FR2822540A1 - Procede automatise de mesure de volume - Google Patents

Procede automatise de mesure de volume Download PDF

Info

Publication number
FR2822540A1
FR2822540A1 FR0103927A FR0103927A FR2822540A1 FR 2822540 A1 FR2822540 A1 FR 2822540A1 FR 0103927 A FR0103927 A FR 0103927A FR 0103927 A FR0103927 A FR 0103927A FR 2822540 A1 FR2822540 A1 FR 2822540A1
Authority
FR
France
Prior art keywords
liquid
measurement
conduit
volume
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0103927A
Other languages
English (en)
Other versions
FR2822540B1 (fr
Inventor
Serge Njamfa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Labmetrix Technologies I&T SA
Original Assignee
Labmetrix Technologies I&T SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Labmetrix Technologies I&T SA filed Critical Labmetrix Technologies I&T SA
Priority to FR0103927A priority Critical patent/FR2822540B1/fr
Priority to PCT/FR2002/001011 priority patent/WO2002077579A1/fr
Publication of FR2822540A1 publication Critical patent/FR2822540A1/fr
Application granted granted Critical
Publication of FR2822540B1 publication Critical patent/FR2822540B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/36Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement
    • G01F3/38Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement having only one measuring chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/28Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
    • G01F11/284Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement combined with electric level detecting means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

L'invention concerne un procédé automatisé de mesure d'un volume de liquide comprenant les étapes selon lesquelles :- on injecte le liquide dans un conduit de mesure (7) présentant des premier et second points (11, 12) délimitant une portion du conduit de volume prédéterminé,- on détecte les passages du liquide au moins aux niveaux du premier et du second point (11, 12),- on vidange le conduit de mesure (7) jusqu'à ce que le liquide revienne au niveau du premier point (11) de détection,- on renouvelle éventuellement les opérations précédentes jusqu'à injection de la totalité du volume du liquide, et- on calcule le volume total de liquide injecté.

Description

<Desc/Clms Page number 1>
Figure img00010001
PROCEDE AUTOMATISE DE MESURE DE VOLUME
Figure img00010002

