WO2019110628A1 - System and method for cooling a gas stream by means of an evaporator - Google Patents

System and method for cooling a gas stream by means of an evaporator Download PDF

Info

Publication number
WO2019110628A1
WO2019110628A1 PCT/EP2018/083564 EP2018083564W WO2019110628A1 WO 2019110628 A1 WO2019110628 A1 WO 2019110628A1 EP 2018083564 W EP2018083564 W EP 2018083564W WO 2019110628 A1 WO2019110628 A1 WO 2019110628A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas stream
evaporator
mixer
cooled
recycled
Prior art date
Application number
PCT/EP2018/083564
Other languages
French (fr)
Inventor
Audrey KEUNEBROCK
Original Assignee
Starklab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starklab filed Critical Starklab
Publication of WO2019110628A1 publication Critical patent/WO2019110628A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/04Air-mixing units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00849Damper doors, e.g. position control for selectively commanding the induction of outside or inside air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0413Treating air flowing to refrigeration compartments by purification by humidification
    • F25D2317/04131Control means therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Definitions

  • the present invention relates to the cooling of a gas stream, and in particular of moist air, by means of an evaporator. It finds its application in various fields, and for example non-exhaustively in the field of energy recovery in a gas stream by means of a heat pump comprising an evaporator, or dehumidification of a gas stream at by means of an evaporator, or the recovery of water in the atmosphere, or the adjustment of the humidity in a refrigerating device, of the refrigerator, freezer, cold room, ....
  • an evaporator comprises an exchanger in which circulates a fluid, preferably a refrigerant, which is vaporized in contact with the gas flow with the exchanger by absorbing the thermal energy of the gas stream.
  • this evaporator is an integral part of a refrigerant circuit in which the evaporator is associated at least with a condenser, and wherein the fluid circulates in a closed circuit.
  • These refrigerating circuits are for example used in heat pumps for recovering the thermal energy of the circulating fluid in the refrigerant circuit or in devices for dehumidifying a gas stream in which all or part of the water is recovered. in the gas stream by condensation on the surface of the evaporator exchanger.
  • These dehumidification devices can in particular be used in refrigerating devices such as refrigerators, cold rooms, etc.
  • a conventional solution to reduce this phenomenon of icing consists in increasing the dimensions of the exchanger of the evaporator, so as to increase the contact surface of the exchanger of the evaporator with the gas stream to be cooled, which allows comparable results of increasing the temperature of the fluid in the evaporator exchanger.
  • This solution quickly finds its limits because increasing the dimensions of the exchanger of the evaporator increases the manufacturing cost of the exchanger and may in some applications pose congestion problems.
  • a main objective of the invention is to propose a new solution for cooling a gas flow, and in particular an air flow, by means of an evaporator, which in general makes it possible to improve the operation of the evaporator without increasing the dimensions of the evaporator exchanger.
  • an object of the invention is to propose a novel solution for cooling a gaseous flow, and in particular an air flow, by means of an evaporator, which makes it possible to obtain the same lowering of the temperature of the gas flow with a higher temperature of the fluid flowing in the evaporator and without increasing the dimensions of the exchanger of the evaporator and / or with the same temperature of the fluid flowing in the evaporator and by reducing the dimensions of the exchanger of the evaporator or which makes it possible to obtain a greater lowering of the temperature of the gas flow without modifying the temperature of the fluid circulating in the evaporator, nor the dimensions of the exchanger of the evaporator.
  • a secondary objective of the invention is to propose a new solution for cooling a wet gas stream, and in particular a moist air stream, by means of an evaporator, which makes it possible to obtain a dehumidified gas stream with a lower water weight, without modifying the dimensions of the evaporator exchanger.
  • a secondary objective of the invention is to propose a new solution for cooling a gas flow, and in particular an air flow, by means of an evaporator, which makes it possible to reduce, and preferably to avoid frost formation on the evaporator exchanger, and in particular by lowering the temperature of the gas stream to a temperature close to 0 ° C.
  • the invention thus relates to a cooling system of a main gas stream (A) which has the following technical characteristics.
  • the cooling system comprises an evaporator which comprises an inlet, an outlet and an exchanger in which a fluid circulates, and which makes it possible to cool a gas stream (B) flowing through the evaporator between the inlet and the outlet of the evaporator, a mixer comprising a main inlet intended for operation to be fed with the main gas stream (A), a secondary inlet and an outlet which is connected to the inlet of the evaporator, and means for recycling a part a cooled gas flow (C), which comprises a pipe connecting the outlet of the evaporator to the secondary inlet of the mixer and whose function is to take a part of the cooled gas flow (C) at the outlet of the evaporator under the recycled gas stream (D) and to redirect this recycled gas stream (D) to the secondary inlet of the mixer; said mixer in operation allows mixing the main gas stream (A) and the recycled gas stream (D) of lower
  • recycling and mixing with the main gas stream to be cooled of a part of the cooled air stream at the outlet of the evaporator advantageously make it possible to improve the operation of the evaporator by reducing the difference between temperature between the temperature of the gas stream (secondary gas stream) at the inlet of the evaporator and the temperature of the gas stream cooled at the evaporator outlet, compared to a system without recycling and without mixer.
  • the temperature of the recycled gas stream at the secondary inlet of the mixer is preferably substantially identical to the temperature of the cooled gas stream at the outlet of the evaporator. evaporator.
  • cooling system of the invention may comprise the following additional and optional features, taken alone, or in combination with each other:
  • the mixer has a perforated wall or a grid interposed on the path of the main gas stream (A) and the recycled gas stream (B).
  • the mixer comprises a stirring means and more particularly a fan, for stirring and mixing the main gas stream (A) and the recycled gas stream (D) and / or comprises a stirring means and more particularly a fan, allowing stir and mix the secondary gas stream before leaving the mixer.
  • the cooling system comprises means for automatically regulating the flow of the main gas stream (A) and / or the flow rate of the recycled gas stream (D).
  • the cooling system comprises first means for measuring the temperature of the cooled gas stream (C) or the recycled gas stream (D), the automatic regulation means being able to automatically adjust the flow rate of the main gas stream (A) and / or the flow rate of the recycled gas stream (D), as a function of the temperature measured by said first measuring means.
  • the cooling system comprises second means for measuring the temperature of the secondary gas flow (B), the automatic control means being able to automatically adjust the flow rate of the main gas flow (A) and / or the flow rate of the recycled gas stream ( D), as a function of at least the temperature measured by said second measuring means.
  • the automatic regulation means are capable of automatically adjusting the flow rate of the main gas flow (A) and / or the flow rate of the recycled gas stream (D), as a function of at least the temperature measured by said first measuring means and the temperature measured by said second measuring means.
  • the cooling system comprises means for measuring the temperature of the main gas stream (A), the automatic regulation means being able to automatically adjust the flow rate of the main gas stream (A) and / or the flow rate of the recycled gas stream (D). ), as a function of at least the temperature of the main gas stream (A) measured by said temperature measuring means.
  • the cooling system comprises first means for measuring the weight of water in the cooled gas stream (C) or in the recycled gas stream (D), the automatic regulation means being able to automatically adjust the flow rate of the main gas stream (A). and / or the flow rate of the recycled gas stream (D), as a function of at least the water weight measured by said first measuring means.
  • the cooling system comprises second means for measuring the weight of water in the main gas stream (A), the automatic control means being able to automatically adjust the flow rate of the main gas stream (A) and / or the flow rate of the recycled gas stream (D), as a function of at least the water weight measured by said second measuring means.
  • the mixer is able to produce said secondary flow (B) with a maximum temperature difference in the secondary flow (B) which is less than 10% of the temperature difference between the main gas stream (A) and the recycled gas stream (D).
  • the recycling means, the mixer, and optionally the automatic control means are able to produce said secondary gas stream (B) and said cooled gas stream (C) with a maximum temperature difference between the secondary gas stream ( B) and the cooled gas stream (C) which is sufficiently low to prevent frost formation on the surface of the evaporator exchanger.
  • the recycling means, the mixer, and optionally the automatic control means, are able to produce said cooled gas stream (C) at a temperature below 5 ° C.
  • the recycling means, the mixer, and optionally the automatic control means are able to produce the secondary gas flow (B) and the cooled gas flow (C) with a maximum temperature difference between the secondary gas flow ( B) and the cooled gas stream (C) which is less than 5 ° C and preferably less than 2 ° C.
  • the recycling means, the mixer, and optionally the automatic control means are capable of producing the cooled gas stream (C) with a water weight of less than 5 g / kg.
  • the invention also relates to a use of the aforementioned cooling system for cooling a gas flow, and in particular an air flow.
  • the invention also relates to a method of cooling a main gas stream (A) in which the gas stream is mixed principal (A) with a recycled gas stream (D) of lower temperature, so as to obtain a more homogeneous secondary gas stream (B) with a maximum temperature difference in the secondary stream (B) which is less than 10% of the temperature difference between the main gas stream (A) and the recycled gas stream (D) and / or with a maximum temperature difference in the secondary stream (B) which is less than 5 ° C, and preferably 2 ° C, and this secondary gas stream (B) is cooled in contact with the exchanger of an evaporator in which circulates a fluid absorbing the thermal energy of the secondary gas stream (B), so as to obtain at the output of the evaporator a cooled gas stream (C), a part of this cooled gas stream (C) being taken by means of a pipe (30) connecting the outlet (12) of the evaporator (1) to an inlet (22) of the mixer (2) for forming said recycled gas stream (D).
  • process of the invention may comprise the following additional and optional features, taken alone, or in combination with each other:
  • the maximum temperature difference between the secondary gas stream (B) and the cooled gas stream (C) is sufficiently low to prevent the formation of frost on the surface of the evaporator exchanger.
  • the cooled gas stream (C) is at a temperature above 0 ° C and below 5 ° C, and preferably below 2 ° C.
  • the maximum temperature difference between the secondary gas stream (B) and the cooled gas stream (C) is less than 5 ° C and preferably less than 2 ° C.
  • the water weight of the cooled gas stream (C) is less than 5 g / kg.
  • the main gas stream (A) at the inlet of the mixer is a main gas stream (A ') which is cooled, before it enters the mixer, by means of a portion (E) of the gas stream which, at the outlet of the evaporator (1), is cooled and not recycled to the mixer.
  • the invention also relates to an energy recovery installation in a gas stream comprising a cooling system abovementioned and means for recovering at least a portion of the thermal energy in the fluid after passage of this fluid in the evaporator.
  • the invention also relates to a dehumidification installation of a gas stream comprising a cooling system referred to above, and more particularly comprising means for recovering the condensation water at the surface of the exchanger of the evaporator.
  • the dehumidification installation of a gas flow comprises, in addition to an exchanger, which makes it possible to produce the main gas flow (A) at the mixer inlet from a first main gas stream (A ') which is cooled, before entering the mixer, transferring, upstream of the mixer, a portion of the thermal energy of the first gas stream (A') to the portion (E) of gas stream which, at the output of the evaporator is not recycled to the mixer.
  • FIG. 1 schematically shows an alternative embodiment of a cooling system of the invention.
  • FIG. 2 represents a known structure of an energy recovery installation in a gas stream of heat pump type (PAC).
  • PAC heat pump type
  • FIG. 3 shows a known structure of a dehumidification installation of a gas stream.
  • FIG. 8 is a diagram of an improved variant of a dehumidification installation of the invention.
  • FIG. 1 is a schematic diagram of a cooling system of a main gas stream A according to the invention.
  • this cooling system comprises an evaporator 1 which is known per se and which is associated with a mixer 2 and means 3 for recycling a part of the cooled gas stream at the outlet of the evaporator 1 , and means 1 'for circulating a gas flow, and in particular an air flow, through the mixer 2 and through the evaporator 1, in the form of, for example, a fan or compressor.
  • these means 1 'for circulating a gas flow are positioned downstream of the evaporator 1 and make it possible to create a gas flow by suction.
  • these means 1 'for circulating a gas flow may for example be positioned upstream of the mixer 2 and allow to create a gas flow by blowing.
  • the evaporator 1 is a device for cooling a gas flow which is known per se, and which comprises an exchanger in which circulates a fluid, preferably a refrigerant, which is vaporized in contact with the gas flow with the heat exchanger. absorbing the thermal energy of the gas stream.
  • the shape and / or the structure of the exchanger of the evaporator 1 are of no importance for the invention.
  • the evaporator 1 may be a direct evaporator, that is to say an evaporator in which the gaseous flow to be cooled is in direct contact with the exchanger in which the fluid which is vaporized circulates. .
  • the evaporator 1 may also be an indirect evaporator, that is to say an evaporator comprising at least two exchangers: an intermediate exchanger in which circulates a cooling fluid, such as for example water, and in contact with which the gas stream to be cooled is fed, said cooling fluid making it possible to take thermal energy in the gas stream to be cooled without being vaporized; an exchanger in which circulates a fluid, preferably a refrigerant, which is vaporized by absorbing a portion of the thermal energy of the fluid of the intermediate exchanger.
  • a cooling fluid such as for example water
  • FIGS. 2 and 3 show two known installation examples comprising a circuit implementing a direct evaporator 1 in which the fluid F circulates in a closed circuit.
  • the circuit constitutes a heat pump and comprises, in a manner known per se, an evaporator 1 comprising an exchanger 10 connected to the inlet of the exchanger 50 of a condenser 5 via a compressor 4.
  • the exchanger 50 condenser 5 is connected to the exchanger 10 of the evaporator 1 via a pressure reducer 6, so as to form a closed loop in which the fluid F, which is preferably a refrigerant, circulates.
  • the gas stream B for example a stream of air
  • the fluid F being circulated in a closed loop in the circuit by means of 4.
  • the fluid F absorbs a portion of the thermal energy of the gas stream B, by vaporizing.
  • the gas stream B is thus cooled in contact with the exchanger 10.
  • the fluid F is then condensed in the exchanger 50 of the condenser 5, which makes it possible to recover a portion of the thermal energy in the fluid by heating the exchanger 50.
  • FIG. 3 shows the known block diagram of a dehumidifier comprising a circuit in which a fluid F, which is preferably a refrigerant, circulates in a closed loop.
  • this circuit comprises an evaporator 1 comprising a coil-shaped exchanger 10, a condenser comprising a exchanger 50 in the form of a coil, a compressor 4 and a pressure reducer 6.
  • a fan 7 corresponding, for example, to the fan 1 'of FIG. 1, is used to circulate a hot and humid gas flow B, for example a flow of air heated in moisture, first in contact with the exchanger 10 of the evaporator 1, then in contact with the exchanger 50 of the condenser 5.
  • This gas stream B hot and humid is initially cooled in the form of a cold and dry gas stream B ', all or part of the water vapor contained in this stream B condensing on the surface of the exchanger 10 of the evaporator 1.
  • the condensation water is recovered by gravity in a receptacle 8 and discharged by means of a water pump or by gravity.
  • this cold dry gas stream B ' is heated in the form of a hot and dry gas stream B' circulating in contact with the exchanger 50 of the condenser 5.
  • this evaporator 1 may for example be an integral part of a closed circuit of an energy recovery installation (heat pump). the type of that of Figure 2 or for example be part of a closed circuit of a dehumidifier of the type of that of Figure 3.
  • the evaporator 1 comprises an inlet 1 1 of gas flow, an outlet 12 of gas flow and an exchanger 10 (not shown in FIG. 1) in which the fluid F circulates.
  • This evaporator 1 serves the function of cooling a circulating gas flow. through the evaporator between the inlet 1 1 and the outlet 12 of the evaporator 1.
  • the mixer 2 is positioned upstream of the evaporator 1 and comprises a main gas flow inlet 21, a secondary gas flow inlet 22 and a gas flow outlet 23, which is connected to the inlet 1 1 of the evaporator 1.
  • the recycling means 3 have the function of taking a part of the cooled gas stream C at the outlet 12 of the evaporator 1 in the form of a recycled gas stream D and of redirecting this recycled gas stream D to the secondary inlet 22 of the mixer 2.
  • These recycling means 3 comprise a return pipe connecting the outlet 12 of the evaporator 1 to the secondary inlet 22 of the mixer. Part of the cooled gas flow C is directed into this return pipe in the form of said recycled gas stream D.
  • the temperature of the cooled gas stream C at the outlet of the evaporator is thus substantially identical to the temperature of the recycled gas stream D at secondary inlet 22 of the mixer 2.
  • the return pipe may be equipped with an additional fan or compressor allowing, as the case may be, to suck or push in said pipe a part of the cooled gas stream C at the outlet 12 of the evaporator 1, under the form of said recycled gas stream D, to the secondary inlet 22 of the mixer 2.
  • the main gas stream A to be cooled and for example a flow of air that can be humid, is mixed in the mixer 2, upstream of the evaporator 1, with the recycled gas stream D of lower temperature, in order to obtain a more homogeneous secondary gas flow B at the inlet of the evaporator 1.
  • this secondary gas stream B is cooled in contact with the exchanger of the evaporator 1 in which circulates the fluid F absorbing the thermal energy of the secondary gas stream B.
  • a cooled gas stream C is obtained at the outlet of the evaporator 1 , part of this cooled gas stream C being taken up by the recycling means 3.
  • the "more homogeneous" nature of the secondary gas stream B results in a more homogeneous temperature in the secondary gas stream B compared to the temperature difference between the main gas stream A and the recycled gas stream D at the inlet of the mixer 2 with a maximum temperature difference in the secondary flow (B) (temperature difference between the hottest point and the coldest point in the secondary gas flow) which is less than 10% of the temperature difference between the flow main gas A and the recycled gas stream D and / or with a maximum temperature difference in the secondary flow B which is less than 5 ° C, and preferably below 2 ° C.
  • the maximum temperature difference in the secondary gas stream B (difference in temperature between the hottest point and the coldest point in the secondary gas stream) is thus in practice lower, and preferably much lower, away. maximum temperature between the main gas stream A and the recycled gas stream D.
  • FIGS. 4 to 7 Different embodiments of a mixer 2 are shown in FIGS. 4 to 7, it being specified that these examples are not limiting of the invention and that other mixer structures fulfilling the same function can be envisaged.
  • the mixer 2 comprises a mixing chamber 23, in which is mounted at least one grid 24 or a perforated plate 24 which separates the chamber 23 into two upstream and downstream chambers 26, the two gas flow inlets. 21 and 22 being formed in the upstream chamber 25, and the evaporator 1 being mounted in the downstream chamber 26.
  • the main gas stream A and the recycled gas stream D are introduced into the upstream chamber 25.
  • the function of the grid or the perforated plate 24 is to create, in the upstream chamber 25, on the path of the gas flows A and D, a pressure drop which allows turbulently mixing the two gas flows A and B and to obtain a more homogeneous secondary gas flow B which passes through the grid or the perforated plate 24. This more homogeneous secondary gas flow B leaves the downstream chamber 26 by contacting the evaporator 1.
  • the rate of opening of the grid or perforated plate 24 (ratio between the sum of the sections of the openings of the grid or perforated plate 24 traversed by the gas flow and the total surface of the grid or the perforated plate 24 ) and the openings section of the grid or the perforated plate 24 will be chosen in particular according to the degree of homogeneity desired for the secondary air flow B and flow rates A, D and B flows.
  • the mixer 2 of FIG. 5 has been improved with respect to mixer of Figure 4 by adding a stirring means 27, including a fan in the upstream chamber 25, upstream of the grid or the perforated plate 24.
  • This stirring means 27 improves the homogeneity of the gas flow secondary B, by stirring and mechanically mixing the main gas stream and the recycled gas stream D in the upstream chamber 25.
  • the mixer 2 of FIG. 6 has been improved with respect to the mixer of FIG. 4 by adding a stirring means 27, and in particular a fan in the downstream chamber 26, downstream of the grid or the perforated plate 24.
  • This means brewing device 27 makes it possible to improve the homogeneity of the secondary gas stream B by stirring and mechanically mixing the secondary gas stream B in the downstream chamber 26 before it leaves the mixer 2.
  • FIG. 7 represents another example of mixer 2 which differs from that of FIG. 4 in the shape of the downstream chamber 25 which forms a Y-connection.
  • Recycling the air flow D upstream of the evaporator advantageously makes it possible to lower the temperature difference between the inlet and the outlet of the evaporator. Compared to a conventional solution without recycling and without mixer, it is thus possible for example to obtain at the outlet of the evaporator 1 the same lowering of the temperature of the gas stream (temperature difference between the main gas stream A and the gas flow cooled C) with a higher temperature of the fluid F flowing in the evaporator 1 and without increasing the dimensions of the exchanger of the evaporator 1 and / or with the same temperature of the fluid F circulating the evaporator 1 and decreasing the dimensions of the evaporator exchanger 1.
  • the mixture of the main gas stream A and the recycled gas stream D by the mixer 1 is important in order to avoid the presence in the secondary gas flow of cold spots, especially at the temperature of the recycled gas stream D and hot spots, especially at the temperature a main gas flow A which could locally cause the formation of frost on the exchanger of the evaporator 1.
  • the secondary flow B at the output of the mixer 2 is as homogeneous as possible.
  • the mixer 1 is designed to obtain a maximum temperature difference in the secondary flow B (difference in temperature between the hottest point and the coldest point in the secondary gas flow) which is less than 5 ° C. , and preferably less than 2 ° C and / or so as to obtain a maximum temperature difference in the secondary flow B (temperature difference between the hottest point and the coldest point in the secondary gas flow) which is less than 10% of the temperature difference between the main gas stream A and the recycled gas stream D at the inlet of the mixer 2.
  • a maximum temperature difference in the secondary flow B difference in temperature between the hottest point and the coldest point in the secondary gas flow
  • the combination of recycling a part of the cooled gas stream C and the mixture with the main gas stream A makes it possible more particularly in certain applications, such as, for example, energy recovery or dehumidification, to lower the temperature of the cooled gas stream.
  • C. at values close to 0.degree. C., and especially below 5.degree. C., and preferably at 2.degree. C., avoiding the formation of frost on the surface of the exchanger of the evaporator 1 and without implementing large surface exchangers.
  • the recycling means 3 and the mixer 2 are designed so as to obtain a maximum temperature difference between the secondary air flow B and the cooled air flow C which is low enough to avoid the formation of frost on the surface of the exchanger of the evaporator 1 and / or in order to obtain a gap maximum temperature between the secondary air stream B and the cooled air flow C which is less than 5 ° C and preferably less than 2 ° C.
  • the combination of recycling a part of the cooled gas stream C and the mixture with the main gas stream A allows more particularly in certain applications, such as for example dehumidification, to reduce the weight of water in the cooled gas stream C at very low values, without using large surface heat exchangers.
  • the recycling means 3 and the mixer 2 are designed so as to obtain a cooled air flow C having a water weight of less than 5 g / kg of dry air.
  • cooling system of the invention it is up to the person skilled in the art, depending on the application, for example to adjust case by case the flow rate of the recycled gas stream D with respect in particular to flow rate of the main gas flow A and the characteristics of the main gas flow A (in particular temperature, weight in water) at the inlet of the mixer as a function, in particular, of the temperature deviation sought in steady state between the temperature of the secondary flow at the the inlet of the evaporator 1 and the temperature of the cooled gas flow C at the outlet of the evaporator 1 or as a function of the target temperature, under stationary conditions, for the cooled gas flow C at the outlet of the evaporator 1, or in function the target water weight, in stationary mode, in the cooled gas stream C at the outlet of the evaporator 1.
  • the flow rate of the recycled gas stream D with respect in particular to flow rate of the main gas flow A and the characteristics of the main gas flow A (in particular temperature, weight in water) at the inlet of the mixer as a function, in particular, of the temperature deviation sought in steady
  • the cooling system may comprise automatic regulation means RA of the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, these automatic regulation means RA being able in particular to control the means 1 'of circulating the gas stream.
  • These automatic regulation means are implemented in the form of, for example, a programmable logic controller or any other equivalent electronic control circuit.
  • the cooling system may comprise first measuring means T1 for the temperature of the cooled gas stream C or the recycled gas stream D (for example temperature probe or equivalent placed in the cooled gas stream C or in the recycled gas stream D), the automatic regulation means RA being able to automatically adjust the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of the temperature measured by said first measuring means.
  • first measuring means T1 for the temperature of the cooled gas stream C or the recycled gas stream D for example temperature probe or equivalent placed in the cooled gas stream C or in the recycled gas stream D
  • the automatic regulation means RA being able to automatically adjust the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of the temperature measured by said first measuring means.
  • the cooling system may comprise second measuring means T2 for the temperature of the secondary gas flow B at the inlet (for example temperature probe or equivalent placed in the gas flow B), the automatic regulation means RA being adapted to automatically adjust the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of the temperature measured by said first measuring means and the temperature measured by said first measuring means.
  • the cooling system may comprise means T3 for measuring the temperature of the main gas stream A at the inlet of the mixer 2, the automatic regulation means RA being able to automatically adjust the flow rate of the main gas stream A and / or or the flow rate of the recycled gas stream D, as a function of at least the temperature of the main gas stream A measured by the said temperature measuring means, and, if appropriate, as a function of the temperature of the cooled gas flow measured by the said first means of measuring and optionally, if appropriate, the temperature in the secondary gas stream B measured by said second measuring means.
  • the cooling system may comprise first means H1 for measuring the weight in water in the cooled gas stream C or in the recycled gas stream D (for example a humidity probe or equivalent placed in the gas stream C or in the gas stream recycled D), the automatic regulation means RA being able to automatically adjusting the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of the weight in water measured by said first measuring means.
  • first means H1 for measuring the weight in water in the cooled gas stream C or in the recycled gas stream D for example a humidity probe or equivalent placed in the gas stream C or in the gas stream recycled D
  • the automatic regulation means RA being able to automatically adjusting the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of the weight in water measured by said first measuring means.
  • the cooling system may comprise second means H2 for measuring the water weight in the main gas stream A, for example a hygrometric probe or equivalent placed in the main gas stream A, the automatic regulation means RA being able to adjust automatically the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of at least the water weight measured by said second measuring means.
  • second means H2 for measuring the water weight in the main gas stream A for example a hygrometric probe or equivalent placed in the main gas stream A
  • the automatic regulation means RA being able to adjust automatically the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of at least the water weight measured by said second measuring means.
  • FIG. 8 shows an alternative embodiment of a dehumidification installation which makes it possible to produce a dehumidified gaseous stream F, and in particular a dehumidified airflow F at a temperature Tf + DT, from a wet gas stream A ', and in particular a moist air stream, at a temperature Te.
  • This dehumidification installation comprising a cooling system with mixer 2 and evaporator 1 as previously described, and a heat exchanger G, for example a heat exchanger of the double flow or heat pipe type, which makes it possible to transfer, upstream of the mixer 2, a part of the thermal energy of the gaseous flow A 'wet towards the gaseous flow E which is not recycled at the outlet of the evaporator 1, so as to produce said flow of dehumidified air F at a temperature Tf + DT.
  • the main gas stream A at the inlet of the mixer 2 of the cooling system corresponds to the wet gas stream A 'cooled to a temperature Tc-DT after passing through the exchanger G.
  • the temperature Te can be 30 ° C; the temperature Tf can be 4 ° C; The temperature difference DT may be 12 ° C.
  • the dehumidified gas stream F is at a temperature of 16 ° C (Tf + DT).
  • the cooling device of the invention needs to cool the main gas stream A only from 18 ° C (Te-DT) to 4 ° c (Tf), which represents a significant energy saving .
  • the implementation of this exchanger G therefore advantageously reduces energy expenditure for dehumidification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)

