FR2840491A1 - Dispositif de correction electronique des distorsions optiques d'une visualisation collimatee obtenue a partir d'un afficheur matriciel - Google Patents

Dispositif de correction electronique des distorsions optiques d'une visualisation collimatee obtenue a partir d'un afficheur matriciel Download PDF

Info

Publication number
FR2840491A1
FR2840491A1 FR0206721A FR0206721A FR2840491A1 FR 2840491 A1 FR2840491 A1 FR 2840491A1 FR 0206721 A FR0206721 A FR 0206721A FR 0206721 A FR0206721 A FR 0206721A FR 2840491 A1 FR2840491 A1 FR 2840491A1
Authority
FR
France
Prior art keywords
electronic
pixels
display
image
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0206721A
Other languages
English (en)
Other versions
FR2840491B1 (fr
Inventor
Jean Rene Verbeque
Olivier Rols
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR0206721A priority Critical patent/FR2840491B1/fr
Application filed by Thales SA filed Critical Thales SA
Priority to IL15991203A priority patent/IL159912A0/xx
Priority to PCT/FR2003/001601 priority patent/WO2003102904A1/fr
Priority to US10/483,836 priority patent/US20040179271A1/en
Priority to EP03756013A priority patent/EP1516304A1/fr
Priority to JP2004509912A priority patent/JP2005528833A/ja
Priority to AU2003254537A priority patent/AU2003254537A1/en
Priority to CA002455764A priority patent/CA2455764A1/fr
Priority to BR0304931-0A priority patent/BR0304931A/pt
Publication of FR2840491A1 publication Critical patent/FR2840491A1/fr
Application granted granted Critical
Publication of FR2840491B1 publication Critical patent/FR2840491B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Image Processing (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

L'invention concerne un dispositif de correction électronique des distorsions optiques d'une optique de collimation et de superposition d'une visualisation collimatée dans le cas où l'afficheur est de type matriciel. Le principe de l'invention est de réaliser ces corrections au niveau de l'afficheur en associant à chaque pixel de l'afficheur le même nombre de pixels de chaque image-source à afficher, les adresses des pixels des images-sources étant calculées à partir des adresses des pixels de l'afficheur en leur appliquant la fonction de distorsion de l'optique.Le calcul des adresses et des valeurs photométriques des pixels de l'afficheur est réalisé dans une unité de calcul comprenant notamment une unité de calcul d'adresses et une unité d'interpolation.L'invention s'applique essentiellement aux dispositifs de visualisation dits Tête Haute ou de casque utilisés sur aéronefs civils et militaires ayant comme afficheur des dispositifs matriciels notamment à cristaux liquides.Le dispositif s'applique aussi bien aux afficheurs monochromes qu'aux afficheurs couleur.

Description

<Desc/Clms Page number 1>
DISPOSITIF DE CORRECTION ELECTRONIQUE DES DISTORSIONS
OPTIQUES D'UNE VISUALISATION COLLIMATEE OBTENUE A PARTIR
D'UN AFFICHEUR MATRICIEL
Le domaine de l'invention est celui des systèmes de présentation d'images collimatées, et plus précisément celui des viseurs dits Tête Haute ou des visuels de casque utilisés sur aéronefs.
D'une façon générale, comme il est indiqué de façon schématique sur la figure 1, un système de visualisation collimatée comprend un afficheur D et une optique 0 de collimation et de superposition permettant de présenter à un utilisateur U l'image V fournie par l'afficheur sous la forme d'une image aérienne A collimatée à l'infini et en superposition sur le paysage extérieur, cette image provenant de sources d'images non représentées sur la figure. Ces systèmes sont particulièrement utilisés sur aéronefs. Il en existe deux principaux types, d'une part les systèmes dits Tête Haute montés sur la planche de bord dans le champ de vision du pilote ; d'autre part les systèmes de visualisation de casque montés sur le casque du pilote, les composants optiques utilisés pour la superposition des images se trouvant placés alors devant l'oeil du pilote.
Ces dispositifs sont fondamentaux pour l'aide au pilotage et à la navigation.
L'image superposée doit être d'excellente qualité optique pour éviter toute erreur de pilotage et ne pas entraîner de fatigue oculaire importante. Une des principales difficultés techniques pour obtenir une image de bonne qualité est la correction de la distorsion géométrique introduite d'une part par l'optique de collimation et de superposition et d'autre part, et dans une plus faible mesure, par la verrière transparente du cockpit de l'aéronef dans le cas d'une utilisation en viseur Tête Haute ou de la visière du casque dans le cas d'une utilisation en visuel de casque. Il est démontré, que compte-tenu des contraintes géométriques imposées par l'utilisation du système dans un cockpit ou sur un casque, la distorsion géométrique est importante et ne peut être corrigée simplement par des moyens optiques classiques. On appelle F la fonction de distorsion qui, à un point M (x, de l'image bidimensionnelle présentée par l'afficheur fait correspondre un point
<Desc/Clms Page number 2>
M'(a,f3), [alpha],ss représentant les coordonnées angulaires du point M', image de M à travers l'optique collimatée. On a les relations :
Figure img00020001

ex = K.Fo: (x,y) et (3 = K.Fp (x,y)
K étant une constante de grandissement angulaire.
La partie supérieure de la figure 2 représente à gauche l'image initiale Vo fournie par l'afficheur et à droite l'image finale Ao déformée par la fonction de distorsion F de l'optique vue à travers l'optique collimatée. Pour obtenir une image non déformée, la méthode classiquement employée consiste à faire subir à l'image de l'afficheur une distorsion inverse de celle de l'optique, cette fonction de distorsion étant notée F-1 comme il est indiqué sur la partie gauche de la figure 2 qui représente en haut l'image initiale non déformée Vo et en bas l'image V ayant subie la déformation inverse F-1.
Lorsque cette image V déformée est collimatée, on obtient une image A sans distorsion comme il est indiqué dans le quadrant inférieur droit de la figure 2.
En effet, on a, en écriture symbolique :
Figure img00020002

