FR2905521A1 - METHOD OF MARKING A SEMICONDUCTOR PLATE FOR ITS IDENTIFICATION AND SEMICONDUCTOR PLATE MARKED THEREBY - Google Patents

METHOD OF MARKING A SEMICONDUCTOR PLATE FOR ITS IDENTIFICATION AND SEMICONDUCTOR PLATE MARKED THEREBY Download PDF

Info

Publication number
FR2905521A1
FR2905521A1 FR0653547A FR0653547A FR2905521A1 FR 2905521 A1 FR2905521 A1 FR 2905521A1 FR 0653547 A FR0653547 A FR 0653547A FR 0653547 A FR0653547 A FR 0653547A FR 2905521 A1 FR2905521 A1 FR 2905521A1
Authority
FR
France
Prior art keywords
plate
marking
points
laser
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0653547A
Other languages
French (fr)
Inventor
Dominique Bocquene
Pierre Tauzinat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microcomposants de Haute Securite SAS MHS
Original Assignee
Microcomposants de Haute Securite SAS MHS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microcomposants de Haute Securite SAS MHS filed Critical Microcomposants de Haute Securite SAS MHS
Priority to FR0653547A priority Critical patent/FR2905521A1/en
Priority to PCT/FR2007/051811 priority patent/WO2008025919A2/en
Publication of FR2905521A1 publication Critical patent/FR2905521A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/262Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used recording or marking of inorganic surfaces or materials, e.g. glass, metal, or ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67282Marking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67294Apparatus for monitoring, sorting or marking using identification means, e.g. labels on substrates or labels on containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54406Marks applied to semiconductor devices or parts comprising alphanumeric information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54433Marks applied to semiconductor devices or parts containing identification or tracking information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54493Peripheral marks on wafers, e.g. orientation flats, notches, lot number
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Laser Beam Printer (AREA)

Abstract

L'invention concerne un procédé de marquage d'une plaque (1) en matériau semi-conducteur pour son identification. Dans ce procédé, on focalise le faisceau (3) d'un laser (2) dans le volume de la plaque (1 ) sur des points de ce volume. Cette focalisation est réalisée de manière à modifier localement, à l'endroit des points (4), les propriétés optiques du matériau de la plaque (1). L'ensemble des points (4) du volume de la plaque (1) dont les propriétés optiques ont été modifiées est positionné à l'intérieur d'une zone (8) de marquage et définit un code qui identifie la plaque (1). L'invention a pour but de minimiser la pollution lors du marquage de la plaque et celle induite postérieurement lors de la fabrication à partir de ce substrat (1 ).The invention relates to a method of marking a plate (1) of semiconductor material for its identification. In this method, the beam (3) of a laser (2) is focused in the volume of the plate (1) on points of this volume. This focusing is carried out so as to locally modify, at the location of the points (4), the optical properties of the material of the plate (1). The set of points (4) of the volume of the plate (1) whose optical properties have been modified is positioned inside a marking zone (8) and defines a code which identifies the plate (1). The aim of the invention is to minimize pollution during the marking of the plate and that which is subsequently induced during manufacture from this substrate (1).

Description

Procédé de marquage d'une plaque semi-conductrice pour son identificationMethod of marking a semiconductor plate for its identification

et plaque semi-conductrice marquée par ce procédé L'invention concerne un procédé de marquage d'une plaque semi-conductrice pour son identification et une plaque semi-conductrice marquée par ce procédé. L'invention a notamment pour but de limiter la pollution due à la matière ablatée au moment du marquage de la plaque. L'invention trouve une application particulièrement avantageuse dans le domaine de la traçabilité des plaques semi-conductrices. Actuellement, pour identifier les plaques, il est connu de les marquer au laser d'un code d'identification. Des informations de test relatives à des mesures effectuées au cours de la fabrication des plaques sont stockées et associées aux codes dans une base de données. Ainsi, à partir d'un code d'une plaque, il est possible d'accéder aux informations de test relatives à cette plaque. Des informations de test peuvent être disponibles pour chaque plaque ou pour un ensemble de plaques dit lot de plaques. Ce marquage au laser est généralement réalisé à la surface de la plaque. Or ce marquage en surface constitue des zones comportant de petits interstices dans lesquels des particules polluantes peuvent s'introduire ou se décoller lors des différentes étapes de fabrication. L'invention se propose de minimiser la pollution lors du marquage des plaques, et celle induite postérieurement lors de la fabrication de circuits à partir de ces plaques.  The invention relates to a method of marking a semiconductor plate for its identification and a semiconductor plate marked by this method. The invention particularly aims to limit the pollution due to the material ablated at the time of marking the plate. The invention finds a particularly advantageous application in the field of traceability of semiconductor plates. Currently, to identify plates, it is known to laser mark them with an identification code. Test information relating to measurements made during the manufacture of the plates is stored and associated with the codes in a database. Thus, from a code of a plate, it is possible to access the test information relating to this plate. Test information may be available for each plate or for a set of plates called plate lot. This laser marking is generally performed on the surface of the plate. However, this surface marking constitutes zones with small interstices in which polluting particles can be introduced or come off during the various manufacturing steps. The invention proposes to minimize the pollution during the marking of the plates, and that induced later during the manufacture of circuits from these plates.