La présente invention concerne les méthodes de mesure de volumes et en particulier les méthodes d'étalonnage des appareils de titration. Elle concerne notamment les mesures de volumes de liquide (de l'ordre de 1 à 50 mL) délivrés par la burette d'injection de l'appareil.
Le titrage est l'opération de base de l'analyse volumétrique qui consiste en l'addition d'une solution de concentration inconnue, jusqu'à ce que la réaction soit complète (point d'équivalence). Le moyen utilisé pour mesurer la quantité de solution normale (de concentration connue) est la burette. Différentes méthodes sont utilisées pour déterminer le moment précis où le point d'équivalence est atteint. Le réactif titrant utilisé et le type de sonde sont fonction du composé à titrer.
Pour titrer une solution (déterminer la teneur en composé X), on utilise généralement un titrateur. Ce titrateur comprend une burette actionnée par un moteur pas à pas permettant d'ajouter progressivement un réactif ou titrant à la solution que l'on souhaite titrer Une sonde plongée dans la solution à titrer permet de détecter la neutralisation totale du composé de la solution par le réactif titrant injecté. Par exemple, on peut grâce à cette sonde, mesurer régulièrement ou en continu la conductivité du mélange. On détecte que la solution est neutralisée lorsque la conductivité du mélange mesurée devient nulle. Un système d'asservissement de la burette permet de ralentir l'injection à mesure que l'on approche du point de conductivité nulle. Ce dispositif permet d'atteindre précisément le point de neutralisation et lorsque ce point est atteint, l'injection cesse. Connaissant le volume de réactif ajouté dans la solution à titrer, on peut en déduire la teneur initiale en composé X dans la solution initiale
La précision avec laquelle on peut titrer une solution est directement liée à la précision avec laquelle on connaît le volume de titrant que l'on a injecté. Pour déterminer le volume de titrant injecté, plusieurs méthodes sont utilisées, basées sur l'étalonnage du système d'injection
<Desc/Clms Page number 2>
Un premier processus d'étalonnage consiste à commander le système d'injection de manière à ce qu'il pousse un certain volume de liquide pendant une durée déterminée. Le volume total de liquide injecté est recueilli dans un récipient ouvert. Le récipient est gradué, ce qui permet de vérifier que le volume récolté correspond bien au volume commandé
Un second processus d'étalonnage consiste à remplir la burette d'eau et à commander le système d'injection de manière à ce qu'il pousse un certain volume d'eau. Le volume d'eau récolté est ensuite pesé Connaissant la masse volumique de l'eau, on en déduit le volume d'eau effectivement injecté. L'inconvénient de ce processus est qu'il nécessite de connaître précisément la masse volumique de l'eau Or la masse volumique de l'eau varie avec sa température. Il est donc nécessaire de connaître précisément la température de la solution et d'introduire dans le calcul de volume un facteur de correction dépendant de la température.
En outre, dans les deux processus précédemment décrits, les volumes de liquides sont mesurés dans des récipients ouverts, la surface du liquide étant en contact avec l'air ambiant. Une fraction du volume recueilli peut donc s'évaporer durant les mesures Par conséquent, ces deux processus ne permettent pas d'atteindre des précisions de mesure suffisantes. Typiquement une évaporation de 2) J. L d'eau sur une quantité injectée de 10mL introduit une erreur de 0,02% Cette Incertitude est inacceptable dans le cadre de certaines applications, notamment lorsque le titrateur est destiné à contrôler le dosage de substances Introduites dans certaines compositions pharmaceutiques.
Un but de l'invention est de fournir un procédé d'étalonnage permettant de mesurer le volume de liquide injecté par un système d'injection en éliminant les incertitudes dues à l'évaporation du liquide utilisé ou à la connaissance approximative de sa masse volumique
A cet effet, l'invention propose un procédé automatisé de mesure d'un volume de liquide, caractérisé en ce qu'il comprend les étapes selon lesquelles :
<Desc/Clms Page number 3>
- on injecte le liquide dans un conduit de mesure présentant des premier et second points délimitant une portion du conduit de volume prédéterminé, - on détecte les passages du liquide au moins aux niveaux du premier et du second point, - on vidange le conduit de mesure jusqu'à ce que le liquide revienne au niveau du premier point de détection, - on renouvelle éventuellement les opérations précédentes jusqu'à injection de la totalité du volume du liquide, - on calcule le volume total de liquide injecté.
