FR2901015A1 - Water/air heat pump for refrigerating unit, has hot battery placed in upstream of cold battery with respect to direction of air, where cold battery is heated by thermal conductivity effect due to hot battery - Google Patents

Water/air heat pump for refrigerating unit, has hot battery placed in upstream of cold battery with respect to direction of air, where cold battery is heated by thermal conductivity effect due to hot battery Download PDF

Info

Publication number
FR2901015A1
FR2901015A1 FR0604240A FR0604240A FR2901015A1 FR 2901015 A1 FR2901015 A1 FR 2901015A1 FR 0604240 A FR0604240 A FR 0604240A FR 0604240 A FR0604240 A FR 0604240A FR 2901015 A1 FR2901015 A1 FR 2901015A1
Authority
FR
France
Prior art keywords
battery
hot
cold
air
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0604240A
Other languages
French (fr)
Inventor
Goff Michel Paul Marcel Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR0604240A priority Critical patent/FR2901015A1/en
Publication of FR2901015A1 publication Critical patent/FR2901015A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The pump has a hot battery placed in upstream of a cold battery with respect to the direction of air, where the cold battery is heated by thermal conductivity effect due to the hot battery. A refrigerant exits a compressor (C) via an outlet side (R) at cold gas state and under high pressure, and is condensed in the cold battery after passing via a four way valve (V).

Description

-1--1-

Constat commercial : Le marché de la pompe à chaleur (Pac) est en pleine expention. Les énergies d'origine fossiles et dérivées posent des inconveignants : d'une part des augmentations permanentes des coûts d'achat ( fioule , gaz , bois , etc ...) de plus ces systèmes de chauffage demandent un entretient et un suivit permanent de leur installation (ramonage des cheminées , contrat d'entretien de l'installation par entreprise agrée) , d'autre part ces systèmes de chauffage nécessitent des emplacements pour le stockage du combustible(cuve à fioule, citerne pour le gaz , emplacement pour le stockage du bois etc ..) .Le système de la pompe à chaleur air /eau réversible ne présente pas tous ces problèmes , entretien nul ,stockage de combustible nul . Principalement les pays du nord et les pays à climats continentaux sont très demandeurs de ce produit cependant leurs limites de fonctionnement sont telles qu'elles nécessitent d'ètre élargies. Constat technique : Pour les groupes A / O réversibles à ce jour, avec une T c extérieure de -10 c la T c de sortie d'eau se situe vers les 48 c , avec un groupe bien réglé , une surchauffe de 6 c et un sous refroidissement nul .  Commercial statement: The heat pump market (Pac) is in full swing. Fossil and derived energy sources have drawbacks: on the one hand permanent increases in purchasing costs (oil, gas, wood, etc ...) Moreover these heating systems require maintenance and ongoing monitoring of their installation (chimney sweeping, maintenance contract of the installation by approved company), on the other hand these heating systems require locations for the storage of the fuel (tank with oil, tank for the gas, place for the storage The system of the reversible air / water heat pump does not present all these problems, no maintenance, no fuel storage. Mainly northern countries and countries with continental climates are very demanding of this product however their operating limits are such that they need to be expanded. Technical report: For the reversible A / O groups to date, with an external T c of -10 c the water outlet T c is around 48 c, with a well adjusted group, an overheating of 6 c and a sub-cooling zero.

Dans ce type de groupe (air/ eau réversible ) on prend directement l'énergie sur l'air extérieur ,et plus il fait froid moins on capte de l'énergie . Au niveau du compresseur et du fonctionnement frigorifique on sait que pour une T c de condensation constante , plus la Bp est haute plus on a de puissance (de l'ordre de 15% pour une augmentation de la T c sat Bp de 5 c ).  In this type of group (reversible air / water), the energy is taken directly from the outside air, and the colder it is, the less energy is collected. At the level of the compressor and the refrigerating operation, it is known that for a constant condensation T c, the higher the Bp, the higher the power (of the order of 15% for an increase of the T c sat Bp of 5 c). .

