FR2742953A1 - Procede de commande d'un buzzer - Google Patents

Procede de commande d'un buzzer Download PDF

Info

Publication number
FR2742953A1
FR2742953A1 FR9515377A FR9515377A FR2742953A1 FR 2742953 A1 FR2742953 A1 FR 2742953A1 FR 9515377 A FR9515377 A FR 9515377A FR 9515377 A FR9515377 A FR 9515377A FR 2742953 A1 FR2742953 A1 FR 2742953A1
Authority
FR
France
Prior art keywords
buzzer
frequency
excitation
signal
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9515377A
Other languages
English (en)
Other versions
FR2742953B1 (fr
Inventor
H Stephane Manac
Francois Chambon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagem SA
Original Assignee
Sagem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem SA filed Critical Sagem SA
Priority to FR9515377A priority Critical patent/FR2742953B1/fr
Priority to EP96402857A priority patent/EP0781071A1/fr
Publication of FR2742953A1 publication Critical patent/FR2742953A1/fr
Application granted granted Critical
Publication of FR2742953B1 publication Critical patent/FR2742953B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0269Driving circuits for generating signals continuous in time for generating multiple frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Le procédé de commande d'un buzzer (5), consiste à appliquer au buzzer une excitation à une fréquence déterminée, et on réinjecte (6) le signal acoustique, produit par le buzzer, dans un capteur acoustique (1) commandant la fréquence de ladite excitation, on détecte le niveau du signal réinjecté et on effectue un balayage en fréquence de l'excitation jusqu'à obtention d'un maximum de niveau de signal. Application aux postes de téléphonie mobile.