A cet effet, dans l'invention, on effectue un marquage dans le volume de la plaque, dit marquage intra-volume. A cette fin, on focalise le faisceau d'un laser sur des points du volume, ce qui modifie la structure du matériau à l'endroit de ces points et donc les propriétés optiques de ce matériau à l'endroit de ces points. Les points où la propriété du matériau a été modifiée définissent des codes permettant d'identifier la plaque. Le marquage de la plaque est ainsi réalisé sans ablation de matière puisqu'il est fait à l'intérieur du volume. Il n'y a donc aucun risque que des particules polluantes s'introduisent ou soient générées à l'intérieur des circuits lors de leur fabrication.  For this purpose, in the invention, a marking is made in the volume of the plate, said intra-volume marking. For this purpose, the beam of a laser is focused on points of the volume, which modifies the structure of the material at these points and therefore the optical properties of this material at these points. The points where the property of the material has been modified define codes to identify the plate. The marking of the plate is thus achieved without ablation of material since it is made inside the volume. There is therefore no risk that polluting particles are introduced or are generated inside the circuits during their manufacture.

Pour lire les codes d'identification, un lecteur optique, par exemple de type confocal, est utilisé. Ce lecteur comporte un laser qui balaye la zone de 2905521 2 la plaque où le marquage est censé se trouver. Et en fonction de l'intensité du faisceau renvoyé par la plaque qui est sensible à la modification de structure réalisée lors du marquage, il est possible de lire le code inscrit dans le volume de la plaque.  To read the identification codes, an optical reader, for example of the confocal type, is used. This reader has a laser that scans the area of the plate where the marking is supposed to be. And depending on the intensity of the beam returned by the plate that is sensitive to the structure modification made during marking, it is possible to read the code written in the volume of the plate.

5 Dans une mise en oeuvre, le marquage est réalisé à l'aide de codes alphanumériques, et prend la forme d'une ligne constituée typiquement de 18 caractères. Chaque caractère est défini par une matrice de 5 points horizontaux et 9 points verticaux. Le marquage de la plaque est réalisé dans des zones précises de la 10 plaque afin de faciliter la recherche et l'identification du code lors de la lecture. En outre, de préférence, ces zones se trouvent à l'extérieur des zones actives des plaques, c'est-à-dire à l'extérieur des zones où les circuits électroniques sont réalisés, en périphérie de plaque. Un laser du type femtoseconde est de préférence utilisé pour le 15 marquage car il génère peu de contrainte. En variante, un autre type de laser pourrait être également utilisé. L'invention concerne donc un procédé de marquage d'une plaque en matériau semi-conducteur pour son identification, - cette plaque comportant un volume délimité par ses parois 20 extérieures, caractérisé en ce qu'il comporte les étapes suivantes : - focaliser le faisceau d'un laser dans le volume de la plaque sur des points de ce volume, cette focalisation étant réalisée de manière à modifier localement, à l'endroit des points, les propriétés optiques du matériau de la 25 plaque, - l'ensemble des points du volume de la plaque dont les propriétés optiques ont été modifiées étant positionné à l'intérieur d'une zone dite zone de marquage et définissant un code qui identifie la plaque. L'invention concerne en outre un procédé de lecture d'une plaque 30 marquée, caractérisé en ce qu'il comporte les étapes suivantes : - focaliser le faisceau d'un laser en un point de focalisation, ce point de focalisation se situant dans la zone de marquage, - mesurer l'intensité du faisceau renvoyé par la plaque, à l'aide d'un détecteur, par exemple de type photomultiplicateur, et 35 -après le balayage de la zone de marquage, 2905521 3 - déduire le code en fonction de la position du point de focalisation et de la mesure d'intensité, le faisceau renvoyé par la plaque lorsque le laser focalise sur des points où la propriété optique du matériau a été modifiée présentant une intensité différente de celle du faisceau renvoyé par la plaque 5 lorsque le laser focalise sur des points où la propriété optique du matériau n'a pas été modifiée. L'invention concerne également une plaque semi-conductrice marquée caractérisée en ce qu'elle comporte : des points dans son volume où les propriétés optiques sont 10 différentes de celles de l'environnement de ces points, - l'ensemble des points de la plaque dont les propriétés optiques ont été modifiées définissant un code qui identifie la plaque. L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données 15 qu'à titre illustratif mais nullement limitatif de l'invention. Ces figures montrent : - figure 1 : une représentation schématique d'une plaque dans le volume de laquelle un marquage est réalisé ; - figures 2 : des représentations schématiques de zones de marquage 20 pour deux différents types de plaques ; - figure 3 : une représentation schématique d'un dispositif de lecture permettant la lecture du marquage de la plaque. Les éléments identiques conservent la même référence d'une figure à l'autre.In one implementation, the marking is done using alphanumeric codes, and takes the form of a line typically consisting of 18 characters. Each character is defined by a matrix of 5 horizontal points and 9 vertical points. The plate is marked in specific areas of the plate to facilitate searching and identification of the code during reading. In addition, these zones are preferably located outside the active zones of the plates, ie outside the zones where the electronic circuits are formed, at the periphery of the plate. A femtosecond laser is preferably used for labeling because it generates little stress. Alternatively, another type of laser could also be used. The invention therefore relates to a method for marking a plate made of semiconductor material for its identification, this plate comprising a volume delimited by its external walls, characterized in that it comprises the following steps: focusing the beam of a laser in the volume of the plate on points of this volume, this focusing being carried out so as to modify locally, at the point of the points, the optical properties of the material of the plate, - the set of points the volume of the plate whose optical properties have been modified being positioned within a so-called marking zone and defining a code which identifies the plate. The invention furthermore relates to a method for reading a marked plate, characterized in that it comprises the following steps: - focusing the beam of a laser at a focusing point, this focusing point lying in the marking zone, - measuring the intensity of the beam reflected by the plate, using a detector, for example of the photomultiplier type, and after scanning the marking zone, - deriving the code by according to the position of the focusing point and the intensity measurement, the beam reflected by the plate when the laser focuses on points where the optical property of the material has been modified having a different intensity than that of the beam reflected by the plate When the laser focuses on points where the optical property of the material has not been modified. The invention also relates to a marked semiconductor plate characterized in that it comprises: points in its volume where the optical properties are different from those of the environment of these points, - all the points of the plate whose optical properties have been modified defining a code that identifies the plate. The invention will be better understood on reading the description which follows and on examining the figures which accompany it. These figures are given for illustrative purposes only but in no way limitative of the invention. These figures show: FIG. 1: a schematic representation of a plate in the volume of which a marking is made; - Figures 2: schematic representations of marking areas 20 for two different types of plates; - Figure 3: a schematic representation of a reading device for reading the marking of the plate. Identical elements retain the same reference from one figure to another.