Objectif : Repousser les limites de fonctionnement vers les basses températures extérieures augmentation de la puissance calorifique du groupe , diminution du nombre de dégivrage ,fiabilisation du groupe , augmentation du coefficient de performance (COP) , amélioration du confort et réduction du coût de la facture énergétique , par rapport aux groupes standards présents sur le marché . Solution : Utiliser une source de chaleur disponible et gratuite de façon à faire grimper la Bp tout en sachant que la variation de puissance sur la T c sat Bp est supérieure à la variation de la puissance absorbée du compresseur et de part la même augmenter d'une part la puissance et d'autre part le rendement . Dans un premier temps on va suivre le cheminement du fluide frigorigène d'un groupe standard , tel qu'il est proposé actuellement sur le marché . FIG 1 les éléments non nécessaires à la compréhension de l'objet du brevet ne seront pas représentés sur les dessins .En fonction pompe à chaleur le fluide frigorigène sort du compresseur (C) par le refoulement (R) à l'état de gaz chaud et sous haute pression , il va se condenser et dispenser son énergie sur l'eau dans l'échangeur à plaques (E) via la vanne quatre voies (V) . Le fluide va sortir de l'échangeur (E) à l'état de liquide chaud (pouvant atteindre les 62 c au R410A) . Le fluide transite par le réservoir (L) servant à compenser la différence45  Objective: Push the limits of operation towards the low external temperatures increase of the heating power of the group, decrease of the number of defrosting, reliability of the group, increase of the coefficient of performance (COP), improvement of the comfort and reduction of the cost of the energy bill , compared to standard groups on the market. Solution: Use a free and available heat source to increase the Bp while knowing that the power variation on the T sat Bp is greater than the variation of the power consumption of the compressor and by the same increase of on the one hand the power and on the other hand the efficiency. First, we will follow the refrigerant flow of a standard group, as it is currently on the market. FIG 1 the elements not necessary for the understanding of the subject of the patent will not be represented in the drawings .In function heat pump the refrigerant leaves the compressor (C) by the discharge (R) in the state of hot gas and under high pressure, it will condense and dispense its energy on the water in the plate heat exchanger (E) via the four-way valve (V). The fluid will exit the exchanger (E) in the state of hot liquid (up to 62 c R410A). The fluid passes through the tank (L) used to compensate for the difference.

de charge entre la fonction Clim (fabrication d'eau froide) et Pac (fabrication d'eau chaude) , le fluide est détendu par le détendeur à égalisation externe de pression (D) d'ou il ressort à l'état mélange gaz / liquide , passe par le distributeur (DI) , la batterie (BF) où le fluide capte son énergie sur l'air . le fluide en ressort à l'état de gaz surchauffé et retourne à l'aspiration (A) du compresseur (C) via la vanne quatre voies (V) et le cycle recommence .  charge between the function Clim (cold water production) and Pac (hot water production), the fluid is expanded by the pressure equalization valve (D) from which it emerges in the gas / gas mixing state. liquid, passes through the distributor (DI), the battery (BF) where the fluid captures its energy on the air. the fluid returns to the state of superheated gas and returns to the suction (A) of the compressor (C) via the four-way valve (V) and the cycle begins again.

