, P am _com _cons P is determined at block 25 from the air flow setpoint Q air _cons> and taking into account the load loss induced by the air filter 10 .
La consigne de pression en aval du compresseur, Pav-comP-cons est déterminée à partir de la consigne de débit d’air, Qair cons > en prenant en compte les pertes de charge induites par le refroidisseur d’air de suralimentation 1 1 (bloc 26) et PSUrai_cons Ja consigne de pression de suralimentation (bloc 27). The downstream pressure value of the compressor, P av-COMP-cons is determined from the air flow setpoint Q air con s> taking into account the load loss induced by the charge air cooler 1 1 (block 26) and P SU rai_cons J a boost pressure setpoint (block 27).
L’invention permet de créer un débit d’air de consigne qui est cohérent avec la pression plénum de consigne. The invention makes it possible to create a set air flow which is consistent with the set plenum pressure.
L’invention a pour avantage de supprimer le risque de divergence en débit d’air et pression de suralimentation qui font que lorsque la pression de suralimentation augmente alors le débit d’air augmente ce qui a tendance à faire diverger la loi de commande car la puissance demandée au niveau du compresseur augmente. De plus, elle permet d’avoir une puissance demandée au compresseur qui est de type « créneau » lorsque l’on impose un créneau de couple au moteur, ce qui permet d’améliorer la dynamique de la pression de suralimentation. The invention has the advantage of eliminating the risk of divergence in air flow and boost pressure which means that when the boost pressure increases then the air flow increases which tends to cause the control law to diverge because the power demand at compressor level increases. In addition, it makes it possible to have a power demanded from the compressor which is of the "slot" type when a torque slot is imposed on the engine, which makes it possible to improve the dynamics of the boost pressure.
Cette invention permet d’améliorer la qualité des régulations de pression de suralimentation et de débit de gaz d’échappement en recirculation, en réduisant le risque d’oscillation ainsi que le temps de réponse de la pression de suralimentation. Cette invention n’induit pas de coût matériel supplémentaire car il s’agit d’un contrôle commande simple à mettre en place. This invention improves the quality of boost pressure and recirculating exhaust gas flow regulations, reducing the risk of oscillation and the response time of the boost pressure. This invention does not entail any additional material cost because it is a simple control command to set up.

