La présente invention concerne les moyens de connexion des circuitsThe present invention relates to the connection means of the circuits
intégrés sur des circuits électriques et concerne en particulier un procédé de connexion d'une puce électronique sur un dispositif d'identification radiofréquence. Dans le domaine des semi conducteurs, les circuits intégrés ou puces électroniques de très petite taille sont largement utilisés dans de nombreux domaines dont celui des cartes à puces, celui des étiquettes et cartes d'identification radiofréquence appelé communément le domaine du RFID. Pour être reliés aux circuits électriques, les circuits intégrés comportent plusieurs moyens de contact aptes à venir se connecter aux plages de contact du circuit, leur nombre variant en fonction de l'application. integrated on electrical circuits and particularly concerns a method of connecting an electronic chip to a radio frequency identification device. In the field of semiconductors, very small integrated circuits or microchips are widely used in many fields including that of smart cards, that of labels and radio frequency identification cards commonly called the field of RFID. To be connected to the electric circuits, the integrated circuits comprise several contact means able to come to connect to the contact pads of the circuit, their number varying according to the application.
Dans le domaine du RFID, le nombre de contacts du circuit intégré varie généralement entre 2, 3 et 4. Le processus de fabrication d'un semi-conducteur est basé sur l'utilisation d'un procédé photographique complexe pour réaliser le masque de chaque couche. Selon la complexité du circuit intégré, il peut y avoir jusqu'à 20 à 30 couches. Sur les dernières couches sont disposées des niveaux de métallisation qui consiste à déposer de l'aluminium ou du cuivre. Le dernier niveau de métallisation situé à la périphérie du circuit intégré sur la dernière couche constitutive de la puce est réalisé lors des dernières étapes de fabrication du circuit intégré et comprend des plaques conductrices. Ces plaques conductrices seront utilisées ensuite pour recevoir les moyens de contact qui serviront à connecter le circuit intégré sur son circuit électrique de destination. La dernière étape de fabrication du circuit intégré est la réalisation d'une couche de passivation sur la face du circuit intégré où affleurent les plaques conductrices. Cette couche de passivation consiste en une couche de matière isolante d'épaisseur constante de quelques microns et comportant des ouvertures situées en regard des plaques conductrices de façon à permettre un contact ohmique de résistance électrique quasi nulle avec le moyen de connexion. Une des techniques utilisées pour effectuer les connexions électriques entre la puce électronique et le circuit sur lequel il s'insère consiste à utiliser le câblage par fil (traduction de wire bonding). En référence à la figure 1, le câblage est simplement réalisé par des fils 14 (ou bond) soudés entre les deux plots de connexion prévus à cet usage sur chacun des éléments à connecter ensemble. La soudure des fils en aluminium, en or ou en cuivre est généralement réalisée par ultrasons. Le diamètre du fil est de l'ordre de 25 m (micromètres). Afin de protéger les fils, la puce 10 est généralement encapsulé dans un boîtier 16, face active sur le dessus. Les fils sont câblés sur les plaques conductrices 12 affleurantes à la face active de la puce 10. La seconde extrémité des fils est connectée à des pattes de connexion rigide 18 solidaires du boîtier 16 et destinées à être soudées au circuit de destination. Ainsi, les moyens de contacts entre la puce et les plots de connexion du circuit de destination comprennent d'une part des contacts filaires conducteurs entre les plaques conductrices situées sur le dernier niveau de métallisation de la puce et les pattes rigides 18 du boîtier 16 et d'autre part des soudures entre les pattes rigides 18 et les plots de connexion du circuit de destination. Ce moyen de contact a l'avantage de procurer grâce aux pattes 18 et au boîtier 16 de grosses tailles par rapport à la puce. Le boîtier 16 généralement en matière plastique apporte une inertie thermique supplémentaire importante et permet de limiter les variations de température de la puce. L'inconvénient d'un tel montage réside dans le fait qu'il est coûteux. De plus, son épaisseur est importante du fait des fils de connexion, du boîtier et des pattes. Ainsi, la taille d'un tel montage le rend inadapté aux cartes à puces, aux étiquettes et cartes d'identification