A = F(V) d'où A = F.F-' (Vo) et finalement A = Vo
Cette méthode est particulièrement bien adaptée dans le cas où l'image fournie par l'afficheur est continue, c'est-à-dire que les points composant l'image ne sont pas différentiés. C'est le cas notamment des afficheurs à tubes à rayons cathodiques. Quelque soit la fonction de distorsion appliquée, il existe toujours un point de l'écran du tube correspondant. La fonction de distorsion est réalisée en modifiant les paramètres de réglage des systèmes de déflexion horizontaux et verticaux des rayons cathodiques. Cependant, les tubes à rayons cathodiques présentent un certain nombre d'inconvénients comme l'encombrement, une électronique complexe à mettre en #uvre nécessitant notamment des hautes tensions de fonctionnement ainsi qu'une faible durée de vie.
Actuellement, ils sont progressivement remplacés par des afficheurs plats de type matriciel qui ne présentent pas les inconvénients précédents. Plusieurs technologies de réalisation existent pour ce type d'afficheurs comme, par exemple, les matrices à cristaux liquides. L'emploi de ce type d'afficheurs est déjà généralisé aux visualisation de planches de bord dits Tête Basse.
Les afficheurs matriciels sont mal adaptés à la correction de la distorsion telle qu'elle a été décrite. Un afficheur matriciel comprend de façon
<Desc/Clms Page number 3>
classique Pu,v pixels organisés en matrice de R lignes et de S colonnes ; u, v étant des nombres entiers variant respectivement de 1 à R, et de 1 à S.
Soit une image électronique E, provenant d'une source d'images
Figure img00030001

comprenant P,, 1, pixels organisés en matrice de M, lignes et de N, colonnes ; j, k étant des nombres entiers variant respectivement de 1 à M,, et de 1 à N,,
Figure img00030002

à chaque pixel est associé une valeur photométrique Luit ; pour afficher E, selon la méthode connue de correction de la distorsion, il faut appliquer aux pixels P,,j, k la fonction F-'. Bien entendu, l'application de cette fonction F-' au pixel P,,,k ne saurait correspondre, dans le cas général, exactement à un pixel Pu,v de l'afficheur. Il faudra alors nécessairement faire correspondre le résultat de calcul au pixel de l'afficheur le plus proche.
Cette méthode présente trois inconvénients : # Elle ne garantit pas que tous les pixels de l'afficheur seront adressés, ce qui donne des zones aveugles dans l'image de l'afficheur. Ce cas est particulièrement sensible lorsque les images
E, contiennent une quantité de pixels inférieure ou voisine de celle de l'afficheur.
# Elle ne garantit pas que le même nombre de pixels P,,j,k seront associés à chaque pixel de l'afficheur. Ce cas est particulièrement sensible lorsque les images E, contiennent une quantité de pixels supérieure à celle de l'afficheur. On peut ainsi aboutir à des variations artificielles de la luminance des pixels de l'afficheur.
# Elle nécessite le calcul de la fontion F-1 qui n'est pas nécessairement simple à effectuer.
Elle peut donc entraîner la création d'artefacts visuels difficilement supportables par l'observateur.
Pour pallier ces différents inconvénients, le dispositif selon l'invention construit l'image de l'afficheur en suivant le processus inverse, c'est-à-dire en associant à chaque pixel Pu,v toujours le même nombre de
Figure img00030003

pixels P,,I,k de chaque image électronique E,, les adresses des pixels Pi,],k étant obtenu à partir du calcul de F(Pu,v). La valeur photométrique Lu,v du pixel Pu,v est obtenue à partir des valeurs photométriques Li,j,k des P,,j,k . Cette méthode supprime, par son principe même, les inconvénients précédents.
<Desc/Clms Page number 4>
Plus précisément, l'invention a pour objet un dispositif de correction électronique des aberrations de distorsion géométriques d'une optique de collimation et de superposition faisant partie d'un ensemble de visualisation comprenant : # un dispositif de génération d'au moins une image-source électronique E,, i nombre entier variant entre 1 et L ; # une électronique réalisant le mélange et la correction des images
E, et la génération d'une image visuelle sur un afficheur, ladite image étant organisée en matrice de R lignes et de S colonnes de pixels Pu,v d'adresses (u,v) ; u, v étant des nombres entiers variant respectivement de 1 à R, et de 1 à S ; chacun desdits pixels étant associé une valeur photométrique Lu,v, cette valeur étant fonction des valeurs photométriques L,,u,v issues de chacune des images électroniques ; # ladite optique de collimation assurant la collimation de ladite image visuelle pour former une image aérienne destinée à être perçue par un utilisateur, chaque pixel de l'image ayant une image aérienne P[alpha],ss, (a, ss) étant les coordonnées angulaires des points de l'image aérienne tels que a est égal à K.Fu(u,v) et [3 est égal à
K.Fv(u,v) ; K étant une constante de grandissement angulaire et
Fu(u,v), Fv(u,v) étant les représentations de la fonction bidimensionnelle F de distorsion du système optique ; caractérisé en ce que l'électronique comporte un système de correction de la distorsion comprenant une unité de mémoire électronique permettant de stocker les images électroniques E,, une unité de calcul d'adresse et une unité d'interpolation et de mélange tel que, # L'unité de mémoire électronique organise chaque image en matrice de M lignes et de N colonnes de pixels Pi,j,k auxquels correspondent des adresses électroniques (i, j,k) ; j, k étant des nombres entiers variant respectivement de 1 à M,, et de 1 à Ni ; à
Figure img00040001