L'invention présente consiste à réchauffer l'air que va rencontrer la batterie (BF) en fonction évaporateur , par le fluide à l'état de liquide chaud sortie du réservoir (L). Pour exemple on va considérer que notre batterie de base (BF) comporte deux nappes FIG 2 , batterie standard , classique . On va intercaler entre cette batterie (BF) et l'air , une batterie chaude (BC) indépendante sous forme d'élément rapporté (Kit) FIG 3 ou intégrée dans un bloc ailleté qui comprendra la batterie chaude (BC) et la batterie froide (BF) FIG 4 .Dans le cas de FIG 3 le gain énergétique ne sera apporté que par l'air surchauffé sortant de la batterie chaude indépendante (BC) . Dans le cas de la FIG 4 on profitera de la conductivité thermique des matériaux pour apporter de l'énergie supplémentaire à la batterie froide (BF). Ainsi nous arrivons à notre schéma frigorifique final , dont le bloc ailleté comprend une batterie chaude (BC) et une batterie froide (BF) , ensemble le plus performant , pour exemple la FIG 5 . Le fluide sort du compresseur (C) par le refoulement (R) à l'état de gaz chaud en haute pression , va se condenser dans l'échangeur à plaques (E) via la vanne quatre voies (V) pour en ressortir à l'état de liquide chaud sous haute pression .Le fluide va ensuite transiter par le réservoir (L) pour aller dans la partie chaude du bloc ailleté (BC) où il va réchauffer l'air destiné à faire évaporer le fluide circulant bans la partie froide du bloc ailleté (BF) parce que d'une part l'air va d'abord traverser la batterie chaude (BC) avant d'entrer en contact avec la batterie froide (BF) , et d'autre part la batterie froide (BF) sera réchauffée par l'effet de conductivité thermique dù aux aillettes du bloc ailleté, communes à la batterie chaude (BC) et à la batterie froide (BF) voir détail FIG 4.Le fluide va sortir de la batterie chaude (BC) sous forme de liquide chaud sous refroidi et sous haute pression . Il va ensuite , via le clapet (1) et le déshydrateur, ètre détendu par le détendeur (D) . Sortie du détendeur à l'état de mélange gaz / liquide , le fluide passe par le distributeur (DI) , passe par la batterie froide (BF) où il rencontre un air surchauffé . Il en ressort un fluide à l'état gazeux surchauffé à basse pression et retourne à l'aspiration (A) du compresseur (C) via la vanne quatre voies (V) . Voila pour le fonctionnement en mode pompe à chaleur . Comme le groupe cité en exemple est un groupe air / eau réversible il doit pouvoir remplir sa fonction de fabrication d'eau froide ( pour la climatisation) Pour cela on va se raprocher de la FIG 6 . Dans ce cas , le fluide sort du  The present invention consists in heating the air that will meet the battery (BF) in evaporator function, by the fluid in the hot liquid state output tank (L). For example we will consider that our base battery (BF) comprises two layers FIG 2, standard battery, classic. This battery (BF) and air will be interposed between an independent hot battery (BC) in the form of an insert (Kit) FIG 3 or integrated in an impregnated block which will include the hot battery (BC) and the cold battery. (BF) FIG 4 .In the case of FIG 3 the energy gain will be brought only by the superheated air coming out of the independent hot battery (BC). In the case of FIG 4, the thermal conductivity of the materials will be used to provide additional energy to the cold battery (BF). Thus we come to our final refrigeration scheme, whose padded block includes a hot battery (BC) and a cold battery (BF), together the most powerful, for example FIG 5. The fluid exits the compressor (C) by the discharge (R) in the state of hot gas at high pressure, will condense in the plate heat exchanger (E) via the four-way valve (V) to come out at the end. state of hot liquid under high pressure .The fluid will then pass through the tank (L) to go into the hot part of the pack (BC) where it will heat the air intended to evaporate the fluid circulating in the cold part of the galvanized block (BF) because on the one hand the air will first pass through the hot battery (BC) before coming into contact with the cold battery (BF), and on the other hand the cold battery (BF) ) will be reheated by the thermal conductivity effect due to the blades of the pack, common to the hot battery (BC) and the cold battery (BF) see detail FIG 4.The fluid will come out of the hot battery (BC) under form of hot liquid under cooled and under high pressure. It then goes, through the valve (1) and the dehydrator, to be relaxed by the regulator (D). Outlet of the regulator in the state of mixture gas / liquid, the fluid passes by the distributor (DI), passes by the cold battery (BF) where it meets a superheated air. A superheated gaseous fluid is produced at low pressure and returns to the suction (A) of the compressor (C) via the four-way valve (V). Voila for the operation in heat pump mode. As the group mentioned as an example is a reversible air / water unit, it must be able to fulfill its cold water production function (for air conditioning). For this purpose, we will look at FIG 6. In this case, the fluid leaves the

compressseur (C) par le refoulement (R) à l'état de gaz chaud sous haute pression et va se condenser dans la batterie (BF) après ètre passé par la vanne quatre voies (V) . Le fluide à l'état de liquide sous refroidi sorti de la batterie (BF) passe par le distributeur (Dl), va ètre ensuite détendu par le détendeur (D) d'où il ressortira à l'état de mélange gaz / liquide . II passe ensuite par le deshydrateur , le clapet (2) , le réservoir (L) et va passer à l'état de gaz surchauffé après avoir traversé l'échangeur à plaques (E) où il va prendre de l'énergie sur l'eau et donc la refroidir . Le fluide retoune ensuite à l'aspiration (A) du compresseur (C) via la vanne quatre voies (V) .Lors du passage de la fonction pompe à chaleur, fabrication d'eau froide et lors des inversions de cycle pour les dégivrages , le liquide contenu dans la batterie (BC) , va migrer dans le circuit par le clapet (1) car en fonction Pac la pression du fluide est supérieure du coté de la batterie (BC) par rapport à la pression en amont du clapet (2) .  compressor (C) by the discharge (R) in the state of hot gas under high pressure and will condense in the battery (BF) after being passed through the four-way valve (V). The fluid in the state of cooled liquid leaving the battery (BF) passes through the distributor (D1), will then be expanded by the expander (D) from which it will emerge in the state of gas / liquid mixture. It then passes through the dehydrator, the valve (2), the tank (L) and will pass to the state of superheated gas after passing through the plate heat exchanger (E) where it will take energy on the water and so cool it. The fluid then returns to the suction (A) of the compressor (C) via the four-way valve (V). During the heat pump function, cold water production and during cycle reversals for defrosting, the liquid contained in the battery (BC), will migrate in the circuit by the valve (1) because in function Pac the pressure of the fluid is higher on the side of the battery (BC) with respect to the pressure upstream of the valve (2 ).