Dans un tel procédé, la portion du conduit de mesure délimitée par les deux points de détection constitue un volume élémentaire connu avec une grande précision de manière à ce que l'on puisse avantageusement en déduire avec une précision du même ordre le volume total injecté.
Le procédé selon l'invention pourra en outre présenter au moins l'une quelconque des caractéristiques suivantes : - on injecte le liquide de manière continue, - le conduit de mesure forme un circuit primaire et durant les phases de vidange du conduit de mesure, on évacue le liquide injecté par le dispositif d'injection vers un circuit secondaire.
Selon une première variante préférée du procédé, le volume total de liquide pourra alors être déterminé de la manière suivante - on chronomètre le temps d'injection de la totalité du volume de liquide à mesurer, - à chaque étape de remplissage du conduit de mesure, on chronomètre la durée de remplissage de la portion du conduit délimitée par les deux points, - on calcule le débit moyen global du dispositif d'injection qui servira à déterminer le volume évacué, - connaissant le débit moyen global, on en déduit le volume total injecté à partir du temps total d'injection et du débit moyen global
<Desc/Clms Page number 4>
Le volume total de liquide pourra aussi être déterminé en estimant le volume de liquide évacué vers le circuit secondaire et en calculant le volume total de liquide injecté en sommant les volumes de liquides injectés évacués vers le circuit secondaire et les volumes de liquide mesurés dans le conduit de mesure.
A cet effet, on peut déterminer le volume de liquide évacué vers le circuit secondaire de la manière suivante.
- à chaque étape de remplissage du conduit de mesure, on mesure la durée de remplissage de la portion du conduit délimitée par les deux points, - on calcule le débit du dispositif d'injection, - à chaque étape de vidange qui suit, on mesure la durée de vidange de la portion du conduit délimitée par les deux points, - on calcule le volume de liquide injecté durant chaque étape de vidange du conduit, - on en déduit le volume de liquide évacué vers le circuit secondaire.
Dans une mise en oeuvre de cette première variante, on détecte avantageusement le passage du liquide au niveau de points Intermédiaires entre les deux points de détection du conduit de mesure, de manière à connaître le dernier volume de liquide injecté dans ledit conduit et à améliorer encore la précision de la mesure.
Selon une deuxième variante préférée, on peut aussi déterminer le volume de liquide évacué vers le circuit secondaire de la manière suivante : -on dirige le liquide évacué via le circuit secondaire, vers un deuxième conduit de mesure présentant des premier et second points délimitant une portion du conduit de volume prédéterminé, - on injecte le liquide alternativement vers l'un ou l'autre des conduits de mesure de manière à ce que l'un des conduits soit en phase de vidange lorsque l'autre est en phase de remplissage,
<Desc/Clms Page number 5>
- on en déduit le volume total de liquide évacué via le Circuit secondaire.
Cette deuxième variante du procédé de mesure de volume est avantageusement basée sur une mesure directe de volumes. Elle ne nécessite pas de mesure des temps de remplissage ou de vidange Elle permet ainsi de s'affranchir des imprécisions dues au déclenchement de moyens de chronométrage au moment du début de la mesure
De même que dans la première variante, on peut avantageusement détecter le passage du liquide au niveau de points intermédiaires entre les deux points de détection de l'un des conduits de mesure, de manière à connaître le dernier volume de liquide Injecté dans ledit conduit.
L'invention propose aussi un dispositif de mesure d'un volume de liquide, caractérisé en ce qu'il comprend des moyens d'injection automatisés de liquide, un conduit de mesure, des moyens de détection aptes à détecter le passage d'un liquide en différents points dudit conduit de mesure.
Le dispositif de l'invention peut en outre présenter au moins l'une quelconque des caractéristiques suivantes - le dispositif comprend un organe de connexion aptes à connecter le conduit de mesure alternativement avec les moyens d'injection ou avec un circuit de vidange, - le conduit de mesure, l'organe de connexion et le circuit de vidange formant un circuit primaire, il comprend en outre un circuit secondaire et un deuxième organe de connexion apte à connecter le dispositif d'injection alternativement avec le circuit primaire ou avec le circuit secondaire,
Figure img00050001