Abstract

The system for cooling a main gas stream (A) includes an evaporator (1) which comprises an inlet (11), an outlet (12) and an exchanger in which a fluid flows, and which makes it possible to cool a gas stream (B) flowing through the evaporator between the inlet and the outlet of the evaporator, a mixer (2) comprising a main inlet (21) intended during operation for being supplied with the main gas stream (A), a secondary inlet (22) and an outlet (23) which is connected to the inlet (11) of the evaporator (1), and recirculating means (3) for recirculating a portion of the cooled gas stream (C), which include a channel (30) connecting the outlet (12) of the evaporator (1) to the secondary inlet (22) of the mixer (2) and which have the function of collecting a portion of the cooled gas stream (C) at the outlet of the evaporator (1) in the form of a recirculated gas stream (D) and of redirecting this recirculated gas stream (D) to the secondary inlet (22) of the mixer. The mixer (2) makes it possible, during operation, to mix the main gas stream (A) with the cooler recirculated gas stream (D), so as to obtain a more homogeneous secondary gas stream (B) at the inlet of the evaporator (1), with a maximum temperature difference in the secondary stream (B) that is less than 10% of the temperature difference between the main gas stream (A) and the recirculated gas stream (D) and/or with a maximum temperature difference in the secondary stream (B) that is less than 5°C, preferably less than 2°C.