Claims

REVENDICATIONS
1. Procédé de détermination d’une consigne de puissance (Pcomp cons) d’un compresseur (6) équipant une ligne d’admission (3) reliée à un moteur (1 ) à combustion interne au niveau d’un répartiteur d’air (9), le moteur (1 ) comprenant une ligne (12) de recirculation des gaz d’échappement, la ligne d’admission comprenant en aval du compresseur (6) une vanne (8) de dosage d’air pour le contrôle du débit d’air admis dans le moteur (1 ), dans lequel la consigne de puissance (Pcomp cons) du compresseur est déterminée à partir d’un débit d’air, 1. Method for determining a power setpoint (Pcomp cons) of a compressor (6) fitted to an intake line (3) connected to an internal combustion engine (1) at an air distributor (9), the engine (1) comprising an exhaust gas recirculation line (12), the intake line comprising downstream of the compressor (6) an air metering valve (8) for controlling the air flow admitted into the engine (1), in which the power setpoint (Pcomp cons) of the compressor is determined from an air flow,
caractérisé en ce que ce débit d’air est une consigne de débit d’air (Qair cons), cette consigne de débit d’air (Qair cons) étant obtenue à partir de la relation : characterized in that this air flow is an air flow instruction (Qair cons), this air flow instruction (Qair cons) being obtained from the relation:
ylunitaire X NbreCyjjncjre X N ylunitary X No. C yj jncjre XN
Avec :  With:
-N, le régime du moteur,  -N, the engine speed,
NbreCyiindre, le nombre de cylindre du moteur, No. Cyiindre , the number of cylinder of the engine,
Cylunitaire, la cylindrée d’un seul cylindre du moteur,  Cylindrical, the displacement of a single engine cylinder,
-Tp et Pp respectivement la température et la pression dans le répartiteur d’admission -Tp and Pp respectively the temperature and the pressure in the inlet manifold
(9), (9)
-Psural_cons et Psural_cour respectivement la consigne de pression de suralimentation et la pression de suralimentation courante,  -Psural_cons and Psural_cour respectively the boost pressure set point and the current boost pressure,
-Xegr , le taux courant de gaz d’échappement en recirculation,  -Xegr, the current rate of exhaust gas in recirculation,
-rPienum , la constante spécifique des gaz dans le répartiteur d’admission, -r P ienum, the specific gas constant in the intake manifold,
- TJ’voi le rendement volumétrique courant filtré.  - I send you the filtered current volumetric efficiency.
2. Procédé selon la revendication 1 , caractérisé en ce que l’on détermine le rendement volumétrique courant filtré (T|’voi) par un filtre passe-bas (23) à partir du rendement volumétrique courant (T|Voi) . 2. Method according to claim 1, characterized in that one determines the current volumetric efficiency filtered (T | 'voi) by a low-pass filter (23) from the current volumetric efficiency (T | V oi).
3. Procédé selon revendication 2, caractérisé en ce que le filtre passe-bas (23) prend en compte un coefficient de filtrage (22) qui dépend de l’écart (21 ) entre la valeur filtrée et non filtrée du rendement volumétrique courant. 3. Method according to claim 2, characterized in that the low-pass filter (23) takes into account a filtering coefficient (22) which depends on the difference (21) between the filtered and unfiltered value of the current volumetric efficiency.
4. Procédé selon revendication 3, caractérisé en ce que le coefficient de filtrage est obtenu au moyen d’une cartographie qui établit ce coefficient de filtrage en fonction de l’écart (21 ) entre la valeur filtrée et non filtrée du rendement volumétrique courant. 4. Method according to claim 3, characterized in that the filtering coefficient is obtained by means of a map which establishes this filtering coefficient as a function of the difference (21) between the filtered and unfiltered value of the current volumetric efficiency.
5. Procédé selon l’une des revendications précédentes, caractérisé en ce qu’il est activé lorsque le taux courant de gaz d’échappement en recirculation (Tegr) est inférieur ou égal à 5%. 5. Method according to one of the preceding claims, characterized in that it is activated when the current rate of recirculating exhaust gas (Tegr) is less than or equal to 5%.
6. Ensemble moteur comprenant  6. Motor assembly including
-un moteur (1 ) à combustion interne,  -an internal combustion engine (1),
-une ligne d’admission d’air (3) équipée d’un compresseur (6) et reliée au moteur (1 ) à combustion interne au niveau d’un répartiteur d’air (9), la ligne d’admission comprenant en aval du compresseur (6) une vanne (8) de dosage d’air pour le contrôle du débit d’air admis dans le moteur (1 ),  an air intake line (3) equipped with a compressor (6) and connected to the internal combustion engine (1) at an air distributor (9), the intake line comprising at downstream of the compressor (6) an air metering valve (8) for controlling the air flow admitted into the engine (1),
-une ligne (12) de recirculation des gaz d’échappement,  -a line (12) for exhaust gas recirculation,
caractérisé en ce qu’il comprend un calculateur électronique comprenant les moyens d’acquisition, de traitement par instructions logicielles stockées dans une mémoire ainsi que les moyens de commande requis à mise en oeuvre d’un procédé selon l’une quelconque des revendications précédentes.  characterized in that it comprises an electronic computer comprising the means of acquisition, of processing by software instructions stored in a memory as well as the control means required for implementing a method according to any one of the preceding claims.
7. Véhicule, caractérisé en ce qu’il comprend un ensemble moteur selon la revendication précédente pour son déplacement. 7. Vehicle, characterized in that it comprises an engine assembly according to the preceding claim for its movement.
EP19742429.4A 2018-06-21 2019-05-13 Method for determining a power setpoint of a compressor of an internal combustion engine Pending EP3810915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855492A FR3082887B1 (en) 2018-06-21 2018-06-21 PROCESS FOR DETERMINING A POWER SETPOINT FOR AN INTERNAL COMBUSTION ENGINE COMPRESSOR
PCT/FR2019/051078 WO2019243675A1 (en) 2018-06-21 2019-05-13 Method for determining a power setpoint of a compressor of an internal combustion engine

Publications (1)

Publication Number Publication Date
EP3810915A1 true EP3810915A1 (en) 2021-04-28

Family

ID=63491714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19742429.4A Pending EP3810915A1 (en) 2018-06-21 2019-05-13 Method for determining a power setpoint of a compressor of an internal combustion engine

Country Status (3)