- le circuit secondaire est un circuit de vidange, - le circuit secondaire comprend un conduit de mesure secondaire, des moyens de détection aptes à détecter le passage d'un liquide en différents points dudit conduit de mesure,
<Desc/Clms Page number 6>
Figure img00060001

- le dispositif comprend un troisième organe de connexion apte à connecter le conduit de mesure secondaire alternativement avec les moyens d'injection ou avec un circuit de vidange secondaire, - le ou les conduit (s) de mesure sont munis de moyens de chronométrage aptes à être déclenchés par les moyens de détection, - le ou les conduit (s) de mesure sont transparents et en ce que les moyens de détection comprennent des capteurs sensibles à une variation de flux lumineux placées le long du conduit au niveau des premier et second point de détection, - les moyens de détection comprennent en outre des capteurs sensibles à une variation de flux lumineux placées le long de la partie intermédiaire du conduit située entre les premier et second points de détection et aptes à détecter le passage du liquide au niveau de points intermédiaires.
D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés parmi lesquels.
- la figure 1 est un schéma représentatif d'une première variante de dispositif permettant la mise en oeuvre du procédé de l'invention, - les figures 2 et 3 sont des schémas illustrant différentes étapes de fonctionnement du dispositif de la figure 1, - la figure 4 est un dessin en coupe d'un dispositif fonctionnant selon le principe illustré aux figures 1 à 3, - la figure 5 est un schéma représentatif d'une deuxième variante de dispositif permettant la mise en oeuvre du procédé de l'invention,
Figure img00060002

- les figures 6 et 7 sont des schémas illustrant différentes étapes de fonctionnement du dispositif de la figure 4, - la figure 8 est un dessin en coupe d'un dispositif fonctionnant selon le principe illustré aux figures 5 à 7,
<Desc/Clms Page number 7>
Figure img00070001