chaque pixel P,,,k étant associé une valeur photométrique Li,j,k ; # l'unité de calcul d'adresses associe à chaque adresse (u,v) les adresses (i, j,k) des pixels Pi,j,k stockés dans la mémoire électronique, lesdites adresses voisines des points calculés (i, jr, kr), jr, kr étant des nombres réels obtenus par le calcul de K,'.Fu(u,v)
<Desc/Clms Page number 5>
Figure img00050001

et de K,'.F,(u,v) ; K,' étant une constante de normalisation associée à chaque image électronique E, telle que, pour tout i, jr est inférieur à M, et kr est inférieur à N,.
# l'unité d'interpolation calcule la valeur photométrique Li,u,v, contribution de chaque image électronique à la valeur Lu,v à partir des valeurs photométriques Li,j,k desdits pixels d'adresses (i,j,k) fournies par l'unité de calcul d'adresses.
Dans un mode préféré, pour chaque image E, , les pixels utilisés par l'unité d'interpolation pour le calcul de la valeur photométrique Li,u,v sont au moins les quatre pixels d'adresses référencées (i, je, ke) , (i, je+1, ke), (i, je, ke+1) et (i, je+1, ke+1) avec ( je, ke) parties entières des nombres (jr, kr),
Figure img00050002

Li,u,v étant une fonction d'au moins les quatre valeurs L;,je,ke , L,je+1,ke, 1 Li, le, ke+1 et LI, Je+1, rez Il est possible pour réaliser le calcul de la valeur photométrique de prendre en compte d'autres pixels que le carré de pixels entourant le point calculé. Dans ce cas, leur contribution à la valeur photométrique Li,u,v est alors pondéré en fonction de leur éloignement au point d'adresse (i, jr, kr).
Cependant, le gain apporté reste marginal au prix d'une augmentation sensible du nombre de calculs nécessaires.
Il existe différentes méthodes possibles pour obtenir la valeur
Figure img00050003

photométrique L,,," . La méthode la plus simple, nécessitant le minimum de calculs est que la valeur photométrique L,,u,v soit proportionnelle à la somme des produits Llje,ke.(1+je-jr).(1+ke-kr) ; L,,e+l,ke+1.(l le).(k ke) ; Lj,je+1,ke.(jrje).(1+ke-kr) et L,,jeke+1.(1+je-jr).(krke).
Les constantes de normalisation K,' sont calculées de telle sorte que tous les pixels de l'afficheur aient des correspondants dans chaque image électronique. Avantageusement, il est intéressant de pouvoir faire varier ces constantes entre une valeur minimale et leur valeur maximale. On obtient alors un effet de zoom électronique, une partie des images électroniques initiales étant seulement représentées agrandies sur toute la surface de l'afficheur.
Avantageusement, la correction électronique peut être implémentée dans un composant électronique comportant des matrices de portes logiques (ET ou OU). Ces composants peuvent être de type non programmables comme, par exemple, les ASIC (Application Specific Integrated Circuit) ou programmables comme, par exemple, les FPGA (Field
<Desc/Clms Page number 6>
Programmable Gate Array) ou EPLD (Erasable Programmable Logic Device). Ces composants électroniques sont largement utilisés en électronique professionnelle et en particulier pour les applications aéronautiques.
Classiquement, la fonction de distorsion optique est approximée par un polynôme de degré n en (u,v), dans ce cas, le système de correction de la distorsion est obtenu par l'utilisation d'analyseurs différentiels digitaux (DDA pour Digital Differential Analysers).
Classiquement, les systèmes de visualisation collimatés utilisés sur aéronefs sont monochromes pour des raisons : # de simplicité de réalisation du système (utilisation de tubes cathodiques monochromes et de composants diffractifs à haut rendement hautement sélectifs en longueur d'onde), # d'absence d'images-sources polychromes (les images provenant de systèmes à intensificateur de lumière ou de caméras thermiques sont monochromes) # d'ergonomie. Ces images sont présentées en superposition sur le paysage extérieur. Il est souvent intéressant, dans ce cas, pour améliorer la lisibilité des informations de symbologie présentées, d'utiliser une seule couleur.
Cependant, l'évolution des techniques et en particulier l'utilisation d'afficheurs matriciels selon l'invention permet l'utilisation et la présentation d'images colorées qui, en utilisation de nuit notamment peuvent présenter des avantages ergonomiques certains. Le dispositif est également adapté à la correction de distorsion d'images colorées. Dans ce cas, l'afficheur étant polychromatique constitué de pixels de couleur, chaque pixel étant composé d'un triplet de trois sous-pixels colorés, correspondant chacun à une couleur primaire et les images sources électroniques étant également polychromes constituées chacune de pixels de couleur, chaque pixel étant également composé d'un triplet de trois sous-pixels colorés, correspondant chacun à une couleur primaire ; les calculs effectués par l'unité de calcul d'adresse et l'unité d'interpolation afin de déterminer les valeurs photométriques de chaque pixel coloré de l'afficheur sont réalisées respectivement pour chaque type de sous-pixel de l'afficheur et pour chaque type de sous-pixel des images-sources de même couleur.
<Desc/Clms Page number 7>
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : # La figure 1 représente une vue générale d'un dispositif de visualisation présentant des images collimatées dans le cas particulier d'un viseur Tête Haute.
# La figure 2 représente le principe de correction de distorsion suivant l'art connu.
# La figure 3 représente le principe de correction selon l'invention.
# La figure 4 représente le principe de détermination des pixels des images électroniques retenus pour déterminer la valeur de luminance des pixels de l'afficheur.
Les images E, parvenant à un système de visualisation collimatée peuvent avoir plusieurs origines. Elles peuvent provenir : # De systèmes de caméra vidéo montés sur l'aéronef lui-même, ces systèmes travaillant dans le visible ou l'infra-rouge ou ces systèmes étant à intensificateur de lumière ; # De générateurs d'images de synthèse provenant notamment de générateurs d'images cartographiques ou de générateurs de symbologie.
Quelque soit leur origine, il est toujours possible de stocker ces images dans une mémoire électronique matricielle UMS telle que, chaque image est organisée en matrice de M, lignes et de N, colonnes de pixels Pi,j,k auxquels correspondent des adresses électroniques (i, j,k) ; j, k étant des nombres entiers variant respectivement de 1 à M,, et de 1 à N, ; à chaque
Figure img00070001