25 La figure 1 montre la réalisation d'un marquage laser dans le volume d'une plaque 1 réalisée dans un matériau semi-conducteur. Cette plaque 1 présente un volume délimité par ses faces extérieures 1.1-1.3. Le marquage est réalisé dans ce volume de la plaque 1 à l'aide d'un laser 2 qui émet un faisceau 3 focalisé sur un point 4 du volume de la plaque.FIG. 1 shows the realization of a laser marking in the volume of a plate 1 made of a semiconductor material. This plate 1 has a volume delimited by its outer faces 1.1-1.3. The marking is made in this volume of the plate 1 by means of a laser 2 which emits a beam 3 focused on a point 4 of the volume of the plate.

30 En focalisant sur un point 4 particulier, le laser 2 modifie localement, à l'endroit du point 4, les propriétés optiques du matériau dans lequel la plaque 1 est réalisée. Autrement dit, les propriétés optiques de la plaque à l'endroit du point 4 sont différentes de celles de l'environnement de ce point. Les points 4 de la plaque 1 à l'endroit desquels les propriétés du 35 matériau ont été modifiées par rapport à celles de leur environnement 2905521 4 décrivent la forme de caractères 9 du marquage. Ainsi par exemple, en focalisant sur des points 4, le laser 2 décrit les différentes branches d'un E. Dans une mise en oeuvre, les caractères 9 sont des caractères alphanumériques définis par une matrice 7 de 5 points horizontaux et de 9 5 points verticaux. Le marquage peut être réalisé sous forme de points 4 ou éventuellement de lignes continues. La hauteur typique d'un caractère 9 est comprise entre 0.8 et 2 millimètres. Ces caractères 9 (et donc l'ensemble des points 4 du marquage) se situent à l'intérieur d'une zone 8 de marquage toujours située au même 10 endroit pour un type de plaque donné afin de faciliter la localisation de cette zone de marquage. Cette zone 8 de marquage est de préférence située à l'extérieur des zones actives de la plaque 1, c'est-à-dire qu'elle est située dans des zones dépourvues de circuits électroniques. Toutefois, comme le marquage est 15 réalisé dans le volume, la zone 8 de marquage pourrait être réalisée dans des zones actives de la plaque où des circuits sont réalisés, sans pour autant altérer le fonctionnement de ces circuits. Les figures 2a et 2b montrent le positionnement de zones de marquage pour deux différents types de plaque.By focusing on a particular point 4, the laser 2 modifies locally, at point 4, the optical properties of the material in which the plate 1 is made. In other words, the optical properties of the plate at point 4 are different from those of the environment of this point. The points 4 of the plate 1 at which the properties of the material have been modified from those of their environment describe the character form 9 of the marking. For example, by focusing on points 4, the laser 2 describes the different branches of an E. In an implementation, the characters 9 are alphanumeric characters defined by a matrix 7 of 5 horizontal points and 9 points. vertical. The marking can be achieved as points 4 or possibly continuous lines. The typical height of a character 9 is between 0.8 and 2 millimeters. These characters 9 (and therefore all the points 4 of the marking) are located within a marking zone 8 always located at the same location for a given type of plate in order to facilitate the location of this marking zone. . This marking zone 8 is preferably located outside the active areas of the plate 1, that is to say that it is located in areas devoid of electronic circuits. However, as the marking is made in the volume, the marking zone 8 could be made in active areas of the plate where circuits are made, without impairing the operation of these circuits. Figures 2a and 2b show the positioning of marking areas for two different types of plate.