- la figure 9 est un schéma représentatif d'un dispositif de détection utilisés pour détecter le passage d'un liquide dans un conduit de mesure
On a illustré à la figure 1 un dispositif d'étalonnage pour un appareil de titration. Sur cette figure, la burette d'injection 1 de l'appareil de titration est reliée au dispositif de mesure de volume par un conduit d'injection 2. Le dispositif de mesure de volume comprend une première vanne 3 permettant de diriger le liquide injecté par la burette 1 soit vers un conduit de vidange 4 (liaison AC), soit vers le conduit 5 (liaison AB). Le conduit 5 mène à une deuxième vanne 6 reliée à un conduit de mesure 7 La vanne 6 permet de diriger le liquide soit du conduit 5 vers le conduit de mesure 7 (liaison ED), soit du conduit de mesure 7 vers un conduit de vidange 8 (liaison DF).
Le conduit de mesure 7 comprend un tube de verre muni de moyens de détection du passage d'un liquide. Les moyens de détection comprennent des sources lumineuses 9 et une barrette de photocellules 10 placée le long du conduit 7 de part et d'autre de celui-ci La barrette de photocellules 10 s'étend entre un point 11 et un point 12 du conduit de mesure 7, le point 12 étant situé au-dessus et à distance du point 11 Les points 11 et 12 délimitent ainsi une portion du conduit de volume V prédéterminé. Par exemple, la distance entre les points 11 et 12 peut être de l'ordre de 1cm et le volume V délimité de l'ordre de 70gL.
La burette d'injection 1 est actionnée par un moteur pas à pas ou autre piloté par un système d'asservissement permettant de contrôler la vitesse d'injection.
Lorsqu'on veut étalonner l'appareil d'injection, on remplit la burette 1 d'un liquide et on commande l'injection d'un volume donné de ce liquide après avoir purgé le circuit comprenant les conduits 2,5 et la liaison ED jusqu'au point 11 du conduit de mesure 7. Sur la figure 2, le liquide contenu dans la burette 1 est injecté progressivement via le conduit d'injection du liquide dans le conduit de mesure 7. A cet effet, la vanne 3
<Desc/Clms Page number 8>
dirige le flux vers le conduit 5 et la vanne 6 vers le conduit de mesure Le conduit de mesure 7 est alors en phase de remplissage. Les photocellules permettent de détecter le passage du liquide au niveau du point 11 puis au niveau du point 12 du conduit de mesure 7. Lorsque le liquide est détecté au point 12, on commande la vidange du conduit 7
Sur la figure 3, la vanne 6 connecte alors le conduit de mesure 7 avec le conduit de vidange 8. Le conduit de mesure 7 se vide jusqu'à ce que le niveau du liquide atteigne à nouveau le point 11. Durant cette phase de vidange, la burette d'injection 1 poursuit l'injection de liquide dans le dispositif de mesure de volume via le conduit d'injection 2. La vanne 3 dirige le flux injecté vers le conduit de vidange 4.
Lorsque le niveau du liquide est détecté au point 11 du conduit de mesure 7, on commande à nouveau le remplissage du conduit 7 et on renouvelle les opérations précédentes.
On alterne ainsi n phases de remplissage et de vidange du conduit de mesure 7 jusqu'à ce que l'injection de la totalité du liquide soit terminée.
Selon un premier procédé d'utilisation du dispositif des figures 1 à 3, les photocellules sont reliées à une horloge permettant de chronométrer les durées des n-1 phases de remplissage et celles des n-1 phases de vidange du conduit de mesure 7. La durée d'une phase peut être de l'ordre de 0.1 secondes. Durant chaque phase de remplissage i de durée tr,, la burette 1 injecte un volume V de liquide dans le dispositif de mesure Durant chaque phase de vidange i de durée tv, qui suit la phase de remplissage i, la burette 1 injecte un volume V, de liquide dans le dispositif de mesure.
Pour déterminer le volume total de liquide injecté dans le dispositif de mesure, on détermine les débits d, d'injection durant chaque
Figure img00080001

phase de remplissage i du conduit d mesure 7 d, = V/tr, On calcule le volume V injecté durant le phase de vidange i suivante.
<Desc/Clms Page number 9>
Figure img00090001
V, = d, xtv, On en déduit le volume total de liquide injecté en sommant les volumes V injectés dans le conduit de mesure et les volumes V, vidangés via le conduit de vidange 4.
Vtota = LI (V+V,) = LI Vx (1 +tv,/tr,)
La plupart du temps, durant la dernière phase de remplissage du conduit de mesure 7, c'est-à-dire durant la phase n de remplissage, le liquide injecté n'atteint pas le point 12. C'est pourquoi, la barrette de photocellules 10 est agencée pour permettre de détecter le passage du liquide au niveau de points intermédiaires situés entre les points de détection 11 et 12. Cette caractéristique permet avantageusement de connaître le dernier volume de liquide injecté dans le conduit de mesure 7 et de le prendre en compte dans le calcul du volume total injecté VIolai
La figure 9 représente un dispositif de détection utilisé pour détecter le passage d'un liquide dans un conduit de mesure Ce dispositif comprend une barrette de sources lumineuses 9 et une barrette de photocellules 10 placées de part et d'autre d'un tube de verre constituant un conduit de mesure 7. Les sources lumineuses peuvent par exemple être des diodes électroluminescentes de type LED infrarouge commercialisées par la société SIGNAL-CONSTRUCT La société HAMAMATSU fournit des barrettes de photocellules de type S3902 ou S3903 (les photocellules peuvent aussi être constituées d'éléments séparés)
Les sources lumineuses de la barrette 9 éclairent les photocellules de la barrette 10 à travers le tube de verre 7. Le passage du liquide dans le tube de verre 7 provoque un changement du flux lumineux transmis aux photocellules de la barrette 10. Chaque photocellule délivre un courant proportionnel au flux lumineux qu'elle reçoit. En détectant le changement des courants délivrés par les photocellules, on en déduit le niveau du liquide dans le tube de verre 7 avec une précision de l'ordre de la largeur d'une photocellule.
Les photocellules 10 à In de la barrette 10 présentent des largeurs v0 à Vn comprises entre 25 et 50jam, ce qui permet pour un conduit
<Desc/Clms Page number 10>
Figure img00100001