Claims (1)

Revendicationsclaims 1) Système de pompe à chaleur à récupération d'énergie sur l'air caractérisé par l'apport d'énergie sur une batterie en fonction évaporateur(BF) par l'intégration (FIG 4) ou l'adjonction (FIG 3 )d'une batterie chaude (BC) placée en amont de la batterie froide(BF) par rapport au sens de l'air.  1) Heat pump system with energy recovery on the air characterized by the supply of energy on a battery in evaporator function (BF) by the integration (FIG 4) or the addition (FIG 3) d a hot battery (BC) placed upstream of the cold battery (BF) relative to the direction of the air.
FR0604240A 2006-05-12 2006-05-12 Water/air heat pump for refrigerating unit, has hot battery placed in upstream of cold battery with respect to direction of air, where cold battery is heated by thermal conductivity effect due to hot battery Withdrawn FR2901015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0604240A FR2901015A1 (en) 2006-05-12 2006-05-12 Water/air heat pump for refrigerating unit, has hot battery placed in upstream of cold battery with respect to direction of air, where cold battery is heated by thermal conductivity effect due to hot battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0604240A FR2901015A1 (en) 2006-05-12 2006-05-12 Water/air heat pump for refrigerating unit, has hot battery placed in upstream of cold battery with respect to direction of air, where cold battery is heated by thermal conductivity effect due to hot battery

Publications (1)

Publication Number Publication Date
FR2901015A1 true FR2901015A1 (en) 2007-11-16

Family

ID=36809150

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0604240A Withdrawn FR2901015A1 (en) 2006-05-12 2006-05-12 Water/air heat pump for refrigerating unit, has hot battery placed in upstream of cold battery with respect to direction of air, where cold battery is heated by thermal conductivity effect due to hot battery

Country Status (1)

Country Link
FR (1) FR2901015A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123998A2 (en) * 2008-05-21 2009-11-25 STIEBEL ELTRON GmbH & Co. KG Heat pump device with a lamella tube heat exchanger as evaporator
WO2013017572A1 (en) * 2011-08-04 2013-02-07 Presticlim System and method for optimising the operation of a heat pump system
CN103968603A (en) * 2014-03-24 2014-08-06 中国铁道科学研究院 Novel ultralow ambient temperature air source heat pump and fin type heat exchanger defrosting method thereof
CN104266416A (en) * 2014-09-29 2015-01-07 特灵空调系统(中国)有限公司 Multi-split air conditioner throttling and super-cooling control mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2001422A (en) * 1977-07-22 1979-01-31 Carrier Corp Heat exchangers
FR2469679A1 (en) * 1979-11-17 1981-05-22 Mueller Arnold AIR CONDITIONING APPARATUS, PARTICULARLY HEAT PUMP
DE3027512A1 (en) * 1980-07-19 1982-02-18 August Brötje GmbH & Co, 2902 Rastede Heat pump piping circuit - has defrosting pipe branching off between compressor and non-return valve
US5689962A (en) * 1996-05-24 1997-11-25 Store Heat And Produce Energy, Inc. Heat pump systems and methods incorporating subcoolers for conditioning air
US20040020230A1 (en) * 2001-07-02 2004-02-05 Osamu Kuwabara Heat pump
WO2006025169A1 (en) * 2004-07-30 2006-03-09 Daikin Industries, Ltd. Refrigeration unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2001422A (en) * 1977-07-22 1979-01-31 Carrier Corp Heat exchangers
FR2469679A1 (en) * 1979-11-17 1981-05-22 Mueller Arnold AIR CONDITIONING APPARATUS, PARTICULARLY HEAT PUMP
DE3027512A1 (en) * 1980-07-19 1982-02-18 August Brötje GmbH & Co, 2902 Rastede Heat pump piping circuit - has defrosting pipe branching off between compressor and non-return valve
US5689962A (en) * 1996-05-24 1997-11-25 Store Heat And Produce Energy, Inc. Heat pump systems and methods incorporating subcoolers for conditioning air
US20040020230A1 (en) * 2001-07-02 2004-02-05 Osamu Kuwabara Heat pump
WO2006025169A1 (en) * 2004-07-30 2006-03-09 Daikin Industries, Ltd. Refrigeration unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123998A2 (en) * 2008-05-21 2009-11-25 STIEBEL ELTRON GmbH & Co. KG Heat pump device with a lamella tube heat exchanger as evaporator
EP2123998A3 (en) * 2008-05-21 2014-12-03 STIEBEL ELTRON GmbH & Co. KG Heat pump device with a lamella tube heat exchanger as evaporator
WO2013017572A1 (en) * 2011-08-04 2013-02-07 Presticlim System and method for optimising the operation of a heat pump system
FR2978816A1 (en) * 2011-08-04 2013-02-08 Presticlim INSTALLATION AND METHOD FOR OPTIMIZING THE OPERATION OF A HEAT PUMP INSTALLATION
CN103968603A (en) * 2014-03-24 2014-08-06 中国铁道科学研究院 Novel ultralow ambient temperature air source heat pump and fin type heat exchanger defrosting method thereof
CN103968603B (en) * 2014-03-24 2016-08-17 中国铁道科学研究院 A kind of ultra-low-loop temperature air source heat pump and finned heat exchanger defrosting method thereof
CN104266416A (en) * 2014-09-29 2015-01-07 特灵空调系统(中国)有限公司 Multi-split air conditioner throttling and super-cooling control mechanism