Description

SYSTÈME ET PROCÉDÉ DE REFROIDISSEMENT D'UN FLUX GAZEUX AU MOYEN D'UN ÉVAPORATEUR  SYSTEM AND METHOD FOR COOLING A GAS STREAM USING AN EVAPORATOR
Domaine technique Technical area
La présente invention concerne le refroidissement d’un flux gazeux, et en particulier d’un air humide, au moyen d’un évaporateur. Elle trouve son application dans différents domaines, et par exemple de manière non exhaustive dans le domaine de la récupération d’énergie dans un flux gazeux au moyen d’une pompe à chaleur comportant un évaporateur, ou de la déshumidification d’un flux gazeux au moyen d’un évaporateur, ou de la récupération d’eau dans l’atmosphère, ou du réglage de l’humidité dans un dispositif frigorifique, de type réfrigérateur, congélateur, chambre froide, ....  The present invention relates to the cooling of a gas stream, and in particular of moist air, by means of an evaporator. It finds its application in various fields, and for example non-exhaustively in the field of energy recovery in a gas stream by means of a heat pump comprising an evaporator, or dehumidification of a gas stream at by means of an evaporator, or the recovery of water in the atmosphere, or the adjustment of the humidity in a refrigerating device, of the refrigerator, freezer, cold room, ....
Art antérieur  Prior art
II est à ce jour connu de refroidir un flux gazeux et notamment de l’air, en le faisant circuler au contact d’un évaporateur. De manière usuelle un évaporateur comporte un échangeur dans lequel circule un fluide, de préférence un fluide frigorigène, qui est vaporisé au contact du flux gazeux avec l’échangeur en absorbant l’énergie thermique du flux gazeux.  It is known to this day to cool a gas stream and in particular air, by circulating it in contact with an evaporator. Usually an evaporator comprises an exchanger in which circulates a fluid, preferably a refrigerant, which is vaporized in contact with the gas flow with the exchanger by absorbing the thermal energy of the gas stream.
Généralement cet évaporateur fait partie intégrante d’un circuit frigorifique dans lequel l’évaporateur est associé au moins à un condenseur, et dans lequel le fluide circule en circuit fermé.  Generally this evaporator is an integral part of a refrigerant circuit in which the evaporator is associated at least with a condenser, and wherein the fluid circulates in a closed circuit.
Ces circuits frigorifiques sont par exemple utilisés dans les pompes à chaleur permettant la récupération de l’énergie thermique du fluide en circulation dans le circuit frigorifique ou dans des dispositifs de déshumidification d’un flux gazeux dans lequel on récupère tout ou partie de l’eau dans le flux gazeux par condensation à la surface de l’échangeur de l’évaporateur. Ces dispositifs de déshumidification peuvent notamment être utilisés dans des dispositifs frigorifiques de type réfrigérateurs, chambres froides, ...  These refrigerating circuits are for example used in heat pumps for recovering the thermal energy of the circulating fluid in the refrigerant circuit or in devices for dehumidifying a gas stream in which all or part of the water is recovered. in the gas stream by condensation on the surface of the evaporator exchanger. These dehumidification devices can in particular be used in refrigerating devices such as refrigerators, cold rooms, etc.
Lorsque l’on souhaite refroidir un flux d’air humide au moyen d’un évaporateur, par exemple un flux d’air humide à une température supérieure à 15° C pour l’amener à une température légèrement supérieure à 0°C, il y a un risque important de formation de givre à la surface de l’échangeur de l’évaporateur, car généralement pour obtenir ce résultat le fluide circulant dans l’évaporateur doit être à une température inférieure à 0°C. En cas de formation de givre, on se trouve contraint de mettre en œuvre un cycle inverse de dégivrage, ce qui est coûteux en temps et en énergie. When it is desired to cool a moist airflow by means of a evaporator, for example a moist air flow at a temperature above 15 ° C to bring it to a temperature slightly above 0 ° C, there is a significant risk of frost formation on the surface of the heat exchanger. the evaporator, because generally to obtain this result the fluid flowing in the evaporator must be at a temperature below 0 ° C. In the case of frost formation, it is necessary to implement a reverse defrost cycle, which is costly in terms of time and energy.
Une solution classique pour réduire ce phénomène de givrage consiste à augmenter les dimensions de l’échangeur de l’évaporateur, de manière à augmenter la surface de contact de l’échangeur de l’évaporateur avec le flux gazeux à refroidir, ce qui permet à résultats comparables d’augmenter la température du fluide dans l’échangeur de l’évaporateur. Dans cette solution, plus l’écart de température entre le flux gazeux à refroidir et le flux gazeux obtenu après refroidissement est important, et plus les dimensions de l’échangeur doivent être importantes pour éviter le phénomène de givrage. Cette solution trouve rapidement ses limites car l’augmentation des dimensions de l’échangeur de l’évaporateur augmente le coût de fabrication de l’échangeur et peut dans certaines applications poser des problèmes d’encombrement.  A conventional solution to reduce this phenomenon of icing consists in increasing the dimensions of the exchanger of the evaporator, so as to increase the contact surface of the exchanger of the evaporator with the gas stream to be cooled, which allows comparable results of increasing the temperature of the fluid in the evaporator exchanger. In this solution, the greater the temperature difference between the gas stream to be cooled and the gas flow obtained after cooling, and the larger the dimensions of the exchanger must be important to prevent the phenomenon of icing. This solution quickly finds its limits because increasing the dimensions of the exchanger of the evaporator increases the manufacturing cost of the exchanger and may in some applications pose congestion problems.
Objectifs de l’invention  Objectives of the invention
Un objectif principal de l’invention est de proposer une nouvelle solution de refroidissement d’un flux gazeux, et notamment d’un flux d’air, au moyen d’un évaporateur, qui d’une manière générale permet d’améliorer le fonctionnement de l’évaporateur sans augmenter les dimensions de l’échangeur de l’évaporateur.  A main objective of the invention is to propose a new solution for cooling a gas flow, and in particular an air flow, by means of an evaporator, which in general makes it possible to improve the operation of the evaporator without increasing the dimensions of the evaporator exchanger.
Plus particulièrement un objectif de l’invention est de proposer une nouvelle solution de refroidissement d’un flux gazeux, et notamment d’un flux d’air, au moyen d’un évaporateur, qui permet d’obtenir un même abaissement de température du flux gazeux avec une température plus élevée du fluide circulant dans l’évaporateur et sans augmenter les dimensions de l’échangeur de l’évaporateur et/ou avec la même température du fluide circulant dans l’évaporateur et en diminuant les dimensions de l’échangeur de l’évaporateur ou qui permet d’obtenir un abaissement de température plus important du flux gazeux sans modifier la température du fluide circulant dans l’évaporateur, ni les dimensions de l’échangeur de l’évaporateur. More particularly, an object of the invention is to propose a novel solution for cooling a gaseous flow, and in particular an air flow, by means of an evaporator, which makes it possible to obtain the same lowering of the temperature of the gas flow with a higher temperature of the fluid flowing in the evaporator and without increasing the dimensions of the exchanger of the evaporator and / or with the same temperature of the fluid flowing in the evaporator and by reducing the dimensions of the exchanger of the evaporator or which makes it possible to obtain a greater lowering of the temperature of the gas flow without modifying the temperature of the fluid circulating in the evaporator, nor the dimensions of the exchanger of the evaporator.
Plus particulièrement, dans le domaine de la déshumidification, un objectif secondaire de l’invention est de proposer une nouvelle solution de refroidissement d’un flux gazeux humide, et notamment d’un flux d’air humide, au moyen d’un évaporateur, qui permet d’obtenir un flux gazeux déshumidifié ayant un poids en eau plus faible, sans modifier les dimensions de l’échangeur de l’évaporateur.  More particularly, in the field of dehumidification, a secondary objective of the invention is to propose a new solution for cooling a wet gas stream, and in particular a moist air stream, by means of an evaporator, which makes it possible to obtain a dehumidified gas stream with a lower water weight, without modifying the dimensions of the evaporator exchanger.
Plus particulièrement, un objectif secondaire de l’invention est de proposer une nouvelle solution de refroidissement d’un flux gazeux, et notamment d’un flux d’air, au moyen d’un évaporateur, qui permet de diminuer, et de préférence d’éviter la formation de givre sur l’échangeur de l’évaporateur, et en particulier en abaissant la température du flux gazeux à une température proche de 0°C.  More particularly, a secondary objective of the invention is to propose a new solution for cooling a gas flow, and in particular an air flow, by means of an evaporator, which makes it possible to reduce, and preferably to avoid frost formation on the evaporator exchanger, and in particular by lowering the temperature of the gas stream to a temperature close to 0 ° C.
Résumé de l’invention  Summary of the invention
L’invention a ainsi pour objet un système de refroidissement d’un flux gazeux principal (A) qui présente les caractéristiques techniques suivantes. Le système de refroidissement comporte un évaporateur qui comprend une entrée, une sortie et un échangeur dans lequel circule un fluide, et qui permet de refroidir un flux gazeux (B) circulant à travers l’évaporateur entre l’entrée et la sortie de l’évaporateur, un mélangeur comprenant une entrée principale destinée en fonctionnement à être alimentée avec le flux gazeux principal (A), une entrée secondaire et une sortie qui est raccordée à l’entrée de l’évaporateur, et des moyens de recyclage d’une partie du flux gazeux refroidi (C), qui comportent une canalisation raccordant la sortie de l’évaporateur à l’entrée secondaire du mélangeur et qui ont pour fonction de prélever une partie du flux gazeux refroidi (C) en sortie de l’évaporateur sous la forme d’un flux gazeux recyclé (D) et de rediriger ce flux gazeux recyclé (D) jusqu’à l’entrée secondaire du mélangeur ; ledit mélangeur permet en fonctionnement de mélanger le flux gazeux principal (A) et le flux gazeux recyclé (D) de plus faible température, de manière à obtenir à l’entrée de l’évaporateur un flux gazeux secondaire (B) plus homogène, avec un écart maximum de température dans le flux secondaire (B) qui est inférieur à 5°C, et de préférence à 2°C. The invention thus relates to a cooling system of a main gas stream (A) which has the following technical characteristics. The cooling system comprises an evaporator which comprises an inlet, an outlet and an exchanger in which a fluid circulates, and which makes it possible to cool a gas stream (B) flowing through the evaporator between the inlet and the outlet of the evaporator, a mixer comprising a main inlet intended for operation to be fed with the main gas stream (A), a secondary inlet and an outlet which is connected to the inlet of the evaporator, and means for recycling a part a cooled gas flow (C), which comprises a pipe connecting the outlet of the evaporator to the secondary inlet of the mixer and whose function is to take a part of the cooled gas flow (C) at the outlet of the evaporator under the recycled gas stream (D) and to redirect this recycled gas stream (D) to the secondary inlet of the mixer; said mixer in operation allows mixing the main gas stream (A) and the recycled gas stream (D) of lower temperature, so as to obtain at the inlet of the evaporator a secondary gas stream (B) more homogeneous, with a maximum temperature difference in the secondary stream (B) which is less than 5 ° C, and preferably 2 ° C.
Dans l’invention, le recyclage et le mélange avec le flux gazeux principal à refroidir d’une partie du flux d’air refroidi en sortie de l’évaporateur permettent avantageusement d’améliorer le fonctionnement de l’évaporateur en diminuant l’écart de température entre la température du flux gazeux (flux gazeux secondaire) à l’entrée de l’évaporateur et la température du flux gazeux refroidi à la sortie l’évaporateur, comparativement à un système sans recyclage et sans mélangeur.  In the invention, recycling and mixing with the main gas stream to be cooled of a part of the cooled air stream at the outlet of the evaporator advantageously make it possible to improve the operation of the evaporator by reducing the difference between temperature between the temperature of the gas stream (secondary gas stream) at the inlet of the evaporator and the temperature of the gas stream cooled at the evaporator outlet, compared to a system without recycling and without mixer.
Dans l’invention, le flux gazeux recyclé étant prélevé à la sortie de l’évaporateur, la température du flux gazeux recyclé à l’entrée secondaire du mélangeur est de manière préférentielle sensiblement identique à la température du flux gazeux refroidi en sortie de l’évaporateur.  In the invention, the recycled gas stream being taken at the outlet of the evaporator, the temperature of the recycled gas stream at the secondary inlet of the mixer is preferably substantially identical to the temperature of the cooled gas stream at the outlet of the evaporator. evaporator.
Plus particulièrement, le système de refroidissement de l’invention peut comporter les caractéristiques additionnelles et optionnelles suivantes, prises isolément, ou en combinaison les unes avec les autres :  More particularly, the cooling system of the invention may comprise the following additional and optional features, taken alone, or in combination with each other:
- Le mélangeur comporte une paroi perforée ou une grille interposée sur le parcours du flux gazeux principal (A) et du flux gazeux recyclé (B).  - The mixer has a perforated wall or a grid interposed on the path of the main gas stream (A) and the recycled gas stream (B).
- Le mélangeur comporte un moyen de brassage et plus particulièrement un ventilateur, permettant de brasser et de mélanger le flux gazeux principal (A) et le flux gazeux recyclé (D) et/ou comporte un moyen de brassage et plus particulièrement un ventilateur, permettant de brasser et de mélanger le flux gazeux secondaire avant sa sortie du mélangeur.  - The mixer comprises a stirring means and more particularly a fan, for stirring and mixing the main gas stream (A) and the recycled gas stream (D) and / or comprises a stirring means and more particularly a fan, allowing stir and mix the secondary gas stream before leaving the mixer.
- Le système de refroidissement comporte des moyens de régulation automatique du débit du flux gazeux principal (A) et/ou du débit du flux gazeux recyclé (D). Le système de refroidissement comporte des premiers moyens de mesure de la température du flux gazeux refroidi (C) ou du flux gazeux recyclé (D), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou du débit du flux gazeux recyclé (D), en fonction de la température mesurée par lesdits premiers moyens de mesure.- The cooling system comprises means for automatically regulating the flow of the main gas stream (A) and / or the flow rate of the recycled gas stream (D). The cooling system comprises first means for measuring the temperature of the cooled gas stream (C) or the recycled gas stream (D), the automatic regulation means being able to automatically adjust the flow rate of the main gas stream (A) and / or the flow rate of the recycled gas stream (D), as a function of the temperature measured by said first measuring means.
Le système de refroidissement comporte des deuxièmes moyens de mesure de la température du flux gazeux secondaire (B), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins de la température mesurée par lesdits deuxièmes moyens de mesure. The cooling system comprises second means for measuring the temperature of the secondary gas flow (B), the automatic control means being able to automatically adjust the flow rate of the main gas flow (A) and / or the flow rate of the recycled gas stream ( D), as a function of at least the temperature measured by said second measuring means.
Les moyens de régulation automatique sont aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins de la température mesurée par lesdits premiers moyens de mesure et de la température mesurée par lesdits deuxième moyens de mesure. The automatic regulation means are capable of automatically adjusting the flow rate of the main gas flow (A) and / or the flow rate of the recycled gas stream (D), as a function of at least the temperature measured by said first measuring means and the temperature measured by said second measuring means.
Le système de refroidissement comporte des moyens de mesure de la température du flux gazeux principal (A), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins de la température du flux gazeux principal (A) mesurée par lesdits moyens de mesure de température. The cooling system comprises means for measuring the temperature of the main gas stream (A), the automatic regulation means being able to automatically adjust the flow rate of the main gas stream (A) and / or the flow rate of the recycled gas stream (D). ), as a function of at least the temperature of the main gas stream (A) measured by said temperature measuring means.
