FR2903380A1 - Aircraft dynamic controlling device for e.g. micro convertible drone system, involves controlling aircraft by propeller engines, where engines arranged in diagonal manner rotate with respect to each other in same direction - Google Patents

Aircraft dynamic controlling device for e.g. micro convertible drone system, involves controlling aircraft by propeller engines, where engines arranged in diagonal manner rotate with respect to each other in same direction Download PDF

Info

Publication number
FR2903380A1
FR2903380A1 FR0606387A FR0606387A FR2903380A1 FR 2903380 A1 FR2903380 A1 FR 2903380A1 FR 0606387 A FR0606387 A FR 0606387A FR 0606387 A FR0606387 A FR 0606387A FR 2903380 A1 FR2903380 A1 FR 2903380A1
Authority
FR
France
Prior art keywords
engines
aircraft
respect
convertible
same direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0606387A
Other languages
French (fr)
Other versions
FR2903380A3 (en
Inventor
Stephane Luc Sabastien Querry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR0606387A priority Critical patent/FR2903380A1/en
Publication of FR2903380A3 publication Critical patent/FR2903380A3/en
Publication of FR2903380A1 publication Critical patent/FR2903380A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • B64C15/02Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets
    • B64C15/12Attitude, flight direction, or altitude control by jet reaction the jets being propulsion jets the power plant being tiltable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/08Aircraft not otherwise provided for having multiple wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings

Abstract

The device controls an aircraft that is provided with a fixed airfoil by propeller engines (1-4) that are arranged around a wing in a manner that is symmetric with respect to an axis of a fuselage of the aircraft. The engines arranged in diagonal manner rotate with respect to each other in a same direction, and the engines arranged in a same side rotate with respect to each other in an opposite direction. Each engine creates a thrust power and a moment proportional to rotation speed of the engine.

Description

-1- Dans un premier temps, la présente invention concerne la disposition-1- In a first step, the present invention relates to the arrangement

particulière de quatre moteurs à hélice autour d'une aile d'un aéronef à voilure fixe, permettant de contrôler celui-ci, en vol horizontal, sans aucune gouverne. Ceci est rendu possible par le simple intermédiaire des vitesses de rotations de ces quatre moteurs disposés en rectangle de manière symétrique par rapport à l'axe du fuselage et tournant deux à deux dans le même sens pour les moteurs diagonales, et deux à deux dans le sens opposé pour les moteurs du même coté.  particular of four propeller engines around a wing of a fixed wing aircraft, to control it, in horizontal flight, without any rudder. This is made possible by the simple intermediary rotation speeds of these four motors arranged in a rectangle symmetrically with respect to the axis of the fuselage and rotating two by two in the same direction for the diagonal motors, and two by two in the opposite direction for motors on the same side.

En effet, chaque moteur à hélice crée une force de poussée et un moment qui sont proportionnels à leur vitesse de rotation, et la disposition de ceux-ci de cette façon, permet d'avoir la possibilité de contrôler tous les mouvements de rotation de l'aéronef autour de son centre de gravité, et donc de permettre de le manoeuvrer.  Indeed, each propeller motor creates a thrust force and a moment which are proportional to their rotational speed, and the arrangement of these in this way, allows to have the possibility to control all the rotational movements of the rotor. aircraft around its center of gravity, and thus allow to maneuver.