Description

-1
PROCEDE DE COMMANDE D'UN BUZZER
La présente invention concerne un procédé de commande d'un buzzer.
Un buzzer sert à produire un signal acoustique destiné à attirer l'attention des personnes proches afin de les informer de la survenance d'un événement. Les
terminaux électroniques en sont fréquemment équipés.
Ainsi, si l'on considère par exemple un terminal pour téléphonie mobile GSM,
I'arrivée d'un appel est signalée par le buzzer qu'il comporte.
Le buzzer est excité par un signal électrique à une certaine fréquence et il produit un signal acoustique à cette fréquence. Comme le buzzer présente une efficacité maximale à une ou quelques fréquences particulières de résonance, fonction de sa constitution, on l'excite à l'une de ces fréquences afin de l'utiliser au mieux et éviter de devoir utiliser un buzzer plus puissant, donc plus cher,
volumineux et consommant plus.
Cependant, les fréquences de résonance varient d'un buzzer à l'autre dans une même série et, en outre, elles peuvent dériver en température, si bien
qu'un réglage initial de la fréquence d'excitation n'a qu'une efficacité limitée.
La présente invention vise à s'affranchir de cette incertitude sur la fréquence
de résonance du buzzer.
A cet effet, I'invention concerne un procédé de commande d'un buzzer, dans lequel on applique au buzzer une excitation à une fréquence déterminée, caractérisé par le fait qu'on réinjecte le signal acoustique, produit par le buzzer,
dans un capteur acoustique commandant la fréquence de ladite excitation.
Ainsi, on peut déterminer le spectre de sensibilité du buzzer, ce qui permet d'éviter de l'utiliser à des fréquences auxquelles il présente un rendement médiocre. On peut ainsi assurer qu'il émet un niveau acoustique qui, sans garantir un maximum absolu, représente au moins un maximum relatif dans
une plage de fréquences d'excitation.
2 2742953
Avantageusement, on détermine un spectre de fréquences de bruit ambiant au moyen d'un capteur acoustique et on choisit la fréquence d'excitation dans une
plage sensiblement extérieure au dit spectre.
Ainsi, on assure au signal acoustique un relief sonore supplémentaire puisque l'oreille humaine présente une sélectivité en fréquence lui permettant de
déceler un signal acoustique noyé dans du bruit à une fréquence différente.
L'invention sera mieux comprise à l'aide de la description suivante d'un mode
io de mise en oeuvre préféré du procédé de l'invention, en référence au dessin annexé, sur lequel: - la figure 1 représente schématiquement un poste téléphonique avec buzzer pour la mise en oeuvre du procédé de l'invention, et
- la figure 2 représente la courbe de réponse en fréquence du buzzer.
Le poste téléphonique représenté est ici un poste mobile pour téléphonie mobile GSM. Il comporte un microphone 1 commandant un convertisseur analogique/numérique 2 relié en sortie à un circuit 3 commandant un buzzer 5 à travers un convertisseur numérique/analogique 4. La référence 6 désigne un
couplage acoustique entre le buzzer 5 et le microphone 1.
Les autres circuits du poste, assurant la fonction téléphonique proprement dite, sont classiques et ne sont pas représentés. On notera toutefois que, dans cet
exemple, le microphone 1 et le CAN 2 servent aussi à la fonction téléphonique.
Le circuit 3 comporte dans l'ordre, de son entrée recevant les valeurs du CAN 2 à sa sortie commandant le CNA 4, un filtre passe-bande 30 accordable, un comparateur 32, un bloc de calcul 33, un circuit de commande de balayage en fréquence, ou wobulation, 34 et un oscillateur wobulateur 35 à fréquence
commandée par le circuit 34, qui commande aussi l'accord du filtre 30.
Une mémoire 31 est reliée, en entrée de données, à la fois à la sortie du filtre 30 et à la sortie du circuit 34. La sortie de la mémoire 31 alimente une seconde
entrée du comparateur 32, relié par sa première entrée au filtre 30.
3 2742953
Le bloc de calcul 33 comporte une base de temps et un séquenceur, non représentés, pour commander les circuits CAN et CNA, 2 et 4, et pour adresser
la mémoire 31.
La courbe S de sensibilité ou réponse en fréquence, ou pression acoustique Pa, du buzzer 5 représentée sur la figure 2 présente deux sommets de valeurs
Pal et Pa2 et de fréquences F = F1 et F2, respectivement.