radiofréquence qui présente une épaisseur inférieure à 1 mm. Enfin, la taille des fils demande une précision élevée lors du montage, de l'ordre de quelques dizaines de micromètres. Une deuxième façon de réaliser les montages de circuits intégrés ou puces électroniques est basée sur une autre technique d'assemblage dans laquelle la puce est retournée, il s'agit de la technique "Flip Chip". Cette technique se caractérise par une connexion directe de la face active de la puce sur le circuit électrique de destination, contrairement à la technique de câblage de type "vire Bonding" et est représentée en coupe sur la figure 2. Cette technique consiste à venir déposer une boule de matériau conducteur 20 appelé communément "bump" généralement en or sur chacune des plaques conductrices 12 de la puce 10 dans les ouvertures d'une couche électriquement isolante 34 qui représente la couche de passivation située sur la face active de la puce. La puce est alors connectée par sa face active sur le circuit électrique de destination 22 par contact des boules de matériau conducteur sur les plages de contact 24 du circuit électrique ; les plages de contact étant placées de façon à reproduire l'emplacement des boules de matériau conducteur. Pour une telle technique de montage, les moyens de contact entre la puce et les plots de connexion du circuit de destination consiste en une boule de matériaux conducteurs en contact entre les deux parties. L'inconvénient d'un tel montage réside dans la précision du positionnement, la taille des boules de matériau conducteur et celle des plaques conductrices de la puce étant de l'ordre de 100 m, cela rend le montage délicat. De plus, l'étape qui consiste à venir déposer les boules de matériau conducteur représente un coût non négligeable dans le procédé de fabrication des circuits intégrés ou puces électroniques. Les deux techniques traditionnelles de montage utilisées pour la connexion des puces électroniques et décrites précédemment consiste donc à réaliser une liaison ohmique et nécessite l'ajout d'un matériau conducteur pour le contact entre la puce et le circuit électrique sur lequel elle s'insère. C'est pourquoi le but de l'invention est de fournir un procédé de montage de la puce sur un circuit électrique ne nécessitant pas de moyens de contacts ajoutés à la puce pour réaliser la connexion entre la puce et le circuit électrique. L'objet de l'invention est donc un procédé de connexion d'une puce électronique sur des plots de connexion d'un circuit électrique et destinés à recevoir la puce, la puce étant munie de deux plaques conductrices situées sur la dernière couche constitutive de la puce, au moins une des plaques étant totalement recouverte d'une couche électriquement isolante, le procédé comprenant les étapes suivantes : - déposer une matière diélectrique adhésive sur le circuit entre les plots de connexion, de façon à maintenir la puce électronique en position fixe par rapport au circuit, - positionner la puce électronique, sur le circuit de manière à ce que les plaques conductrices soient en regard des plots de connexion du circuit électrique, de façon à créer au moins une liaison capacitive entre la puce et le circuit électrique constituée de la plaque conductrice, de la couche électriquement isolante recouvrant totalement la plaque et du plot de connexion. Les buts, objets et caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description qui suit faite en référence aux dessins dans lesquels : La figure 1 représente une technique de montage des puces utilisant des fils conducteurs, La figure 2 représente une technique de montage des des puces utilisant les bumps , La figure 3 représente une vue en coupe de la puce selon 35 l'invention, La figure 4 représente une vue en coupe du support du circuit électrique après l'étape de dépôt de la matière diélectrique, La figure 5 représente une vue en coupe du support du 5 circuit électrique après l'étape de positionnement de la puce, La figure 6 représente un objet portable sans contact vue de dessus sur lequel est connectée une puce selon l'invention. 