pixel P,,j,k étant associé une valeur photométrique Ll,J,k .
Soit un système de collimation présentant une fonction de distorsion F, cette fonction est une fonction à deux variables telle qu'à deux paramètres géométriques (x, y) est associé deux autres paramètres géométriques (u,v) tels que u = Fu(x,y) et v = Fv(x,y). Pour que l'image aérienne présentée au pilote soit sans distorsions, il est nécessaire que l'on applique à l'image électronique d'origine la correction inverse de distorsion F-1 avant de la transmettre à l'afficheur. Réciproquement, l'image
<Desc/Clms Page number 8>
électronique est donc obtenue à partir de l'image de l'afficheur en lui appliquant ladite fonction F. On a ainsi la relation symbolique suivante :
Figure img00080001

EI,j.k = F(AU,V)
Electroniquement, si l'image de l'afficheur est organisée en matrice de R lignes et de S colonnes de pixels Pu,v d'adresses (u,v) ; u, v étant des nombres entiers variant respectivement de 1 à R, et de 1 à S, alors pour déterminer les pixels Pi,j,k des images électroniques, il suffit que l'unité électronique comporte une unité de calcul d'adresses UCA telle que ladite unité associe à chaque adresse (u,v) les adresses (i, j,k) des pixels Pi,j,k stockés dans la mémoire électronique, lesdites adresses étant voisines des points calculés (i, jr, kr), jr, kr étant des nombres réels obtenus par le calcul de
Figure img00080002

K,'.Fu(u,v) et de K,'.Fv(u,v) ; K,' étant une constante de normalisation associée à chaque image électronique E, telle que, pour tout i, jr est inférieur à Mi et kr est inférieur à N,.
Les constantes K,' peuvent être obtenus par plusieurs méthodes.
On peut, à titre d'exemple, effectuer le calcul de Fu(u,v) et de Fv(u,v) pour un nombre limité de pixels appartenant au contour de l'image de l'afficheur. On détermine ainsi pour ces points les adresses maximales possibles. Il suffit alors de calculer les constantes K,' de telle sorte que ces adresses maximales soient bien inférieures à (M,, N,). Il est possible, dans un mode particulier de l'invention, de donner à ces constantes des valeurs inférieures afin d'obtenir sur l'image de l'afficheur des effets de zoom.
Les fonctions de distorsion géométriques introduites par l'optique sont des fonctions d'origine physique. Elles sont en général continues et dérivables. On peut donc avec une bonne précision approximer la fonction F par une fonction polynominale de degré n. On a alors :
Figure img00080003