Similar Documents

Publication Publication Date Title
US7032398B2 (en) Energy management system, method, and apparatus
EP1620637B1 (en) System for cooling a piece of equipment to a low temperature, such as a piece of motor vehicle equipment, and associated heat exchangers
CA1172054A (en) Method for producing heat by means of a heat pump using a mixture of fluids as working agents and air as heat source
US7266959B2 (en) Cold climate air-source heat pump
JP4808732B2 (en) Heat exchanger and heat pump circuit
CN103471296B (en) Operation of air conditioning systems
CN104034145A (en) Dehumidifying device of heat pump
CN103388905A (en) Evaporator flow-adjustable heat-pump water heater system
FR2901015A1 (en) Water/air heat pump for refrigerating unit, has hot battery placed in upstream of cold battery with respect to direction of air, where cold battery is heated by thermal conductivity effect due to hot battery
CN104457067B (en) Energy-saving quick defroster
FR2969042A1 (en) Refrigeration cycle apparatus for use in electric vehicle, has external heat exchanger used as evaporator, and gas injector returning intermediate-pressure refrigerant gas to compressor in heating mode
CN108731163A (en) Wide temperature all-fresh air step-less adjustment refrigerating plant
FR3042216B1 (en) DEVICE FOR LUBRICATING A BEARING RECEIVING A ROTARY SHAFT OF AN ELEMENT OF A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE, AND METHOD USING SUCH A DEVICE.
WO2011148071A1 (en) Heating/air-conditioning installation with external and contiguous condenser and evaporator for heating the external evaporator
CN101592362A (en) Air-conditioner
EP2318783B1 (en) Reversible system for recovering thermal energy by sampling and transfer of calories from one or more media into one or more other such media
FR2909440A1 (en) Heat pump installation for e.g. hot water distribution, in building, has pumping unit to circulate exterior fluid in exchanging system along determined direction such that fluid passes via zones for being cooled and heated, respectively
WO2019110628A1 (en) System and method for cooling a gas stream by means of an evaporator
CN210036199U (en) Energy-saving heat pump drying system
EP0055263A1 (en) Heat pump
CN2460895Y (en) Refrigerating plant
WO2016146858A1 (en) Reversible thermodynamic device for heat transfer
KR200191303Y1 (en) Device for cooling and heating using water cooling type heat pump
FR2933482A3 (en) Refrigeration station for e.g. super market, has mono tube circuit in series with liquid pump to cool refrigerant and defrost via hot gas, and application program interface managing condensation temperature and sub cooling of refrigerant
CN2885374Y (en) Assembled cryodesiccation machine

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20090119