de mesure 7 de 1 cm et présentant un volume V de 70gel d'atteindre une précision dans la mesure des volumes de l'ordre de 0, 007L
Selon un deuxième procédé d'utilisation du dispositif des figures 1 à 3, les photocellules sont reliées à une horloge permettant de chronométrer les durées des n phases de remplissage et la durée totale T d'injection du volume de liquide à mesurer. Durant chaque phase de remplissage i de durée trI, la burette 1 injecte un volume V de liquide dans le dispositif de mesure.
Pour déterminer le volume total de liquide injecté dans le dispositif de mesure, on détermine le débit moyen d d'injection de la burette 1 : d = [L (V/tr,)]/n
On en déduit le volume total de liquide injecté en multipliant le débit moyen par le temps total d'injection.
Votai = Txd
Ces deux procédés de mesure de volume fournissent des précisions de mesures équivalentes si toutefois le débit de la burette est constant, ce qui n'est pas le cas de tous les titrateurs. Elles sont néanmoins sensibles à la précision avec laquelle l'horloge est déclenchée au moment du début de la mesure.
La figure 4 est un dessin en coupe d'un dispositif fonctionnant selon le principe illustré aux figures 1 à 3. On retrouve sur ce dessin les éléments des figures précédentes : le conduit d'injection 2, la première vanne 3, le conduit de vidange 4, le conduit 5, la deuxième vanne 6, le conduit de mesure 7, le conduit de vidange 8, les sources lumineuses constituées par des diodes 9 et la barrette de photocellules 10 s'étendant entre le point 11 et le point 12 du conduit de mesure 7 L'assemblage des différents éléments est inclus dans un boîtier 30 sur lequel sont fixés des borniers 31 et 32 permettant la connexion de dispositifs d'alimentation électriques.
La figure 5 représente une deuxième mode de réalisation du dispositif permettant une mise en oeuvre du procédé de l'invention Sur cette
<Desc/Clms Page number 11>
figure, le dispositif de mesure comprend des éléments similaires à ceux du dispositif représenté à la figure 1 et constituant un circuit primaire de mesure 20. Ici, le conduit 4 n'est pas un conduit de vidange mais un conduit reliant la vanne 3 à un circuit de mesure secondaire parallèle 22
Ce circuit secondaire comprend un conduit de mesure 14 similaire au conduit de mesure 7. Il comprend un tube de verre muni de moyens de détection du passage d'un liquide. Les moyens de détection comprennent des sources lumineuses 16 et une barrette de photocellules 17 placée le long du conduit 14. La barrette de photocellules 17 s'étend entre un point 18 et un point 19 du conduit de mesure 14. Les points 18 et 19 délimitent une portion du conduit de volume V. Une troisième vanne 13 permet de diriger le liquide soit du conduit 4 vers le tube de mesure 14, soit du tube de mesure 14 vers un conduit de vidange 15.
Après avoir purgé le circuit comprenant les conduits 2,5 et la liaison ED jusqu'au point 11 et le circuit comprenant le conduit 4 et la liaison HG jusqu'au point 18, la burette d'injection 1 est actionnée par un moteur pas à pas ou autre piloté par un système d'asservissement permettant de contrôler la vitesse d'injection. Lorsqu'on veut étalonner l'appareil d'injection, on remplit la burette 1 d'un liquide et on commande l'injection d'un volume donné de ce liquide. Sur la figure 6, le liquide contenu dans la burette 1 est injecté progressivement via le conduit d'injection 2 dans le conduit de mesure 7. De la même manière que sur la figure 2, la vanne 3 dirige le flux vers le conduit 5 et la vanne 6 vers le conduit de mesure 7. Le conduit de mesure 7 est alors en phase de remplissage. Les photocellules permettent de détecter le passage du liquide aux niveaux des points 11 et 12 du conduit de mesure 7. Lorsque le liquide est détecté au point 12, on commande la vidange du conduit 7.
Sur la figure 7, la vanne 6 connecte alors le conduit de mesure 7 avec le conduit de vidange 8. Le conduit de mesure 7 se vide jusqu'à ce que le niveau du liquide atteigne à nouveau le point 11. Durant cette phase de vidange du conduit de mesure 7, la burette d'injection 1 poursuit
<Desc/Clms Page number 12>
l'injection de liquide dans le dispositif de mesure de volume via le conduit d'injection 2. La vanne 3 dirige le flux injecté vers le conduit 4.
La vanne 13 dirige le flux du conduit 4 vers le conduit de mesure 14. Le conduit de mesure 14 est alors en phase de remplissage. Les photocellules permettent de détecter le passage du liquide aux niveaux des points 18 et 19 du conduit de mesure 14 Lorsque le liquide est détecté au point 19, on commande la vidange du conduit de mesure 14
On est alors ramené au cas de la figure 6 Le conduit de mesure 7 est en phase de remplissage tandis que le conduit de mesure 14 est en phase de vidange. La vanne 13 connecte le conduit de mesure 14 avec le conduit de vidange 15. Le conduit de mesure 14 se vide jusqu'à ce que le niveau du liquide atteigne à nouveau le point 18.
On injecte ainsi le liquide alternativement vers l'un ou l'autre des conduits de mesure 7 ou 14 de manière à ce que l'un des conduits soit en phase de vidange lorsque l'autre est en phase de remplissage. On alterne ainsi les phases de remplissage du conduit de mesure 7 et les phases de remplissage du conduit de mesure 14 jusqu'à ce que l'injection de liquide soit terminée.
Pour déterminer le volume total VIolai de liquide injecté dans le dispositif de mesure, on somme les volumes V injectés dans les conduits de mesure 7 et 14.
De la même manière que dans la première variante illustrée à la figure 1, les barrettes de photocellules 10 et 17 permettent de détecter le passage du liquide au niveau de points intermédiaires entre les points de détection 11,12 et 18,19. Cette caractéristique permet de connaître le dernier volume de liquide injecté dans l'un des conduits de mesure et de le prendre en compte dans le calcul du volume total injecté Violai.
Cette dernière variante du dispositif de mesure de volume est avantageusement basée sur une mesure directe de volumes Elle ne nécessite pas de mesure des temps de remplissage ou de vidange Elle permet ainsi de s'affranchir des imprécisions dues au déclenchement de l'horloge au moment du début de la mesure
<Desc/Clms Page number 13>
La figure 8 est un dessin en coupe d'un dispositif fonctionnant selon le principe illustré aux figures 5 à 7 On retrouve le circuit primaire de mesure 20 et le circuit secondaire de mesure 22 reliés par un conduit 4 Le circuit de mesure primaire 20 comprend un conduit d'injection 2, une première vanne 3, un conduit 5, une deuxième vanne 6, un conduit de mesure 7, un conduit de vidange 8, des sources lumineuses constituées par des diodes 9 et une barrette de photocellules 10 s'étendant entre le point 11 et le point 12 du conduit de mesure 7. Le circuit de mesure secondaire 22 comprend un conduit de mesure secondaire 14 similaire au conduit de mesure 7, une barrette de sources lumineuses 16 et une barrette de photocellules 17 placée le long du conduit 14 et s'étendant entre un point 18 et un point 19 du conduit de mesure 14, une troisième vanne 13, un conduit de vidange 15. L'assemblage des différents éléments de chaque circuit est inclus dans des boîtiers 30 et 33 sur lesquels sont fixés des borniers 31,32 et 34,35 permettant la connexion de dispositifs d'alimentation électriques
D'autres variantes sont envisageables, il est notamment possible de réaliser des dispositifs de mesures du même type que ceux précédemment décrits, présentant plus de deux conduits de mesure En outre, les conduits de mesure peuvent contenir des volumes différents
Les dispositifs décrits peuvent facilement être appliqués à des mesures de débit.
Enfin, le procédé de l'invention peut être utilisé pour tous types d'appareils nécessitant des mesures volumétriques de liquides