Fu(u,v) = Fu(uo,vo) + ùFu(uo,vo)/8u .uo + 8FU(uo,vo)8v .vo + ... + 5nFu(uo,vo)/Svn .von avec (uo,vo) adresse d'origine et 8nFu(uo,vo)/ôv' dérivée partielle de degré n de la fonction Fu par rapport à vautour de l'adresse (uo,vo). et Fv(u,v) = Fv(uo,vo) + ÔF,(uo,vo)/Ôu .uo + 8Fv(uo,vo)/8v .vo + ... + ùnFv(uo,vo)/8vn .von avec (uo,vo) adresse d'origine et 8'F,(uo,vo)/ôv' dérivée partielle de degré n de la fonction Fv par rapport à vautour de l'adresse (uo,vo).
<Desc/Clms Page number 9>
Il existe deux cas de figures possibles : # Si la fonction F est une fonction mathématique connue et dérivable, alors le calcul des dérivées partielles est immédiat.
# Si la fonction F n'a pas d'équation mathématique connue, ce qui, en pratique, est le cas le plus souvent rencontré, alors la détermination des dérivées partielles est obtenue de la façon suivante : # On crée une matrice de points (u,v) correspondant chacun à un point (x, y) après passage par la fonction
F. Ces points peuvent être soit simulés à partir de logiciels de calcul optique, soit mesurés sur le viseur lui-même en générant sur l'afficheur une grille de points.
# On obtient alors les coefficients des polynômes par inversion matricielle. Plusieurs méthodes sont possibles. Il est possible d'utiliser par exemple la méthode de Choleski qui permet de minimiser l'erreur sur l'ensemble des valeurs de la matrice. Cette méthode est couramment utilisée dans le domaine cartographique.
L'utilisation d'une fonction polynominale à la place de la fonction vraie permet de simplifier considérablement l'implantation des calculs effectués par l'unité de calculs d'adresses. Ce calcul est alors réalisé par un ensemble électronique constitué principalement d'un double DDA (Digital Differential Analyser) qui réalise l'approximation polynominale pour chacune des deux coordonnées u et v. Chaque DDA est constitué d'un certain nombre d'additionneurs/accumulateurs cascadés prenant chacun en charge le calcul de chaque terme du polynôme. Les valeurs d'initialisation et les incréments nécessaires sont fournis par un microprocesseur annexe. Il est à noter que ces valeurs peuvent être facilement modifiées, par exemple pour obtenir une harmonisation parfaite du viseur sur aéronefs. On peut ainsi facilement prendre en compte les distorsions dues à une verrière spécifique ou à un positionnement du viseur différent, dans le cas par exemple d'aéronefs biplaces utilisant le même viseur à deux endroits différents du cockpit.
<Desc/Clms Page number 10>
La fréquence de calcul de ces DDA est calquée sur celle du balayage de l'image de l'afficheur, les calculs devant être effectués en temps réel de façon à ne créer aucun retard entre l'image collimatée et l'image du paysage effectivement perçue qui peut se modifier très rapidement en fonction des évolutions de l'aéronef.
Afin d'éviter des artefacts visuels parasites, il est intéressant de choisir les tailles des unités de mémoire électronique de stockage différentes de celle de l'afficheur. C'est-à-dire que chaque couple (M,,N,) doit être significativement différent du couple (R,S).
L'adresse (i, jr, kr) correspondant à l'adresse (u,v) du pixel Pu,v étant connue, l'unité d'interpolation UIM et de mélange calcule les valeurs photométriques Li,u,v. Pour réaliser ce calcul, on utilise les valeurs photométriques Li,j,k des pixels dont l'adresse est la plus proche de l'adresse (i, jr, kr) calculée. Chacune de ces valeurs étant pondérée par un coefficient de pondération dépendant essentiellement de la distance de l'adresse du pixel à l'adresse calculée. Dans le cas le plus simple et le plus général, on utilise quatre pixels groupés en carré tels que leurs adresses respectives soient : (i, je, ke) , (i, je+1, ke), (i, je, ke+1) et (i, je+1, ke+1) avec ( je, ke) parties entières des nombres (jr, kr).
Dans ce cas, le calcul de la valeur photométrique Lj,u,v peut être obtenu simplement. A titre d'exemple, il est possible d'utiliser la fonction suivante :
Figure img00100001

L"u,v = À, #[Li,je,ke.(1+je-jr).(1+ke-kr) + Li.le+l,ke+1(J le)(k ke) + L',Je+1 ,ke.(kje).(1 +kekr) + Li,le ke+1.(1 'Je-Jr)(kr-ke) Avec #1 facteur de normalisation dépendant de chaque image E,.
La valeur photométrique globale Li,u,v de chaque point de l'afficheur est égale à la contribution de chacune des valeurs photométriques Li,u,v.On écrit de façon générale :
Figure img00100002

Li,u,v = iv., Li,u,v
En modulant les différents facteur de normalisation #1, il est ainsi possible de moduler les contributions de chaque image électronique à l'image finale. On peut ainsi ne faire apparaître qu'une seule image ou mélanger plusieurs images pour faire apparaître notamment des informations de symbologie sur une image réelle ou de cartographie synthétique.
<Desc/Clms Page number 11>
Cette unité d'interpolation et de mélange ainsi que l'unité de calcul d'adresse peuvent être implémentés dans des composants électroniques comportant des matrices de portes logiques (ET ou OU). Ces composants peuvent être de type non programmables comme, par exemple, les ASIC (Application Specific Integrated Circuit) ; dans ce cas, les informations sont gravées au moment de la réalisation du circuit. Ces composants peuvent également être programmables comme, par exemple, les FPGA (Field Programmable Gate Array) ou EPLD (Erasable Programmable Logic Device). Ces composants sont couramment utilisés pour des applications d'électronique professionnelle ou embarquée sur aéronefs.
Les calculs précédents sont faits dans le cas d'un afficheur monochrome et de sources d'images également monochromes, ce qui recouvre la plus grande partie des applications actuelles. Cependant, l'invention s'applique également au cas d'afficheurs polychromes et de sources d'images polychromes. En effet, une image polychrome se décompose toujours en trois images monochromes de couleur différente. Il suffit alors de faire les calculs pour chaque image monochrome. Plus précisément, l'afficheur étant polychromatique constitué de pixels de couleur, chaque pixel étant composé d'un triplet de trois sous-pixels colorés, correspondant chacun à une couleur primaire et les images sources électroniques étant également polychromes constituées chacune de pixels de couleur, chaque pixel étant également composé d'un triplet de trois souspixels colorés, correspondant chacun à une couleur primaire ; les calculs effectués par l'unité de calcul d'adresse et l'unité d'interpolation afin de déterminer les valeurs photométriques de chaque pixel coloré de l'afficheur sont réalisées respectivement pour chaque type de sous-pixel de l'afficheur et pour chaque type de sous-pixel des images-sources de même couleur.