o10 Selon le procédé de l'invention, on excite le buzzer 5 à une fréquence déterminée et, par le couplage acoustique 6, on réinjecte le signal acoustique, produit par le buzzer 5, dans le capteur acoustique 1, pour commander la
fréquence de l'excitation du buzzer 5.
Le circuit 3 assure la gestion de la commande du buzzer 5, comme cela va
maintenant être expliqué.
Globalement, le circuit 3 effectue une wobulation de la fréquence de commande, ou d'excitation, du buzzer 5 pour rechercher une ou plusieurs fréquences correspondant à un maximum local, comme Pal, ou au maximum
absolu Pa2, et s'y accrocher.
Pour cela, dans un cycle présent, on détecte par le CAN 2 le niveau du signal réinjecté et l'applique au comparateur 32 en même temps qu'on le mémorise
dans la mémoire 31 pour le cycle suivant.
Le comparateur 32 recevant, sur sa seconde entrée, le niveau mémorisé du signal reçu au cycle précédent, fournit au bloc de calcul 33 un signal d'écart de
niveau représentant la différence AN avec signe des deux signaux cidessus.
La fréquence du signal précédent, ou tout au moins un nombre la représentant qui a été fourni par le circuit de commande 34 et mémorisé dans la mémoire 31 en association avec le niveau du signal précédent reçu, est aussi fournie au
bloc de calcul 33, ayant encore en mémoire la fréquence du signal actuel.
Après calcul de la différence des fréquences, ou incrément, AF qui a été apporté à l'excitation du buzzer 5, le bloc 33 peut ainsi calculer la pente
4 2742953
P = AN/AF de la réponse en fréquence du buzzer 5 dans la zone limitée par les
deux fréquences considérées.
On notera cependant qu'il suffit, pour appliquer le procédé, d'une information binaire représentant le signe de la pente P, information obtenue à partir de deux informations binaires représentant respectivement le signe de l'écart de niveau AN et le signe de la variation de fréquence AF, ou sens de wobulation,
entre deux cycles successifs.
io Ayant déterminé la pente locale P, on choisit alors, pour le cycle suivant, une fréquence d'excitation correspondant à un niveau encore accru, en supposant que le signe de la pente locale P peut être extrapolé en dehors de la plage
restreinte de largeur AF considérée.
Le bloc de calcul 33 envoie alors au circuit de wobulation 34 une commande d'accroissement ou de diminution de la fréquence F actuelle et le circuit 34 fournit une valeur de commande de l'oscillateur 35 représentant la valeur de la fréquence F modifiée. L'oscillateur 35 se règle sur cette fréquence, dont la
valeur de commande est mémorisée dans la mémoire 31.
Lors des cycles successifs, un maximum local est détecté par le changement du signe de la pente P de la courbe S. Une wobulation sur toute la plage des fréquences possibles d'excitation permet de détecter tous les maximas locaux
et donc le maximum absolu.
Si la plage de fréquences d'excitation doit, pour certaines applications, être restreinte à une plage limitée de celle-ci, on y détecte alors au moins un niveau
maximal relatif.
Ainsi, une plage restreinte s'étendant strictement au-delà de F2, à partir d'une fréquence F3, permettrait de déterminer un niveau maximum relatif, inférieur à Pa2 mais dépassant éventuellement Pal, et correspondant dans cet exemple à la fréquence F3 puisque la courbe S décroît de façon monotone dans cette
plage restreinte.
2742953
On peut encore comparer le niveau détecté à un seuil de niveau déterminé et arrêter le balayage, ou le centrer autour de la fréquence considérée. On émet
ainsi un signal de niveau parfaitement déterminé.
Afin d'éliminer le bruit de fond ou d'ambiance acoustique, on effectue ici un filtrage passe-bande au moyen du filtre 30 accordé sur la fréquence de
l'oscillateur 35. De préférence, on effectue, en plus ou à la place du filtrage ci-
dessus, une détection synchrone du signal réinjecté, en comparant sa phase à celle du signal de l'oscillateur 35, ce qui réduit considérablement l'influence du
bruit.
Le circuit 3 de cet exemple est numérique, mais sa fonction pourrait aussi être assurée par un circuit analogique tendant à effectuer la wobulation dans le sens accroissant le niveau réinjecté. En d'autres termes, le circuit 3 tend à réaliser un accrochage de fréquence, du genre effet Larsen, en utilisant le couplage acoustique 6 entre le buzzer 5 et le microphone 1, à travers l'air ainsi
que le corps du poste.