Claims (18)

  1. REVENDICATIONS 1. Procédé automatisé de mesure d'un volume de liquide, caractérisé en ce qu'il comprend les étapes selon lesquelles - on injecte le liquide dans un conduit de mesure (7) présentant des premier et second points (11,12) délimitant une portion du conduit de volume prédéterminé, - on détecte les passages du liquide au moins aux niveaux du premier et du second point (11,12), - on vidange le conduit de mesure (7) jusqu'à ce que le liquide revienne au niveau du premier point (11) de détection, - on renouvelle éventuellement les opérations précédentes jusqu'à injection de la totalité du volume du liquide, et - on calcule le volume total de liquide injecté
  2. 2. Procédé selon la revendication 1, caractérisé en ce que l'on injecte le liquide de manière continue.
  3. 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le conduit de mesure (7) forme un circuit primaire, et en ce que durant les phases de vidange du conduit de mesure, on évacue le liquide injecté par le dispositif d'injection (1) vers un circuit secondaire.
  4. 4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on détermine le volume total injecté de la manière suivante - on mesure le temps d'injection de la totalité du volume de liquide à mesurer, - à chaque étape de remplissage du conduit de mesure (7), on mesure la durée de remplissage de la portion du conduit délimitée par les deux points (11,12), - on calcule le débit moyen global du dispositif d'injection (1), - on déduit le volume total injecté à partir du temps total d'injection et du débit moyen global.
  5. 5. Procédé selon la revendication 3, caractérisé en ce que l'on estime le volume de liquide évacué vers le circuit secondaire et on calcule
    <Desc/Clms Page number 15>
    le volume total de liquide injecté en sommant les volumes de liquides injectés évacués vers le circuit secondaire et les volumes de liquide mesurés dans le conduit de mesure (7).
  6. 6. Procédé selon la revendication 5, caractérisé en ce que l'on détermine le volume de liquide évacué vers le circuit secondaire de la manière suivante : - à chaque étape de remplissage du conduit de mesure (7), on mesure la durée de remplissage de la portion du conduit (7) délimitée par les deux points (11,12), - on calcule le débit du dispositif d'injection (1), - à chaque étape de vidange qui suit, on mesure la durée de vidange de la portion du conduit délimitée par les deux points (11,12), - on calcule le volume de liquide injecté durant chaque étape de vidange du conduit (7), - on en déduit le volume de liquide évacué vers le circuit secondaire
  7. 7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on détecte le passage du liquide au niveau d'au moins un point intermédiaire entre les deux points de détection (11,12) du conduit de mesure (7), de manière à connaître le dernier volume de liquide injecté dans ledit conduit (7).
  8. 8. Procédé selon la revendication 5, caractérisé en ce que l'on détermine le volume de liquide évacué vers le circuit secondaire de la manière suivante : - on dirige le liquide évacué via le circuit secondaire, vers un deuxième conduit de mesure (14) présentant des premier et second points (18,19) délimitant une portion du conduit (14) de volume prédéterminé, - on injecte le liquide alternativement vers l'un ou l'autre des conduits de mesure (7,14) de manière à ce que l'un des conduits (7 ; 14) soit en phase de vidange lorsque l'autre est en phase de remplissage, - on en déduit le volume total de liquide évacué via le circuit secondaire.
    <Desc/Clms Page number 16>
  9. 9. Procédé selon la revendication 8, caractérisé en ce que l'on détecte le passage du liquide au niveau d'au moins point intermédiaire entre les deux points de détection (11,12 ; 18,19) de l'un des conduits de mesure (7 ; 14), de manière à connaître le dernier volume de liquide injecté dans ledit conduit (7 ; 14).
  10. 10. Dispositif de mesure d'un volume de liquide, caractérisé en ce qu'il comprend des moyens (1) d'injection automatisés de liquide, un conduit de mesure (7) et des moyens de détection (9,10) aptes à détecter le passage d'un liquide en différents points dudit conduit de mesure
  11. 11. Dispositif selon la revendication 10, caractérisé en ce qu'il comprend un organe de connexion (6) aptes à connecter le conduit de mesure (7) alternativement avec les moyens d'injection (1) ou avec un circuit de vidange (8).
  12. 12. Dispositif selon l'une des revendications 10 ou 11, caractérisé en ce que le conduit de mesure (7), l'organe de connexion (6) et le circuit de vidange (8) formant un circuit primaire, il comprend en outre un circuit secondaire et un deuxième organe de connexion (3) apte à connecter le dispositif d'injection (1) alternativement avec le circuit primaire ou avec le circuit secondaire.
  13. 13. Dispositif selon la revendication 12, caractérisé en ce que le circuit secondaire est un circuit de vidange (4)
  14. 14. Dispositif selon la revendication 12, caractérisé en ce que le circuit secondaire comprend un conduit de mesure secondaire (14) et des moyens de détection (16,17) aptes à détecter le passage d'un liquide en différents points dudit conduit de mesure (14).
  15. 15. Dispositif selon la revendication 14, caractérisé en ce qu'il comprend un troisième organe de connexion (13) apte à connecter le conduit de mesure secondaire (14) alternativement avec les moyens d'injection (1) ou avec un circuit de vidange secondaire (15)
  16. 16. Dispositif selon l'une des revendications 10 à 15, caractérisé en ce que le ou les conduit (s) de mesure (7,14) sont munis de moyens de
    <Desc/Clms Page number 17>
    chronométrage aptes à être déclenchés par les moyens de détection (9, 10 ; 16, 17).
  17. 17. Dispositif selon les revendications 10 à 16, caractérisé en ce que le ou les conduit (s) de mesure (7,14) sont transparents et en ce que les moyens de détection comprennent des capteurs sensibles à une variation de flux lumineux (10 ; 17) placées le long du conduit (7 ; 14) au niveau des premier et second point de détection (11,12 ; 18,19).
  18. 18. Dispositif selon la revendication 17, caractérisé en ce que les moyens de détection (10,9 ; 16, 17) comprennent en outre au moins un capteur sensible à une variation de flux lumineux (10 ; 17) placé le long de la partie intermédiaire du conduit (7 ; 14) située entre les premier et second points de détection (11,12 ; 18 ; 19) et apte à détecter le passage du liquide au niveau d'au moins un point intermédiaire.
FR0103927A 2001-03-23 2001-03-23 Procede automatise de mesure de volume Expired - Lifetime FR2822540B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0103927A FR2822540B1 (fr) 2001-03-23 2001-03-23 Procede automatise de mesure de volume
PCT/FR2002/001011 WO2002077579A1 (fr) 2001-03-23 2002-03-22 Procede automatise de mesure de volume de dosage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0103927A FR2822540B1 (fr) 2001-03-23 2001-03-23 Procede automatise de mesure de volume

Publications (2)