Le système de refroidissement comporte des premiers moyens de mesure du poids en eau dans le flux gazeux refroidi (C) ou dans le flux gazeux recyclé (D), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins du poids eau mesuré par lesdits premiers moyens de mesure.  The cooling system comprises first means for measuring the weight of water in the cooled gas stream (C) or in the recycled gas stream (D), the automatic regulation means being able to automatically adjust the flow rate of the main gas stream (A). and / or the flow rate of the recycled gas stream (D), as a function of at least the water weight measured by said first measuring means.
Le système de refroidissement comporte des deuxièmes moyens de mesure du poids en eau dans le flux gazeux principal (A), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principale (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins du poids eau mesuré par lesdits deuxièmes moyens de mesure. The cooling system comprises second means for measuring the weight of water in the main gas stream (A), the automatic control means being able to automatically adjust the flow rate of the main gas stream (A) and / or the flow rate of the recycled gas stream (D), as a function of at least the water weight measured by said second measuring means.
- Le mélangeur est apte produire ledit flux secondaire (B) avec un écart maximum de température dans le flux secondaire (B) qui est inférieur à 10 % de l’écart de température entre le flux gazeux principal (A) et le flux gazeux recyclé (D).  - The mixer is able to produce said secondary flow (B) with a maximum temperature difference in the secondary flow (B) which is less than 10% of the temperature difference between the main gas stream (A) and the recycled gas stream (D).
- Les moyens de recyclage, le mélangeur, et le cas échéant les moyens de régulation automatique, sont aptes à produire ledit flux gazeux secondaire (B) et ledit flux gazeux refroidi (C) avec un écart maximum de température entre le flux gazeux secondaire (B) et le flux gazeux refroidi (C) qui est suffisamment faible pour éviter la formation de givre à la surface de l’échangeur de l’évaporateur. - The recycling means, the mixer, and optionally the automatic control means, are able to produce said secondary gas stream (B) and said cooled gas stream (C) with a maximum temperature difference between the secondary gas stream ( B) and the cooled gas stream (C) which is sufficiently low to prevent frost formation on the surface of the evaporator exchanger.
- Les moyens de recyclage, le mélangeur, et le cas échéant les moyens de régulation automatique, sont aptes à produire ledit flux gazeux refroidi (C) à une température inférieure à 5°C. - The recycling means, the mixer, and optionally the automatic control means, are able to produce said cooled gas stream (C) at a temperature below 5 ° C.
- Les moyens de recyclage, le mélangeur, et le cas échéant les moyens de régulation automatique, sont aptes à produire le flux gazeux secondaire (B) et le flux gazeux refroidi (C) avec un écart maximum de température entre le flux gazeux secondaire (B) et le flux gazeux refroidi (C) qui est inférieure à 5°C et de préférence inférieur à 2°C.  - The recycling means, the mixer, and optionally the automatic control means, are able to produce the secondary gas flow (B) and the cooled gas flow (C) with a maximum temperature difference between the secondary gas flow ( B) and the cooled gas stream (C) which is less than 5 ° C and preferably less than 2 ° C.
- Les moyens de recyclage, le mélangeur, et le cas échéant les moyens de régulation automatique, sont aptes à produire le flux gazeux refroidi (C) avec un poids d’eau inférieur à 5 g/kg.  - The recycling means, the mixer, and optionally the automatic control means are capable of producing the cooled gas stream (C) with a water weight of less than 5 g / kg.
L’invention a également pour objet une utilisation du système de refroidissement susvisé pour refroidir un flux gazeux, et notamment un flux d’air.  The invention also relates to a use of the aforementioned cooling system for cooling a gas flow, and in particular an air flow.
L’invention a également pour objet un procédé de refroidissement d’un flux gazeux principal (A) dans lequel on mélange le flux gazeux principal (A) avec un flux gazeux recyclé (D) de plus faible température, de manière à obtenir un flux gazeux secondaire (B) plus homogène avec un écart maximum de température dans le flux secondaire (B) qui est inférieur à 10 % de l’écart de température entre le flux gazeux principal (A) et le flux gazeux recyclé (D) et/ou avec un écart maximum de température dans le flux secondaire (B) qui est inférieur à 5°C, et de préférence à 2°C, et on refroidit ce flux gazeux secondaire (B) au contact de l’échangeur d’un évaporateur dans lequel circule un fluide absorbant l’énergie thermique du flux gazeux secondaire (B), de manière à obtenir en sortie de l’évaporateur un flux gazeux refroidi (C), une partie de ce flux gazeux refroidi (C) étant prélevée au moyen d’une canalisation (30) raccordant la sortie (12) de l’évaporateur (1 ) à une entrée (22) du mélangeur (2) pour former ledit flux gazeux recyclé (D). The invention also relates to a method of cooling a main gas stream (A) in which the gas stream is mixed principal (A) with a recycled gas stream (D) of lower temperature, so as to obtain a more homogeneous secondary gas stream (B) with a maximum temperature difference in the secondary stream (B) which is less than 10% of the temperature difference between the main gas stream (A) and the recycled gas stream (D) and / or with a maximum temperature difference in the secondary stream (B) which is less than 5 ° C, and preferably 2 ° C, and this secondary gas stream (B) is cooled in contact with the exchanger of an evaporator in which circulates a fluid absorbing the thermal energy of the secondary gas stream (B), so as to obtain at the output of the evaporator a cooled gas stream (C), a part of this cooled gas stream (C) being taken by means of a pipe (30) connecting the outlet (12) of the evaporator (1) to an inlet (22) of the mixer (2) for forming said recycled gas stream (D).
Plus particulièrement, le procédé de l’invention peut comporter les caractéristiques additionnelles et optionnelles suivantes, prises isolément, ou en combinaison les unes avec les autres :  More particularly, the process of the invention may comprise the following additional and optional features, taken alone, or in combination with each other:
- L’écart maximum de température entre le flux gazeux secondaire (B) et le flux gazeux refroidi (C) est suffisamment faible pour éviter la formation de givre à la surface de l’échangeur de l’évaporateur. - The maximum temperature difference between the secondary gas stream (B) and the cooled gas stream (C) is sufficiently low to prevent the formation of frost on the surface of the evaporator exchanger.
- Le flux gazeux refroidi (C) est à une température supérieure à 0°C et inférieure à 5°C, et de préférence inférieure à 2°C. - The cooled gas stream (C) is at a temperature above 0 ° C and below 5 ° C, and preferably below 2 ° C.
- L’écart maximum de température entre le flux gazeux secondaire (B) et le flux gazeux refroidi (C) est inférieur à 5°C et de préférence inférieur à 2°C.  - The maximum temperature difference between the secondary gas stream (B) and the cooled gas stream (C) is less than 5 ° C and preferably less than 2 ° C.
- Le poids d’eau du flux gazeux refroidi (C) en est inférieur à 5 g/kg. - The water weight of the cooled gas stream (C) is less than 5 g / kg.
- Le flux gazeux principal (A) à l’entrée du mélangeur est un flux gazeux principal (A’) qui est refroidi, avant son entrée dans le mélangeur, au moyen d’une partie (E) du flux gazeux qui, en sortie de l’évaporateur (1 ), est refroidie et non recyclée vers le mélangeur.- The main gas stream (A) at the inlet of the mixer is a main gas stream (A ') which is cooled, before it enters the mixer, by means of a portion (E) of the gas stream which, at the outlet of the evaporator (1), is cooled and not recycled to the mixer.
L’invention a également pour objet une installation de récupération d’énergie dans un flux gazeux comportant un système de refroidissement susvisé et des moyens permettant de récupérer au moins une partie de l’énergie thermique dans le fluide après passage de ce fluide dans l’évaporateur. The invention also relates to an energy recovery installation in a gas stream comprising a cooling system abovementioned and means for recovering at least a portion of the thermal energy in the fluid after passage of this fluid in the evaporator.
L’invention a également pour objet une installation de déshumidification d’un flux gazeux comportant un système de refroidissement susvisé, et plus particulièrement comportant des moyens de récupération de l’eau de condensation à la surface de l’échangeur de l’évaporateur.  The invention also relates to a dehumidification installation of a gas stream comprising a cooling system referred to above, and more particularly comprising means for recovering the condensation water at the surface of the exchanger of the evaporator.
Dans une variante particulière de réalisation, l’installation de déshumidification d’un flux gazeux comporte outre un échangeur, qui permet de produire le flux gazeux principal (A) à l’entrée du mélangeur à partir d’un premier flux gazeux principal (A’) qui est refroidi, avant son entrée dans le mélangeur, en transférant, en amont du mélangeur, une partie de l’énergie thermique du premier flux gazeux (A’) vers la partie (E) de flux gazeux qui, en sortie de l’évaporateur n’est pas recyclée vers le mélangeur.  In a particular variant embodiment, the dehumidification installation of a gas flow comprises, in addition to an exchanger, which makes it possible to produce the main gas flow (A) at the mixer inlet from a first main gas stream (A ') which is cooled, before entering the mixer, transferring, upstream of the mixer, a portion of the thermal energy of the first gas stream (A') to the portion (E) of gas stream which, at the output of the evaporator is not recycled to the mixer.
Brève description des figures  Brief description of the figures
Les caractéristiques et avantages de l’invention apparaîtront plus clairement à la lecture de la description détaillée ci-après de plusieurs variantes particulières de réalisation de l’invention, lesquelles variantes particulières de réalisation sont décrites à titre d’exemples non limitatifs et non exhaustifs de l’invention, et en référence aux dessins annexés sur lesquels :  The features and advantages of the invention will appear more clearly on reading the detailed description below of several particular embodiments of the invention, which particular embodiments are described by way of non-limiting and non-exhaustive examples of the invention and with reference to the accompanying drawings in which:
- La figure 1 représente de manière schématique une variante de réalisation d’un système de refroidissement de l’invention.  - Figure 1 schematically shows an alternative embodiment of a cooling system of the invention.
- La figure 2 représente une structure connue d’une installation de récupération d’énergie dans un flux gazeux de type pompe à chaleur (PAC).  FIG. 2 represents a known structure of an energy recovery installation in a gas stream of heat pump type (PAC).
- La figure 3 représente une structure connue d’une installation de déshumidification d’un flux gazeux.  - Figure 3 shows a known structure of a dehumidification installation of a gas stream.
- Les figures 4 à 7 représentent respectivement quatre exemples de réalisation d’un mélangeur d’un système de refroidissement de l’invention. - La figure 8 est un schéma d’une variante perfectionnée d’une installation de déshumidification de l’invention. - Figures 4 to 7 respectively show four embodiments of a mixer of a cooling system of the invention. FIG. 8 is a diagram of an improved variant of a dehumidification installation of the invention.
Description détaillée  detailed description
On a représenté sur la figure 1 un schéma de principe d’un système de refroidissement d’un flux gazeux principal A conforme à l’invention. En référence à cette figure 1 , ce système de refroidissement comporte un évaporateur 1 qui est connu en soi et qui est associé à un mélangeur 2 et à des moyens 3 de recyclage d’une partie du flux gazeux refroidi en sortie de l’évaporateur 1 , et des moyens 1’ de mise en circulation d’un flux gazeux, et notamment un flux d’air, à travers le mélangeur 2 et à travers l’évaporateur 1 , sous la forme par exemple d’un ventilateur ou compresseur.  FIG. 1 is a schematic diagram of a cooling system of a main gas stream A according to the invention. With reference to this FIG. 1, this cooling system comprises an evaporator 1 which is known per se and which is associated with a mixer 2 and means 3 for recycling a part of the cooled gas stream at the outlet of the evaporator 1 , and means 1 'for circulating a gas flow, and in particular an air flow, through the mixer 2 and through the evaporator 1, in the form of, for example, a fan or compressor.
Dans l’exemple particulier de la figure 1 , ces moyens 1’ de mise en circulation d’un flux gazeux sont positionnés en aval de l’évaporateur 1 et permettent de créer un flux gazeux par aspiration. Dans une autre variante, ces moyens 1’ de mise en circulation d’un flux gazeux peuvent être par exemple positionnés en amont du mélangeur 2 et permettent de créer un flux gazeux par soufflage.  In the particular example of FIG. 1, these means 1 'for circulating a gas flow are positioned downstream of the evaporator 1 and make it possible to create a gas flow by suction. In another variant, these means 1 'for circulating a gas flow may for example be positioned upstream of the mixer 2 and allow to create a gas flow by blowing.
L’évaporateur 1 est un dispositif de refroidissement d’un flux gazeux qui est connu en soi, et qui comporte un échangeur dans lequel circule un fluide, de préférence un fluide frigorigène, qui est vaporisé au contact du flux gazeux avec l’échangeur en absorbant l’énergie thermique du flux gazeux. La forme et/ou la structure de l’échangeur de l’évaporateur 1 sont sans importance pour l’invention.  The evaporator 1 is a device for cooling a gas flow which is known per se, and which comprises an exchanger in which circulates a fluid, preferably a refrigerant, which is vaporized in contact with the gas flow with the heat exchanger. absorbing the thermal energy of the gas stream. The shape and / or the structure of the exchanger of the evaporator 1 are of no importance for the invention.
Dans le cadre de l’invention, l’évaporateur 1 peut être un évaporateur direct, c’est-à-dire un évaporateur dans lequel le flux gazeux à refroidir est en contact directement avec l’échangeur dans lequel circule le fluide qui est vaporisé. L’évaporateur 1 peut également être un évaporateur indirect, c’est- à-dire un évaporateur comportant au moins deux échangeurs : un échangeur intermédiaire dans lequel circule un fluide de refroidissement, tel que par exemple de l’eau, et au contact duquel le flux gazeux à refroidir est amené, ledit fluide de refroidissement permettant de prélever de l’énergie thermique dans le flux gazeux à refroidir sans être vaporisé ; un échangeur dans lequel circule un fluide, de préférence un fluide frigorigène, qui est vaporisé en absorbant un partie de l’énergie thermique du fluide de l’échangeur intermédiaire . In the context of the invention, the evaporator 1 may be a direct evaporator, that is to say an evaporator in which the gaseous flow to be cooled is in direct contact with the exchanger in which the fluid which is vaporized circulates. . The evaporator 1 may also be an indirect evaporator, that is to say an evaporator comprising at least two exchangers: an intermediate exchanger in which circulates a cooling fluid, such as for example water, and in contact with which the gas stream to be cooled is fed, said cooling fluid making it possible to take thermal energy in the gas stream to be cooled without being vaporized; an exchanger in which circulates a fluid, preferably a refrigerant, which is vaporized by absorbing a portion of the thermal energy of the fluid of the intermediate exchanger.
On a représenté sur les figures 2 et 3 deux exemples connus d’installation comportant un circuit mettant en œuvre un évaporateur 1 direct dans lequel le fluide F circule en circuit fermé.  FIGS. 2 and 3 show two known installation examples comprising a circuit implementing a direct evaporator 1 in which the fluid F circulates in a closed circuit.
Sur la figure 2, le circuit constitue une pompe à chaleur et comprend de manière connue en soi un évaporateur 1 comportant un échangeur 10 raccordé à l’entrée de l’échangeur 50 d’un condenseur 5 via un compresseur 4. L’échangeur 50 du condenseur 5 est raccordé à l’échangeur 10 de l’évaporateur 1 via un détendeur 6, de manière à former une boucle fermée dans lequel circule le fluide F, qui est de préférence un fluide frigorigène.  In FIG. 2, the circuit constitutes a heat pump and comprises, in a manner known per se, an evaporator 1 comprising an exchanger 10 connected to the inlet of the exchanger 50 of a condenser 5 via a compressor 4. The exchanger 50 condenser 5 is connected to the exchanger 10 of the evaporator 1 via a pressure reducer 6, so as to form a closed loop in which the fluid F, which is preferably a refrigerant, circulates.