Afin d'assurer au signal acoustique du buzzer 5 un relief sonore par rapport au bruit ou ambiance acoustique, il est ici prévu de choisir une fréquence
d'excitation F qui soit sensiblement en dehors du spectre de celui-ci.
Pour cela, on détermine le spectre des fréquences du bruit ambiant au moyen du microphone 1 et on choisit la fréquence d'excitation dans une plage sensiblement extérieure à ce spectre. La détermination du spectre de bruit s'effectue par une wobulation du filtre passe-bande 30, I'oscillateur 35 étant
alors mis hors service ou forcé à une fréquence non détectée par le filtre 30.
Chacun des niveaux reçus étant mémorisé dans la mémoire 31 en association avec la valeur de la fréquence correspondante, le bloc de calcul 33 peut alors déterminer une ou des plages de fréquences quasi exemptes de bruit. La fréquence d'excitation est alors choisie dans l'une de ces plages, ce qui assure la perception du signal acoustique du buzzer 5 grâce à la sélectivité en fréquence de l'oreille humaine, même si le bruit est de niveau relativement
important par rapport à ce signal.
6 2742953
En outre, ici, on recherche un maximum de réponse du buzzer 5 dans la plage considérée, selon le procédé ci-dessus, ce qui met encore plus en relief le
signal acoustique.
A cet effet, la fréquence d'excitation de la sonnerie du buzzer 5 peut être choisie, en fonction du bruit ambiant, selon l'un des procédés suivants. On notera que la sonnerie est en fait constituée d'un spectre de fréquences produit par un signal d'excitation dans une bande de fréquences, ajustable, et par les
non linéarités de réponse du buzzer 5.
Dans une première famille de procédés, on effectue une analyse spectrale du
bruit acoustique ambiant.
Ainsi, selon un premier procédé de cette famille, par prédiction linéaire, on enregistre le bruit ambiant et on effectue une analyse à prédiction linéaire pour en déterminer des coefficients ck (k: entier de 1 à P) représentant l'enveloppe spectrale du bruit. On effectue ensuite un filtrage de chaque signal de sonnerie, produit par le buzzer 5, par un filtre, utilisant la transformée en z, ayant une réponse du type: p A(z) = 1- E ak.z k=L On choisit ensuite la fréquence d'excitation du buzzer 5 en recherchant un
minimum de l'énergie résiduelle, ou enveloppe spectrale, après le filtrage ci-
dessus.
Selon un second procédé de cette famille, on détermine la transformée de Fourier à Court Terme, TFCT, du bruit ambiant enregistré et on ne conserve que le module de cette transformée. La TFCT est la transformée de Fourier du signal multiplié par une fenêtre d'analyse glissante. Par comparaison de ce module aux TFCT des sonneries à diverses fréquences, on choisit celle pour laquelle la valeur intégrée: I min [ S (f); B (f)] df est minimale,
7 2742953
S (tf) étant le signal de sonnerie et B (f) le bruit ambiant.
On recherche donc un minimum de recouvrement spectral.
Dans une deuxième famille de procédés, on effectue une analyse temporelle
du bruit ambiant.
Ainsi, selon un premier procédé de cette deuxième famille, on calcule une intercorrélation entre le bruit ambiant et le signal de sonnerie et on cherche un
minimum de celle-ci.
Selon un second procédé, probabiliste, de cette deuxième famille, on effectue un alignement temporel par recherche d'un maximum de l'intercorrélation et, par comparaison aux signaux de sonnerie, on recherche un minimum de
probabilité de présence de signal de sonnerie dans le bruit.
Dans une troisième famille de procédés, et selon un premier procédé de celle-
ci, on conserve la rythmique du signal. On calcule le spectre TFCT du signal acoustique et on compare les spectres de fréquences du signal de sonnerie et du bruit pour rechercher un minimum de la formule du type indiqué précédemment: min [ S (of); B (f)] df
par rapport au coefficient multiplicatif a, de réglage du signal de sonnerie.
On conserve ainsi une même mélodie par déplacement homothétique des fréquences, sans devoir effectuer un alignement temporel, du fait de l'absence
d'utilisation de la phase.
D'une façon générale, il est possible d'effectuer une pondération du signal de sonnerie et en particulier de favoriser les composantes spectrales de celui-ci pour lesquelles il y a peu de bruit ambiant, c'est-à-dire d'augmenter le relief
sonore des composantes que l'oreille humaine peut détecter le plus facilement.
8 2742953