10 Selon la figure 3 qui représente un schéma en coupe, la puce ou le circuit intégré 10 comprend deux plaques métalliques 31 et 32 correspondant à des métallisations réalisées au dernier niveau de la puce. Dans les techniques de montage par fils conducteurs ou par boules de matériau 15 conducteur, ces plaques métalliques représentent les plages de contact sur lesquelles viennent se connecter les moyens de contact en vue d'une liaison ohmique entre la puce et le circuit électrique sur lequel il est monté. Dans le cadre de l'invention, au moins une des plaques métalliques est 20 réalisée de taille plus grande par rapport à celles utilisées pour la connexion des circuits intégrés par les méthodes traditionnelles donc par contact ohmique. Le mode de réalisation préféré de l'invention décrit deux plaques métalliques identiques pour réaliser deux connexions selon 25 l'invention. Dans ce cas, pour une puce de taille 1 mm x 0,6 mm, la taille de chaque plaque métallique est de l'ordre de 200 m x 500 m. De plus, la couche de électriquement isolante qui est réalisée en dernier sur la face active de la puce, c'est à dire la face comportant les 30 plaques métalliques, ne comporte aucune ouverture contrairement aux puces électroniques adaptées pour se connecter par des moyens de contact de type ohmique. La couche électriquement isolante 34 est réalisée sur la totalité de la surface active de la puce de façon à former 35 une couche isolante d'épaisseur uniforme en générale inférieur à 3 m. In the field of RFID, the number of contacts of the integrated circuit generally varies between 2, 3 and 4. The process of manufacturing a semiconductor is based on the use of a complex photographic process to achieve the mask of each layer. Depending on the complexity of the integrated circuit, there can be up to 20 to 30 layers. On the last layers are arranged levels of metallization which consists of depositing aluminum or copper. The last level of metallization located at the periphery of the integrated circuit on the last layer constituting the chip is made during the final stages of manufacturing of the integrated circuit and comprises conductive plates. These conductive plates will then be used to receive the contact means that will be used to connect the integrated circuit to its destination electrical circuit. The last step of manufacturing the integrated circuit is the production of a passivation layer on the face of the integrated circuit where the conductive plates are flush. This passivation layer consists of a layer of insulating material of constant thickness of a few microns and having openings facing the conductive plates so as to allow ohmic contact of electrical resistance almost zero with the connection means. One of the techniques used to make the electrical connections between the microchip and the circuit on which it is inserted is to use wire bonding. Referring to Figure 1, the wiring is simply made by son 14 (or bond) soldered between the two connection pads provided for this purpose on each of the elements to be connected together. The welding of aluminum, gold or copper wires is usually done by ultrasound. The diameter of the wire is of the order of 25 m (micrometers). In order to protect the wires, the chip 10 is generally encapsulated in a housing 16, active face on top. The wires are wired on the conductive plates 12 flush with the active face of the chip 10. The second end of the wires is connected to rigid connection lugs 18 integral with the housing 16 and intended to be soldered to the destination circuit. Thus, the contact means between the chip and the connection pads of the destination circuit comprise on the one hand conductive wire contacts between the conductive plates located on the last level of metallization of the chip and the rigid tabs 18 of the housing 16 and on the other hand welds between the rigid tabs 18 and the connection pads of the destination circuit. This means of contact has the advantage of providing thanks to the legs 18 and the housing 16 of large sizes relative to the chip. The housing 16, which is generally made of plastic material, provides a significant additional thermal inertia and makes it possible to limit the temperature variations of the chip. The disadvantage of such an assembly lies in the fact that it is expensive. In addition, its thickness is important because of the connection son, the housing and the legs. Thus, the size of such an assembly makes it unsuitable for smart cards, labels and radio frequency identification cards which has a thickness of less than 1 mm. Finally, the size of the son requires high precision during assembly, of the order of a few tens of micrometers. A second way of making the assemblies of integrated circuits or chips is based on another assembly technique in which the chip is returned, it is the technique "Flip Chip". This technique is characterized by a direct connection of the active face of the chip to the electrical circuit of destination, unlike the cabling type "vire Bonding" and is shown in section