Les quelques calculs suivant vont permettrent d'établir ces lois de manière un peu plus rigoureuse de manière à préciser les forces et moments en jeu. Considérons la figure 1. Soit ni la vitesse angulaire de rotation du moteur i, w la vitesse angulaire de rotation de l'appareil autour de l'axe de l'indice qui suit, 1 la longueur entre le point C et l'axe d'un moteur, b et d des constantes, I l'inertie du rotor et enfin i le couple par rapport à l'axe de l'indice qui suit. Nous pouvons alors établir les relations concernant les couples. Somme des couples, explicitée dans les 3 axes (x, y, z) : ix = bl ((5)4)2 û (522)2) + I wy (n1 + 523 û 522 û 524) Ty=bl((523)2-(Q1)2)+Iwx(û521 ûn3+S22+S24) tz = d ((Q2)2 + (Q4)2 û (Q 1)2 (Q3)2) En négligeant les vitesses angulaires de rotation w, et en exprimant les sommes des couples dans les 3 axes (u, v, z), on 30 obtient les relations simplifiées : iu = k 1 ((524)2 + (521)2 û (Q2)2 û (523)2) iv = k2 ((Q2)2 + (Q3)2 û (Q1)2 û (Q2)2) iz = k3 ((Q2)2 + (524)2 û (Q1)2 û (523)2) Ces quelques relations donnent la possibilité de définir avec 35 une certaine précision les vitesses de rotations des moteurs en fonction des manoeuvres que l'on veut réaliser, et donc les algorithmes d'automatiques qui vont en découler. 2903380 -2- En effet, d'après les équations précédentes, on peut en conclure que : - Des vitesses de rotations identiques pour les 4 moteurs annuleront la somme des moments de l'aéronef, qui disposera 5 d'une poussée globale dans l'axe z. (figure 1) S~1 =S~3=SZ2=n4 d'où Tu=Tv=Tz=O. - La variation symétrique des vitesses de rotations des moteurs (1)/(3) et (2)/(4) n'engendrera pas de variation de poussée globale, mais engendrera une variation de la somme des moments ce qui 10 aura un effet sur le roulis. (figure 2 et 3) - La variation symétrique des vitesses de rotations des moteurs (1)/(2) et (3)1(4) n'engendrera pas de variation sur la somme des moments, mais engendrera une variation des poussées ce qui aura un effet sur le tangage. (figure 4 et 5) 15 - La variation symétrique des vitesses de rotations des moteurs (1)/(4) et (2)/(3) n'engendrera pas de variation sur la somme des moments, mais engendrera une variation des poussées ce qui aura un effet sur le lacet. (figure 6 et 7) Dans un deuxième temps, cette invention permet en tant 20 qu'application, la possibilité de disposer d'un nouveau type de drones convertibles, capables de vol vertical ou de vol horizontal, (figure 8 et 9) : En effet, il s'avère un fait très intéressant dans le cadre de ce développement, c'est qu'il existe une configuration assez répandue 25 dans le monde des micro et mini drones : le quadri-rotor. C'est une configuration qui utilise différemment les mêmes propriétés de forces et de moments mises en jeu que dans le cadre de cette disposition de 4 moteurs, mais ceci sans voilure fixe, et qui plus et, adapté au vol vertical.  The following few calculations will make it possible to establish these laws a little more rigorously so as to specify the forces and moments involved. Consider Figure 1. Let neither the angular rotation speed of the motor i, w the angular rotation speed of the apparatus around the axis of the index that follows, 1 the length between the point C and the axis of an engine, b and d constants, I the inertia of the rotor and finally i the torque by to the axis of the index that follows. We can then establish relationships regarding couples. Sum of the pairs, explained in the 3 axes (x, y, z): ix = bl ((5) 4) 2 û (522) 2) + I wy (n1 + 523 - 522 - 524) Ty = bl (( 523) 2- (Q1) 2) + Iwx (û521 ûn3 + S22 + S24) tz = d ((Q2) 2 + (Q4) 2 û (Q 1) 2 (Q3) 2) Neglecting the angular rotational speeds w, and by expressing the sums of the pairs in the 3 axes (u, v, z), we obtain the simplified relations: iu = k 1 ((524) 2 + (521) 2 - (Q2) 2 - (523) 2) iv = k2 ((Q2) 2 + (Q3) 2 - (Q1) 2 - (Q2) 2) iz = k3 ((Q2) 2 + (524) 2 - (Q1) 2 - (523) 2 These few relations give the possibility of defining with a certain accuracy the speeds of rotations of the motors according to the maneuvers that one wants to achieve, and therefore the automatic algorithms that will ensue. In fact, according to the preceding equations, it can be concluded that: identical rotation speeds for the four engines will cancel the sum of the moments of the aircraft, which will have a global thrust in the z axis. (figure 1) S ~ 1 = S ~ 3 = SZ2 = n4 from where Tu = Tv = Tz = O. - The symmetrical variation of the rotation speeds of the motors (1) / (3) and (2) / (4) will not generate an overall thrust variation, but will cause a variation of the sum of the moments which will have an effect on the roll. (figure 2 and 3) - The symmetrical variation of the speeds of rotations of the motors (1) / (2) and (3) 1 (4) will not generate any variation on the sum of the moments, but will generate a variation of the thrusts this which will have an effect on the pitch. (figure 4 and 5) 15 - The symmetrical variation of the speeds of rotations of the motors (1) / (4) and (2) / (3) will not generate any variation on the sum of the moments, but will generate a variation of the thrusts which will have an effect on the lace. (FIGS. 6 and 7) In a second step, this invention allows, as an application, the possibility of having a new type of convertible UAV capable of vertical flight or horizontal flight (FIGS. 8 and 9): Indeed, it turns out to be a very interesting fact in the context of this development is that there is a fairly widespread configuration in the world of micro and mini drones: the quad-rotor. It is a configuration that uses differently the same properties of forces and moments involved than in the context of this arrangement of 4 engines, but this without fixed wing, and that more and, suitable for vertical flight.