20 Plus précisément, la figure 2a montre une plaque 1 comportant un méplat 13. Dans ce cas, la zone 8 de marquage est située au dessus du méplat à environ deux millimètres du bord de ce méplat 13. La figure 2b montre une plaque 1 comportant une encoche 14. Dans ce cas, la zone 8 de marquage est positionnée par rapport à cette encoche 25 14. De préférence, la zone 8 est centrée par rapport à cette encoche 14. Le laser 2 utilisé pour le marquage, qui est de préférence de type femtoseconde, émet un rayon dont la longueur d'onde est comprise entre 0.1 et 1.1 micromètres. La source de ce laser est de préférence de type Yb:KGW ou encore titane/saphir, sa durée de pulsation de l'ordre de 200fs, sa 30 fréquence de pulsation de l'ordre de quelques kHz, son énergie par pulsation de l'ordre du watt. Ces caractéristiques du laser sont notamment adaptées en fonction du matériau de la plaque qui peut être notamment en silicium, en Arséniure de Gallium (AsGa), en Phosphure d'Indium (InP), en Carbure de Silicium 35 (SiC), en Phosphure de Gallium (GaP) éventuellement présent sur une 2905521 5 couche de saphir, ou en Nitrure de Gallium (GaN) éventuellement présent sur une couche de saphir. En variante, comme montré sur la figure 1, le marquage est un code 15 de type binaire réalisé dans le volume de la plaque 1. Un point 4.1 de la 5 plaque 1 où les propriétés optiques du matériau n'ont pas été modifiées correspond alors à un 0 binaire et un point 4.2 de la plaque 1 où la propriété du matériau a été modifiée correspond à un 1 binaire. La figure 3 montre une représentation schématique d'un dispositif 17 de lecture permettant de lire le marquage intra-volume réalisé selon le 10 procédé décrit ci-dessus. Ce dispositif 17 comporte un laser 18, et un détecteur 19, par exemple de type photomultiplicateur, relié à un ordinateur 20. Le laser 18 émet un faisceau 21 qui est focalisé à l'endroit des points 4 du marquage et renvoyés par la plaque 1 vers le détecteur 19. Comme 15 l'intensité des faisceaux renvoyés dépend de la structure du matériau, il est possible de lire le code de la plaque 1. A cet effet, un miroir 23 dichroique et un objectif 24, tel qu'une lentille convergente, sont positionnés entre la plaque 1 et le détecteur 19, l'objectif étant positionné entre le miroir 23 et la plaque 1. Par ailleurs, une grille 27 20 comportant un réseau de petits trous dit réseau trous d'épingles est positionnée à proximité du détecteur 19, entre ce détecteur 19 et le miroir 23. Le dispositif 17 est mobile dans le plan x, y et suivant la direction z. En variante, la plaque est mobile dans le plan x, y, tandis que le dispositif 17 est mobile suivant la direction z uniquement. A cet effet, la plaque 1 est 25 positionnée sur une table XY. Ainsi, le miroir 23 réfléchit le faisceau 21 émis par le laser 18 vers la plaque 1. L'objectif 24 fait converger le faisceau réfléchi par le miroir 23 à son point focal 25 qui se trouve dans la zone 8 de marquage. Ce point focal 25 est confondu ou non avec un point 4 du marquage.More precisely, FIG. 2a shows a plate 1 comprising a flat part 13. In this case, the marking zone 8 is located above the flat at about two millimeters from the edge of this flat surface 13. FIG. 2b shows a plate 1 comprising In this case, the marking zone 8 is positioned with respect to this notch. Preferably, the zone 8 is centered with respect to this notch. The laser 2 used for the marking, which is preferably of femtosecond type, emits a radius whose wavelength is between 0.1 and 1.1 micrometers. The source of this laser is preferably of type Yb: KGW or titanium / sapphire, its pulse duration of the order of 200fs, its pulse frequency of the order of a few kHz, its energy per pulse of the watt order. These characteristics of the laser are in particular adapted according to the material of the plate, which may be in particular silicon, gallium arsenide (AsGa), indium phosphide (InP), silicon carbide (SiC), phosphide Gallium (GaP) optionally present on a layer of sapphire, or Gallium Nitride (GaN) optionally present on a sapphire layer. Alternatively, as shown in FIG. 1, the marking is a binary type code made in the volume of the plate 1. A point 4.1 of the plate 1 where the optical properties of the material have not been modified then corresponds to at a binary 0 and a point 4.2 of the plate 1 where the property of the material has been modified corresponds to a binary 1. FIG. 3 shows a schematic representation of a reading device 17 making it possible to read the intra-volume marking made according to the method described above. This device 17 comprises a laser 18, and a detector 19, for example of the photomultiplier type, connected to a computer 20. The laser 18 emits a beam 21 which is focused at the points 4 of the marking and returned by the plate 1 to the detector 19. Since the intensity of the reflected beams depends on the structure of the material, it is possible to read the code of the plate 1. For this purpose, a dichroic mirror 23 and a lens 24, such as a lens convergent, are positioned between the plate 1 and the detector 19, the lens being positioned between the mirror 23 and the plate 1. Furthermore, a grid 27 20 having a network of small holes said network pinholes is positioned nearby detector 19, between this detector 19 and the mirror 23. The device 17 is movable in the plane x, y and in the direction z. Alternatively, the plate is movable in the plane x, y, while the device 17 is movable in the z direction only. For this purpose, plate 1 is positioned on an XY table. Thus, the mirror 23 reflects the beam 21 emitted by the laser 18 to the plate 1. The objective 24 converges the beam reflected by the mirror 23 at its focal point 25 which is in the marking zone 8. This focal point 25 is confused or not with a point 4 of the marking.