Claims (7)

REVENDICATIONS
1. Dispositif de correction électronique des aberrations de distorsion géométriques d'une optique de collimation et de superposition (0) faisant partie d'un ensemble de visualisation comprenant : # un dispositif de génération d'au moins une image-source électronique E,, i nombre entier variant entre 1 et L ; # une électronique (C) réalisant le mélange et la correction des images (Ei) et la génération d'une image visuelle (V) sur un afficheur, ladite image étant organisée en matrice de R lignes et de
S colonnes de pixels (Pu,v) d'adresses (u,v) ; u, v étant des nombres entiers variant respectivement de 1 à R, et de 1 à S ; chaque pixel étant associé une valeur photométrique Lu,v, cette valeur étant fonction des valeurs photométriques Li,u,v issues de chacune des images électroniques ; # ladite optique de collimation (0) assurant la collimation de ladite image visuelle pour former une image aérienne (A) destinée à être perçue par un utilisateur, chaque pixel de l'image (V) ayant une
Figure img00120001
image aérienne (Pa,p), (a, P) étant les coordonnées angulaires des points de l'image aérienne tels que a est égal à K.Fu(u,v) et ss est
Figure img00120002
égal à K.F,(u,v) ; K étant une constante de grandissement angulaire et Fu(u,v), Fv(u,v) étant les représentations de la fonction bidimensionnelle F de distorsion du système optique (0) ; caractérisé en ce que l'électronique (C) comporte un système de correction de la distorsion comprenant une unité de mémoire électronique (UMS) permettant de stocker les images électroniques (Ei), d'une unité de calcul d'adresse (UCA) et une unité d'interpolation et de mélange (UIM) tel que, # l'unité de mémoire électronique (UMS) organise chaque image (E,) en matrice de M lignes et de N colonnes de pixels (Pi,j,k) auxquels correspondent des adresses électroniques (i, j,k) ; j, k étant des nombres entiers variant respectivement de 1 à M,, et de
<Desc/Clms Page number 13>
kr), jr, kr étant des nombres réels obtenus par le calcul de K,'.FU(u,v) et de K,'.Fv(u,v) ; K,' étant une constante de normalisation associée à chaque image électronique (E,) telle que, pour tout i, jr est inférieur à Mi et kr est inférieur à N,.
Figure img00130001
1 à N, ; à chaque pixel (Pi,j,k) étant associé une valeur photométrique Li,j,k; # l'unité de calcul d'adresses associe à chaque adresse (u,v) les adresses (i, j,k) des pixels (Pi,j,k) stockés dans la mémoire électronique, lesdites adresses voisines des points calculés (i, jr,
la valeur Lu,v à partir des valeurs photométriques Ljj,)< desdits pixels d'adresses (i,j,k) fournies par l'unité de calcul d'adresses.
Figure img00130002
# l'unité d'interpolation et de mélange (UlM) calcule la valeur photométrique contribution de chaque image électronique à
2. Dispositif de correction électronique selon la revendication 1, caractérisé en ce que, pour chaque image (E,), les pixels utilisés par l'unité d'interpolation et de mélange pour le calcul de la valeur photométrique Li,u,v sont au moins les quatre pixels d'adresses référencées (i, je, ke) , (i, je+1, ke), (i, je, ke+1) et (i, je+1, ke+1) avec ( je, ke) parties entières des nombres (jr, kr),
Figure img00130003
L,,,,, étant une fonction d'au moins les quatre valeurs L,,je,ke L,je+1,ke, LI, je, ke+1 et Li, je+1, ke+1.
3. Dispositif de correction électronique selon la revendication 2, caractérisé en ce que la valeur photométrique Li,u,v est proportionnelle à la
Figure img00130004
somme des produits L,,e,ke. (1+je-jr).(1+ke-kr) ; Li,je+l,ke+l. (i,-je).(kr-ke) ; kje+ue- (lr-le) ( 1 +ke-kr) et Li,le ke+1 ( 1 +le-Jr) (kr-ke)
4. Dispositif de correction électronique selon la revendication 1, caractérisé en ce que la constante de normalisation K,' est paramétrable de façon à obtenir sur l'image finale (V) des effets de zoom électronique.
5. Dispositif de correction électronique selon les revendications 1 à 3, caractérisé en ce que l'électronique (C) comprend un composant électronique non programmable de type ASIC (Application Specific
<Desc/Clms Page number 14>
Integrated Circuit) ou programmable de type FPGA (Field Programmable Gate Array) ou EPLD (Erasable Programmable Logic Device).
6. Dispositif de correction électronique selon la revendication 4, caractérisé en ce que la fonction F étant un polynôme de degré n, le système de correction de la distorsion est obtenu par l'utilisation d'analyseurs différentiels digitaux (DDA pour Digital Differential Analysers).
7. Dispositif de correction électronique selon l'une des revendications précédentes, caractérisé en ce que l'afficheur étant polychromatique constitué de pixels de couleur, chaque pixel étant composé d'un triplet de trois sous-pixels colorés, correspondant chacun à une couleur primaire et les images sources électroniques étant également polychromes constituées chacune de pixels de couleur, chaque pixel étant également composé d'un triplet de trois sous-pixels colorés, correspondant chacun à une couleur primaire ; les calculs effectués par l'unité de calcul d'adresse et l'unité d'interpolation afin de déterminer les valeurs photométriques de chaque pixel coloré de l'afficheur sont réalisées respectivement pour chaque type de sous-pixel de l'afficheur et pour chaque type de sous-pixel des images-sources de même couleur.
FR0206721A 2002-05-31 2002-05-31 Dispositif de correction electronique des distorsions optiques d'une visualisation collimatee obtenue a partir d'un afficheur matriciel Expired - Lifetime FR2840491B1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
FR0206721A FR2840491B1 (fr) 2002-05-31 2002-05-31 Dispositif de correction electronique des distorsions optiques d'une visualisation collimatee obtenue a partir d'un afficheur matriciel
PCT/FR2003/001601 WO2003102904A1 (fr) 2002-05-31 2003-05-27 Dispositif de correction electronique des distorsions optiques d'une visualisation collimatee obtenue a partir d'un afficheur matriciel
US10/483,836 US20040179271A1 (en) 2002-05-31 2003-05-27 Electronic correction device for optical distortions in a collimated imaging obtained from a matrix display
EP03756013A EP1516304A1 (fr) 2002-05-31 2003-05-27 Dispositif de correction electronique des distorsions optiques d'une visualisatiisation collimatee obtenue a partir d'un afficheur matriciel
IL15991203A IL159912A0 (en) 2002-05-31 2003-05-27 Electronic correction device for optical distortions in a collimated imaging obtained from a matrix display
JP2004509912A JP2005528833A (ja) 2002-05-31 2003-05-27 マトリクスディスプレイで得られるコリメートされた画像の光学歪みを修正する電子修正装置
AU2003254537A AU2003254537A1 (en) 2002-05-31 2003-05-27 Electronic correction device for optical distortions in a collimated imaging obtained from a matrix display
CA002455764A CA2455764A1 (fr) 2002-05-31 2003-05-27 Dispositif de correction electronique des distorsions optiques d'une visualisation collimatee obtenue a partir d'un afficheur matriciel
BR0304931-0A BR0304931A (pt) 2002-05-31 2003-05-27 Dispositivo de correção eletrônica das distorções ópticas de uma visualização colimatada obtida a partir de um visor matricial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0206721A FR2840491B1 (fr) 2002-05-31 2002-05-31 Dispositif de correction electronique des distorsions optiques d'une visualisation collimatee obtenue a partir d'un afficheur matriciel