Country Link
EP (1) EP3810915A1 (en)
FR (1) FR3082887B1 (en)
WO (1) WO2019243675A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106372B1 (en) * 2020-01-21 2022-01-07 Renault Sas Device and method for regulating a temperature downstream of a flow of fluid passing through a compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930597B1 (en) * 2008-04-29 2010-04-23 Renault Sas METHOD FOR CONTROLLING AN ENGINE
FR2995356B1 (en) * 2012-09-11 2018-04-13 Renault Sas METHOD FOR CONTROLLING A TURBOCHARGER OVERCURRENT COUPLED WITH AN ELECTRIC MACHINE AND WITH A DERIVATION VALVE, AND CORRESPONDING SUPER-POWERING DEVICE
KR102214409B1 (en) * 2014-04-29 2021-02-18 두산인프라코어 주식회사 Apparatus and method of controlling engine system
JP5924716B1 (en) * 2015-02-03 2016-05-25 三菱電機株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
WO2019243675A1 (en) 2019-12-26
FR3082887B1 (en) 2020-12-18
FR3082887A1 (en) 2019-12-27

Similar Documents

Publication Publication Date Title
FR2782538A1 (en) METHOD FOR VERIFYING THE OPERATION OF AN EXHAUST GAS TURBOCHARGER COMPRISING A VARIABLE TURBINE GEOMETRY
RU2645856C2 (en) Method of diagnostics of supercharged engine and corresponding engine
EP2956651B1 (en) Method of determination of exhaust gas pressure upstream of a turbo charger and of gas flow amount passing through its turbine
FR3065990A1 (en) METHOD FOR REALIZING A DYNAMIC OF ADAPTING A WEALTH VALUE TO A SET IN A MOTOR
WO2010112719A1 (en) Control system and method for estimating the flow rate of recycled exhaust gases in an internal combustion engine
EP3060784A1 (en) System and method for estimating the flow of nitrogen oxides in the exhaust gases of an internal combustion engine for a motor vehicle
EP3810915A1 (en) Method for determining a power setpoint of a compressor of an internal combustion engine
EP0599729B1 (en) Method for controlling the exhaust gas recirculation in an internal combustion engine
EP0522908B1 (en) Method and system to calculate the mass of air intake in a cylinder of an internal combustion engine
EP1739291B1 (en) System for regenerating purification means which are integrated in an exhaust line of an engine of an automobile
FR2835281A1 (en) Method for estimating mass of air admitted into engine combustion chamber consists of modeling air mass as function of pressure variation in combustion chamber from polytropic gas compression law
FR2898936A1 (en) Exhaust gas fuel and air mixture estimating method for e.g. turbocharged oil engine, involves estimating rate of fuel injected in combustion engine using estimator based on information relative to temperature of gas in upstream of turbine
EP2655838B1 (en) System and method for controlling an internal combustion engine for a motor vehicle in transit
FR2923538A3 (en) Turbine upstream pressure estimating system for supercharged oil engine of motor vehicle, has calculation units calculating expansion ratio of turbine from magnitude representing temperature variation to deduce upstream pressure of turbine
FR3085430A1 (en) METHOD FOR CALCULATING A SET POINT OF A THERMAL ENGINE TURBOCHARGER
FR2903148A1 (en) METHOD AND INSTALLATION FOR MANAGING AN INTERNAL COMBUSTION ENGINE.
EP1647692A1 (en) Air inlet control method for an internal combustion engine and automotive vehicle for applying this method
EP1662121A1 (en) Method of controlling an intake system of an internal combustion engine and motor vehicle for carrying out said method
EP2507491A1 (en) System and method for estimating the mass of particles stored in a particle filter of a motor vehicle
WO2023083681A1 (en) Method for low-frequency estimation of a recirculated exhaust gas flow rate at the intake of an internal combustion engine
FR3063109A1 (en) METHOD FOR DETERMINING EXHAUST PRESSURE BEFORE THE TURBINE OF A TURBOCHARGER EQUIPPED WITH A THERMAL ENGINE
JP2017133407A (en) Turbo rotation speed estimation apparatus and turbo rotation speed estimation method
FR3126450A1 (en) Method and system for controlling an actuator of an internal combustion engine.
EP1519023B1 (en) Process and system for controlling an air charged compression ignition combustion engine for a vehicle
FR3107090A1 (en) Fuel injection device, engine and associated process.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230927

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STELLANTIS AUTO SAS