30 Le faisceau renvoyé par la plaque 1 traverse le miroir 23 et est reçu par le détecteur 19. Le détecteur 19 collecte le faisceau 31 renvoyé par la plaque 1 et issu précisément du point de focalisation 25. A cet effet, la grille 27 élimine le faisceau 32 émis hors du point 25 de focalisation (représenté en traits pointillés courts), ainsi que le faisceau 33 diffracté (représenté en 35 traits pointillés long).The beam returned by the plate 1 passes through the mirror 23 and is received by the detector 19. The detector 19 collects the beam 31 returned by the plate 1 and precisely from the focusing point 25. For this purpose, the grid 27 eliminates the beam 32 emitted out of the focusing point (shown in short dashed lines), as well as the diffracted beam 33 (shown in long dashed lines).

2905521 6 Le faisceau 31 reçu par le détecteur 19 est transformé en signal électrique 37 par ce détecteur. Ce signal 37 présente une intensité proportionnelle à celle du faisceau 31. En fonction de la position des points de focalisation du laser et de la 5 mesure de l'intensité du faisceau 31 renvoyé par la plaque pour ces points, on détecte la forme des caractères 38 utilisés lors du marquage, ces caractères 38 étant affichés sur l'écran de l'ordinateur 20. Cette détection est liée au fait que l'intensité du faisceau 31 renvoyé par la plaque 1 est sensible à la modification des propriétés optiques des 10 points 4 du marquage. En effet, le faisceau 31 renvoyé par la plaque 1 lorsque le laser 18 focalise à l'endroit d'un point où la propriété optique du matériau a été modifiée par le marquage présentent une intensité différente de celle du faisceau 31 réfléchi par la plaque 1 lorsque le laser focalise à l'endroit des points où la propriété optique du matériau n'a pas été modifiée 15 par le marquage. La zone 8 de marquage de la plaque 1 est balayée par le laser 18 point par point dans le plan de la plaque 1 suivant l'axe des x et des y. Puis un autre plan parallèle au plan de départ est balayé de la même manière après un léger déplacement dz suivant l'axe z qui est perpendiculaire au plan 20 de la plaque. Ces déplacements sont répétés jusqu'au balayage complet de la zone 8 de marquage. La longueur d'onde du laser 18 est choisie de sorte que le matériau de la plaque soit transparent pour cette longueur d'onde. Cette longueur d'onde peut donc varier d'un matériau semi-conducteur à un autre. Dans une mise 25 en oeuvre, lorsque la plaque est en silicium, le laser émet un faisceau d'une longueur d'onde comprise entre 1.00 et 1.30 micromètres. Par ailleurs, il est à noter que l'utilisation d'une optique confocale permet de ne pas être perturbé par le signal fluorescent provenant des autres plans que celui qui est focalisé. La résolution latérale et axiale est 30 donc optimum. En variante, la lecture pourrait être effectuée par transparence, le faisceau traversant la plaque 1 en passant par des points 4 où les propriétés optiques du matériau ont été modifiées présentant une intensité différente de celle du faisceau traversant la plaque en passant par des points 4 où les 35 propriétés du matériau n'ont pas été modifiées.The beam 31 received by the detector 19 is converted into an electrical signal 37 by this detector. This signal 37 has an intensity proportional to that of the beam 31. Depending on the position of the focusing points of the laser and the measurement of the intensity of the beam 31 reflected by the plate for these points, the shape of the characters is detected. 38 are used in the marking, these characters 38 being displayed on the screen of the computer 20. This detection is linked to the fact that the intensity of the beam 31 reflected by the plate 1 is sensitive to the modification of the optical properties of the 10 points. 4 of the marking. Indeed, the beam 31 returned by the plate 1 when the laser 18 focuses at a point where the optical property of the material has been modified by the marking have an intensity different from that of the beam 31 reflected by the plate 1 when the laser focuses at the points where the optical property of the material has not been modified by the marking. The marking zone 8 of the plate 1 is scanned by the laser 18 point by point in the plane of the plate 1 along the x and y axis. Then another plane parallel to the starting plane is scanned in the same way after a slight displacement z along the axis z which is perpendicular to the plane 20 of the plate. These displacements are repeated until the complete scanning of the marking zone 8. The wavelength of the laser 18 is chosen so that the material of the plate is transparent for this wavelength. This wavelength can therefore vary from one semiconductor material to another. In one embodiment, when the plate is silicon, the laser emits a beam having a wavelength of between 1.00 and 1.30 micrometers. Furthermore, it should be noted that the use of a confocal optics makes it possible not to be disturbed by the fluorescent signal coming from other planes than the one that is focused. The lateral and axial resolution is therefore optimum. Alternatively, the reading could be made by transparency, the beam passing through the plate 1 through points 4 where the optical properties of the material have been modified having an intensity different from that of the beam passing through the plate through points 4 where the properties of the material have not been modified.