in Figure 2. This technique consists of coming to deposit a ball of conductive material 20 commonly called "bump" usually made of gold on each of the conductive plates 12 of the chip 10 in the openings of an electrically insulating layer 34 which represents the passivation layer located on the active side of the chip. The chip is then connected by its active face to the destination electrical circuit 22 by contacting balls of conductive material on the contact pads 24 of the electrical circuit; the contact pads being placed so as to reproduce the location of the balls of conductive material. For such a mounting technique, the contact means between the chip and the connection pads of the destination circuit consists of a ball of conductive materials in contact between the two parts. The disadvantage of such an assembly lies in the accuracy of the positioning, the size of the balls of conductive material and that of the conductive plates of the chip being of the order of 100 m, this makes assembly difficult. In addition, the step of depositing the balls of conductive material represents a significant cost in the manufacturing process of integrated circuits or chips. The two traditional mounting techniques used for the connection of electronic chips and described above thus consists in making an ohmic connection and requires the addition of a conductive material for the contact between the chip and the electrical circuit on which it is inserted. This is why the object of the invention is to provide a method of mounting the chip on an electrical circuit that does not require contact means added to the chip to make the connection between the chip and the electrical circuit. The object of the invention is therefore a method of connecting an electronic chip to connection pads of an electrical circuit and intended to receive the chip, the chip being provided with two conductive plates located on the last constituent layer of the chip, at least one of the plates being completely covered with an electrically insulating layer, the method comprising the following steps: depositing an adhesive dielectric material on the circuit between the connection pads, so as to maintain the electronic chip in a fixed position relative to the circuit, - positioning the electronic chip, on the circuit so that the conductive plates are opposite the connection pads of the electrical circuit, so as to create at least one capacitive connection between the chip and the electrical circuit constituted the conductive plate, the electrically insulating layer completely covering the plate and the connection pad. The objects, objects and features of the invention will appear more clearly on reading the following description with reference to the drawings in which: FIG. 1 represents a technique for mounting chips using conductive wires. FIG. FIG. 3 is a sectional view of the support of the electric circuit after the deposition step of the dielectric material, FIG. 3 represents a cross-sectional view of the chip according to the invention, FIG. FIG. 5 represents a sectional view of the support of the electrical circuit after the step of positioning the chip. FIG. 6 represents a portable non-contact object viewed from above to which a chip according to the invention is connected. According to Figure 3 which shows a sectional diagram, the chip or the integrated circuit 10 comprises two metal plates 31 and 32 corresponding to metallizations made at the last level of the chip. In the techniques of mounting by conductive wires or balls of conductive material, these metal plates represent the contact pads on which the contact means come to connect for an ohmic connection between the chip and the electrical circuit on which it has climbed. In the context of the invention, at least one of the metal plates is made larger than those used for the connection of the integrated circuits by traditional methods and ohmic contact. The preferred embodiment of the invention describes two identical metal plates for making two connections according to the invention. In this case, for a chip of size 1 mm x 0.6 mm, the size of each metal plate is of the order of 200 m × 500 m. In addition, the layer of electrically insulating which is performed last on the active face of the chip, that is to say the face comprising the metal plates, has no opening unlike electronic chips adapted to connect by means of ohmic type contact. The electrically insulating layer 34 is formed on the entire active surface of the chip so as to form an insulating layer of uniform thickness generally less than 3 m.