Publication Number Publication Date
FR2822540A1 true FR2822540A1 (fr) 2002-09-27
FR2822540B1 FR2822540B1 (fr) 2004-09-10

Family

ID=8861459

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0103927A Expired - Lifetime FR2822540B1 (fr) 2001-03-23 2001-03-23 Procede automatise de mesure de volume

Country Status (2)

Country Link
FR (1) FR2822540B1 (fr)
WO (1) WO2002077579A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201119420D0 (en) 2011-11-10 2011-12-21 Organox Ltd Oxygen supply for organ perfusion systems
WO2013068751A2 (fr) 2011-11-10 2013-05-16 Organox Limited Système de perfusion d'organes
ES2685328T3 (es) 2011-11-10 2018-10-08 Organox Limited Sistemas de perfusión de órganos
DE102018123448A1 (de) 2018-09-24 2020-03-26 Promecon Process Measurement Control Gmbh Verfahren und Vorrichtung zum Messen einer Strömungsgeschwindigkeit eines Gasstroms

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193141A (en) * 1963-08-23 1965-07-06 Swift & Co Device for measuring and dispensing variable amounts of liquid
FR2230978A1 (en) * 1973-05-23 1974-12-20 Inst Francais Du Petrole Fluid flow control from storage reservoir - gives precise control even when rate of flow is low
FR2464474A1 (fr) * 1979-09-04 1981-03-06 Alcyon Equip Sa Dispositif de mesure d'evaporation de liquide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193141A (en) * 1963-08-23 1965-07-06 Swift & Co Device for measuring and dispensing variable amounts of liquid
FR2230978A1 (en) * 1973-05-23 1974-12-20 Inst Francais Du Petrole Fluid flow control from storage reservoir - gives precise control even when rate of flow is low
FR2464474A1 (fr) * 1979-09-04 1981-03-06 Alcyon Equip Sa Dispositif de mesure d'evaporation de liquide

Also Published As

Publication number Publication date
FR2822540B1 (fr) 2004-09-10
WO2002077579A1 (fr) 2002-10-03

Similar Documents

Publication Publication Date Title
FR2628835A1 (fr)
FR2640381A1 (fr) Procede d&#39;etalonnage pour la mesure de la concentration relative de gaz ou de vapeur et capteur etalonnable pour effectuer cette mesure
EP2936145B1 (fr) Dispositif et procede de discrimination d&#39;un gaz dans un echantillon
JPH0134337B2 (fr)
EP1196346B1 (fr) Procede de remplissage d&#39;un recipient
EP2726206B1 (fr) Procede de detection d&#39;anomalies lors du remplissage d&#39;un dispositif de dosage de liquide et dispositif de dosage de liquide
EP1207396A1 (fr) Dispositif dispensateur de fluide
FR2822540A1 (fr) Procede automatise de mesure de volume
EP0353197A1 (fr) Procédé de dosage pondéral
EP0192551B1 (fr) Procédé et appareil pour la détermination du point de décongélation des carburéacteurs
US4309112A (en) Rate measurement analyzer
EP0086145B1 (fr) Débitmètre et installation de mélange d&#39;un additif dans un liquide comprenant un tel débitmètre
EP0994350A1 (fr) Accessoire pour mesure ou dosage, notamment capteur de mesure électrochimique
EP0294283A1 (fr) Procédé et dispositif de mesure de la concentration en lithium dans le circuit primaire de refroidissement d&#39;un réacteur nucléaire
EP1031829A1 (fr) Procédé d&#39;analyse d&#39;un mélange gazeux pour la détermination de son explosibilité et dispositif pour la mise en oeuvre d&#39;un tel procédé
FR2726654A1 (fr) Module fluidique pour dispositif d&#39;analyse automatique
FR2532430A1 (fr) Dispositif de traitement de signaux notamment applicable au chromatographe en phase gazeuse
FR2772127A1 (fr) Procede de determination de la concentration d&#39;un gaz dans un melange gazeux et dispositif d&#39;analyse pour la mise en oeuvre d&#39;un tel procede
FR2549958A1 (fr) Appareil de pesee
FR3073945B1 (fr) Procede de determination de la concentration en chlore libre dans une tour utilisant le chlore comme base active
FR2767206A1 (fr) Generateur de faibles quantites de gaz et procede de generation d&#39;un debit constant de gaz au moyen de ce generateur
FR3015038A1 (fr) Procede de determination des teneurs en differents mineraux d&#39;une roche, dispositif portatif associe
EP3001155B1 (fr) Jauge, dispositif de jaugeage et procédé de jaugeage d&#39;un distributeur de carburant
CA2568480C (fr) Detection de pente pour mesure de teneur en gaz
CH619046A5 (fr)

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 16

PLFP Fee payment

Year of fee payment: 17

PLFP Fee payment

Year of fee payment: 18

PLFP Fee payment

Year of fee payment: 20