Claims (13)

REVENDICATIONS 1 - Procédé de marquage d'une plaque (1) en matériau semi-conducteur pour son identification, - cette plaque (1) comportant un volume délimité par ses parois (1.1-1.3) extérieures, caractérisé en ce qu'il comporte les étapes suivantes : - focaliser le faisceau (3) d'un laser (2) dans le volume de la plaque (1) sur des points (4) de ce volume, cette focalisation étant réalisée de manière à modifier localement, à l'endroit des points (4), les propriétés optiques du matériau de la plaque (1), et -l'ensemble des points (4) du volume de la plaque (1) dont les propriétés optiques ont été modifiées étant positionné à l'intérieur d'une zone (8) dite zone de marquage et définissant un code qui identifie la plaque (1).  1 - Method of marking a plate (1) made of semiconductor material for its identification, - this plate (1) having a volume delimited by its outer walls (1.1-1.3), characterized in that it comprises the steps following: - focus the beam (3) of a laser (2) in the volume of the plate (1) on points (4) of this volume, this focusing being performed so as to modify locally, at the location of points (4), the optical properties of the material of the plate (1), and the set of points (4) of the volume of the plate (1) whose optical properties have been modified being positioned inside the a zone (8) called marking zone and defining a code which identifies the plate (1). 2 - Procédé selon la revendication 1, caractérisé en ce que : - le code est formé de caractères alphanumériques, les points (4) où la propriété du matériau a été modifiée décrivant, dans la zone (8) de marquage de la plaque, la forme de ces caractères.  2 - Method according to claim 1, characterized in that: - the code is formed of alphanumeric characters, the points (4) where the property of the material has been modified describing, in the area (8) marking the plate, the form of these characters. 3 - Procédé selon la revendication 2, caractérisé en ce que : - chaque caractère est défini par une matrice de 5 points horizontaux et de 9 points verticaux, la hauteur d'un caractère étant comprise entre 0.8 et 2 millimètres.  3 - Process according to claim 2, characterized in that: - each character is defined by a matrix of 5 horizontal points and 9 vertical points, the height of a character being between 0.8 and 2 millimeters. 4 - Procédé selon l'une des revendications 1 à 3, caractérisé en ce que : - la zone (8) de marquage est située dans une zone non active de la plaque, cette zone non active étant une zone de la plaque (1) dépourvue de circuit électronique.  4 - Method according to one of claims 1 to 3, characterized in that: - the marking zone (8) is located in a non-active area of the plate, this non-active area being a zone of the plate (1) devoid of electronic circuit. 5 - Procédé selon la revendication 4, caractérisé en ce que : - la plaque (1) comportant un méplat (13), la zone (8) de marquage est 30 située à environ 2mm du bord du méplat (13).  5 - Process according to claim 4, characterized in that: - the plate (1) having a flat (13), the marking area (8) is located approximately 2mm from the edge of the flat (13). 6 - Procédé selon la revendication 4 ou 5, caractérisé en ce que : - la plaque (1) comportant une encoche (14), la zone (8) de marquage est positionnée par rapport à cette encoche (14).  6 - Process according to claim 4 or 5, characterized in that: - the plate (1) having a notch (14), the marking zone (8) is positioned relative to this notch (14). 7 - Procédé selon l'une des revendications 1 à 6, caractérisé en ce 35 que : 2905521 8 - le laser (2) est de type femtoseconde, la longueur d'onde de ce laser étant comprise entre 0.1 et 1.1 micromètres.  7 - Method according to one of claims 1 to 6, characterized in that: 2905521 8 - the laser (2) is of femtosecond type, the wavelength of this laser being between 0.1 and 1.1 micrometers. 8 - Procédé de lecture d'une plaque (1) marquée selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte les étapes suivantes : 5 - focaliser le faisceau (21) d'un laser (18) en un point de focalisation (25), ce point de focalisation (25) se situant dans la zone (8) de marquage, - mesurer l'intensité du faisceau (31) renvoyé par la plaque (1), à l'aide d'un détecteur (19), par exemple de type photomultiplicateur, et - après le balayage de la zone (8) de marquage, 10 - déduire le code en fonction de la position du point de focalisation (25) et de la mesure d'intensité, le faisceau (31) renvoyé par la plaque (1) lorsque le laser (31) focalise sur des points où la propriété optique du matériau a été modifiée présentant une intensité différente de celle du faisceau (31) renvoyé par la plaque (1) lorsque le laser focalise sur des 15 points où la propriété optique du matériau n'a pas été modifiée.  