Selon la figure 4, le support 46 sur lequel vient se connecter la puce est représenté en coupe. Il peut s'agir d'un support en matériau souple tel qu'un support en papier sur lequel est imprimée une antenne par impression de type sérigraphie, flexographie, héliogravure, offset ou jet d'encre. Ou bien, il peut s'agir d'un circuit électrique quelconque comme une carte électronique par exemple. L'antenne représentée par les deux morceaux de pistes 67 et 68 comporte deux plots de connexion 47 et 48 également réalisés de la même façon que l'antenne et dans le prolongement de celle-ci afin de connecter la puce et l'antenne. L'encre conductrice utilisée est préférentiellement une encre polymère chargée en éléments conducteurs tels que l'argent, le cuivre ou le carbone. Une matière diélectrique adhésive 40 est déposée sur le support 46, entre les deux plots de connexion 47 et 48. Cette matière adhésive est déposée avant de placer la puce sur le support. Une fois que la matière adhésive est déposée, la puce est positionnée sur le support 46 de manière à ce que les plaques métalliques 31 et 32 de la puce soient en regard des plots de connexion 47 et 48 de l'antenne. Peu importe que l'encre constituant les plots de connexion 47 et 48 soient sec ou pas. Une pression est exercée sur la puce. According to FIG. 4, the support 46 on which the chip is connected is shown in section. It may be a support of flexible material such as a paper support on which is printed an antenna by printing type screen printing, flexography, gravure, offset or inkjet. Or, it may be any electrical circuit such as an electronic card for example. The antenna represented by the two pieces of tracks 67 and 68 comprises two connection pads 47 and 48 also made in the same way as the antenna and in the extension thereof in order to connect the chip and the antenna. The conductive ink used is preferably a polymer ink loaded with conducting elements such as silver, copper or carbon. An adhesive dielectric material 40 is deposited on the support 46, between the two connection pads 47 and 48. This adhesive material is deposited before placing the chip on the support. Once the adhesive material is deposited, the chip is positioned on the support 46 so that the metal plates 31 and 32 of the chip are facing the connection pads 47 and 48 of the antenna. It does not matter whether the ink constituting the connection pads 47 and 48 are dry or not. Pressure is exerted on the chip.
Sous l'effet de la pression exercée, la matière diélectrique adhésive 40 s'étale et vient recouvrir toute la surface de la puce entre les plots de connexion 47 et 48. Elle permet alors de maintenir l'assemblage de la puce 10 sur le support 46 et en particulier pour maintenir la puce 10 en position fixe sur le support. Une liaison capacitive est ainsi réalisée entre la plaque métallique 31 et le plot de connexion 47. De même, une liaison capacitive est ainsi réalisée entre la plaque métallique 32 et le plot de connexion 48. La valeur de la capacité obtenue est proportionnelle à la surface des plaques en regard et à la valeur de la permittivité de la couche d'isolant qui les sépare et est inversement proportionnelle à l'épaisseur de cette couche d'isolant. La permittivité est exprimée en farads par mètre (F/m). Elle peut aussi être exprimée par une quantité adimensionnelle: la permittivité relative ou constante diélectrique, normalisée par rapport à la permittivité du vide Eo (Epsilon0) = 8,854187x10-12F/m. La permittivité du matériau est alors égale à e = so * ER. (Epsilon = EspislonO * Epsilon R) Quelle que soit l'épaisseur de la couche électriquement isolante dite couche de passivation, la valeur usuelle de la permittivité relative est de l'ordre de 4 pour les matériaux utilisés dans la fabrication des puces. D'une façon générale, l'épaisseur de la couche électriquement isolante est de l'ordre de 3 m. Un objet portable sans contact 60 tel qu'une carte à puce ou un ticket est représenté vue de face sur la figure 6. L'antenne 62 comporte deux pistes conductrices 67 et 68 se terminant par deux plots de connexion, similaires aux deux plots 47 et 48 décrits précédemment. La puce 10 est connectée à l'antenne selon le procédé de l'invention. Under the effect of the pressure exerted, the adhesive dielectric material 40 spreads and covers the entire surface of the chip between the connection pads 47 and 48. It then makes it possible to maintain the assembly of the chip 10 on the support 46 and in particular to keep the chip 10 in a fixed position on the support. A