Publications (2)

Publication Number Publication Date
FR2840491A1 true FR2840491A1 (fr) 2003-12-05
FR2840491B1 FR2840491B1 (fr) 2004-12-03

Family

ID=29558881

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0206721A Expired - Lifetime FR2840491B1 (fr) 2002-05-31 2002-05-31 Dispositif de correction electronique des distorsions optiques d'une visualisation collimatee obtenue a partir d'un afficheur matriciel

Country Status (9)

Country Link
US (1) US20040179271A1 (fr)
EP (1) EP1516304A1 (fr)
JP (1) JP2005528833A (fr)
AU (1) AU2003254537A1 (fr)
BR (1) BR0304931A (fr)
CA (1) CA2455764A1 (fr)
FR (1) FR2840491B1 (fr)
IL (1) IL159912A0 (fr)
WO (1) WO2003102904A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742459A1 (fr) * 2005-06-13 2007-01-10 SONY DEUTSCHLAND GmbH Correction de la distorsion géométrique

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2860601B1 (fr) * 2003-10-07 2005-12-30 Thales Sa Procede de correction de distorsion d'un imageur a cristaux liquides
ITBO20060027A1 (it) * 2006-01-17 2007-07-18 Ferrari Spa Metodo di controllo di sistema hud per un veicolo stradale
US7873233B2 (en) * 2006-10-17 2011-01-18 Seiko Epson Corporation Method and apparatus for rendering an image impinging upon a non-planar surface
JP5341462B2 (ja) * 2008-10-14 2013-11-13 キヤノン株式会社 収差補正方法、画像処理装置および画像処理システム
EP2746832B1 (fr) * 2011-08-18 2017-03-01 Pioneer Corporation Dispositif d'affichage d'images virtuelles
WO2015025190A1 (fr) 2013-08-19 2015-02-26 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi Système et procédé de correction de distorsions optiques
CN106646869B (zh) * 2015-10-30 2019-07-26 上海和辉光电有限公司 一种虚拟实境显示装置
DE102017004859B4 (de) 2017-05-19 2019-03-14 Daimler Ag Verfahren zum Kalibrieren einer Projektionsgeometrie eines Head-Up Displays und zugehörige Kalibriervorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0777198A1 (fr) * 1995-11-30 1997-06-04 Victor Company Of Japan, Limited Dispositif de traitement d'images
WO2000021282A1 (fr) * 1998-10-02 2000-04-13 Macronix International Co., Ltd. Procede et appareil pour empecher la distorsion en trapeze
JP2000196978A (ja) * 1998-12-24 2000-07-14 Seiko Epson Corp 投写型表示装置およびそのための画像処理方法
US6188460B1 (en) * 1990-06-11 2001-02-13 Reveo, Inc. Image display panel having a backlighting structure and a single-layer pixelated aray of reflective-type spectral filtering elements where between light is recycled for producing color images with enhanced brightness
EP1207691A2 (fr) * 2000-11-20 2002-05-22 Seiko Epson Corporation Projecteur et méthode de correction de distorsion d'image