8 - A method of reading a plate (1) marked according to one of claims 1 to 7, characterized in that it comprises the following steps: - focus the beam (21) of a laser (18) in a focusing point (25), this focusing point (25) lying in the marking area (8), - measuring the intensity of the beam (31) reflected by the plate (1), using a detector (19), for example of the photomultiplier type, and - after scanning the marking zone (8), derive the code as a function of the position of the focusing point (25) and of the intensity measurement , the beam (31) returned by the plate (1) when the laser (31) focuses on points where the optical property of the material has been modified having an intensity different from that of the beam (31) returned by the plate (1) when the laser focuses on points where the optical property of the material has not been changed. 9 - Procédé selon la revendication 8, caractérisé en ce qu'il comporte l'étape suivante : - éliminer le faisceau (32) renvoyé par la plaque qui n'est pas issu du point de focalisation (25) et le faisceau (33) diffracté par la plaque à l'aide 20 d'une grille (27) de type trous d'épingle positionnée devant le détecteur (19).  9 - Process according to claim 8, characterized in that it comprises the following step: - eliminate the beam (32) returned by the plate that is not from the focusing point (25) and the beam (33) diffracted by the plate using a pinhole-type grid (27) positioned in front of the detector (19). 10 - Procédé selon la revendication 8 ou 9, caractérisé en ce que, pour balayer la zone (8) de marquage, il comporte les étapes suivantes : -balayer la zone (8) de marquage suivant le plan de la plaque (1), -déplacer le laser (18) suivant une direction perpendiculaire au plan 25 de la plaque (1), et - balayer de nouveau la zone (8) de marquage suivant le plan de la plaque, - lesdites étapes de balayage étant répétées jusqu'à ce que toute la zone (8) de marquage soit balayée.  10 - Process according to claim 8 or 9, characterized in that, to scan the marking zone (8), it comprises the following steps: - sweeping the marking zone (8) along the plane of the plate (1), moving the laser (18) in a direction perpendicular to the plane of the plate (1), and - scanning again the marking zone (8) along the plane of the plate, - said scanning steps being repeated up to the entire marking area (8) is scanned. 11 - Procédé selon l'une des revendications 8 à 10, caractérisé en ce que : - la plaque (1) étant en silicium, le laser (18) présente une longueur d'onde comprise entre 1.00 et 1.30 micromètres.  11 - Method according to one of claims 8 to 10, characterized in that: - the plate (1) being silicon, the laser (18) has a wavelength of between 1.00 and 1.30 micrometers. 12 - Procédé selon l'une des revendications 8 à 11, caractérisé en ce que : - la lecture est réalisée à l'aide d'un dispositif confocal. 2905521 9  12 - Method according to one of claims 8 to 11, characterized in that: - the reading is performed using a confocal device. 2905521 9 13 - Plaque semi-conductrice marquée caractérisée en ce qu'elle comporte : - des points (4) dans son volume où les propriétés optiques sont différentes de celles de l'environnement de ces points (4), 5 - l'ensemble des points (4) de la plaque dont les propriétés optiques ont été modifiées définissant un code qui identifie la plaque (1).  13 - marked semiconductor plate characterized in that it comprises: - points (4) in its volume where the optical properties are different from those of the environment of these points (4), 5 - the set of points (4) of the plate whose optical properties have been modified defining a code which identifies the plate (1).
FR0653547A 2006-08-31 2006-08-31 METHOD OF MARKING A SEMICONDUCTOR PLATE FOR ITS IDENTIFICATION AND SEMICONDUCTOR PLATE MARKED THEREBY Withdrawn FR2905521A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0653547A FR2905521A1 (en) 2006-08-31 2006-08-31 METHOD OF MARKING A SEMICONDUCTOR PLATE FOR ITS IDENTIFICATION AND SEMICONDUCTOR PLATE MARKED THEREBY
PCT/FR2007/051811 WO2008025919A2 (en) 2006-08-31 2007-08-10 Process for marking a semi-conductor plate for its identification and the semi-conductor plate marked by this process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0653547A FR2905521A1 (en) 2006-08-31 2006-08-31 METHOD OF MARKING A SEMICONDUCTOR PLATE FOR ITS IDENTIFICATION AND SEMICONDUCTOR PLATE MARKED THEREBY