C'est pour cette raison qu'il est très envisageable d'utiliser cette même disposition pour ces deux types de vol. Ce drone convertible dispose donc d'une configuration identique pour le vol horizontal et pour le vol vertical, il n'a besoin de seulement 4 commandes (vitesses de rotation des moteurs) pour pouvoir évoluer quelque soit son type de vol, et ne contient aucune partie mobile.  It is for this reason that it is very possible to use this same provision for these two types of flight. This convertible drone thus has an identical configuration for the horizontal flight and the vertical flight, it needs only 4 commands (speeds of rotation of the engines) to be able to evolve whatever its type of flight, and contains no moving part.

Claims (2)

REVENDICATIONS 1) Contrôle dynamique d'un aéronef à voilure fixe, en vol horizontal, sans aucune gouverne, par l'intermédiaire de 4 moteurs disposés autour d'une aile, en rectangle de manière symétrique par rapport à l'axe du fuselage et tournant deux à deux dans le même sens pour les moteurs diagonales, et deux à deux dans le sens opposé pour les moteurs du même coté.  1) Dynamic control of a fixed-wing aircraft, in horizontal flight, without any control surface, by means of 4 engines arranged around a wing, in a rectangle symmetrically with respect to the axis of the fuselage and rotating two two in the same direction for the diagonal motors, and two in two in the opposite direction for engines on the same side. 2) Système de drone convertible, selon la revendication 1, capable de vol vertical ou de vol horizontal, sans aucune modification de forme, dans une configuration identique dans les deux cas.  2) Convertible UAV system, according to claim 1, capable of vertical flight or horizontal flight, without any change in shape, in an identical configuration in both cases.
FR0606387A 2006-07-10 2006-07-10 Aircraft dynamic controlling device for e.g. micro convertible drone system, involves controlling aircraft by propeller engines, where engines arranged in diagonal manner rotate with respect to each other in same direction Withdrawn FR2903380A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0606387A FR2903380A1 (en) 2006-07-10 2006-07-10 Aircraft dynamic controlling device for e.g. micro convertible drone system, involves controlling aircraft by propeller engines, where engines arranged in diagonal manner rotate with respect to each other in same direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0606387A FR2903380A1 (en) 2006-07-10 2006-07-10 Aircraft dynamic controlling device for e.g. micro convertible drone system, involves controlling aircraft by propeller engines, where engines arranged in diagonal manner rotate with respect to each other in same direction

Publications (2)

Publication Number Publication Date
FR2903380A3 FR2903380A3 (en) 2008-01-11
FR2903380A1 true FR2903380A1 (en) 2008-01-11

Family

ID=38858065

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0606387A Withdrawn FR2903380A1 (en) 2006-07-10 2006-07-10 Aircraft dynamic controlling device for e.g. micro convertible drone system, involves controlling aircraft by propeller engines, where engines arranged in diagonal manner rotate with respect to each other in same direction

Country Status (1)

Country Link
FR (1) FR2903380A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2760739A4 (en) * 2011-09-27 2015-07-01 Singapore Tech Aerospace Ltd An unmanned aerial vehicle
US20160023753A1 (en) * 2014-07-22 2016-01-28 Sikorsky Aircraft Corporation Vehicle with asymmetric nacelle configuration
FR3036377A1 (en) * 2015-05-18 2016-11-25 Michel Prevost VERTICAL TAKE-OFF AND FIXED FLYING AIRCRAFT DEVICE CAPABLE OF PROVIDING TRANSITION IN HORIZONTAL FLIGHT AND TRACKING IN SPACE WITHOUT GOVERNMENT ASSISTANCE
EP3087003A4 (en) * 2013-12-24 2017-09-13 Singapore Technologies Aerospace Ltd An unmanned aerial vehicle
WO2017123346A3 (en) * 2015-12-07 2017-10-12 Aai Corporation Uav with wing-plate assemblies providing efficient vertical takeoff and landing capability
WO2018070867A1 (en) * 2016-10-12 2018-04-19 Technische Universiteit Delft Aerial vehicle with angularly displaced propulsion units