Claims (7)

REVENDICATIONS
1- Procédé de commande d'un buzzer (5), dans lequel on applique au buzzer une excitation à une fréquence déterminée, caractérisé par le fait qu'on réinjecte (6) le signal acoustique, produit par le buzzer, dans un capteur
acoustique (1) commandant la fréquence de ladite excitation.
2- Procédé selon la revendication 1, dans lequel on détecte le niveau du signal réinjecté et on effectue un balayage en fréquence de l'excitation jusqu'à
obtention d'un maximum de niveau de signal.
3- Procédé selon la revendication 2, dans lequel on balaye une plage de fréquences d'excitation possibles et on sélectionne celle correspondant au
niveau maximal.
4- Procédé selon la revendication 3, dans lequel on arrête le balayage
lorsqu'est dépassé un seuil de niveau déterminé.
- Procédé selon l'une des revendications 1 à 4, dans lequel on effectue, sur le
signal du capteur, un filtrage passe-bande (30) accordé sur la fréquence d'excitation. 6- Procédé selon la revendication 5, dans lequel le filtrage passe-bande
comporte une détection synchrone.
7- Procédé selon l'une des revendications 1 à 6, dans lequel on détermine de
façon numérique la fréquence d'excitation.
8- Procédé selon l'une des revendications 1 à 7, dans lequel, le buzzer
appartenant à un terminal téléphonique, on utilise le microphone (1) de celui-ci
comme capteur de réinjection.
9- Procédé selon l'une des revendications 1 à 8, dans lequel on détermine un
spectre de fréquences de bruit ambiant au moyen d'un capteur acoustique et on choisit la fréquence d'excitation dans une plage sensiblement extérieure au
dit spectre.
- Procédé selon la revendication 9, dans lequel on utilise un capteur
unique (1) pour le bruit ambiant et le signal du buzzer.
FR9515377A 1995-12-22 1995-12-22 Procede de commande d'un buzzer Expired - Fee Related FR2742953B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR9515377A FR2742953B1 (fr) 1995-12-22 1995-12-22 Procede de commande d'un buzzer
EP96402857A EP0781071A1 (fr) 1995-12-22 1996-12-20 Procédé de commande d'un buzzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9515377A FR2742953B1 (fr) 1995-12-22 1995-12-22 Procede de commande d'un buzzer

Publications (2)

Publication Number Publication Date
FR2742953A1 true FR2742953A1 (fr) 1997-06-27
FR2742953B1 FR2742953B1 (fr) 1998-01-23

Family

ID=9485870

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9515377A Expired - Fee Related FR2742953B1 (fr) 1995-12-22 1995-12-22 Procede de commande d'un buzzer

Country Status (2)

Country Link
EP (1) EP0781071A1 (fr)
FR (1) FR2742953B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044279A (en) * 1996-06-05 2000-03-28 Nec Corporation Portable electronic apparatus with adjustable-volume of ringing tone
US5844983A (en) * 1997-07-10 1998-12-01 Ericsson Inc. Method and apparatus for controlling a telephone ring signal
US6246761B1 (en) * 1997-07-24 2001-06-12 Nortel Networks Limited Automatic volume control for a telephone ringer
DE19822370A1 (de) * 1998-05-19 1999-11-25 Bosch Gmbh Robert Telekommunikationsendgerät
US6134455A (en) * 1998-06-30 2000-10-17 Nokia Mobile Phones Limited Annunciating apparatus, and associated method, for radio communication device
AU2288099A (en) * 1999-01-25 2000-08-07 Maxon Systems Inc. (London) Ltd. Alert signal unit for an electronic device to compensate for the influence of anenvironment
FI19992322A (fi) * 1999-10-28 2001-04-29 Vlsi Solution Oy Summerin ohjauskytkentä
GB2358553B (en) * 2000-01-21 2002-04-10 Motorola Ltd Generation of alert signals in radio transceivers
CN1537305A (zh) * 2002-04-01 2004-10-13 松下电器产业株式会社 通报装置
US7424120B2 (en) * 2003-08-06 2008-09-09 Avago Technologies General Ip Pte Ltd Method and apparatus for volume control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076968A (en) * 1976-09-02 1978-02-28 Bell Telephone Laboratories, Incorporated Telephone ringer intensity control responsive to ambient noise
GB2084783A (en) * 1980-10-02 1982-04-15 Production Eng Res Audio system
DE4021787A1 (de) * 1990-07-09 1992-01-16 Telefunken Electronic Gmbh Elektro-akustisches system
JPH06121008A (ja) * 1992-10-05 1994-04-28 Nitsuko Corp 電話機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076968A (en) * 1976-09-02 1978-02-28 Bell Telephone Laboratories, Incorporated Telephone ringer intensity control responsive to ambient noise
GB2084783A (en) * 1980-10-02 1982-04-15 Production Eng Res Audio system
DE4021787A1 (de) * 1990-07-09 1992-01-16 Telefunken Electronic Gmbh Elektro-akustisches system
JPH06121008A (ja) * 1992-10-05 1994-04-28 Nitsuko Corp 電話機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 18, no. 407 (E - 1586) 29 July 1994 (1994-07-29) *