En fonctionnement le flux gazeux B, par exemple un flux d’air, à une température donnée est mis en circulation au contact de l’échangeur 10 de l’évaporateur 1 , le fluide F étant mis en circulation en boucle fermée dans le circuit grâce au compresseur 4. Dans l’échangeur 10 de l’évaporateur, le fluide F, à une température inférieure à la température du flux gazeux B, absorbe une partie de l’énergie thermique du flux gazeux B, en se vaporisant. Le flux gazeux B est ainsi refroidi au contact de l’échangeur 10. Le fluide F est ensuite condensé dans l’échangeur 50 du condenseur 5, ce qui permet de récupérer une partie de l’énergie thermique dans le fluide en chauffant l’échangeur 50. En faisant circuler un flux gazeux B’ au contact de l’échangeur 50 du condenseur 5, on chauffe ledit flux de gaz B’. Dans une autre variante, au lieu d’un gaz B’ on pourrait chauffer un liquide, tel que de l’eau en le faisant circuler au contact de l’échangeur 50 du condenseur 5.  In operation, the gas stream B, for example a stream of air, at a given temperature is circulated in contact with the exchanger 10 of the evaporator 1, the fluid F being circulated in a closed loop in the circuit by means of 4. In the exchanger 10 of the evaporator, the fluid F, at a temperature below the temperature of the gas stream B, absorbs a portion of the thermal energy of the gas stream B, by vaporizing. The gas stream B is thus cooled in contact with the exchanger 10. The fluid F is then condensed in the exchanger 50 of the condenser 5, which makes it possible to recover a portion of the thermal energy in the fluid by heating the exchanger 50. By circulating a gas stream B 'in contact with the exchanger 50 of the condenser 5, said gas flow B' is heated. In another variant, instead of a gas B ', a liquid could be heated, such as water by circulating it in contact with the exchanger 50 of the condenser 5.
On a représenté sur la figure 3 le schéma de principe connu d’un déshumidificateur comportant un circuit dans lequel circule en boucle fermée un fluide F, qui est de préférence un fluide frigorigène. De manière similaire au circuit de la figure 2, ce circuit comprend un évaporateur 1 comportant un échangeur 10 en forme de serpentin, un condenseur 5 comportant un échangeur 50 en forme de serpentin, un compresseur 4 et un détendeur 6. Un ventilateur 7 correspondant par exemple au ventilateur 1’ de la figure 1 , est utilisé pour faire circuler un flux gazeux B chaud et humide, par exemple un flux d’air chaud chargé en humidité, d’abord au contact de l’échangeur 10 de l’évaporateur 1 , puis au contact de l’échangeur 50 du condenseur 5. Ce flux gazeux B chaud et humide est dans un premier temps refroidi sous la forme d’un flux gazeux B’ froid et sec, tout ou partie de la vapeur d’eau contenue dans ce flux B se condensant à la surface de l’échangeur 10 de l’évaporateur 1 . L’eau de condensation est récupérée par gravité dans un réceptacle 8 et évacuée au moyen d’une pompe à eau ou par gravité. Ensuite ce flux gazeux B’ froid et sec est réchauffé sous la forme d’un flux gazeux B” chaud et sec en circulant au contact de l’échangeur 50 du condenseur 5. FIG. 3 shows the known block diagram of a dehumidifier comprising a circuit in which a fluid F, which is preferably a refrigerant, circulates in a closed loop. In a similar manner to the circuit of FIG. 2, this circuit comprises an evaporator 1 comprising a coil-shaped exchanger 10, a condenser comprising a exchanger 50 in the form of a coil, a compressor 4 and a pressure reducer 6. A fan 7 corresponding, for example, to the fan 1 'of FIG. 1, is used to circulate a hot and humid gas flow B, for example a flow of air heated in moisture, first in contact with the exchanger 10 of the evaporator 1, then in contact with the exchanger 50 of the condenser 5. This gas stream B hot and humid is initially cooled in the form of a cold and dry gas stream B ', all or part of the water vapor contained in this stream B condensing on the surface of the exchanger 10 of the evaporator 1. The condensation water is recovered by gravity in a receptacle 8 and discharged by means of a water pump or by gravity. Then this cold dry gas stream B 'is heated in the form of a hot and dry gas stream B' circulating in contact with the exchanger 50 of the condenser 5.
Sur la figure 1 , par soucis de simplification, seul l’évaporateur 1 a été représenté, étant précisé que cet évaporateur 1 peut par exemple faire partie intégrante d’un circuit fermé d’une installation de récupération d’énergie (pompe à chaleur) du type de celui de la figure 2 ou par exemple faire partie intégrante d’un circuit fermé d’un déshumidificateur du type de celui de la figure 3.  In FIG. 1, for the sake of simplification, only the evaporator 1 has been shown, it being specified that this evaporator 1 may for example be an integral part of a closed circuit of an energy recovery installation (heat pump). the type of that of Figure 2 or for example be part of a closed circuit of a dehumidifier of the type of that of Figure 3.
L’évaporateur 1 comporte une entrée 1 1 de flux gazeux, une sortie 12 de flux gazeux et un échangeur 10 (non représenté sur la figure 1 ) dans lequel circule le fluide F. Cet évaporateur 1 a pour fonction de refroidir un flux gazeux circulant à travers l’évaporateur entre l’entrée 1 1 et la sortie 12 de l’évaporateur 1 .  The evaporator 1 comprises an inlet 1 1 of gas flow, an outlet 12 of gas flow and an exchanger 10 (not shown in FIG. 1) in which the fluid F circulates. This evaporator 1 serves the function of cooling a circulating gas flow. through the evaporator between the inlet 1 1 and the outlet 12 of the evaporator 1.
Le mélangeur 2 est positionné en amont de l’évaporateur 1 et comprend une entrée principale de flux gazeux 21 , une entrée secondaire de flux gazeux 22 et une sortie de flux gazeux 23, qui est raccordée à l’entrée 1 1 de l’évaporateur 1 .  The mixer 2 is positioned upstream of the evaporator 1 and comprises a main gas flow inlet 21, a secondary gas flow inlet 22 and a gas flow outlet 23, which is connected to the inlet 1 1 of the evaporator 1.
Les moyens de recyclage 3 ont pour fonction de prélever une partie du flux gazeux refroidi C en sortie 12 de l’évaporateur 1 sous la forme d’un flux gazeux recyclé D et de rediriger ce flux gazeux recyclé D jusqu’à l’entrée secondaire 22 du mélangeur 2. Ces moyens de recyclage 3 comportent une canalisation 30 retour raccordant la sortie 12 de l’évaporateur 1 à l’entrée secondaire 22 du mélangeur. Une partie du flux gazeux refroidi C est dirigé dans cette canalisation retour sous la forme dudit flux gazeux recyclé D. La température du flux gazeux refroidi C en sortie de l’évaporateur est ainsi sensiblement identique à la température du flux gazeux recyclé D à l’entrée secondaire 22 du mélangeur 2. The recycling means 3 have the function of taking a part of the cooled gas stream C at the outlet 12 of the evaporator 1 in the form of a recycled gas stream D and of redirecting this recycled gas stream D to the secondary inlet 22 of the mixer 2. These recycling means 3 comprise a return pipe connecting the outlet 12 of the evaporator 1 to the secondary inlet 22 of the mixer. Part of the cooled gas flow C is directed into this return pipe in the form of said recycled gas stream D. The temperature of the cooled gas stream C at the outlet of the evaporator is thus substantially identical to the temperature of the recycled gas stream D at secondary inlet 22 of the mixer 2.
Dans une variante de réalisation, la canalisation retour peut être équipée d’un ventilateur ou compresseur additionnel permettant selon le cas d’aspirer ou de pousser dans ladite canalisation une partie du flux gazeux refroidi C en sortie 12 de l’évaporateur 1 , sous la forme dudit flux gazeux recyclé D, jusqu’à l’entrée secondaire 22 du mélangeur 2.  In an alternative embodiment, the return pipe may be equipped with an additional fan or compressor allowing, as the case may be, to suck or push in said pipe a part of the cooled gas stream C at the outlet 12 of the evaporator 1, under the form of said recycled gas stream D, to the secondary inlet 22 of the mixer 2.
En fonctionnement, le flux gazeux principal A à refroidir, et par exemple un flux d’air pouvant être humide, est mélangé dans le mélangeur 2, en amont de l’évaporateur 1 , avec le flux gazeux recyclé D de plus faible température, de manière à obtenir un flux gazeux secondaire B plus homogène à l’entrée de l’évaporateur 1 . Ensuite ce flux gazeux secondaire B est refroidi au contact de l’échangeur de l’évaporateur 1 dans lequel circule le fluide F absorbant l’énergie thermique du flux gazeux secondaire B. On obtient un flux gazeux refroidi C en sortie de l’évaporateur 1 , une partie de ce flux gazeux refroidi C étant prélevée par les moyens de recyclage 3.  In operation, the main gas stream A to be cooled, and for example a flow of air that can be humid, is mixed in the mixer 2, upstream of the evaporator 1, with the recycled gas stream D of lower temperature, in order to obtain a more homogeneous secondary gas flow B at the inlet of the evaporator 1. Then this secondary gas stream B is cooled in contact with the exchanger of the evaporator 1 in which circulates the fluid F absorbing the thermal energy of the secondary gas stream B. A cooled gas stream C is obtained at the outlet of the evaporator 1 , part of this cooled gas stream C being taken up by the recycling means 3.
Le caractère « plus homogène » du flux gazeux secondaire B se traduit par une température plus homogène dans le flux gazeux secondaire B comparativement à l’écart de température entre le flux gazeux principal A et le flux gazeux recyclé D à l’entrée du mélangeur 2 avec un écart maximum de température dans le flux secondaire (B) (différence de température entre le point le plus chaud et le point le plus froid dans le flux gazeux secondaire) qui est inférieur à 10 % de l’écart de température entre le flux gazeux principal A et le flux gazeux recyclé D et/ou avec un écart maximum de température dans le flux secondaire B qui est inférieur à 5°C, et de préférence inférieur à 2°C. The "more homogeneous" nature of the secondary gas stream B results in a more homogeneous temperature in the secondary gas stream B compared to the temperature difference between the main gas stream A and the recycled gas stream D at the inlet of the mixer 2 with a maximum temperature difference in the secondary flow (B) (temperature difference between the hottest point and the coldest point in the secondary gas flow) which is less than 10% of the temperature difference between the flow main gas A and the recycled gas stream D and / or with a maximum temperature difference in the secondary flow B which is less than 5 ° C, and preferably below 2 ° C.
L’écart maximum de température dans le flux gazeux secondaire B (différence de température entre le point le plus chaud et le point le plus froid dans le flux gazeux secondaire) est ainsi en pratique inférieur, et de préférence très inférieur, à l’écart maximum de température entre le flux gazeux principal A et le flux gazeux recyclé D.  The maximum temperature difference in the secondary gas stream B (difference in temperature between the hottest point and the coldest point in the secondary gas stream) is thus in practice lower, and preferably much lower, away. maximum temperature between the main gas stream A and the recycled gas stream D.
On a représenté sur les figures 4 à 7, différents exemples de réalisation d’un mélangeur 2, étant précisé que ces exemples ne sont pas limitatifs de l’invention et que d’autres structures de mélangeur remplissant la même fonction peuvent être envisagées.  Different embodiments of a mixer 2 are shown in FIGS. 4 to 7, it being specified that these examples are not limiting of the invention and that other mixer structures fulfilling the same function can be envisaged.
Sur la figure 4, le mélangeur 2 comporte une enceinte de mélange 23, dans laquelle est montée au moins une grille 24 ou une plaque perforée 24 qui sépare l’enceinte 23 en deux chambres amont 25 et aval 26, les deux entrées de flux gazeux 21 et 22 étant ménagées dans la chambre amont 25, et l’évaporateur 1 étant monté dans la chambre aval 26.  In FIG. 4, the mixer 2 comprises a mixing chamber 23, in which is mounted at least one grid 24 or a perforated plate 24 which separates the chamber 23 into two upstream and downstream chambers 26, the two gas flow inlets. 21 and 22 being formed in the upstream chamber 25, and the evaporator 1 being mounted in the downstream chamber 26.
En fonctionnement le flux gazeux principal A et le flux gazeux recyclé D sont introduits dans la chambre amont 25. La grille ou la plaque perforée 24 a pour fonction de créer dans la chambre amont 25, sur le parcours des flux gazeux A et D, une perte de charge qui permet de mélanger de manière turbulente les deux flux gazeux A et B et d’obtenir un flux gazeux secondaire B plus homogène qui traverse la grille ou la plaque perforée 24. Ce flux gazeux secondaire B plus homogène sort de la chambre aval 26 en passant au contact de l’évaporateur 1.  In operation, the main gas stream A and the recycled gas stream D are introduced into the upstream chamber 25. The function of the grid or the perforated plate 24 is to create, in the upstream chamber 25, on the path of the gas flows A and D, a pressure drop which allows turbulently mixing the two gas flows A and B and to obtain a more homogeneous secondary gas flow B which passes through the grid or the perforated plate 24. This more homogeneous secondary gas flow B leaves the downstream chamber 26 by contacting the evaporator 1.
Le taux d’ouverture de la grille ou de la plaque perforée 24 (rapport entre la somme des sections des ouvertures de la grille ou de la plaque perforée 24 traversées par le flux gazeux et la surface totale de la grille ou de la plaque perforée 24) et la section des ouvertures de la grille ou de la plaque perforée 24 seront choisis en fonction notamment du degré d’homogénéité souhaité pour le flux d’air secondaire B et des débits des flux A, D et B.  The rate of opening of the grid or perforated plate 24 (ratio between the sum of the sections of the openings of the grid or perforated plate 24 traversed by the gas flow and the total surface of the grid or the perforated plate 24 ) and the openings section of the grid or the perforated plate 24 will be chosen in particular according to the degree of homogeneity desired for the secondary air flow B and flow rates A, D and B flows.
Le mélangeur 2 de la figure 5 a été perfectionné par rapport au mélangeur de la figure 4 en ajoutant un moyen de brassage 27, et notamment un ventilateur dans la chambre amont 25, en amont de la grille ou de la plaque perforée 24. Ce moyen de brassage 27 permet d’améliorer l’homogénéité du flux gazeux secondaire B, en brassant et mélangeant mécaniquement le flux gazeux principal et le flux gazeux recyclé D dans la chambre amont 25. The mixer 2 of FIG. 5 has been improved with respect to mixer of Figure 4 by adding a stirring means 27, including a fan in the upstream chamber 25, upstream of the grid or the perforated plate 24. This stirring means 27 improves the homogeneity of the gas flow secondary B, by stirring and mechanically mixing the main gas stream and the recycled gas stream D in the upstream chamber 25.
Le mélangeur 2 de la figure 6 a été perfectionné par rapport au mélangeur de la figure 4 en ajoutant un moyen de brassage 27, et notamment un ventilateur dans la chambre aval 26, en aval de la grille ou de la plaque perforée 24. Ce moyen de brassage 27 permet d’améliorer l’homogénéité du flux gazeux secondaire B, en brassant et mélangeant mécaniquement le flux gazeux secondaire B dans la chambre aval 26 avant sa sortie du mélangeur 2.  The mixer 2 of FIG. 6 has been improved with respect to the mixer of FIG. 4 by adding a stirring means 27, and in particular a fan in the downstream chamber 26, downstream of the grid or the perforated plate 24. This means brewing device 27 makes it possible to improve the homogeneity of the secondary gas stream B by stirring and mechanically mixing the secondary gas stream B in the downstream chamber 26 before it leaves the mixer 2.
La figure 7 représente un autre exemple de mélangeur 2 qui se différencie de celui de la figure 4 par la forme de la chambre aval 25 qui forme un raccord en Y  FIG. 7 represents another example of mixer 2 which differs from that of FIG. 4 in the shape of the downstream chamber 25 which forms a Y-connection.