capacitive connection is thus made between the metal plate 31 and the connection pad 47. Likewise, a capacitive connection is thus made between the metal plate 32 and the connection pad 48. The value of the capacitance obtained is proportional to the surface area. plates opposite and the value of the permittivity of the insulating layer which separates them and is inversely proportional to the thickness of this layer of insulation. The permittivity is expressed in farads per meter (F / m). It can also be expressed by a dimensionless quantity: the relative permittivity or dielectric constant, normalized with respect to the permittivity of the vacuum Eo (Epsilon0) = 8,854187x10-12F / m. The permittivity of the material is then equal to e = so * ER. (Epsilon = EspislonO * Epsilon R) Whatever the thickness of the electrically insulating layer called passivation layer, the usual value of the relative permittivity is of the order of 4 for the materials used in the manufacture of chips. In general, the thickness of the electrically insulating layer is of the order of 3 m. A non-contact portable object 60 such as a chip card or a ticket is shown front view in FIG. 6. The antenna 62 comprises two conductive tracks 67 and 68 terminating in two connection pads, similar to the two pads 47 and 48 previously described. The chip 10 is connected to the antenna according to the method of the invention.
Chaque connexion formée d'une plaque métallique, d'une couche d'isolant et d'un plot de connexion forme un condensateur. En effet, un condensateur ou une capacité étant constitué de deux plaques conductrices séparées par un isolant électrique, la liaison capacitive représentée par la connexion réalisée selon le procédé de l'invention est constituée pour une des plaques conductrices par un plot de connexion ou plaques conductrices 31 ou 32 au sein même de la puce électronique 10, pour l'isolant par la couche électriquement isolante ou couche de passivation de la puce électronique et pour la seconde plaque conductrice par les plots de connexion 47 et 48 du circuit électrique et destinés à recevoir la puce. La valeur de la capacité nécessaire dépendra de l'impédance du circuit à connecter, à la fréquence de fonctionnement désirée, ce afin de réaliser l'impédance optimum de la puce pour son adaptation (communément appelée en anglais matching network ) à l'impédance de l'antenne. Each connection formed of a metal plate, an insulation layer and a connection pad forms a capacitor. In fact, since a capacitor or capacitor consists of two conductive plates separated by an electrical insulator, the capacitive connection represented by the connection made according to the method of the invention is constituted for one of the conductive plates by a connection pad or conductive plates. 31 or 32 in the heart of the electronic chip 10, for the insulator by the electrically insulating layer or passivation layer of the electronic chip and for the second conductive plate by the connection pads 47 and 48 of the electrical circuit and intended to receive the chip. The value of the necessary capacitance will depend on the impedance of the circuit to be connected, on the desired operating frequency, in order to realize the optimum impedance of the chip for its adaptation (commonly called in English matching network) to the impedance of the antenna.
L'objet de l'invention s'adapte de préférence pour les domaines de la bande à partir des Ultra Hautes Fréquences (UHF) de l'ordre du GHz et en particulier supérieure à 860 MHz (fréquence de 1 GHz selon la norme ISO 18000-6 et fréquence de 2,45 GHz selon la norme ISO 18000-4). En effet, les puces utilisées pour de telles fréquences ont une impédance complexe d'entrée de l'ordre de Z = 20 - j*100 Ohms, ce qui correspond par exemple à un circuit électrique contenant une résistante et un condensateur en série, donc un circuit RC dont la valeur de la capacité est de l'ordre de 800 fF. Lorsque la puce est intégrée à un circuit électrique et que les signaux échangés entre la puce et le circuit sont des signaux en hautes fréquences, il est toujours nécessaire de réaliser un élément ou réseau d'adaptation rajouté en sortie de la puce ou pas. Cette adaptation permet d'optimiser le transfert de puissance du signal échangé ou d'optimiser les performances en bruit c'est à dire diminuer les signaux aléatoires et non désirés se superposant aux signaux utiles. L'adaptation est réalisée grâce à un réseau de composants tels que capacité ou inductance. Le dispositif selon l'invention permet de rajouter au modèle RC de la puce