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656521A (en) * 1985-04-01 1987-04-07 The Singer Company Digital distortion-correcting circuit for projection a flat image on a curved screen from a digital data source for a simulator projected-image visual system
JP3573765B2 (ja) * 1993-03-18 2004-10-06 カルソニックカンセイ株式会社 車両のヘッドアップディスプレイ装置
US5465121A (en) * 1993-03-31 1995-11-07 International Business Machines Corporation Method and system for compensating for image distortion caused by off-axis image projection
US6232986B1 (en) * 1997-08-12 2001-05-15 Ricoh Company, Ltd. Three-dimensional graphics processing apparatus
JP3644295B2 (ja) * 1999-03-17 2005-04-27 セイコーエプソン株式会社 投写型表示装置
US6496231B1 (en) * 1999-06-30 2002-12-17 Koninklijke Philips Electronics N.V. Method and apparatus for correcting convergence and geometry errors in display devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188460B1 (en) * 1990-06-11 2001-02-13 Reveo, Inc. Image display panel having a backlighting structure and a single-layer pixelated aray of reflective-type spectral filtering elements where between light is recycled for producing color images with enhanced brightness
EP0777198A1 (fr) * 1995-11-30 1997-06-04 Victor Company Of Japan, Limited Dispositif de traitement d'images
WO2000021282A1 (fr) * 1998-10-02 2000-04-13 Macronix International Co., Ltd. Procede et appareil pour empecher la distorsion en trapeze
JP2000196978A (ja) * 1998-12-24 2000-07-14 Seiko Epson Corp 投写型表示装置およびそのための画像処理方法
EP1207691A2 (fr) * 2000-11-20 2002-05-22 Seiko Epson Corporation Projecteur et méthode de correction de distorsion d'image

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 10 17 November 2000 (2000-11-17) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742459A1 (fr) * 2005-06-13 2007-01-10 SONY DEUTSCHLAND GmbH Correction de la distorsion géométrique

Also Published As

Publication number Publication date
CA2455764A1 (fr) 2003-12-11
IL159912A0 (en) 2004-06-20
BR0304931A (pt) 2004-08-24
EP1516304A1 (fr) 2005-03-23
FR2840491B1 (fr) 2004-12-03
JP2005528833A (ja) 2005-09-22
WO2003102904A1 (fr) 2003-12-11
AU2003254537A1 (en) 2003-12-19
US20040179271A1 (en) 2004-09-16

Similar Documents

Publication Publication Date Title
US10495884B2 (en) Visual perception enhancement of displayed color symbology
EP0282364B1 (fr) Procédé de représentation de l&#39;image en perspective d&#39;un terrain et système pour sa mise en oeuvre
EP0661671B1 (fr) Procédé et dispositif de traitement d&#39;image pour construire à partir d&#39;une image source une image cible avec changement de perspective
ES2311061T3 (es) Procedimiento y sistema para proporcionar informaciones formateadas a medios de tratamiento de imagenes.
US20190137758A1 (en) Pseudo light-field display apparatus
US11893701B2 (en) Method for simulating natural perception in virtual and augmented reality scenes
US10108144B2 (en) Holographic wide field of view display
FR2466061A1 (fr) Perfectionnement aux systemes de visualisation du type a image engendree par calculateur
US9418408B1 (en) Dynamic range optimization
US20230027801A1 (en) Overlaying augmented reality (ar) content within an ar headset coupled to a magnifying loupe
Burton et al. Effects of the Seidel aberrations on visual target discrimination
FR2840491A1 (fr) Dispositif de correction electronique des distorsions optiques d&#39;une visualisation collimatee obtenue a partir d&#39;un afficheur matriciel
EP2469868B1 (fr) Procédé de correction de l&#39;hyperstéréoscopie et système de visualisation de casque associé
Gil et al. DEM shading method for the correction of pseudoscopic effect on multi-platform satellite imagery
Lee et al. Tomoreal: Tomographic displays
FR3069654A1 (fr) Systeme de visualisation comportant un dispositif optique holographique permettant d&#39;afficher des images dans des plans differents
WO2022263652A1 (fr) Procédé de simulation de produits optiques
US20210407046A1 (en) Information processing device, information processing system, and information processing method
EP2444953A1 (fr) Dispositif d&#39;affichage matriciel de deux images fusionnees
Liu et al. Image blurring and spectral drift in imaging spectrometer system with an acousto-optic tunable filter and its application in UAV remote sensing
WO2005033774A1 (fr) Procede de correction de distorsion d&#39;un imageur a cristaux liquides
US9483020B2 (en) Methodology for a practical flat panel format holographic display utilizing the narrow hologram and holodot concepts
Crass et al. The AOLI low-order non-linear curvature wavefront sensor: a method for high sensitivity wavefront reconstruction
CN115798400B (zh) 一种基于图像处理的led显示控制方法、装置及led显示系统
EP2738589B1 (fr) Viseur tête haute à confort de visualisation amélioré

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 15

PLFP Fee payment

Year of fee payment: 16

PLFP Fee payment

Year of fee payment: 17

PLFP Fee payment

Year of fee payment: 18

PLFP Fee payment

Year of fee payment: 19

PLFP Fee payment

Year of fee payment: 20