Le recyclage du flux d’air D en amont de l’évaporateur permet avantageusement d’abaisser l’écart de température entre l’entrée et la sortie de l’évaporateur. Comparativement à une solution classique sans recyclage et sans mélangeur, il est ainsi possible par exemple d’obtenir en sortie de l’évaporateur 1 un même abaissement de température du flux gazeux (différence de température entre le flux gazeux principal flux A et le flux gazeux refroidi C) avec une température plus élevée du fluide F circulant dans l’évaporateur 1 et sans augmenter les dimensions de l’échangeur de l’évaporateur 1 et/ou avec la même température du fluide F circulant l’évaporateur 1 et en diminuant les dimensions de l’échangeur de l’évaporateur 1 . Comparativement à une solution classique sans recyclage et sans mélangeur, il est également possible par exemple d’obtenir un abaissement de température plus important du flux gazeux (différence de température entre le flux gazeux principal flux A et le flux gazeux refroidi C) sans modifier la température du fluide F circulant dans l’évaporateur ni les dimensions de l’échangeur de l’évaporateur. Recycling the air flow D upstream of the evaporator advantageously makes it possible to lower the temperature difference between the inlet and the outlet of the evaporator. Compared to a conventional solution without recycling and without mixer, it is thus possible for example to obtain at the outlet of the evaporator 1 the same lowering of the temperature of the gas stream (temperature difference between the main gas stream A and the gas flow cooled C) with a higher temperature of the fluid F flowing in the evaporator 1 and without increasing the dimensions of the exchanger of the evaporator 1 and / or with the same temperature of the fluid F circulating the evaporator 1 and decreasing the dimensions of the evaporator exchanger 1. Compared to a conventional solution without recycling and without mixer, it is also possible for example to obtain a greater lowering of the temperature of the gas flow (temperature difference between the main flow stream A and the cooled gas flow C) without modifying the the temperature of the fluid F circulating in the evaporator or the dimensions of the evaporator exchanger.
Le mélange du flux gazeux principal A et du flux gazeux recyclé D par le mélangeur 1 est important afin d’éviter la présence dans le flux gazeux secondaire de points froid notamment à la température du flux gazeux recyclé D et de points chauds notamment à la température du flux gazeux principal A qui pourraient occasionner localement la formation de givre sur l’échangeur de l’évaporateur 1 .  The mixture of the main gas stream A and the recycled gas stream D by the mixer 1 is important in order to avoid the presence in the secondary gas flow of cold spots, especially at the temperature of the recycled gas stream D and hot spots, especially at the temperature a main gas flow A which could locally cause the formation of frost on the exchanger of the evaporator 1.
Pour la mise en œuvre de l’invention, il est préférable que le flux secondaire B en sortie du mélangeur 2 soit le plus homogène possible.  For the implementation of the invention, it is preferable that the secondary flow B at the output of the mixer 2 is as homogeneous as possible.
Plus particulièrement le mélangeur 1 est conçu de manière à obtenir un écart maximum de température dans le flux secondaire B (différence de température entre le point le plus chaud et le point le plus froid dans le flux gazeux secondaire) qui est inférieur à 5°C, et de préférence inférieur à 2°C et/ou de manière à obtenir un écart maximum de température dans le flux secondaire B (différence de température entre le point le plus chaud et le point le plus froid dans le flux gazeux secondaire) qui est inférieur à 10 % de l’écart de température entre le flux gazeux principal A et le flux gazeux recyclé D à l’entrée du mélangeur 2.  More particularly, the mixer 1 is designed to obtain a maximum temperature difference in the secondary flow B (difference in temperature between the hottest point and the coldest point in the secondary gas flow) which is less than 5 ° C. , and preferably less than 2 ° C and / or so as to obtain a maximum temperature difference in the secondary flow B (temperature difference between the hottest point and the coldest point in the secondary gas flow) which is less than 10% of the temperature difference between the main gas stream A and the recycled gas stream D at the inlet of the mixer 2.
La combinaison du recyclage d’une partie du flux gazeux refroidi C et du mélange avec le flux gazeux principal A permet plus particulièrement dans certaines applications, tel que par exemple la récupération d’énergie ou la déshumidification d’abaisser la température du flux gazeux refroidi C à des valeurs proches de 0°C, et notamment inférieures à 5°C, et de préférence à 2°C, en évitant la formation de givre à la surface de l’échangeur de l’évaporateur 1 et sans mettre en œuvre des échangeurs de grande surface.  The combination of recycling a part of the cooled gas stream C and the mixture with the main gas stream A makes it possible more particularly in certain applications, such as, for example, energy recovery or dehumidification, to lower the temperature of the cooled gas stream. C. at values close to 0.degree. C., and especially below 5.degree. C., and preferably at 2.degree. C., avoiding the formation of frost on the surface of the exchanger of the evaporator 1 and without implementing large surface exchangers.
Plus particulièrement dans de nombreuses applications, les moyens de recyclage 3 et le mélangeur 2 sont conçus en sorte d’obtenir un écart maximum de température entre le flux d’air secondaire B et le flux d’air refroidi C qui est suffisamment faible pour éviter la formation de givre à la surface de l’échangeur de l’évaporateur 1 et/ou en sorte d’obtenir un écart maximum de température entre le flux d’air secondaire B et le flux d’air refroidi C qui est inférieur à 5°C et de préférence inférieur à 2°C. More particularly in many applications, the recycling means 3 and the mixer 2 are designed so as to obtain a maximum temperature difference between the secondary air flow B and the cooled air flow C which is low enough to avoid the formation of frost on the surface of the exchanger of the evaporator 1 and / or in order to obtain a gap maximum temperature between the secondary air stream B and the cooled air flow C which is less than 5 ° C and preferably less than 2 ° C.
Egalement la combinaison du recyclage d’une partie du flux gazeux refroidi C et du mélange avec le flux gazeux principal A permet plus particulièrement dans certaines applications, tel que par exemple la déshumidification, de diminuer le poids d’eau dans le flux gazeux refroidi C à des valeurs très faibles, sans mettre en œuvre des échangeurs de grande surface.  Also the combination of recycling a part of the cooled gas stream C and the mixture with the main gas stream A allows more particularly in certain applications, such as for example dehumidification, to reduce the weight of water in the cooled gas stream C at very low values, without using large surface heat exchangers.
Plus particulièrement, les moyens de recyclage 3 et le mélangeur 2 sont conçus en sorte d’obtenir un flux d’air refroidi C présentant un poids d’eau inférieur à 5g/kg d’air sec.  More particularly, the recycling means 3 and the mixer 2 are designed so as to obtain a cooled air flow C having a water weight of less than 5 g / kg of dry air.
Dans une mise en œuvre particulière du système de refroidissement de l’invention, il revient à l’homme du métier, en fonction de l’application, par exemple de régler au cas par cas le débit du flux gazeux recyclé D par rapport notamment au débit du flux gazeux principal A et aux caractéristiques du flux gazeux principal A (notamment température, poids en eau) à l’entrée du mélangeur en fonction notamment de l’écart de température recherché en régime stationnaire entre la température du flux secondaire à l’entrée de l’évaporateur 1 et la température du flux gazeux refroidi C en sortie de l’évaporateur 1 ou en fonction de la température visée, en régime stationnaire, pour le flux gazeux refroidi C en sortie de l’évaporateur 1 , ou en fonction du poids en eau visé, en régime stationnaire, dans le flux gazeux refroidi C en sortie de l’évaporateur 1 .  In a particular implementation of the cooling system of the invention, it is up to the person skilled in the art, depending on the application, for example to adjust case by case the flow rate of the recycled gas stream D with respect in particular to flow rate of the main gas flow A and the characteristics of the main gas flow A (in particular temperature, weight in water) at the inlet of the mixer as a function, in particular, of the temperature deviation sought in steady state between the temperature of the secondary flow at the the inlet of the evaporator 1 and the temperature of the cooled gas flow C at the outlet of the evaporator 1 or as a function of the target temperature, under stationary conditions, for the cooled gas flow C at the outlet of the evaporator 1, or in function the target water weight, in stationary mode, in the cooled gas stream C at the outlet of the evaporator 1.
Dans une autre variante particulière de réalisation, le système de refroidissement peut comporter des moyens de régulation automatique RA du débit du flux gazeux principal A et/ou du débit du flux gazeux recyclé D, ces moyens de régulation automatique RA étant aptes notamment à commander les moyens 1’ de mise en circulation du flux gazeux. Ces moyens de de régulation automatique sont implémentés sous la forme par exemple d’un automate programmable ou de tout autre circuit de commande électronique équivalent. Plus particulièrement, le système de refroidissement peut comporter des premiers moyens de mesure T1 de la température du flux gazeux refroidi C ou du flux gazeux recyclé D (par exemple sonde de température ou équivalent placée dans le flux gazeux refroidi C ou dans le flux gazeux recyclé D), les moyens de régulation automatique RA étant aptes à ajuster automatiquement le débit du flux gazeux principal A et/ou le débit du flux gazeux recyclé D, en fonction de la température mesurée par lesdits premiers moyens de mesure. In another particular variant embodiment, the cooling system may comprise automatic regulation means RA of the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, these automatic regulation means RA being able in particular to control the means 1 'of circulating the gas stream. These automatic regulation means are implemented in the form of, for example, a programmable logic controller or any other equivalent electronic control circuit. More particularly, the cooling system may comprise first measuring means T1 for the temperature of the cooled gas stream C or the recycled gas stream D (for example temperature probe or equivalent placed in the cooled gas stream C or in the recycled gas stream D), the automatic regulation means RA being able to automatically adjust the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of the temperature measured by said first measuring means.
Plus particulièrement, le système de refroidissement peut comporter des deuxièmes moyens de mesure T2 de la température du flux gazeux secondaire B à l’entrée (par exemple sonde de température ou équivalent placée dans le flux gazeux B), les moyens de régulation automatique RA étant aptes à ajuster automatiquement le débit du flux gazeux principale A et/ou le débit du flux gazeux recyclé D, en fonction de la température mesurée par lesdits premiers moyens de mesure et de la température mesurée par lesdits premiers moyens de mesure.  More particularly, the cooling system may comprise second measuring means T2 for the temperature of the secondary gas flow B at the inlet (for example temperature probe or equivalent placed in the gas flow B), the automatic regulation means RA being adapted to automatically adjust the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of the temperature measured by said first measuring means and the temperature measured by said first measuring means.
Plus particulièrement, le système de refroidissement peut comporter des moyens de mesure T3 de la température du flux gazeux principal A à l’entrée du mélangeur 2, les moyens de régulation automatique RA étant aptes à ajuster automatiquement le débit du flux gazeux principal A et/ou le débit du flux gazeux recyclé D, en fonction au moins de la température du flux gazeux principal A mesurée par lesdits moyens de mesure de température, et le cas échéant en en fonction de la température du flux gazeux refroidi mesurée par lesdits premiers moyens de mesure et éventuellement le cas échéant de la température dans le flux gazeux secondaire B mesurée par lesdits deuxièmes moyens de mesure.  More particularly, the cooling system may comprise means T3 for measuring the temperature of the main gas stream A at the inlet of the mixer 2, the automatic regulation means RA being able to automatically adjust the flow rate of the main gas stream A and / or or the flow rate of the recycled gas stream D, as a function of at least the temperature of the main gas stream A measured by the said temperature measuring means, and, if appropriate, as a function of the temperature of the cooled gas flow measured by the said first means of measuring and optionally, if appropriate, the temperature in the secondary gas stream B measured by said second measuring means.
Plus particulièrement, le système de refroidissement peut comporter des premiers moyens de mesure H1 du poids en eau dans le flux gazeux refroidi C ou dans le flux gazeux recyclé D (par exemple sonde hygrométrique ou équivalent placée dans le flux gazeux C ou dans le flux gazeux recyclé D), les moyens de régulation automatique RA étant aptes à ajuster automatiquement le débit du flux gazeux principal A et/ou le débit du flux gazeux recyclé D, en fonction du poids en eau mesuré par lesdits premiers moyens de mesure. More particularly, the cooling system may comprise first means H1 for measuring the weight in water in the cooled gas stream C or in the recycled gas stream D (for example a humidity probe or equivalent placed in the gas stream C or in the gas stream recycled D), the automatic regulation means RA being able to automatically adjusting the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of the weight in water measured by said first measuring means.
Plus particulièrement, le système de refroidissement peut comporter des deuxièmes moyens de mesure H2 du poids en eau dans le flux gazeux principal A, par exemple sonde hygrométrique ou équivalent placée dans le flux gazeux principal A, les moyens de régulation automatique RA étant aptes à ajuster automatiquement le débit du flux gazeux principal A et/ou le débit du flux gazeux recyclé D, en fonction au moins du poids eau mesuré par lesdits deuxièmes moyens de mesure.  More particularly, the cooling system may comprise second means H2 for measuring the water weight in the main gas stream A, for example a hygrometric probe or equivalent placed in the main gas stream A, the automatic regulation means RA being able to adjust automatically the flow rate of the main gas stream A and / or the flow rate of the recycled gas stream D, as a function of at least the water weight measured by said second measuring means.
On a représenté sur la figure 8, une variante de réalisation d’une installation de déshumidification qui permet de produire en sortie un flux gazeux F déshumidifié, et notamment un flux d’air F déshumidifié à une température Tf + DT, à partir d’un flux gazeux humide A’, et notamment d‘un flux d’air humide, à une température Te.  FIG. 8 shows an alternative embodiment of a dehumidification installation which makes it possible to produce a dehumidified gaseous stream F, and in particular a dehumidified airflow F at a temperature Tf + DT, from a wet gas stream A ', and in particular a moist air stream, at a temperature Te.
Cette installation de déshumidification comportant un système de refroidissement avec mélangeur 2 et évaporateur 1 tel que précédemment décrit, et un échangeur G , par exemple échangeur enthalpique de type double flux ou de type caloduc, qui permet de transférer, en amont du mélangeur 2, une partie de l’énergie thermique du flux gazeux A’ humide vers le flux gazeux E qui n’est pas recyclé en sortie de l’évaporateur 1 , de manière à produire ledit flux d’air déshumidifié F à une température Tf + DT. Le flux gazeux principal A à l’entrée du mélangeur 2 du système de refroidissement correspond au flux gazeux A’ humide refroidi à une température Tc- DT après passage dans l’échangeur G.  This dehumidification installation comprising a cooling system with mixer 2 and evaporator 1 as previously described, and a heat exchanger G, for example a heat exchanger of the double flow or heat pipe type, which makes it possible to transfer, upstream of the mixer 2, a part of the thermal energy of the gaseous flow A 'wet towards the gaseous flow E which is not recycled at the outlet of the evaporator 1, so as to produce said flow of dehumidified air F at a temperature Tf + DT. The main gas stream A at the inlet of the mixer 2 of the cooling system corresponds to the wet gas stream A 'cooled to a temperature Tc-DT after passing through the exchanger G.
A titre d’exemple uniquement, la température Te peut être de 30°C ; la température Tf peut être de 4°C ; La différence de température DT peut être de 12°C. Le flux gazeux déshumidifié F est à une température de 16°C (Tf + DT). Dans ce cas, le dispositif de refroidissement de l’invention n’a besoin de refroidir le flux gazeux principal A que de 18°C (Te- DT) à 4°c (Tf), ce qui représente une économie d’énergie importante. La mise en œuvre de cet échangeur G permet donc avantageusement de réduire la dépense énergétique pour obtenir la déshumidification. By way of example only, the temperature Te can be 30 ° C; the temperature Tf can be 4 ° C; The temperature difference DT may be 12 ° C. The dehumidified gas stream F is at a temperature of 16 ° C (Tf + DT). In this case, the cooling device of the invention needs to cool the main gas stream A only from 18 ° C (Te-DT) to 4 ° c (Tf), which represents a significant energy saving . The implementation of this exchanger G therefore advantageously reduces energy expenditure for dehumidification.