une capacité en série qui joue le rôle d'élément d'adaptation de façon à permettre une adaptation optimum entre la puce et le réseau électrique auquel elle est connectée. Dans les cas de dispositifs RFID, le réseau connecté à la puce est une antenne. La valeur de la capacité de la liaison capacitive réalisée entre la puce et l'antenne telle que définie par l'invention est prise en compte dans l'adaptation de l'antenne à la puce et permet donc d'optimiser cette adaptation. Donc pour adapter l'impédance d'entrée de la puce à l'impédance du circuit et par exemple pour une partie imaginaire de l'impédance d'entrée de la puce correspondant à 800 fF (femto Farad), un diélectrique d'épaisseur e = 3 m et correspondant à la couche d'isolant de permittivité relative ER (Epsilon R) de l'ordre de 4, on en déduit la surface nécessaire des plaques de connexions en regard selon la formule C = Fo * ER * S / e (C = Epsilon 0 * Epsilon R*S / e). La surface nécessaire est de l'ordre de 6,8 10-6 m2 ce qui correspond par exemple à une surface de 200 m x 340 m. Pour réaliser l'invention avec des puces RFID dans la gamme des fréquences UHF, soit des fréquences de l'ordre du giga Hertz, il faudra donc prévoir des plaques conductrices de surface au moins égale à 200 m x 340 m. Pour une partie imaginaire de l'impédance d'entrée de la puce supérieure à 800 fF, on peut prévoir des plaques conductrices de surface inférieure à 200 pm x 340 m. La liaison capacitive réalisée selon le procédé de l'invention contribue donc au réglage de l'adaptation de la puce et du circuit sur lequel elle s'insère donc dans notre cas de la puce à l'antenne et représente même un élément primordial du réseau d'adaptation. Lorsqu'il s'agit d'un objet portable sans contact de type étiquette RFID fonctionnant dans les Ultra Hautes Fréquences, la liaison capacitive réalisée alors entre la puce et l'antenne et telle que définie par l'invention est prise en compte également dans le réglage de l'accord de l'antenne à la puce. En effet, l'antenne doit être accordée à la fréquence de fonctionnement du lecteur. Le procédé selon l'invention a l'avantage de faciliter la mise en place de la puce sur les plots de connexion du circuit de destination. En effet, la taille des plaques métalliques étant très importante devant la taille de la puce, la précision du montage selon le procédé de l'invention est bien inférieure à celle requise pour le montage des puces selon la technique d'assemblage de type flip chip telle que décrite précédemment et dans laquelle la connexion se fait par l'intermédiaire des bumps de la puce dont le diamètre est inférieur à 100 m. Ainsi, avec une puce dont la face active est de forme rectangulaire et dans laquelle les plaques métalliques se situent le long des petits côtés du rectangle de façon symétrique par rapport à l'axe de symétrie parallèle aux petits côtés du rectangle, le positionnement de la puce sera possible juste par repérage du grand côté et du petit côté de la face active de la puce. Ainsi, lors du montage de la puce sur le circuit électrique de destination, la forme rectangulaire de la face active et la disposition symétrique des plaques conductrices permettent de s'affranchir de l'orientation de la puce suivant le grand côté puisque les deux orientations sont possibles. De plus, de part la grande taille des plaques conductrices, cela permet d'augmenter les tolérances lors du montage de la puce. De cette façon, le temps gagné sur la phase de repérage des bumps de la puce et le relâchement des tolérances de montage permet d'augmenter les cadences de montage des puces sur les circuits destiné à les recevoir et donc de réduire les coûts de production. En outre, le fait que la couche de matière isolante recouvre totalement la ou les plaques conductrices de la face active de la puce, les plaques métalliques sont protégées contre les pollutions, diffusions, migrations et autres phénomènes électriques venant altérer la qualité et la fonctionnalité de la puce électronique. The object of the invention is preferably adapted for the domains of the band from Ultra High Frequencies (UHF) of the order of GHz and in particular greater than 860 MHz (frequency of 1 GHz according to ISO 18000 -6 and 2.45 GHz frequency according to ISO 18000-4). Indeed, the chips used for such frequencies have a complex input impedance of the order of Z = 20 - j * 100 Ohms, which corresponds for example to an electrical circuit containing a resistor and a capacitor in series, so an RC circuit whose capacitance value is of the order of 800 fF. When the chip is