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2760739A4 (en) * 2011-09-27 2015-07-01 Singapore Tech Aerospace Ltd An unmanned aerial vehicle
US9669924B2 (en) 2011-09-27 2017-06-06 Singapore Technologies Aerospace Ltd Unmanned aerial vehicle
EP3087003A4 (en) * 2013-12-24 2017-09-13 Singapore Technologies Aerospace Ltd An unmanned aerial vehicle
US10005554B2 (en) 2013-12-24 2018-06-26 Singapore Technologies Aerospace Ltd. Unmanned aerial vehicle
US20160023753A1 (en) * 2014-07-22 2016-01-28 Sikorsky Aircraft Corporation Vehicle with asymmetric nacelle configuration
US9988148B2 (en) * 2014-07-22 2018-06-05 Sikorsky Aircraft Corporation Vehicle with asymmetric nacelle configuration
FR3036377A1 (en) * 2015-05-18 2016-11-25 Michel Prevost VERTICAL TAKE-OFF AND FIXED FLYING AIRCRAFT DEVICE CAPABLE OF PROVIDING TRANSITION IN HORIZONTAL FLIGHT AND TRACKING IN SPACE WITHOUT GOVERNMENT ASSISTANCE
WO2017123346A3 (en) * 2015-12-07 2017-10-12 Aai Corporation Uav with wing-plate assemblies providing efficient vertical takeoff and landing capability
US10633092B2 (en) 2015-12-07 2020-04-28 Aai Corporation UAV with wing-plate assemblies providing efficient vertical takeoff and landing capability
WO2018070867A1 (en) * 2016-10-12 2018-04-19 Technische Universiteit Delft Aerial vehicle with angularly displaced propulsion units

Also Published As

Publication number Publication date
FR2903380A3 (en) 2008-01-11

Similar Documents

Publication Publication Date Title
FR2903380A1 (en) Aircraft dynamic controlling device for e.g. micro convertible drone system, involves controlling aircraft by propeller engines, where engines arranged in diagonal manner rotate with respect to each other in same direction
CA2255602C (en) Aerodyne with vertical take-off and landing
EP3305710B1 (en) Method for controlling an anti-oscillatory crane with a third-order filter
FR2786283A1 (en) METHOD AND DEVICE FOR CONTROLLING THE ATTITUDE OF A SATELLITE
RU2500577C1 (en) Multirotor helicopter
EP3264214A1 (en) Method for dynamic attitude conversion of a rotary-wing drone
FR3043337A1 (en) DRONE HAVING A TORQUE PROPULSION SUPPORT.
EP3495265A1 (en) A rotor assembly for a rotorcraft with torque controlled collective pitch
FR3052885A1 (en) DRONE COMPRISING PORTABLE WINGS
JP2016068692A (en) Multi-rotor craft posture stabilization control device
WO2016185265A1 (en) Drone with a variable-pitch rotor
FR3006294A3 (en) AIRCRAFT WITH A ROTATING VESSEL AND A CANNED BLOWOUT BELONGING TO THE CATEGORIES OF MINI AND MICRO DRONES
FR3075758A1 (en) METHOD FOR CONTROLLING THE DIRECTION OF AN AIRCRAFT, AND AN AIRCRAFT ADAPTED FOR IMPLEMENTING SAID METHOD
FR2801034A1 (en) HIGH-STABILITY, HIGH-MANEUVERABILITY PENDULUM HELICOPTER
CN106032166B (en) Aircraft and its method for turning
EP2767794B1 (en) Projectile with control surfaces and procedure of controlling the control surfaces of such a projectile
BE1023550B1 (en) CYCLIC TRAY SYSTEM FOR HELICOPTER ROTOR
EP0121636B1 (en) Aerogenerator or wind engine
EP3393903B1 (en) System and method for marine vehicle thruster control
EP3091413A1 (en) An advanced control law for a deflectable stabilizer
JP2006021733A (en) Vertical taking-off and landing machine installing rapid wind quantity generation wind direction changing device of double inversion two-axis tilt as device for lift and propulsion of machine body and using it as steering means
JP6867634B1 (en) Attitude control device and attitude control method
FR3045566A1 (en) DRONE WITH ROTOR COMPRISING ARTICULATED BLADES
WO2018016991A1 (en) Method for controlling the stabilization of a helicopter-type flying apparatus on a cable
WO2017109149A1 (en) Marine vehicle thruster control method

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20080331