Claims

REVENDICATIONS
1. Système de refroidissement d’un flux gazeux principal (A), comportant un évaporateur (1 ) qui comprend une entrée (11 ), une sortie (12) et un échangeur (10) dans lequel circule un fluide (F), et qui permet de refroidir un flux gazeux (B) circulant à travers l’évaporateur entre l’entrée et la sortie de l’évaporateur, un mélangeur (2) comprenant une entrée principale (21 ) destinée en fonctionnement à être alimentée avec le flux gazeux principal (A), une entrée secondaire (22) et une sortie (23) qui est raccordée à l’entrée (11 ) de l’évaporateur (1 ), et des moyens de recyclage (3) d’une partie du flux gazeux refroidi (C), qui comportent une canalisation (30) raccordant la sortie (12) de l’évaporateur (1 ) à l’entrée secondaire (22) du mélangeur ( 2) et qui ont pour fonction de prélever une partie du flux gazeux refroidi (C) en sortie de l’évaporateur (1 ) sous la forme d’un flux gazeux recyclé (D) et de rediriger ce flux gazeux recyclé (D) jusqu’à l’entrée secondaire (22) du mélangeur, ledit mélangeur (2) permettant en fonctionnement de mélanger le flux gazeux principal (A) et le flux gazeux recyclé (D) de plus faible température, de manière à obtenir à l’entrée de l’évaporateur (1 ) un flux gazeux secondaire (B) plus homogène avec un écart maximum de température dans le flux secondaire (B) qui est inférieur à 10 % de l’écart de température entre le flux gazeux principal (A) et le flux gazeux recyclé (D) et/ou avec un écart maximum de température dans le flux secondaire (B) qui est inférieur à 5°C, et de préférence à 2°C. A system for cooling a main gas stream (A), comprising an evaporator (1) which comprises an inlet (11), an outlet (12) and an exchanger (10) in which a fluid (F) circulates, and which makes it possible to cool a gas stream (B) circulating through the evaporator between the inlet and the outlet of the evaporator, a mixer (2) comprising a main inlet (21) intended for operation to be fed with the gas flow main (A), a secondary inlet (22) and an outlet (23) which is connected to the inlet (11) of the evaporator (1), and means for recycling (3) a part of the gas flow cooled (C), which comprise a pipe (30) connecting the outlet (12) of the evaporator (1) to the secondary inlet (22) of the mixer (2) and whose function is to take a part of the gas flow cooled (C) at the outlet of the evaporator (1) in the form of a recycled gas stream (D) and redirecting this recycled gas stream (D) to the secondary inlet (22) of the mixer, said mixer (2), in operation, for mixing the main gas stream (A) and the recycled gas stream (D) of a lower temperature, so as to obtaining at the inlet of the evaporator (1) a secondary gas stream (B) more homogeneous with a maximum temperature difference in the secondary stream (B) which is less than 10% of the temperature difference between the gas stream main (A) and the recycled gas stream (D) and / or with a maximum temperature difference in the secondary stream (B) which is less than 5 ° C, and preferably 2 ° C.
2. Système de refroidissement selon la revendication 1 , dans lequel le mélangeur (2) comporte une paroi perforée (24) ou une grille (24) interposée sur le parcours du flux gazeux principal (A) et du flux gazeux recyclé (B). 2. Cooling system according to claim 1, wherein the mixer (2) comprises a perforated wall (24) or a grid (24) interposed on the path of the main gas stream (A) and the recycled gas stream (B).
3. Système de refroidissement selon l’une quelconque des revendications précédentes, dans lequel le mélangeur (2) comporte un moyen de brassage (27) et plus particulièrement un ventilateur, permettant de brasser et de mélanger le flux gazeux principal (A) et le flux gazeux recyclé (D) et/ou comporte un moyen de brassage (27) et plus particulièrement un ventilateur, permettant de brasser et de mélanger le flux gazeux secondaire (B) avant sa sortie du mélangeur (2). 3. Cooling system according to any one of the preceding claims, wherein the mixer (2) comprises a stirring means (27) and more particularly a fan, for stirring and mixing the main gas stream (A) and the recycled gas stream (D) and / or comprises a stirring means (27) and more particularly a fan, for stirring and mixing the secondary gas stream (B) before leaving the mixer (2).
4. Système de refroidissement selon l’une quelconque des revendications précédentes, comportant des moyens de régulation automatique (RA) du débit du flux gazeux principal (A) et/ou du débit du flux gazeux recyclé (D). 4. Cooling system according to any one of the preceding claims, comprising means for automatic regulation (RA) of the flow rate of the main gas stream (A) and / or the flow rate of the recycled gas stream (D).
5. Système de refroidissement selon la revendication 4, comportant des premiers moyens de mesure (T1 ) de la température du flux gazeux refroidi (C) ou du flux gazeux recyclé (D), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou du débit du flux gazeux recyclé (D), en fonction de la température mesurée par lesdits premiers moyens de mesure. 5. Cooling system according to claim 4, comprising first measuring means (T1) of the temperature of the cooled gas stream (C) or the recycled gas stream (D), the automatic regulation means being able to automatically adjust the flow rate. the main gas flow (A) and / or the flow rate of the recycled gas stream (D), as a function of the temperature measured by said first measuring means.
6. Système de refroidissement selon la revendication 4 ou 5, comportant des deuxièmes moyens de mesure (T2) de la température du flux gazeux secondaire (B), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins de la température mesurée par lesdits deuxièmes moyens de mesure (T2). 6. Cooling system according to claim 4 or 5, comprising second means (T2) for measuring the temperature of the secondary gas flow (B), the automatic regulation means being able to automatically adjust the flow rate of the main gas flow (A). and / or the flow rate of the recycled gas stream (D), as a function of at least the temperature measured by said second measuring means (T2).
7. Système de refroidissement selon les revendications 5 et 6, dans lequel les moyens de régulation automatique sont aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins de la température mesurée par lesdits premiers moyens de mesure (T1 ) et de la température mesurée par lesdits deuxième moyens de mesure (T2). 7. Cooling system according to claims 5 and 6, wherein the automatic control means are adapted to automatically adjust the flow of the main gas stream (A) and / or the flow rate of the recycled gas stream (D), depending at least the temperature measured by said first measuring means (T1) and the temperature measured by said second measuring means (T2).
8. Système de refroidissement selon l’une quelconque des revendications 4 à 7, comportant des moyens de mesure (T3) de la température du flux gazeux principal (A), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins de la température du flux gazeux principal (A) mesurée par lesdits moyens de mesure de température (T3). 8. Cooling system according to any one of claims 4 to 7, comprising means for measuring (T3) the temperature of the main gas stream (A), the automatic control means being adapted to automatically adjust the flow of the gas stream main (A) and / or the flow rate of the recycled gas stream (D), as a function of at least the temperature of the main gas stream (A) measured by said temperature measuring means (T3).
9. Système de refroidissement selon l’une quelconque des revendications 4 à 8, comportant des premiers moyens de mesure (H1 ) du poids en eau dans le flux gazeux refroidi (C) ou dans le flux gazeux recyclé (D), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principal (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins du poids eau mesuré par lesdits premiers moyens de mesure (H1 ). 9. Cooling system according to any one of claims 4 to 8, comprising first means (H1) for measuring the weight in water in the cooled gas stream (C) or in the recycled gas stream (D), the means for automatic regulation being able to automatically adjust the flow rate of the main gas stream (A) and / or the flow rate of the recycled gas stream (D), as a function of at least the water weight measured by said first measuring means (H1).
10. Système de refroidissement selon l’une quelconque des revendications 4 à 9, comportant des deuxièmes moyens de mesure (H2) du poids en eau dans le flux gazeux principal (A), les moyens de régulation automatique étant aptes à ajuster automatiquement le débit du flux gazeux principale (A) et/ou le débit du flux gazeux recyclé (D), en fonction au moins du poids eau mesuré par lesdits deuxièmes moyens de mesure (H2). 10. Cooling system according to any one of claims 4 to 9, comprising second means (H2) for measuring the weight in water in the main gas stream (A), the automatic regulation means being able to automatically adjust the flow rate. the main gas stream (A) and / or the flow rate of the recycled gas stream (D), as a function of at least the water weight measured by said second measuring means (H2).
11. Système de refroidissement selon l’une quelconque des revendications précédentes, dans lequel la température du flux gazeux recyclé (D) à l’entrée secondaire (22) du mélangeur (2) est sensiblement identique à la température du flux gazeux refroidi (C) en sortie de l’évaporateur (1 ). 11. Cooling system according to any one of the preceding claims, wherein the temperature of the recycled gas stream (D) at the secondary inlet (22) of the mixer (2) is substantially identical to the temperature of the cooled gas stream (C ) at the outlet of the evaporator (1).
12. Système de refroidissement selon l’une quelconque des revendications précédentes, dans lequel les moyens de recyclage (3), le mélangeur (2), et le cas échéant les moyens de régulation automatique, sont aptes à produire ledit flux gazeux secondaire (B) et ledit flux gazeux refroidi (C) avec un écart maximum de température entre le flux gazeux secondaire (B) et le flux gazeux refroidi (C) qui est suffisamment faible pour éviter la formation de givre à la surface de l’échangeur de l’évaporateur (1 ). Cooling system according to one of the preceding claims, in which the recycling means (3), the mixer (2) and, if appropriate, the automatic control means, are capable of producing said secondary gas stream (B). ) and said cooled gas stream (C) with a maximum temperature difference between the secondary gas stream (B) and the cooled gas stream (C) which is sufficiently small to prevent frost formation on the surface of the heat exchanger. evaporator (1).
13. Système de refroidissement selon l’une quelconque des revendications précédentes, dans lequel les moyens de recyclage (3), le mélangeur (2), et le cas échéant les moyens de régulation automatique, sont aptes à produire ledit flux gazeux refroidi (C) à une température supérieure à 0°C et inférieure à 5°C. 13. Cooling system according to any one of the preceding claims, wherein the recycling means (3), the mixer (2), and optionally the automatic control means, are adapted to produce said cooled gas stream (C ) at a temperature above 0 ° C and below 5 ° C.
14. Système de refroidissement selon l’une quelconque des revendications précédentes, dans lequel les moyens de recyclage (3), le mélangeur (2), et le cas échéant les moyens de régulation automatique, sont aptes à produire le flux gazeux secondaire (B) et le flux gazeux refroidi (C) avec un écart maximum de température entre le flux gazeux secondaire (B) et le flux gazeux refroidi (C) qui est inférieure à 5°C et de préférence inférieur à 2°C. 14. Cooling system according to any one of the preceding claims, wherein the recycling means (3), the mixer (2), and optionally the automatic control means, are able to produce the secondary gas flow (B ) and the cooled gas stream (C) with a maximum temperature difference between the secondary gas stream (B) and the cooled gas stream (C) which is less than 5 ° C and preferably less than 2 ° C.
15. Système de refroidissement selon l’une quelconque des revendications précédentes, dans lequel les moyens de recyclage (3), le mélangeur (2), et le cas échéant les moyens de régulation automatique, sont aptes à produire le flux gazeux refroidi (C) avec un poids d’eau inférieur à 5 g/kg. 15. Cooling system according to any one of the preceding claims, wherein the recycling means (3), the mixer (2), and optionally the automatic control means, are able to produce the cooled gas stream (C) with a water weight of less than 5 g / kg.
16. Utilisation du système de refroidissement de l’une quelconque des revendications précédentes pour refroidir un flux gazeux (A), et notamment un flux d’air. 16. Use of the cooling system of any one of the preceding claims for cooling a gas flow (A), and in particular a flow of air.
17. Procédé de refroidissement d’un flux gazeux principal (A), dans lequel on mélange dans un mélangeur (2) le flux gazeux principal (A) avec un flux gazeux recyclé (D) de plus faible température, de manière à obtenir un flux gazeux secondaire (B) plus homogène avec un écart maximum de température dans le flux secondaire (B) qui est inférieur à 10 % de l’écart de température entre le flux gazeux principal (A) et le flux gazeux recyclé (D) et/ou avec un écart maximum de température dans le flux secondaire (B) inférieur à 5°C, et de préférence à 2°C, et on refroidit ce flux gazeux secondaire (B) au contact de l’échangeur d’un évaporateur (1 ) dans lequel circule un fluide (F) absorbant l’énergie thermique du flux gazeux secondaire (B), de manière à obtenir en sortie de l’évaporateur (1 ) un flux gazeux refroidi (C), une partie de ce flux gazeux refroidi (C) étant prélevée au moyen d’une canalisation (30) raccordant la sortie (12) de l’évaporateur (1 ) à une entrée (22) du mélangeur (2) pour former ledit flux gazeux recyclé (D). 17. A method of cooling a main gas stream (A), wherein the main gas stream (A) is mixed in a mixer (2) with a recycled gas stream (D) of a lower temperature, so as to obtain a secondary gas stream (B) more homogeneous with a maximum temperature difference in the secondary stream (B) which is less than 10% of the temperature difference between the main gas stream (A) and the recycled gas stream (D) and / or with a maximum temperature difference in the secondary stream (B) of less than 5 ° C, and preferably at 2 ° C, and this secondary gas stream (B) is cooled in contact with the exchanger of an evaporator ( 1) in which circulates a fluid (F) absorbing the thermal energy of the secondary gas stream (B), so as to obtain at the outlet of the evaporator (1) a cooled gas stream (C), a part of this gas stream cooled (C) being withdrawn by means of a pipe (30) connecting the outlet (12) of the aporator (1) at an inlet (22) of the mixer (2) to form said recycled gas stream (D).
18. Procédé de refroidissement selon la revendication 17, dans lequel l’écart maximum de température entre le flux gazeux secondaire (B) et le flux gazeux refroidi (C) est suffisamment faible pour éviter la formation de givre à la surface de l’échangeur de l’évaporateur (1 ). 18. Cooling method according to claim 17, wherein the maximum temperature difference between the secondary gas stream (B) and the cooled gas stream (C) is sufficiently low to prevent frost formation on the surface of the exchanger. of the evaporator (1).
19. Procédé de refroidissement selon l’une quelconque des revendications 17 à 18, dans lequel le flux gazeux refroidi (C) est à une température supérieure à 0°C et inférieure à 5°C, et de préférence inférieure à 2°C. 19. The method of cooling according to any one of claims 17 to 18, wherein the cooled gas stream (C) is at a temperature above 0 ° C and below 5 ° C, and preferably below 2 ° C.
20. Procédé de refroidissement selon l’une quelconque des revendications 17 à 19, dans lequel l’écart maximum de température entre le flux gazeux secondaire (B) et le flux gazeux refroidi (C) est inférieur à 5°C et de préférence inférieur à 2°C. 20. The method of cooling according to any one of claims 17 to 19, wherein the maximum temperature difference between the secondary gas stream (B) and the cooled gas stream (C) is less than 5 ° C and preferably lower at 2 ° C.
21. Procédé de refroidissement selon l’une quelconque des revendications 17 à 20, dans lequel le poids d’eau du flux gazeux refroidi (C) en est inférieur à 5 g/kg. 21. The method of cooling according to any one of claims 17 to 20, wherein the weight of water of the cooled gas stream (C) is less than 5 g / kg.
22. Procédé de refroidissement selon l’une quelconque des revendications 17 à 21 , dans lequel le flux gazeux principal (A) à l’entrée du mélangeur (2) est un flux gazeux principal (A’) qui est refroidi, avant son entrée dans le mélangeur (2), au moyen d’une partie (E) du flux gazeux qui, en sortie de l’évaporateur (1 ), est refroidie et non recyclée vers le mélangeur (2). 22. A method of cooling according to any one of claims 17 to 21, wherein the main gas stream (A) at the inlet of the mixer (2) is a main gas stream (A ') which is cooled, before its entry in the mixer (2), by means of a portion (E) of the gas stream which, at the outlet of the evaporator (1), is cooled and not recycled to the mixer (2).
23. Procédé de refroidissement selon l’une quelconque des revendications 17 à 22, dans lequel la température du flux gazeux recyclé (D) à l’entrée secondaire (22) du mélangeur (2) est sensiblement identique à la température du flux gazeux refroidi (C) en sortie de l’évaporateur (1 ). 23. The method of cooling according to any one of claims 17 to 22, wherein the temperature of the recycled gas stream (D) at the secondary inlet (22) of the mixer (2) is substantially identical to the temperature of the cooled gas flow. (C) at the outlet of the evaporator (1).
24. Installation de récupération d’énergie dans flux gazeux comportant un système de refroidissement de l’une quelconque des revendications 1 à 15 et des moyens (4 ,5) permettant de récupérer au moins une partie de l’énergie thermique dans la fluide (F) après passage de ce fluide dans l’évaporateur (1 ). 24. Apparatus for recovering energy in a gas stream comprising a cooling system of any one of claims 1 to 15 and means (4, 5) for recovering at least a portion of the thermal energy in the fluid (F) after passage of this fluid in the evaporator (1).
25. Installation de déshumidification d’un flux gazeux comportant un système de refroidissement de l’une quelconque des revendications25. Dehumidification installation of a gas stream comprising a cooling system of any one of the claims
1 à 15, et plus particulièrement comportant des moyens (4, 5, 8, 9) de récupération de l’eau de condensation à la surface de l’échangeur de l’évaporateur (1 ). 1 to 15, and more particularly comprising means (4, 5, 8, 9) for recovering the condensation water at the surface of the exchanger of the evaporator (1).
26. Installation de déshumidification d’un flux gazeux selon la revendication 25, comportant en outre un échangeur (G), qui permet de produire le flux gazeux principal (A) à l’entrée du mélangeur (2) à partir d’un premier flux gazeux principal (A’) qui est refroidi, avant son entrée dans le mélangeur (2), en transférant, en amont du mélangeur (2), une partie de l’énergie thermique du premier flux gazeux (A’) vers la partie (E) de flux gazeux qui, en sortie de l’évaporateur (1 ) n’est pas recyclée vers le mélangeur (2). 26. Apparatus for dehumidifying a gas stream according to claim 25, further comprising an exchanger (G), which makes it possible to produce the main gas stream (A) at the inlet of the mixer (2) from a first main gas stream (A ') which is cooled, before it enters the mixer (2), transferring, upstream of the mixer (2), a portion of the thermal energy of the first gas stream (A') to the part (E) gas stream which, at the outlet of the evaporator (1) is not recycled to the mixer (2).
PCT/EP2018/083564 2017-12-07 2018-12-05 System and method for cooling a gas stream by means of an evaporator WO2019110628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761741 2017-12-07
FR1761741A FR3074889B1 (en) 2017-12-07 2017-12-07 SYSTEM AND METHOD FOR COOLING A GAS FLOW USING AN EVAPORATOR