integrated into an electrical circuit and the signals exchanged between the chip and the circuit are signals at high frequencies, it is always necessary to make an adaptation element or network added to the output of the chip or not. This adaptation makes it possible to optimize the transfer of power of the exchanged signal or to optimize the performances in noise that is to say reduce the random and unwanted signals superimposed on the useful signals. The adaptation is achieved through a network of components such as capacitance or inductance. The device according to the invention makes it possible to add to the RC model of the chip a capacitance in series which plays the role of adaptation element so as to allow an optimum adaptation between the chip and the electrical network to which it is connected. In the case of RFID devices, the network connected to the chip is an antenna. The capacitance value of the capacitive connection made between the chip and the antenna as defined by the invention is taken into account in the adaptation of the antenna to the chip and thus makes it possible to optimize this adaptation. So to adapt the input impedance of the chip to the impedance of the circuit and for example for an imaginary part of the input impedance of the chip corresponding to 800 fF (Farad femto), a dielectric thickness e = 3 m and corresponding to the relative permittivity insulator layer ER (Epsilon R) of the order of 4, we deduce the necessary surface of the facing plates according to the formula C = Fo * ER * S / e (C = Epsilon 0 * Epsilon R * S / e). The required area is of the order of 6.8 10-6 m2 which corresponds for example to a surface of 200 mx 340 m. To achieve the invention with RFID chips in the UHF frequency range, ie frequencies of the order of giga Hertz, it will be necessary to provide conductive surface plates at least equal to 200 m × 340 m. For an imaginary part of the input impedance of the chip greater than 800 fF, conductive plates having a surface area of less than 200 μm × 340 μm can be provided. The capacitive connection made according to the method of the invention therefore contributes to the adjustment of the adaptation of the chip and the circuit on which it is inserted in our case from the chip to the antenna and is even a key element of the network. adaptation. When it is a contactless portable object of the RFID tag type operating in the Ultra High Frequencies, the capacitive link then made between the chip and the antenna and as defined by the invention is also taken into account in setting the tuning of the antenna to the chip. Indeed, the antenna must be tuned to the operating frequency of the player. The method according to the invention has the advantage of facilitating the implementation of the chip on the connection pads of the destination circuit. Indeed, the size of the metal plates being very important in front of the size of the chip, the precision of the assembly according to the method of the invention is much lower than that required for the assembly of the chips according to the flip chip assembly technique. as described above and wherein the connection is via the bumps of the chip whose diameter is less than 100 m. Thus, with a chip whose active face is of rectangular shape and in which the metal plates are located along the short sides of the rectangle symmetrically with respect to the axis of symmetry parallel to the short sides of the rectangle, the positioning of the chip will be possible just by locating the long side and the small side of the active side of the chip. Thus, when mounting the chip on the destination electrical circuit, the rectangular shape of the active face and the symmetrical arrangement of the conductive plates make it possible to overcome the orientation of the chip along the long side since the two orientations are possible. Moreover, because of the large size of the conductive plates, this makes it possible to increase the tolerances during assembly of the chip. In this way, the time gained on the phase of locating the bumps of the chip and the relaxation of the mounting tolerances makes it possible to increase the rates of assembly of the chips on the circuits intended to receive them and thus to reduce the costs of production. In addition, the fact that the layer of insulating material completely covers the conductive plate or plates of the active face of the chip, the metal plates are protected against pollution, diffusion, migration and other electrical phenomena that alter the quality and functionality of the electronic chip.