Publications (1)

Publication Number Publication Date
FR2905521A1 true FR2905521A1 (en) 2008-03-07

Family

ID=37686495

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0653547A Withdrawn FR2905521A1 (en) 2006-08-31 2006-08-31 METHOD OF MARKING A SEMICONDUCTOR PLATE FOR ITS IDENTIFICATION AND SEMICONDUCTOR PLATE MARKED THEREBY

Country Status (2)

Country Link
FR (1) FR2905521A1 (en)
WO (1) WO2008025919A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20100620A1 (en) * 2010-10-15 2012-04-16 Marchesini Group Spa SUITABLE EQUIPMENT FOR OPERATING IN AN ENVIRONMENT WHERE PHARMACEUTICAL OR COSMETIC PRODUCTS ARE MANIPULATED AND THE USE OF A COMPONENT PROVIDED WITH WRITTEN AND / OR LOGO AND / OR SIGNS IN AN ENVIRONMENT WHERE PHARMACEUTICAL OR COSMETIC PRODUCTS ARE MANIPULATED
CN108630563B (en) * 2017-03-17 2020-11-03 中芯国际集成电路制造(上海)有限公司 Monitoring method and monitoring structure of wafer identification code
EP3712717A1 (en) * 2019-03-19 2020-09-23 Comadur S.A. Method for marking a sapphire watchglass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214299A (en) * 1998-01-27 1999-08-06 Komatsu Ltd Read device of dot mark and read method
EP1073097A2 (en) * 1999-07-26 2001-01-31 Komatsu Ltd Dot mark reading apparatus and reading method
EP1117129A2 (en) * 2000-01-12 2001-07-18 Tokyo Seimitsu Co.,Ltd. Semiconductor wafer inspection machine
US20030003608A1 (en) * 2001-03-21 2003-01-02 Tsunetoshi Arikado Semiconductor wafer with ID mark, equipment for and method of manufacturing semiconductor device from them
EP1300872A1 (en) * 2001-10-08 2003-04-09 Infineon Technologies SC300 GmbH & Co. KG Semiconductor device identification apparatus
WO2003033199A1 (en) * 2001-10-19 2003-04-24 U.C. Laser Ltd. Method for improved wafer alignment
US20040089958A1 (en) * 2002-11-08 2004-05-13 Kazuhisa Arai Conductor wafer and substrate
US20060065985A1 (en) * 2004-09-30 2006-03-30 Berman Michael J Substrate edge scribe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214299A (en) * 1998-01-27 1999-08-06 Komatsu Ltd Read device of dot mark and read method
EP1073097A2 (en) * 1999-07-26 2001-01-31 Komatsu Ltd Dot mark reading apparatus and reading method
EP1117129A2 (en) * 2000-01-12 2001-07-18 Tokyo Seimitsu Co.,Ltd. Semiconductor wafer inspection machine
US20030003608A1 (en) * 2001-03-21 2003-01-02 Tsunetoshi Arikado Semiconductor wafer with ID mark, equipment for and method of manufacturing semiconductor device from them
EP1300872A1 (en) * 2001-10-08 2003-04-09 Infineon Technologies SC300 GmbH & Co. KG Semiconductor device identification apparatus
WO2003033199A1 (en) * 2001-10-19 2003-04-24 U.C. Laser Ltd. Method for improved wafer alignment
US20040089958A1 (en) * 2002-11-08 2004-05-13 Kazuhisa Arai Conductor wafer and substrate
US20060065985A1 (en) * 2004-09-30 2006-03-30 Berman Michael J Substrate edge scribe

Also Published As

Publication number Publication date
WO2008025919A2 (en) 2008-03-06
WO2008025919A3 (en) 2008-05-02

Similar Documents

Publication Publication Date Title
EP2839297B1 (en) Device for determining wind speed comprising a plurality of laser sources
FR3083645A1 (en) IMPROVED BI-SPECTRAL DETECTOR
FR2833757A1 (en) LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SUCH A DEVICE
WO2011135231A1 (en) Optical device and method for inspecting structured objects
EP3077873B1 (en) Device and method for positioning a photolithography mask by means of a contactless optical method
US20130235387A1 (en) Three-dimensional measuring device and method
FR2905521A1 (en) METHOD OF MARKING A SEMICONDUCTOR PLATE FOR ITS IDENTIFICATION AND SEMICONDUCTOR PLATE MARKED THEREBY
KR960015443A (en) Optical pickup
FR2514516A1 (en) PRISM BEAM DIVIDER, ITS MANUFACTURING METHOD AND OPTICAL RECORDING AND / OR READING UNIT PROVIDED WITH THIS PRISM
EP0022682B1 (en) Optical reading head with semi-conductor laser source and device for reading a record carrier by using reflexion, comprising such an optical head
FR3081564A1 (en) Projection device and projection method
FR2819592A1 (en) METHOD AND SYSTEM FOR ALIGNING OPTICAL ASSEMBLIES
KR20200031639A (en) Semiconductor wafer
CN112789708B (en) Laser processing method, semiconductor device manufacturing method and inspection apparatus
JP2008058336A (en) Optical element
WO2007051799A1 (en) Organic light emitting diode having a resonant optical cavity and an extractor serving as a spatial light filter
KR20050068011A (en) Optical measurement equipment for critical dimension of patterns comprising a tunable laser system and measuring method for critical dimension of patterns using the optical measurement equipment
FR3041335A1 (en) MICROMECHANICAL COMPONENT AND MICRO-MIRROR LASER SYSTEM AND SYSTEM MONITORING METHOD
EP0908986A2 (en) Laser amplifier disk and method of controlling the bonding of the disk
JP2020102522A (en) Laser machining device
KR20200033877A (en) Semiconductor wafer
US9678350B2 (en) Laser with integrated multi line or scanning beam capability
JP2006138679A (en) Substrate shape detector, and apparatus and method for mounting device using the detector
US20040066826A1 (en) Micro-cavity light emitting device and method for making same
FR2886738A1 (en) Moving object e.g. spreader, position determining device for use in e.g. ship, has module digitizing reflected beams from sensors and transmitting beam towards computer which analyzes reflected beam for delimiting intensity variations

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20100430