Also Published As

Publication number Publication date
EP0781071A1 (fr) 1997-06-25
FR2742953B1 (fr) 1998-01-23

Similar Documents

Publication Publication Date Title
EP0974221B1 (fr) Dispositif de commande vocale pour radiotelephone, notamment pour utilisation dans un vehicule automobile
FR2742953A1 (fr) Procede de commande d'un buzzer
FR2976111A1 (fr) Equipement audio comprenant des moyens de debruitage d'un signal de parole par filtrage a delai fractionnaire, notamment pour un systeme de telephonie "mains libres"
US8687090B2 (en) Method of removing audio noise and image capturing apparatus including the same
EP0998166A1 (fr) Dispositif de traitement audio récepteur et procédé pour filtrer un signal utile et le restituer en présence de bruit ambiant
EP1512952A1 (fr) Dispositif et procede permettant d'interpoler des signaux vocaux ainsi que programme associe
FR2906070A1 (fr) Reduction de bruit multi-reference pour des applications vocales en environnement automobile
FR2722631A1 (fr) Procede et systeme de filtrage adaptatif par egalisation aveugle d'un signal telephonique numerique et leurs applications
EP0714088B1 (fr) Détection d'activité vocale
EP0359633A1 (fr) Détectuer d'enveloppe logarithmique de signal analogique
FR2906071A1 (fr) Reduction de bruit multibande avec une reference de bruit non acoustique
FR2635680A1 (fr) Prothese auditive
EP1902578B1 (fr) Procede et dispositif de prise de son, notamment dans des terminaux telephoniques en "mains libres"
FR2783991A1 (fr) Telephone avec moyens de rehaussement de l'impression subjective du signal en presence de bruit
EP0989544A1 (fr) Dispositif et procédé de filtrage d'un signal de parole, récepteur et système de communications téléphonique
FR3055764A1 (fr) Procede de controle de la detection en temps reel d'une scene par un appareil de communication sans fil, par exemple un telephone mobile cellulaire, et appareil correspondant.
EP0774188B1 (fr) Procede et dispositif de decodage d'un signal electrique multivalent et ensemble de reception comportant un tel dispositif de decodage
JP3941421B2 (ja) 音響機器及び携帯電話並びにそれらの制御方法
FR2723276A1 (fr) Procede et dispositif de decodage d'un signal electrique multivalent et ensemble de reception comportant un tel disposiif de decodage
FR3051959A1 (fr) Procede et dispositif pour estimer un signal dereverbere
EP2119063A2 (fr) Procede de determination de la presence d'un signal de telecommunications sur une bande de frequences
EP3370149A1 (fr) Procédé de contrôle de la détection en temps réel d'une scène, permettant la détermination de contexte par un appareil de communication sans fil, et appareil correspondant
FR2529727A1 (fr) Dispositif de reglage automatique du niveau sonore d'une source de sons utiles en fonction du bruit ambiant
KR100636048B1 (ko) 주변 소음에 따라 주파수 특성이 변화된 신호음을발생시키는 이동단말기 및 방법
FR2779589A1 (fr) Procede de surveillance a l'aide d'un telephone de radiocommunications portatif et telephone associe

Legal Events

Date Code Title Description
ST Notification of lapse