Publications (1)

Publication Number Publication Date
WO2019110628A1 true WO2019110628A1 (en) 2019-06-13

Family

ID=61132682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/083564 WO2019110628A1 (en) 2017-12-07 2018-12-05 System and method for cooling a gas stream by means of an evaporator

Country Status (2)

Country Link
FR (1) FR3074889B1 (en)
WO (1) WO2019110628A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114838413A (en) * 2022-03-04 2022-08-02 青岛海尔空调器有限总公司 Control method and device for air conditioner and air conditioner
US11635226B1 (en) * 2022-05-26 2023-04-25 Gustavo Puga HVAC air flow mixing system and method of use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2198449A (en) * 1937-11-13 1940-04-23 Worthington Pump & Mach Corp Repass air conditioning system
US5267451A (en) * 1992-07-22 1993-12-07 Valeo Climate Control Corporation Evaporating assembly
CN1314565A (en) * 2001-04-13 2001-09-26 清华大学 Method and device for mixing wind and anti-freezing of ventilator units
US20060118291A1 (en) * 2004-12-02 2006-06-08 Denso Corporation Air conditioner for vehicle capable of immediately cooling vehicle compartment
WO2007130020A1 (en) * 2006-05-01 2007-11-15 Carrier Corporation Indoor air quality improvement by re-evaporation control
WO2012149112A1 (en) * 2011-04-29 2012-11-01 Carrier Corporation Air conditioner exhaust recycling
US9835351B1 (en) * 2017-03-15 2017-12-05 Kojimachi Engineering Co., Ltd. Air conditioner controlling method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2198449A (en) * 1937-11-13 1940-04-23 Worthington Pump & Mach Corp Repass air conditioning system
US5267451A (en) * 1992-07-22 1993-12-07 Valeo Climate Control Corporation Evaporating assembly
CN1314565A (en) * 2001-04-13 2001-09-26 清华大学 Method and device for mixing wind and anti-freezing of ventilator units
US20060118291A1 (en) * 2004-12-02 2006-06-08 Denso Corporation Air conditioner for vehicle capable of immediately cooling vehicle compartment
WO2007130020A1 (en) * 2006-05-01 2007-11-15 Carrier Corporation Indoor air quality improvement by re-evaporation control
WO2012149112A1 (en) * 2011-04-29 2012-11-01 Carrier Corporation Air conditioner exhaust recycling
US9835351B1 (en) * 2017-03-15 2017-12-05 Kojimachi Engineering Co., Ltd. Air conditioner controlling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114838413A (en) * 2022-03-04 2022-08-02 青岛海尔空调器有限总公司 Control method and device for air conditioner and air conditioner
US11635226B1 (en) * 2022-05-26 2023-04-25 Gustavo Puga HVAC air flow mixing system and method of use

Also Published As

Publication number Publication date
FR3074889A1 (en) 2019-06-14
FR3074889B1 (en) 2020-06-26

Similar Documents

Publication Publication Date Title
EP1599352B1 (en) Ventilation/heating and/or air conditioning device for the passenger compartment of a motor vehicle with simultaneous cooling of air and coolant
US20060179681A1 (en) Heat pump type drying apparatus drying apparatus and drying method
US20090151370A1 (en) Test chamber with temperature and humidity control
FR2694076A1 (en) Refrigeration system and its operating method.
CN1492987A (en) Ultra-low temperature closed-loop recirculating gas chilling system
CN102057243A (en) Evaporative cooling tower enhancement through cooling recovery
CN103314152A (en) A heat pump system for a laundry dryer and a method for operating a heat pump system of a laundry dryer
CN106168389A (en) A kind of band Intermediate Heat Exchanger quasiconductor degree of depth dehumidifier
WO2019110628A1 (en) System and method for cooling a gas stream by means of an evaporator
CN105962005B (en) Energy-saving control method for two-stage compression type heat pump vacuum freeze drying combined equipment
EP0609140B1 (en) Process and plant for making snow
CN212538130U (en) Indirect evaporation air cooling device
EP2551402A1 (en) A heat pump system for a laundry dryer
FR2909440A1 (en) Heat pump installation for e.g. hot water distribution, in building, has pumping unit to circulate exterior fluid in exchanging system along determined direction such that fluid passes via zones for being cooled and heated, respectively
WO2013075997A1 (en) A laundry dryer with a heat pump system
CN207438774U (en) Dehumidifier
CN105928326B (en) Band flash vessel air injection enthalpy-increasing heat pump vacuum freeze drying unit equipment energy-saving control method
FR3033632B1 (en) THERMODYNAMIC HEAT TRANSFER DEVICE BY STEAM COMPRESSION (MONO OR MULTI-STAGE) AND PHASE CHANGES, REVERSIBLE AT HIGH YIELD.
EP3502577B1 (en) Air treatment unit comprising an absorbing device and associated method
KR20050106260A (en) Heat-pump type air conditioner
US20140096562A1 (en) Cooling system including a controlled atmospheric heat rejection cycle with water re-capture
CN105918770B (en) energy-saving control method for enhanced vapor injection heat pump vacuum freeze drying combined equipment with economizer
KR102137574B1 (en) Heat pump dryer
EP2586907B1 (en) A laundry dryer with a heat pump system and air recirculation
CA2630886A1 (en) Method and system for recovering energy through air conditioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18811558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18811558

Country of ref document: EP

Kind code of ref document: A1